Skip to content

Latest commit

 

History

History
96 lines (64 loc) · 4.55 KB

README.md

File metadata and controls

96 lines (64 loc) · 4.55 KB

Vision Transformer - Pytorch

Pytorch implementation of Vision Transformer. Pretrained pytorch weights are provided which are converted from original jax/flax weights. This is a project of the ASYML family and CASL.

Introduction

Figure 1 from paper

Pytorch implementation of paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. We provide the pretrained pytorch weights which are converted from pretrained jax/flax models. We also provide fine-tune and evaluation script. Similar results as in original implementation are achieved.

Installation

Create environment:

conda create --name vit --file requirements.txt
conda activate vit

Available Models

We provide pytorch model weights, which are converted from original jax/flax wieghts. You can download them and put the files under 'weights/pytorch' to use them.

Otherwise you can download the original jax/flax weights and put the fimes under 'weights/jax' to use them. We'll convert the weights for you online.

Datasets

Currently three datasets are supported: ImageNet2012, CIFAR10, and CIFAR100. To evaluate or fine-tune on these datasets, download the datasets and put them in 'data/dataset_name'.

More datasets will be supported.

Fine-Tune/Train

python src/train.py --exp-name ft --n-gpu 4 --tensorboard  --model-arch b16 --checkpoint-path weights/pytorch/imagenet21k+imagenet2012_ViT-B_16.pth --image-size 384 --batch-size 32 --data-dir data/ --dataset CIFAR10 --num-classes 10 --train-steps 10000 --lr 0.03 --wd 0.0

Evaluation

Make sure you have downloaded the pretrained weights either in '.npy' format or '.pth' format

python src/eval.py --model-arch b16 --checkpoint-path weights/jax/imagenet21k+imagenet2012_ViT-B_16.npy --image-size 384 --batch-size 128 --data-dir data/ImageNet --dataset ImageNet --num-classes 1000

Results and Models

Pretrained Results on ImageNet2012

upstream model dataset orig. jax acc pytorch acc model link
imagenet21k ViT-B_16 imagenet2012 84.62 83.90 checkpoint
imagenet21k ViT-B_32 imagenet2012 81.79 81.14 checkpoint
imagenet21k ViT-L_16 imagenet2012 85.07 84.94 checkpoint
imagenet21k ViT-L_32 imagenet2012 82.01 81.03 checkpoint

Fine-Tune Results on CIFAR10/100

Due to limited GPU resources, the fine-tune results are obtained by using a batch size of 32 which may impact the performance a bit.

upstream model dataset orig. jax acc pytorch acc
imagenet21k ViT-B_16 CIFAR10 98.92 98.90
imagenet21k ViT-B_16 CIFAR100 92.26 91.65

TODO

  • Colab
  • Integrated into Texar

Acknowledge

  1. https://github.com/google-research/vision_transformer
  2. https://github.com/lucidrains/vit-pytorch
  3. https://github.com/kamalkraj/Vision-Transformer

Contributing

Issues and Pull Requests are welcome for improving this repo. Please follow the contribution guide

License

Apache License 2.0

Supporting Companies and Universities