-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake-dataset.py
305 lines (255 loc) · 13.6 KB
/
make-dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import os
import sys
import h5py
import glob
import numpy as np
import multiprocessing
import argparse
import uuid
from contextlib import contextmanager
sys.path.insert(0, "{}/StarNet".format(os.getenv('HOME')))
from starnet.utils.data_utils.preprocess_spectra import rebin
from eniric.broaden import convolution, resolution_convolution
home = os.getenv('HOME')
#data_dir = os.path.join(home, 'data')
#spec_dir = os.path.join(data_dir, 'spectra', 'processed')
BATCH_SIZE = 16
DATA_DICT = {"spectra": [], "spectra+solar": [], "frac_solar": [], "snr": [], "O": [],
"Mg": [], "Ca": [], "S": [], "Ti": [], "vmicro": [], "vrad": [], "feh": [],
"teff": [], "logg": []}
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1', 'real'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0', 'fake'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def add_radial_velocity(wav, rv, flux=None):
"""
This function adds radial velocity effects to a spectrum.
wav: wavelength array
rv: radial velocity (km/s)
flux: spectral flux array
"""
# Speed of light in m/s
c = 299792458.0
# New wavelength array with added radial velocity
new_wav = wav * np.sqrt((1. - (-rv * 1000.) / c) / (1. + (-rv * 1000.) / c))
# if flux array provided, interpolate it onto this new wavelength grid and return both,
# otherwise just return the new wavelength grid
if flux is not None:
new_flux = rebin(new_wav, wav, flux)
return new_wav, new_flux
else:
return new_wav
def augment_spectrum(flux, wav, intermediate_wav, final_wav, to_res=20000):
# Degrade resolution
flux = resolution_convolution(wavelength=intermediate_wav,
extended_wav=wav,
extended_flux=flux,
R=to_res,
normalize=True,
num_procs=1)
# Rebin to final wave grid
flux = rebin(final_wav, intermediate_wav, flux)
return flux
def augment_spectra_parallel(spectra, wav, intermediate_wav, final_wav, instrument_res):
@contextmanager
def poolcontext(*args, **kwargs):
pool = multiprocessing.Pool(*args, **kwargs)
yield pool
pool.terminate()
num_spectra = np.shape(spectra)[0]
num_cpu = multiprocessing.cpu_count()
pool_size = num_cpu if num_spectra >= num_cpu else num_spectra
#print('[INFO] Pool size: {}'.format(pool_size))
pool_arg_list = [(spectra[i], wav, intermediate_wav, final_wav, instrument_res)
for i in range(num_spectra)]
with poolcontext(processes=pool_size) as pool:
results = pool.starmap(augment_spectrum, pool_arg_list)
augmented_spectra = [result for result in results]
return augmented_spectra
def make_dataset(args):
global BATCH_SIZE, DATA_DICT
wave_grid_solar = np.load(args.wave_grid_solar)
wave_grid_weave = np.load(args.wave_grid_weave)
shortened_wave_grid = wave_grid_solar[400:-400]
wave_grid_weave_overlap_ind = (wave_grid_weave > shortened_wave_grid[0]) & (
wave_grid_weave < shortened_wave_grid[-1])
wave_grid_weave_overlap = wave_grid_weave[wave_grid_weave_overlap_ind]
# Load in spectra
solar_spectra = np.load(args.solar_spectra)
with h5py.File(args.uves_spectra, "r") as f:
print(list(f.keys()))
spectra = f['spectra'][:]
y_uves = np.column_stack([f['teff'][:], f['logg'][:], f['fe_h'][:], f['v_rad'][:], f['vmicro'][:]])
abundances_uves = np.column_stack([f['Ca'][:], f['Mg'][:], f['O'][:], f['S'][:], f['Ti'][:]])
snr_uves = f['SNR'][:]
rv_uves = f['v_rad'][:]
# ges_type = f['ges_type'][:]
# objects = f['object'][:]
# wave_grid = f['wave_grid'][:]
non_nan_indices = np.array([not any(np.isnan(y)) for y in y_uves])
spectra = spectra[non_nan_indices]
y_uves = y_uves[non_nan_indices]
abundances_uves = abundances_uves[non_nan_indices]
snr_uves = snr_uves[non_nan_indices]
rv_uves = rv_uves[non_nan_indices]
# ges_type = ges_type[non_nan_indices]
# objects = objects[non_nan_indices]
# Take care of bad values
for i, spec in enumerate(spectra):
spec[spec < 0] = 0
#if os.path.exists(args.save_path):
# with h5py.File(args.save_path, 'w') as hf:
# num_processed_already = len(hf['teff'])
#else:
# num_processed_already = 0
# Determine total number of spectra already in chosen directory
existing_files = glob.glob(args.save_dir + '/*__*')
# Number of spectra appended on to end of filename
total_num_spec = np.sum([int(os.path.basename(f)[18:]) for f in existing_files])
print('Total # of spectra in directory: {}/{}'.format(total_num_spec, args.total_num))
print('Number of spectra already processed: {}/{}'.format(total_num_spec, args.total_num))
print(f'Collecting spectra for the {args.dset_type} set...')
# Generate the batches of spectra
spectra_created = 0
while total_num_spec <= args.total_num:
#for i in range(num_processed_already, args.total_num):
if total_num_spec >= args.total_num:
print('Maximum number of spectra reached.')
break
#if i % BATCH_SIZE == 0:
# print(f'{i} of {args.total_num} processed')
# Collect a UVES and solar spectrum
if args.dset_type == 'train':
uves_spec_ind = np.random.randint(int(0.8*len(spectra)))
solar_spec_ind = np.random.randint(int(0.8*len(solar_spectra)))
elif args.dset_type == 'valid':
uves_spec_ind = np.random.randint(int(0.8*len(spectra)), int(0.85*len(spectra)))
solar_spec_ind = np.random.randint(int(0.8*len(solar_spectra)), int(0.85*len(solar_spectra)))
elif args.dset_type == 'test':
uves_spec_ind = np.random.randint(int(0.85*len(spectra)), len(spectra))
solar_spec_ind = np.random.randint(int(0.85*len(solar_spectra)), len(solar_spectra))
else:
raise ValueError(f'Unknown dset_type: {args.dset_type}')
uves_spectrum = spectra[uves_spec_ind]
solar_spectrum = solar_spectra[solar_spec_ind]
# Calculate the median flux
median_uves_flux = np.median(uves_spectrum)
median_solar_flux = np.median(solar_spectrum)
# Determine how much solar contamination there should be
norm_factor = median_uves_flux / median_solar_flux # For bringing solar flux to same scale as uves flux
frac_solar_contribution = np.random.uniform(0.00, args.max_contam)
final_factor = norm_factor * frac_solar_contribution
if str2bool(args.real_vrad):
rv = rv_uves[uves_spec_ind]
else: # Radially shift the spectrum
if ~np.isnan(rv_uves[uves_spec_ind]):
rv = np.random.uniform(-200, 200)
rv_interm = rv_uves[uves_spec_ind] - rv # first shift to rest frame then bring to new rv
_, uves_spectrum = add_radial_velocity(wave_grid_solar, rv_interm, uves_spectrum)
else:
rv = rv_uves[uves_spec_ind]
# Contaminate the spectrum
contam_spectrum = uves_spectrum + final_factor * solar_spectrum
# Append data to dict
DATA_DICT['frac_solar'].append(frac_solar_contribution)
DATA_DICT['snr'].append(snr_uves[uves_spec_ind])
DATA_DICT['Ca'].append(abundances_uves[:, 0][uves_spec_ind])
DATA_DICT['Mg'].append(abundances_uves[:, 1][uves_spec_ind])
DATA_DICT['O'].append(abundances_uves[:, 2][uves_spec_ind])
DATA_DICT['S'].append(abundances_uves[:, 3][uves_spec_ind])
DATA_DICT['Ti'].append(abundances_uves[:, 4][uves_spec_ind])
DATA_DICT['vrad'].append(rv)
DATA_DICT['teff'].append(y_uves[:, 0][uves_spec_ind])
DATA_DICT['logg'].append(y_uves[:, 1][uves_spec_ind])
DATA_DICT['feh'].append(y_uves[:, 2][uves_spec_ind])
DATA_DICT['vmicro'].append(y_uves[:, 4][uves_spec_ind])
DATA_DICT['spectra'].append(uves_spectrum)
DATA_DICT['spectra+solar'].append(contam_spectrum)
# Fill up h5 file
if len(DATA_DICT['teff']) == BATCH_SIZE:
#if (i % BATCH_SIZE == 0 and i != 0) or i == args.total_num - 1:
print(f'Augmenting {len(DATA_DICT["teff"])} spectra')
# Change resolution and wavelength grid
DATA_DICT['spectra+solar'] = augment_spectra_parallel(DATA_DICT['spectra+solar'], wave_grid_solar,
shortened_wave_grid,
wave_grid_weave_overlap, args.resolution)
DATA_DICT['spectra'] = augment_spectra_parallel(DATA_DICT['spectra'], wave_grid_solar,
shortened_wave_grid,
wave_grid_weave_overlap, args.resolution)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
unique_filename = str(uuid.uuid4())[:12] + '__spec{}'.format(BATCH_SIZE)
save_path = os.path.join(args.save_dir, unique_filename)
print('Saving {} to {}'.format(unique_filename, args.save_dir))
with h5py.File(save_path, 'w') as hf:
for key in DATA_DICT.keys():
print(key)
hf.create_dataset(key, data=np.asarray(DATA_DICT[key]))
hf.create_dataset('wave_grid', data=wave_grid_weave_overlap)
spectra_created += BATCH_SIZE
print('Total # of spectra created so far: {}'.format(spectra_created))
# Again, check to see how many files are in the chosen save directory (parallel jobs will be filling it up too)
existing_files = glob.glob(args.save_dir + '/*__*')
# Number of spectra appended on to end of filename
total_num_spec = np.sum([int(os.path.basename(f)[18:]) for f in existing_files])
print('Total # of spectra in directory: {}/{}'.format(total_num_spec, args.total_num))
# # Create master file and add data
# if not os.path.exists(args.save_path):
# print('Save file does not yet exist. Creating it at: {}'.format(args.save_path))
# with h5py.File(args.save_path, 'w') as hf:
# for key in DATA_DICT.keys():
# print(key)
# if len(np.shape(DATA_DICT[key])) == 3: # e.g. image
# maxshape = (None, np.shape(DATA_DICT[key])[1], np.shape(DATA_DICT[key])[2])
# elif len(np.shape(DATA_DICT[key])) == 2: # e.g. 1-d spectrum
# maxshape = (None, np.shape(DATA_DICT[key])[1])
# else: # e.g. single value
# maxshape = (None,)
# hf.create_dataset(key, data=DATA_DICT[key], maxshape=maxshape)
# # Or append to master file if it already exists
# else:
# print('Appending data to file...')
# with h5py.File(args.save_path, 'a') as hf:
# for key in DATA_DICT.keys():
# hf[key].resize((hf[key].shape[0]) + np.shape(DATA_DICT[key])[0],
# axis=0)
# hf[key][-np.shape(DATA_DICT[key])[0]:] = DATA_DICT[key]
# Clear data dict to get it ready for next batch of data
for value in DATA_DICT.values():
del value[:]
# Calculate mean and std of flux data and append to h5 file
#with h5py.File(args.save_path, 'a') as hf:
# mean_flux = np.mean(hf['spectra+solar'])
# std_flux = np.std(hf['spectra+solar'])
# hf.create_dataset('mean_flux', data=mean_flux)
# hf.create_dataset('std_flux', data=std_flux)
# hf.create_dataset('wave_grid', data=wave_grid_weave_overlap)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--save_dir', type=str, required=True,
help='Folder to save spectra .h5 files in')
parser.add_argument('--total_num', type=int, required=True,
help='Maximum number of spectra to create')
parser.add_argument('--wave_grid_solar', type=str, default='/arc/home/Merileo/data/wave_grids/UVES_4835-5395_solar.npy',
help='Number of spectra used in a single batch')
parser.add_argument('--wave_grid_weave', type=str, default='/arc/home/Merileo/data/wave_grids/weave_hr_wavegrid_arms.npy',
help='Number of spectra used in a single batch')
parser.add_argument('--solar_spectra', type=str, default='UVES_solar_spectra.npy',
help='Number of spectra used in a single batch')
parser.add_argument('--uves_spectra', type=str, default='UVES_GE_MW_4835-5395_nonorm_abundances.h5',
help='Number of spectra used in a single batch')
parser.add_argument('--dset_type', type=str, default='train',
help='Number of spectra used in a single batch')
parser.add_argument('--max_contam', type=float, default=0.5,
help='maximum fraction of contamination to add')
parser.add_argument('--resolution', type=float, default=20000,
help='Resolution to degrade spectrum to')
parser.add_argument('--real_vrad', type=str, default='False',
help='Whether to use real vrads (if false, will uniformly sample within bounds')
args = parser.parse_args()
make_dataset(args)