-
Notifications
You must be signed in to change notification settings - Fork 22
/
tdxhy.py
400 lines (318 loc) · 12 KB
/
tdxhy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
#pytdx
import os
from pytdx.hq import TdxHq_API
import pandas as pd
from common.common import *
from common.framework import init_stock_list,getstockinfo,get_chouma
import json
parser.add_argument('--reset', type=int, default=0, help='reset data')
args = parser.parse_known_args()
reset = args[0].reset
api = TdxHq_API()
serverip = '119.147.212.81'
serverip = '119.147.212.81'
tdxblockdf = ''
tdxblockex = ''
float2 = lambda a:float('%.2f' % a)
block_list = []
filename = './datas/stock_tdx_block'+endday+'.html'
filename_rt = './datas/stock_tdx_block_rt'+endday+'.html'
codename = {}
content = ""
contentrt = "因为除权问题,部分数据可能存在差异\n</p>"
content1 = "因为除权问题,部分数据可能存在差异\n</p>"
#获取所有的板块
def get_block():
all_list = api.get_security_list(1, 0)
for i in all_list:
code = int (i['code'])
if (code >= 880300) and (code <=880999) and (code != 880650):
#print(i['code'],i['name'])
block_list.append([i['code'],i['name']])
dayK_list = []
#获取板块日K数据
def get_blockbar():
global content1
for i in block_list:
code = i[0]
name = i[1]
datas = api.get_index_bars(9,1, code, 0, 20)
if datas == None or len(datas)<20:
continue
c1 = datas[-1]['close']
d1 = datas[-1]['datetime']
c2 = datas[-2]['close']
c5 = datas[-5]['close']
c10 = datas[-10]['close']
c20 = datas[-20]['close']
print(name,code,d1,c1,float2((c1-c2)*100/c2),float2((c1-c5)*100/c5),float2((c1-c10)*100/c10),float2((c1-c20)*100/c20))
dayK_list.append([name,code,d1,c1,float2((c1-c2)*100/c2),float2((c1-c5)*100/c5),float2((c1-c10)*100/c10),float2((c1-c20)*100/c20)])
df = pd.DataFrame(dayK_list,columns=['name','code','date','close','今日涨幅','周涨幅','半月涨幅','月涨幅'])
df = df.sort_values(by='今日涨幅',ascending=False).reset_index()
del df['index']
content1 += df.loc[df['今日涨幅']> 0,:].to_html(escape=False,float_format='%.2f')
df1 = df.iloc[:40]
df = df.sort_values(by='周涨幅',ascending=False).reset_index()
del df['index']
content1 += df.loc[df['周涨幅']>0,:].to_html(escape=False,float_format='%.2f')
return df1, df.iloc[:40]
#获取个股对应的板块名称
def QA_fetch_get_tdx_industry() -> pd.DataFrame:
import random
import tempfile
import shutil
import os
from urllib.request import urlopen
global tdxblockdf
def gettempdir():
tmpdir_root = tempfile.gettempdir()
subdir_name = 'tdx_base' #+ str(random.randint(0, 1000000))
tmpdir = os.path.join(tmpdir_root, subdir_name)
if not os.path.exists(tmpdir):
os.makedirs(tmpdir)
return tmpdir
def download_tdx_file(tmpdir) -> str:
url = 'http://www.tdx.com.cn/products/data/data/dbf/base.zip'
try:
file = tmpdir + '/' + 'base.zip'
f = urlopen(url)
data = f.read()
with open(file, 'wb') as code:
code.write(data)
f.close()
shutil.unpack_archive(file, extract_dir=tmpdir)
os.remove(file)
except:
pass
return tmpdir
def read_industry(folder:str) -> pd.DataFrame:
incon = folder + '/incon.dat' # tdx industry file
incon = './incon.dat' # tdx industry file
hy = folder + '/tdxhy.cfg' # tdx stock file
tbk = {}
# tdx industry file
with open(incon, encoding='GB18030', mode='r') as f:
incon = f.readlines()
incon_dict = {}
for i in incon:
if i[0] == '#' and i[1] != '#':
j = i.replace('\n', '').replace('#', '')
incon_dict[j] = []
start = 1
else:
if i[1] != '#':
codelist = i.replace('\n', '').split(' ')[0].split('|')
if len(codelist[0]) == 5 and codelist[0][0] == 'T':
tbk[codelist[0]] = codelist[1]
incon_dict[j].append(i.replace('\n', '').split(' ')[0].split('|'))
incon = pd.concat([pd.DataFrame.from_dict(v).assign(type=k) for k,v in incon_dict.items()]) \
.rename({0: 'code', 1: 'name'}, axis=1).reset_index(drop=True)
with open(hy, encoding='GB18030', mode='r') as f:
hy = f.readlines()
hy = [line.replace('\n', '') for line in hy]
hy = pd.DataFrame(line.split('|') for line in hy)
# filter codes
hy = hy[~hy[1].str.startswith('9')]
hy = hy[~hy[1].str.startswith('2')]
hy1 = hy[[1, 2]].set_index(2).join(incon.set_index('code')).set_index(1)[['name', 'type']]
hy2 = hy[[1, 5]].set_index(5).join(incon.set_index('code')).set_index(1)[['name', 'type']]
print(hy1)
# add 56 tdx block
count = 0
hy['tbk1'] = ""
for i in hy[2].values:
if len(i) >=5:
hy['tbk1'].iloc[count] = tbk[i[:5]]
count += 1
# join tdxhy and swhy
df = hy.set_index(1) \
.join(hy1.rename({'name': hy1.dropna()['type'].values[0], 'type': hy1.dropna()['type'].values[0]+'_type'}, axis=1)) \
.join(hy2.rename({'name': hy2.dropna()['type'].values[0], 'type': hy2.dropna()['type'].values[0]+'_type'}, axis=1)).reset_index()
df.rename({0: 'sse', 1: 'code', 2: 'TDX_code', 3: 'SW_code'}, axis=1, inplace=True)
df = df[[i for i in df.columns if not isinstance(i, int) and '_type' not in str(i)]]
df.columns = [i.lower() for i in df.columns]
#shutil.rmtree(folder, ignore_errors=True)
return df
folder = gettempdir()
if reset != 0:
shutil.rmtree(folder, ignore_errors=True)
dirpath = folder
#if not os.path.exists(folder + '/incon.dat') or not os.path.exists(folder + '/tdxhy.cfg'):
if not os.path.exists(folder + '/tdxhy.cfg'):
print("Save file to ",folder)
download_tdx_file(folder)
if len(tdxblockdf ) < 1000:
print("Read file from ",folder)
df = read_industry(folder)
tdxblockdf = df
codebuffer={}
def get_bar(code,sse):
sse = int(sse)
if sse == 1:
code1 = 'sh' + code
else:
code1 = 'sz' + code
if codebuffer.get(code1,None) is None:
ret = _get_bar(code,sse)
codebuffer[code1] = ret
return codebuffer[code1]
#获取个股日K数据
def _get_bar(code,sse):
sse = int(sse)
code = str(code)
if sse == 1:
code1 = 'sh' + code
code2 = 'sh.' + code
else:
code1 = 'sz' + code
code2 = 'sz.' + code
name = codename.get(code1,"")
datas = api.get_security_bars(9,sse,code, 0, 10)
info = api.get_finance_info(sse, code)
datas = api.to_df(datas)
if len(datas) < 5:
return None
try:
liutonggu = float(info['liutongguben'])
except:
liutonggu = 0.1
close = datas.close.iloc[-1]
close1 = datas.close.iloc[-2]
close5 = datas.close.iloc[-5]
c1 = (close -close1) / close1
c5 = (close -close5) / close5
c1 = float(c1)*100
c5 = float(c5)*100
liutonggu = liutonggu * close / 10000 / 10000
code = code1
print(code1,name,close,float2(c1),float2(liutonggu),"亿")
if (liutonggu < 100):
return None
if c5 < 5:
return None
chouma = str(get_chouma(code2))
return (code,name,close,float2(c1),float2(c5),float2(liutonggu),chouma)
#初始化 ,并获取概念板块名称
api.connect(serverip, 7709)
# 偶尔出现 gn加载不成功的情况
try:
b = api.get_and_parse_block_info('block_gn.dat')
except:
b = api.get_and_parse_block_info('block_gn.dat')
hy1 = pd.DataFrame(b)
# 获取板块
QA_fetch_get_tdx_industry()
hy = tdxblockdf
hydict = {}
hy1dict = {}
#个股对应板块名的表
for i in range(0,len(hy)):
sse = hy.sse.iloc[i]
code = hy.code.iloc[i]
bkname = hy.tdxnhy.iloc[i]
hydict[code] = [bkname,sse]
#个股对应概念板块的表
for i in range(0,len(hy1)):
code = hy1.code.iloc[i]
bkname = hy1.blockname.iloc[i]
hy1dict[code] = [bkname]
# 0 is name, 1 is sse
def getmarket(code):
if hydict.get(code):
return hydict[code][1]
elif int(code)>=600000:
return 1
elif int(code)<600000:
return 0
def gettdxbk(code):
code = code.split('.')[1]
return hydict.get(code,[""])[0]
def gettdxgn(code):
code = code.split('.')[1]
return hy1dict.get(code,[""])[0]
def create_clickable_code(code):
url_template= '''<a href="http://klang.org.cn/kline.html?code={code}" target="_blank"><font color="blue">{code}</font></a>'''.format(code=code)
return url_template
def create_close_code(code):
url_template= '''result['{code}'][1]'''.format(code=code)
return '''<a href="https://gu.qq.com/'''+ code + '''" target="_blank">'''+ '{{'+url_template+'}}' + "</a>"
def create_rise_code(code):
url_template= '''result['{code}'][2]'''.format(code=code)
return """<font v-if=" """ +url_template + """ > 0" color="#ef4136">{{"""+url_template+"""}}</font> <font v-else color="#00ef00">{{"""+url_template+"""}}</font>"""
def create_color_hqltgz(hqltsz):
if hqltsz >= 200.0:
url_template= '''<font color="#ef4136">{hqltsz}</font></a>'''.format(hqltsz=hqltsz)
else:
url_template = '''{hqltsz}'''.format(hqltsz=hqltsz)
return url_template
#获取板块下面的个股数据
def sortblock(bklist,bkname,bkcode,sse=0):
global content,contentrt
api.connect(serverip, 7709)
result_list = []
if sse:
for i in range(0,len(bklist)):
ret = get_bar(bklist.code.iloc[i],getmarket(bklist.code.iloc[i]))
if ret is not None:
result_list.append(ret)
else:
for i in range(0,len(bklist)):
ret = get_bar(bklist.code.iloc[i],bklist.sse.iloc[i])
if ret is not None:
result_list.append(ret)
if len(result_list) == 0:
return
df = pd.DataFrame(result_list,columns=['code','name','close','今日涨幅','周涨幅','流通市值','筹码'])
df = df.sort_values(by='今日涨幅',ascending=False).reset_index()
del df['index']
df['板块'] = bkname
df['当前价格'] = df['code'].apply(create_close_code)
df['涨幅'] = df['code'].apply(create_rise_code)
df['code'] = df['code'].apply(create_clickable_code)
df['流通市值'] = df['流通市值'].apply(create_clickable_code)
title = '板块:' + bkname + '(' + bkcode +')\n'
contentrt += title + df.to_html(escape=False,float_format='%.2f')
del df['当前价格']
del df['涨幅']
content += title + df.to_html(escape=False,float_format='%.2f')
#尝试获取板块下面的股票列表
def get_code_list(bkname,code):
print(bkname)
l1 = hy1.loc[hy1.blockname == bkname,:]
if len(l1) > 0:
sortblock(l1,bkname,code,1)
return
l = hy.loc[hy.tdxnhy == bkname,:]
if len(l):
sortblock(l,bkname,code)
return
tbk1 = hy.loc[hy.tbk1 == bkname,:]
if len(tbk1):
sortblock(tbk1,bkname,code)
return
#tdx 板块信息只有 个股code对应板块名
#因此要获取code和股票名的 对应表
alllist = init_stock_list()
for i in alllist:
code,name,tdxbk,tdxgn = getstockinfo(i)
codename[code.replace('.','')] = name
api.connect(serverip, 7709)
if __name__ == "__main__":
get_block()
df1,df2 = get_blockbar()
print(df1)
print(df2)
for i in range(0,len(df1)):
get_code_list(df1.name.iloc[i],df1.code.iloc[i])
for i in range(0,len(df2)):
get_code_list(df2.name.iloc[i],df2.code.iloc[i])
k = codebuffer.keys()
k = list(k)
content2 = "<script>\n var stocklist="
content2 += json.dumps(k)
content2 += ";\n</script>"
base = open('base.html').read()
print("save to ", 'file://'+os.getcwd()+ '/' + filename)
save_file(filename,content+content1)
print("save to ", 'file://'+os.getcwd()+ '/' + filename_rt)
save_file(filename_rt,base % (contentrt+content1 ,content2))