-
Notifications
You must be signed in to change notification settings - Fork 2
/
async_utils.py
364 lines (325 loc) · 14.4 KB
/
async_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import asyncio
from datetime import datetime, timezone
import logging
import textwrap
from typing import Any, Dict, Iterable, List, Optional, Sequence, Set, Tuple, Type, Union
import numpy as np
import pandas as pd
from pandas.core.dtypes.cast import OutOfBoundsDatetime, tslib
from pandas.core.internals import make_block
from pandas.core.internals.managers import BlockManager, form_blocks
import sentry_sdk
from sqlalchemy import Boolean, Column, DateTime, Integer
from sqlalchemy.orm.attributes import InstrumentedAttribute
from sqlalchemy.sql import ClauseElement
from sqlalchemy.sql.elements import Label
from athenian.api import metadata
from athenian.api.db import Database, DatabaseLike
from athenian.api.models.metadata.github import Base as MetadataBase
from athenian.api.models.persistentdata.models import Base as PerdataBase
from athenian.api.models.precomputed.models import GitHubBase as PrecomputedBase
from athenian.api.models.state.models import Base as StateBase
from athenian.api.to_object_arrays import to_object_arrays_split
from athenian.api.tracing import MAX_SENTRY_STRING_LENGTH
async def read_sql_query(sql: ClauseElement,
con: DatabaseLike,
columns: Union[Sequence[str], Sequence[InstrumentedAttribute],
MetadataBase, PerdataBase, PrecomputedBase, StateBase],
index: Optional[Union[str, Sequence[str]]] = None,
soft_limit: Optional[int] = None,
) -> pd.DataFrame:
"""Read SQL query into a DataFrame.
Returns a DataFrame corresponding to the result set of the query.
Optionally provide an `index_col` parameter to use one of the
columns as the index, otherwise default integer index will be used.
Parameters
----------
sql : SQLAlchemy query object to be executed.
con : async SQLAlchemy database engine.
columns : list of the resulting columns names, column objects or the model if SELECT *
index : Name(s) of the index column(s).
soft_limit
: Load this number of rows at maximum.
Returns
-------
DataFrame
Notes
-----
Any datetime values with time zone information parsed via the `parse_dates`
parameter will be converted to UTC.
"""
try:
data = await con.fetch_all(query=sql)
except Exception as e:
try:
sql = str(sql)
except Exception:
sql = repr(sql)
sql = textwrap.shorten(sql, MAX_SENTRY_STRING_LENGTH - 500)
logging.getLogger("%s.read_sql_query" % metadata.__package__).error(
"%s: %s; %s", type(e).__name__, e, sql)
raise e from None
if soft_limit is not None and len(data) > soft_limit:
data = data[:soft_limit]
return wrap_sql_query(data, columns, index)
def _create_block_manager_from_arrays(
arrays_typed: List[np.ndarray],
arrays_obj: np.ndarray,
names_typed: List[str],
names_obj: List[str],
size: int,
) -> BlockManager:
assert len(arrays_typed) == len(names_typed)
assert len(arrays_obj) == len(names_obj)
range_index = pd.RangeIndex(stop=size)
typed_index = pd.Index(names_typed)
blocks = form_blocks(arrays_typed, typed_index, [typed_index, range_index])
blocks.append(make_block(arrays_obj, placement=np.arange(len(arrays_obj)) + len(arrays_typed)))
return BlockManager(blocks, [pd.Index(names_typed + names_obj), range_index])
def wrap_sql_query(data: List[Sequence[Any]],
columns: Union[Sequence[str], Sequence[InstrumentedAttribute],
MetadataBase, StateBase],
index: Optional[Union[str, Sequence[str]]] = None,
) -> pd.DataFrame:
"""Turn the fetched DB records to a pandas DataFrame."""
try:
columns[0]
except TypeError:
dt_columns = _extract_datetime_columns(columns.__table__.columns)
int_columns = _extract_integer_columns(columns.__table__.columns)
bool_columns = _extract_boolean_columns(columns.__table__.columns)
columns = [c.name for c in columns.__table__.columns]
else:
dt_columns = _extract_datetime_columns(columns)
int_columns = _extract_integer_columns(columns)
bool_columns = _extract_boolean_columns(columns)
columns = [(c.name if not isinstance(c, str) else c) for c in columns]
typed_cols_indexes = []
typed_cols_names = []
obj_cols_indexes = []
obj_cols_names = []
for i, column in enumerate(columns):
if column in dt_columns or column in int_columns or column in bool_columns:
cols_indexes = typed_cols_indexes
cols_names = typed_cols_names
else:
cols_indexes = obj_cols_indexes
cols_names = obj_cols_names
cols_indexes.append(i)
cols_names.append(column)
log = logging.getLogger(f"{metadata.__package__}.wrap_sql_query")
# we used to have pd.DataFrame.from_records + bunch of convert_*() in relevant columns
# the current approach is faster for several reasons:
# 1. avoid an expensive copy of the object dtype columns in the BlockManager construction
# 2. call tslib.array_to_datetime directly without surrounding Pandas bloat
# 3. convert to int in the numpy domain and thus do not have to mess with indexes
#
# an ideal conversion would be loading columns directly from asyncpg but that requires
# quite some changes in their internals
with sentry_sdk.start_span(op="wrap_sql_query/convert", description=str(size := len(data))):
data_typed, data_obj = to_object_arrays_split(data, typed_cols_indexes, obj_cols_indexes)
converted_typed = []
discard_mask = None
for column, values in zip(typed_cols_names, data_typed):
if column in dt_columns:
converted_typed.append(_convert_datetime(values))
elif column in int_columns:
values, discarded = _convert_integer(values, column, int_columns[column], log)
converted_typed.append(values)
if discarded is not None:
if discard_mask is None:
discard_mask = np.zeros(len(data), dtype=bool)
discard_mask[discarded] = True
elif column in bool_columns:
converted_typed.append(values.astype(bool))
else:
raise AssertionError("impossible: typed columns are either dt or int")
if discard_mask is not None:
left = ~discard_mask
size = left.sum()
converted_typed = [arr[left] for arr in converted_typed]
data_obj = data_obj[:, left]
with sentry_sdk.start_span(op="wrap_sql_query/pd.DataFrame()", description=str(size)):
block_mgr = _create_block_manager_from_arrays(
converted_typed, data_obj, typed_cols_names, obj_cols_names, size)
frame = pd.DataFrame(block_mgr, columns=typed_cols_names + obj_cols_names, copy=False)
for column in dt_columns:
try:
frame[column] = frame[column].dt.tz_localize(timezone.utc)
except (AttributeError, TypeError):
continue
if index is not None:
frame.set_index(index, inplace=True)
return frame
def _extract_datetime_columns(columns: Iterable[Union[Column, str]]) -> Set[str]:
return {
c.name for c in columns
if not isinstance(c, str) and (
isinstance(c.type, DateTime) or
(isinstance(c.type, type) and issubclass(c.type, DateTime))
)
}
def _extract_boolean_columns(columns: Iterable[Union[Column, str]]) -> Set[str]:
return {
c.name for c in columns
if not isinstance(c, str) and (
isinstance(c.type, Boolean) or
(isinstance(c.type, type) and issubclass(c.type, Boolean))
)
}
def _extract_integer_columns(columns: Iterable[Union[Column, str]],
) -> Dict[str, bool]:
return {
c.name: getattr(
c, "info", {} if not isinstance(c, Label) else getattr(c.element, "info", {}),
).get("erase_nulls", False)
for c in columns
if not isinstance(c, str) and (
isinstance(c.type, Integer) or
(isinstance(c.type, type) and issubclass(c.type, Integer))
)
and not getattr(c, "nullable", False)
and (not isinstance(c, Label) or (
(not getattr(c.element, "nullable", False))
and (not getattr(c, "nullable", False))
))
}
def _convert_datetime(arr: np.ndarray) -> np.ndarray:
# None converts to NaT
try:
ts, offset = tslib.array_to_datetime(arr, utc=True, errors="raise")
assert offset is None
except OutOfBoundsDatetime:
# TODO(vmarkovtsev): copy the function and set OOB values to NaT
# this comparison is very slow but still faster than removing tzinfo and taking np.array()
arr[arr == datetime(1, 1, 1)] = None
arr[arr == datetime(1, 1, 1, tzinfo=timezone.utc)] = None
try:
return _convert_datetime(arr)
except OutOfBoundsDatetime as e:
raise e from None
# 0 converts to 1970-01-01T00:00:00
ts[ts == np.zeros(1, ts.dtype)[0]] = None
return ts
def postprocess_datetime(frame: pd.DataFrame,
columns: Optional[Iterable[str]] = None,
) -> pd.DataFrame:
"""Ensure *inplace* that all the timestamps inside the dataframe are valid UTC or NaT.
:return: Fixed dataframe - the same instance as `frame`.
"""
utc_dt1 = datetime(1, 1, 1, tzinfo=timezone.utc)
dt1 = datetime(1, 1, 1)
if columns is not None:
obj_cols = dt_cols = columns
else:
obj_cols = frame.select_dtypes(include=[object])
dt_cols = frame.select_dtypes(include=["datetime"])
for col in obj_cols:
fc = frame[col]
if utc_dt1 in fc:
fc.replace(utc_dt1, pd.NaT, inplace=True)
if dt1 in fc:
fc.replace(dt1, pd.NaT, inplace=True)
for col in dt_cols:
fc = frame[col]
if 0 in fc:
fc.replace(0, pd.NaT, inplace=True)
try:
frame[col] = fc.dt.tz_localize(timezone.utc)
except (AttributeError, TypeError):
continue
return frame
def _convert_integer(arr: np.ndarray,
name: str,
erase_null: bool,
log: logging.Logger,
) -> Tuple[np.ndarray, Optional[np.ndarray]]:
nulls = None
while True:
try:
return arr.astype(int), nulls
except TypeError as e:
nulls = np.equal(arr, None)
if not nulls.any() or not erase_null:
raise ValueError(f"Column {name} is not all-integer") from e
log.error("fetched nulls instead of integers in %s", name)
arr[nulls] = 0
def postprocess_integer(frame: pd.DataFrame, columns: Iterable[Tuple[str, int]]) -> pd.DataFrame:
"""Ensure *inplace* that all the integers inside the dataframe are not objects.
:return: Fixed dataframe, a potentially different instance.
"""
dirty_index = False
log = None
for col, erase_null in columns:
while True:
try:
frame[col] = frame[col].astype(int, copy=False)
break
except TypeError as e:
nulls = frame[col].isnull().values
if not nulls.any():
raise ValueError(f"Column {col} is not all-integer") from e
if not erase_null:
raise ValueError(f"Column {col} is not all-integer\n"
f"{frame.loc[nulls].to_dict('records')}") from e
if log is None:
log = logging.getLogger(f"{metadata.__package__}.read_sql_query")
log.error("fetched nulls instead of integers in %s: %s",
col, frame.loc[nulls].to_dict("records"))
frame = frame.take(np.flatnonzero(~nulls))
dirty_index = True
if dirty_index:
frame.reset_index(drop=True, inplace=True)
return frame
async def gather(*coros_or_futures,
op: Optional[str] = None,
description: Optional[str] = None,
catch: Type[BaseException] = Exception,
) -> Tuple[Any, ...]:
"""Return a future aggregating results/exceptions from the given coroutines/futures.
This is equivalent to `asyncio.gather(*coros_or_futures, return_exceptions=True)` with
subsequent exception forwarding.
:param op: Wrap the execution in a Sentry span with this `op`.
:param description: Sentry span description.
:param catch: Forward exceptions of this type.
"""
async def body():
if len(coros_or_futures) == 0:
return tuple()
if len(coros_or_futures) == 1:
return (await coros_or_futures[0],)
results = await asyncio.gather(*coros_or_futures, return_exceptions=True)
for r in results:
if isinstance(r, catch):
raise r from None
return results
if op is not None:
with sentry_sdk.start_span(op=op, description=description):
return await body()
return await body()
async def read_sql_query_with_join_collapse(
query: ClauseElement,
db: Database,
columns: Union[Sequence[str], Sequence[InstrumentedAttribute],
MetadataBase, PerdataBase, PrecomputedBase, StateBase],
index: Optional[Union[str, Sequence[str]]] = None,
soft_limit: Optional[int] = None,
) -> pd.DataFrame:
"""Enforce the predefined JOIN order in read_sql_query()."""
query = query.with_statement_hint("Set(join_collapse_limit 1)")
return await read_sql_query(query, db, columns=columns, index=index, soft_limit=soft_limit)
# Allow other coroutines to execute every Nth iteration in long loops
COROUTINE_YIELD_EVERY_ITER = 250
async def list_with_yield(iterable: Iterable[Any], sentry_op: str) -> List[Any]:
"""Drain an iterable to a list, tracing the loop in Sentry and respecting other coroutines."""
with sentry_sdk.start_span(op=sentry_op) as span:
things = []
for i, thing in enumerate(iterable):
if (i + 1) % COROUTINE_YIELD_EVERY_ITER == 0:
await asyncio.sleep(0)
things.append(thing)
try:
span.description = str(i)
except UnboundLocalError:
pass
return things