-
Notifications
You must be signed in to change notification settings - Fork 1
/
operational_risk.rmd
111 lines (78 loc) · 2.56 KB
/
operational_risk.rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
title: "FRM Operational and Integrated Risk Management"
author: "Alex Dou"
date: "October 13, 2019"
output: html_document
---
## OpRisk Data an Governance
### Event Category
#### Execution, Delivery and Process Management
* High frequency and low loss
#### Clients, products, and business practices
* Low frequency and high loss
#### Business disruption and system failures
#### Exteranl fraud
#### Internal fraud
#### Employment practices and workplace safety
#### Damage to physial assets
## Modelling Approaches
### Basel II Models
* BIA
* SA
* AMA
#### Basic Indicator Approach (BIA)
$$ K_{BIA} = \frac{\sum{GI_i \alpha}}{n} $$
* GI=annual positive gross income
* n= number of years with positive income
* alpha=0.15
#### Standardized Aproach (SA)
$$ \frac{\sum{GI_{1-8}\beta_{1-8}}}{3} $$
##### Alternative Standardized Approach
$$ K_{RB} = \beta_{RB} \times LA_{RB} \times m $$
* m=0.035
#### Advanced Measurement Approache (AMA)
* 1-year, 99.9% conficence level
* 4 elements: Internal loss data, external loss data, Scenario analysis, business environment internal control factors
##### Loss Distribution Approach(LDA)
* Rely on internal losses
* At least 3 years of loss data
* Prons: Real historical data
* Crons: Maybe to short to capture fat-tail event, data does not reflect the future
* Modeling frequency: **Poisson distrubtion**
* Modeling severity: **Lognormal distribution**
* Combining 2 distrubutions: **Convolution, 99.9% certainty**
### Extrme Value
#### Generalized Extreme-Value Theory (GEV)
* 块最大直方法,消除聚集效应
* 3 Parameters: **xi** tail, **mu**, **sigma**
* Xi>0, **fat tail**, **Frechet distribution**
* Xi=0, normal tail, Gumbel distribution
* Xi<0, thin tail, Weibull distribtuion
#### Peaks-over-threshold Approach (POT)
* 2 parameters: **xi** tail, **beta** range
* Needs to choose a threshold **u**
* **u** 太低不能体现极值特征;太高则数据太少
### Source of model risks
* Distrubtion of underlying asset is stationary
* Rate of return are normally distributed
* Oversimplified models
* Asuming pefect capital markets
* Liquidity is assumed to be ample
* Misapplied to a situation
## Capital Planning and Framework
### RAROC: Risk-adjusted return on capital
#### Hurdle rate
#### ARAROC
## Liquidity and Leverage
### Repo
### Liquidity Risks
#### Exogenous
##### Constant Spread Approach
##### Exogenous Spread Approach
#### Endogenous
##### Price elasticity
##### Endogenous pricess approach
#### Exogenous and Endogenous
#### Liquidity Discount Approach
#### Liquidity at Risk
#### Sources of liquidity risks