-
Notifications
You must be signed in to change notification settings - Fork 19
/
train.py
1019 lines (909 loc) · 47.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
'''
Training script for training transFuser and related models.
Usage:
CUDA_VISIBLE_DEVICES=0,1 OMP_NUM_THREADS=16 OPENBLAS_NUM_THREADS=1
torchrun --nnodes=1 --nproc_per_node=2 --max_restarts=0 --rdzv_id=1234576890 --rdzv_backend=c10d
train.py --logdir /path/to/logdir --root_dir /path/to/dataset_root/ --id exp_000 --cpu_cores 8
'''
import argparse
import json
import os
from tqdm import tqdm
import numpy as np
import torch
import torch.nn.functional as F
from torch import optim
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torch.distributed.elastic.multiprocessing.errors import record
from torch.distributed.optim import ZeroRedundancyOptimizer
import torch.multiprocessing as mp
from config import GlobalConfig
from model import LidarCenterNet
from data import CARLA_Data
from plant import PlanT
import pathlib
import datetime
import random
import pickle
from diskcache import Cache
import torchmetrics
from collections import defaultdict
# On some systems it is necessary to increase the limit on open file descriptors.
try:
import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (4096, rlimit[1]))
except (ModuleNotFoundError, ImportError) as e:
print(e)
@record # Records error and tracebacks in case of failure
def main():
torch.cuda.empty_cache()
# Loads the default values for the argparse so we have only one default
config = GlobalConfig()
parser = argparse.ArgumentParser()
parser.add_argument('--id', type=str, default=config.id, help='Unique experiment identifier.')
parser.add_argument('--epochs', type=int, default=config.epochs, help='Number of train epochs.')
parser.add_argument('--lr', type=float, default=config.lr, help='Learning rate.')
parser.add_argument('--batch_size',
type=int,
default=config.batch_size,
help='Batch size for one GPU. When training with multiple GPUs the effective'
' batch size will be batch_size*num_gpus')
parser.add_argument('--logdir', type=str, required=True, help='Directory to log data and models to.')
parser.add_argument('--load_file',
type=str,
default=config.load_file,
help='Model to load for initialization.'
'Expects the full path with ending /path/to/model.pth '
'Optimizer files are expected to exist in the same directory')
parser.add_argument('--setting',
type=str,
default=config.setting,
help='What training setting to use. Options: '
'all: Train on all towns no validation data. '
'01_03_withheld: Do not train on Town 01 and Town 03. '
'02_05_withheld: Do not train on Town 02 and Town 05. '
'04_06_withheld: Do not train on Town 04 and Town 06. '
'Withheld data is used for validation')
parser.add_argument('--root_dir', type=str, required=True, help='Root directory of your training data')
parser.add_argument('--schedule_reduce_epoch_01',
type=int,
default=config.schedule_reduce_epoch_01,
help='Epoch at which to reduce the lr by a factor of 10 the first '
'time. Only used with --schedule 1')
parser.add_argument('--schedule_reduce_epoch_02',
type=int,
default=config.schedule_reduce_epoch_02,
help='Epoch at which to reduce the lr by a factor of 10 the second '
'time. Only used with --schedule 1')
parser.add_argument('--backbone',
type=str,
default=config.backbone,
help='Which fusion backbone to use. Options: transFuser, aim, bev_encoder')
parser.add_argument('--image_architecture',
type=str,
default=config.image_architecture,
help='Which architecture to use for the image branch. resnet34, regnety_032 etc.'
'All options of the TIMM lib can be used but some might need adjustments to the backbone.')
parser.add_argument('--lidar_architecture',
type=str,
default=config.lidar_architecture,
help='Which architecture to use for the lidar branch. Tested: resnet34, regnety_032.'
'Has the special video option video_resnet18 and video_swin_tiny.')
parser.add_argument('--use_velocity',
type=int,
default=config.use_velocity,
help='Whether to use the velocity input. Expected values are 0:False, 1:True')
parser.add_argument('--n_layer',
type=int,
default=config.n_layer,
help='Number of transformer layers used in the transfuser')
parser.add_argument('--val_every', type=int, default=config.val_every, help='At which epoch frequency to validate.')
parser.add_argument('--sync_batch_norm',
type=int,
default=config.sync_batch_norm,
help='0: Compute batch norm for each GPU independently, 1: Synchronize batch norms across GPUs.')
parser.add_argument('--zero_redundancy_optimizer',
type=int,
default=config.zero_redundancy_optimizer,
help='0: Normal AdamW Optimizer, 1: Use zero-redundancy Optimizer to reduce memory footprint.')
parser.add_argument('--use_disk_cache',
type=int,
default=config.use_disk_cache,
help='0: Do not cache the dataset 1: Cache the dataset on the disk pointed to by the SCRATCH '
'environment variable. Useful if the dataset is stored on shared slow filesystem and can be '
'temporarily stored on faster SSD storage on the compute node.')
parser.add_argument('--lidar_seq_len',
type=int,
default=config.lidar_seq_len,
help='How many temporal frames in the LiDAR to use. 1 equals single timestep.')
parser.add_argument('--realign_lidar',
type=int,
default=int(config.realign_lidar),
help='Whether to realign the temporal LiDAR frames, to all lie in the same coordinate frame.')
parser.add_argument('--use_ground_plane',
type=int,
default=int(config.use_ground_plane),
help='Whether to use the ground plane of the LiDAR. Only affects methods using the LiDAR.')
parser.add_argument('--use_controller_input_prediction',
type=int,
default=int(config.use_controller_input_prediction),
help='Whether to classify target speeds and regress a path as output representation.')
parser.add_argument('--use_wp_gru',
type=int,
default=int(config.use_wp_gru),
help='Whether to predict the waypoint output representation.')
parser.add_argument('--pred_len', type=int, default=config.pred_len, help='Number of waypoints the model predicts')
parser.add_argument('--estimate_class_distributions',
type=int,
default=int(config.estimate_class_distributions),
help='# Whether to estimate the weights to re-balance CE loss, or use the config default.')
parser.add_argument('--use_focal_loss',
type=int,
default=int(config.use_focal_loss),
help='# Whether to use focal loss instead of cross entropy for target speed classification.')
parser.add_argument('--use_cosine_schedule',
type=int,
default=int(config.use_cosine_schedule),
help='Whether to use a cyclic cosine learning rate schedule instead of the linear one.')
parser.add_argument('--augment',
type=int,
default=int(config.augment),
help='# Whether to use rotation and translation augmentation')
parser.add_argument('--use_plant',
type=int,
default=int(config.use_plant),
help='If true trains a privileged PlanT model, otherwise a sensorimotor agent like TF++')
parser.add_argument('--learn_origin',
type=int,
default=int(config.learn_origin),
help='Whether to learn the origin of the waypoints or use 0/0')
parser.add_argument('--local_rank',
type=int,
default=int(config.local_rank),
help='Local rank for launch with torch.launch. Default = -999 means not used.')
parser.add_argument('--train_sampling_rate',
type=int,
default=int(config.train_sampling_rate),
help='Rate at which the dataset is sub-sampled during training.'
'Should be an odd number ideally ending with 1 or 5, because of the LiDAR sweeps alternating '
'every frame')
parser.add_argument('--use_amp',
type=int,
default=int(config.use_amp),
help='Currently amp produces inf gradients. DO NOT USE!.'
'Whether to use automatic mixed precision with fp16 during training.')
parser.add_argument('--use_grad_clip',
type=int,
default=int(config.use_grad_clip),
help='Whether to clip the gradients during training.')
parser.add_argument('--use_color_aug',
type=int,
default=int(config.use_color_aug),
help='Whether to use color augmentation on the images.')
parser.add_argument('--use_semantic',
type=int,
default=int(config.use_semantic),
help='Whether to use semantic segmentation as auxiliary loss')
parser.add_argument('--use_depth',
type=int,
default=int(config.use_depth),
help='Whether to use depth prediction as auxiliary loss for training.')
parser.add_argument('--detect_boxes',
type=int,
default=int(config.detect_boxes),
help='Whether to use the bounding box auxiliary task.')
parser.add_argument('--use_bev_semantic',
type=int,
default=int(config.use_bev_semantic),
help='Whether to use bev semantic segmentation as auxiliary loss for training.')
parser.add_argument('--estimate_semantic_distribution',
type=int,
default=int(config.estimate_semantic_distribution),
help='Whether to estimate the weights to rebalance the semantic segmentation loss by class.'
'This is extremely slow.')
parser.add_argument('--use_discrete_command',
type=int,
default=int(config.use_discrete_command),
help='Whether the discrete command is an input for the model.')
parser.add_argument('--gru_hidden_size',
type=int,
default=int(config.gru_hidden_size),
help='Number of features used in the hidden size of the GRUs')
parser.add_argument('--use_cutout',
type=int,
default=int(config.use_cutout),
help='Whether to use the cutout data augmentation technique.')
parser.add_argument('--add_features',
type=int,
default=int(config.add_features),
help='Whether to add (or concatenate) the features at the end of the backbone.')
parser.add_argument('--freeze_backbone',
type=int,
default=int(config.freeze_backbone),
help='Freezes the encoder and auxiliary heads. Should be used when loading a already trained '
'model. Can be used for fine-tuning or multi-stage training.')
parser.add_argument('--learn_multi_task_weights',
type=int,
default=int(config.learn_multi_task_weights),
help='Whether to learn the multi-task weights according to https://arxiv.org/abs/1705.07115.')
parser.add_argument('--transformer_decoder_join',
type=int,
default=int(config.transformer_decoder_join),
help='Whether to use a transformer decoder instead of global average pool + MLP for planning.')
parser.add_argument('--bev_down_sample_factor',
type=int,
default=int(config.bev_down_sample_factor),
help='Factor (int) by which the bev auxiliary tasks are down-sampled.')
parser.add_argument('--perspective_downsample_factor',
type=int,
default=int(config.perspective_downsample_factor),
help='Factor (int) by which the perspective auxiliary tasks are down-sampled.')
parser.add_argument('--gru_input_size',
type=int,
default=int(config.gru_input_size),
help='Number of channels in the InterFuser GRU input and Transformer decoder.'
'Must be divisible by number of heads (8)')
parser.add_argument('--num_repetitions',
type=int,
default=int(config.num_repetitions),
help='Our dataset consists of x repetitions of the same routes. '
'This specifies how many repetitions we will train with. Max 3, Min 1.')
parser.add_argument('--bev_grid_height_downsample_factor',
type=int,
default=int(config.bev_grid_height_downsample_factor),
help='Ratio by which the height size of the voxel grid in BEV decoder are larger than width '
'and depth. Value should be >= 1. Larger values uses less gpu memory. '
'Only relevant for the bev_encoder backbone.')
parser.add_argument('--wp_dilation',
type=int,
default=int(config.wp_dilation),
help='Factor by which the wp are dilated compared to full CARLA 20 FPS')
parser.add_argument('--use_tp',
type=int,
default=int(config.use_tp),
help='Whether to use the target point as input to the network.')
parser.add_argument('--continue_epoch',
type=int,
default=int(config.continue_epoch),
help='Whether to continue the training from the loaded epoch or from 0.')
parser.add_argument('--max_height_lidar',
type=float,
default=float(config.max_height_lidar),
help='Points higher than this threshold are removed from the LiDAR.')
parser.add_argument('--smooth_route',
type=int,
default=int(config.smooth_route),
help='Whether to smooth the route points with linear interpolation.')
parser.add_argument('--num_lidar_hits_for_detection',
type=int,
default=int(config.num_lidar_hits_for_detection),
help='Number of LiDAR hits a bounding box needs to have in order to be used.')
parser.add_argument('--use_speed_weights',
type=int,
default=int(config.use_speed_weights),
help='Whether to weight target speed classes.')
parser.add_argument('--max_num_bbs',
type=int,
default=int(config.max_num_bbs),
help='Maximum number of bounding boxes our system can detect.')
parser.add_argument('--use_optim_groups',
type=int,
default=int(config.use_optim_groups),
help='Whether to use optimizer groups to exclude some parameters from weight decay')
parser.add_argument('--weight_decay',
type=float,
default=float(config.weight_decay),
help='Weight decay coefficient used during training')
parser.add_argument('--use_plant_labels',
type=int,
default=int(config.use_plant_labels),
help='Whether to use the relabeling from plant or the original labels.'
'Does not work with focal loss because the implementation does not support soft targets.')
parser.add_argument('--use_label_smoothing',
type=int,
default=int(config.use_label_smoothing),
help='Whether to use label smoothing in the classification losses. '
'Not working as intended when combined with use_speed_weights.')
parser.add_argument('--cpu_cores',
type=int,
required=True,
help='How many cpu cores are available on the machine.'
'The code will spawn a thread for each cpu.')
parser.add_argument('--tp_attention',
type=int,
default=int(config.tp_attention),
help='Adds a TP at the TF decoder and computes it with attention visualization. '
'Only compatible with transformer decoder.')
parser.add_argument('--multi_wp_output',
type=int,
default=int(config.multi_wp_output),
help='Predict 2 WP outputs and select between them. '
'Only compatible with use_wp=1, transformer_decoder_join=1')
args = parser.parse_args()
args.logdir = os.path.join(args.logdir, args.id)
if bool(args.use_disk_cache):
# NOTE: This is specific to our cluster setup where the data is stored on slow storage.
# During training, we cache the dataset on the fast storage of the local compute nodes.
# Adapt to your cluster setup as needed. Important initialize the parallel threads from torch run to the
# same folder (so they can share the cache).
tmp_folder = str(os.environ.get('SCRATCH', '/tmp'))
print('Tmp folder for dataset cache: ', tmp_folder)
tmp_folder = tmp_folder + '/dataset_cache'
shared_dict = Cache(directory=tmp_folder, size_limit=int(768 * 1024**3))
else:
shared_dict = None
# Use torchrun for starting because it has proper error handling. Local rank will be set automatically
rank = int(os.environ['RANK']) # Rank across all processes
if args.local_rank == -999: # For backwards compatibility
local_rank = int(os.environ['LOCAL_RANK']) # Rank on Node
else:
local_rank = int(args.local_rank)
world_size = int(os.environ['WORLD_SIZE']) # Number of processes
print(f'RANK, LOCAL_RANK and WORLD_SIZE in environ: {rank}/{local_rank}/{world_size}')
device = torch.device(f'cuda:{local_rank}')
torch.distributed.init_process_group(backend='nccl',
init_method='env://',
world_size=world_size,
rank=rank,
timeout=datetime.timedelta(minutes=15))
ngpus_per_node = torch.cuda.device_count()
ncpus_per_node = args.cpu_cores
num_workers = int(ncpus_per_node / ngpus_per_node)
print('Rank:', rank, 'Device:', device, 'Num GPUs on node:', ngpus_per_node, 'Num CPUs on node:', ncpus_per_node,
'Num workers:', num_workers)
torch.cuda.device(device)
# We want the highest performance
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.allow_tf32 = True
# Configure config. Converts all arguments into config attributes
config.initialize(**vars(args))
config.debug = int(os.environ.get('DEBUG_CHALLENGE', 0))
# Before normalizing we need to set the losses we don't use to 0
if config.use_plant:
config.detailed_loss_weights['loss_semantic'] = 0.0
config.detailed_loss_weights['loss_bev_semantic'] = 0.0
config.detailed_loss_weights['loss_depth'] = 0.0
config.detailed_loss_weights['loss_center_heatmap'] = 0.0
config.detailed_loss_weights['loss_wh'] = 0.0
config.detailed_loss_weights['loss_offset'] = 0.0
config.detailed_loss_weights['loss_yaw_class'] = 0.0
config.detailed_loss_weights['loss_yaw_res'] = 0.0
config.detailed_loss_weights['loss_velocity'] = 0.0
config.detailed_loss_weights['loss_brake'] = 0.0
else:
config.detailed_loss_weights['loss_forcast'] = 0.0
if not config.use_controller_input_prediction:
config.detailed_loss_weights['loss_target_speed'] = 0.0
config.detailed_loss_weights['loss_checkpoint'] = 0.0
if not config.use_wp_gru:
config.detailed_loss_weights['loss_wp'] = 0.0
if not config.use_semantic:
config.detailed_loss_weights['loss_semantic'] = 0.0
if not config.use_bev_semantic:
config.detailed_loss_weights['loss_bev_semantic'] = 0.0
if not config.use_depth:
config.detailed_loss_weights['loss_depth'] = 0.0
if not config.detect_boxes:
config.detailed_loss_weights['loss_center_heatmap'] = 0.0
config.detailed_loss_weights['loss_wh'] = 0.0
config.detailed_loss_weights['loss_offset'] = 0.0
config.detailed_loss_weights['loss_yaw_class'] = 0.0
config.detailed_loss_weights['loss_yaw_res'] = 0.0
config.detailed_loss_weights['loss_velocity'] = 0.0
config.detailed_loss_weights['loss_brake'] = 0.0
# Not possible to predicted in a principled way from a single frame
if config.lidar_seq_len == 1 and config.seq_len == 1:
config.detailed_loss_weights['loss_velocity'] = 0.0
config.detailed_loss_weights['loss_brake'] = 0.0
if config.freeze_backbone:
config.detailed_loss_weights['loss_semantic'] = 0.0
config.detailed_loss_weights['loss_bev_semantic'] = 0.0
config.detailed_loss_weights['loss_depth'] = 0.0
config.detailed_loss_weights['loss_center_heatmap'] = 0.0
config.detailed_loss_weights['loss_wh'] = 0.0
config.detailed_loss_weights['loss_offset'] = 0.0
config.detailed_loss_weights['loss_yaw_class'] = 0.0
config.detailed_loss_weights['loss_yaw_res'] = 0.0
config.detailed_loss_weights['loss_velocity'] = 0.0
config.detailed_loss_weights['loss_brake'] = 0.0
if config.multi_wp_output:
config.detailed_loss_weights['loss_selection'] = 1.0
if args.learn_multi_task_weights:
for k in config.detailed_loss_weights:
if config.detailed_loss_weights[k] > 0.0:
config.detailed_loss_weights[k] = torch.nn.Parameter(torch.zeros(1, dtype=torch.float32, requires_grad=True))
else:
# These losses we don't train
config.detailed_loss_weights[k] = None
# Convert to pytorch dictionary for proper parameter handling
config.detailed_loss_weights = torch.nn.ParameterDict(config.detailed_loss_weights)
else:
# Normalize loss weights.
factor = 1.0 / sum(config.detailed_loss_weights.values())
for k in config.detailed_loss_weights:
config.detailed_loss_weights[k] = config.detailed_loss_weights[k] * factor
# Data, configures config. Create before the model
train_set = CARLA_Data(root=config.train_data,
config=config,
estimate_class_distributions=config.estimate_class_distributions,
estimate_sem_distribution=config.estimate_semantic_distribution,
shared_dict=shared_dict,
rank=rank)
val_set = CARLA_Data(root=config.val_data, config=config, shared_dict=shared_dict, rank=rank)
if rank == 0:
print('Target speed weights: ', config.target_speed_weights, flush=True)
print('Angle weights: ', config.angle_weights, flush=True)
# Create model and optimizers
if config.use_plant:
model = PlanT(config)
else:
model = LidarCenterNet(config)
# Register loss weights as parameters of the model if we learn them
if args.learn_multi_task_weights:
for k in config.detailed_loss_weights:
if config.detailed_loss_weights[k] is not None:
model.register_parameter(name='weight_' + k, param=config.detailed_loss_weights[k])
model.cuda(device=device)
start_epoch = 0 # Epoch to continue training from
if not args.load_file is None:
# Load checkpoint
print('=============load=================')
# Add +1 because the epoch before that was already trained
load_name = str(pathlib.Path(args.load_file).stem)
if args.continue_epoch:
start_epoch = int(''.join(filter(str.isdigit, load_name))) + 1
model.load_state_dict(torch.load(args.load_file, map_location=device), strict=False)
if config.freeze_backbone:
model.backbone.requires_grad_(False)
if config.detect_boxes:
model.head.requires_grad_(False)
if config.use_semantic:
model.semantic_decoder.requires_grad_(False)
if config.use_bev_semantic:
model.bev_semantic_decoder.requires_grad_(False)
if config.use_depth:
model.depth_decoder.requires_grad_(False)
# Synchronizing the Batch Norms increases the Batch size with which they are compute by *num_gpus
if bool(args.sync_batch_norm):
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
find_unused_parameters = False
if config.use_plant:
find_unused_parameters = True
model = torch.nn.parallel.DistributedDataParallel(model,
device_ids=None,
output_device=None,
broadcast_buffers=False,
find_unused_parameters=find_unused_parameters)
if config.use_optim_groups:
params = model.module.create_optimizer_groups(config.weight_decay)
else:
params = model.parameters()
if bool(args.zero_redundancy_optimizer):
# Saves GPU memory during DDP training
optimizer = ZeroRedundancyOptimizer(params, optimizer_class=optim.AdamW, lr=args.lr, amsgrad=True)
else:
optimizer = optim.AdamW(params, lr=args.lr, amsgrad=True)
if not args.load_file is None and not config.freeze_backbone and args.continue_epoch:
optimizer.load_state_dict(torch.load(args.load_file.replace('model_', 'optimizer_'), map_location=device))
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
num_params = sum(np.prod(p.size()) for p in model_parameters)
if rank == 0:
print('Total trainable parameters: ', num_params)
g_cuda = torch.Generator(device='cpu')
g_cuda.manual_seed(torch.initial_seed())
sampler_train = torch.utils.data.distributed.DistributedSampler(train_set,
shuffle=True,
num_replicas=world_size,
rank=rank,
drop_last=True)
sampler_val = torch.utils.data.distributed.DistributedSampler(val_set,
shuffle=True,
num_replicas=world_size,
rank=rank,
drop_last=True)
dataloader_train = DataLoader(train_set,
sampler=sampler_train,
batch_size=args.batch_size,
worker_init_fn=seed_worker,
generator=g_cuda,
num_workers=num_workers,
pin_memory=False,
drop_last=True)
dataloader_val = DataLoader(val_set,
sampler=sampler_val,
batch_size=args.batch_size,
worker_init_fn=seed_worker,
generator=g_cuda,
num_workers=num_workers,
pin_memory=False,
drop_last=True)
# Create logdir
if ((not os.path.isdir(args.logdir)) and (rank == 0)):
print('Created dir:', args.logdir, rank)
os.makedirs(args.logdir, exist_ok=True)
# We only need one process to log the losses
if rank == 0:
writer = SummaryWriter(log_dir=args.logdir)
# Log args
with open(os.path.join(args.logdir, 'args.txt'), 'w', encoding='utf-8') as f:
json.dump(args.__dict__, f, indent=2)
with open(os.path.join(args.logdir, 'config.pickle'), 'wb') as f2:
pickle.dump(config, f2, protocol=4)
else:
writer = None
if config.use_cosine_schedule:
scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer,
T_0=config.cosine_t0,
T_mult=config.cosine_t_mult,
verbose=False)
else:
milestones = [args.schedule_reduce_epoch_01, args.schedule_reduce_epoch_02]
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
milestones,
gamma=config.multi_step_lr_decay,
verbose=True)
scaler = torch.cuda.amp.GradScaler(enabled=bool(config.use_amp))
if not args.load_file is None and not config.freeze_backbone:
if args.continue_epoch:
scheduler.load_state_dict(torch.load(args.load_file.replace('model_', 'scheduler_'), map_location=device))
scaler.load_state_dict(torch.load(args.load_file.replace('model_', 'scaler_'), map_location=device))
trainer = Engine(model=model,
optimizer=optimizer,
dataloader_train=dataloader_train,
dataloader_val=dataloader_val,
args=args,
config=config,
writer=writer,
device=device,
rank=rank,
world_size=world_size,
cur_epoch=start_epoch,
scheduler=scheduler,
scaler=scaler)
for epoch in range(trainer.cur_epoch, args.epochs):
# Update the seed depending on the epoch so that the distributed
# sampler will use different shuffles across different epochs
sampler_train.set_epoch(epoch)
trainer.train()
torch.cuda.empty_cache()
if ((args.setting != 'all') and (epoch % args.val_every == 0)):
trainer.validate()
torch.cuda.empty_cache()
if not config.use_cosine_schedule:
scheduler.step()
if bool(args.zero_redundancy_optimizer):
# To save the whole optimizer we need to gather it on GPU 0.
optimizer.consolidate_state_dict(0)
if rank == 0:
trainer.save()
trainer.cur_epoch += 1
class Engine(object):
"""
Engine that runs training.
"""
def __init__(self,
model,
optimizer,
dataloader_train,
dataloader_val,
args,
config,
writer,
device,
scheduler,
scaler,
rank=0,
world_size=1,
cur_epoch=0):
self.cur_epoch = cur_epoch
self.bestval_epoch = cur_epoch
self.train_loss = []
self.val_loss = []
self.bestval = 1e10
self.model = model
self.optimizer = optimizer
self.dataloader_train = dataloader_train
self.dataloader_val = dataloader_val
self.args = args
self.config = config
self.writer = writer
self.device = device
self.rank = rank
self.world_size = world_size
self.step = 0
self.vis_save_path = self.args.logdir + r'/visualizations'
self.scheduler = scheduler
self.iters_per_epoch = len(self.dataloader_train)
self.scaler = scaler
if self.config.debug:
pathlib.Path(self.vis_save_path).mkdir(parents=True, exist_ok=True)
self.detailed_loss_weights = config.detailed_loss_weights
def load_data_compute_loss(self, data, validation=False):
# Validation = True will compute additional metrics not used for optimization
# Load data used in both methods
future_bounding_box_label = None
if self.config.detect_boxes or self.config.use_plant:
bounding_box_label = data['bounding_boxes'].to(self.device, dtype=torch.float32)
if not self.config.use_plant:
bb_center_heatmap = data['center_heatmap'].to(self.device, dtype=torch.float32)
bb_wh = data['wh'].to(self.device, dtype=torch.float32)
bb_yaw_class = data['yaw_class'].to(self.device, dtype=torch.long)
bb_yaw_res = data['yaw_res'].to(self.device, dtype=torch.float32)
bb_offset = data['offset'].to(self.device, dtype=torch.float32)
bb_velocity = data['velocity'].to(self.device, dtype=torch.float32)
bb_brake_target = data['brake_target'].to(self.device, dtype=torch.long)
bb_pixel_weight = data['pixel_weight'].to(self.device, dtype=torch.float32)
bb_avg_factor = data['avg_factor'].to(self.device, dtype=torch.float32)
else:
future_bounding_box_label = data['future_bounding_boxes'].to(self.device, dtype=torch.long)
else:
bounding_box_label = None
bb_center_heatmap = None
bb_wh = None
bb_yaw_class = None
bb_yaw_res = None
bb_offset = None
bb_velocity = None
bb_brake_target = None
bb_pixel_weight = None
bb_avg_factor = None
if self.config.use_wp_gru:
ego_waypoint = data['ego_waypoints'].to(self.device, dtype=torch.float32)
else:
ego_waypoint = None
target_point = data['target_point'].to(self.device, dtype=torch.float32)
command = data['command'].to(self.device, dtype=torch.float32)
ego_vel = data['speed'].to(self.device, dtype=torch.float32).unsqueeze(1)
if self.config.use_plant_labels:
target_speed = data['target_speed'].to(self.device, dtype=torch.float32)
else:
target_speed = data['target_speed'].to(self.device, dtype=torch.long)
# Load model specific data and execute model
if self.config.use_plant:
checkpoint = data['route'][:, :self.config.num_route_points].to(self.device, dtype=torch.float32)
light_hazard = data['light'].to(self.device, dtype=torch.int32).unsqueeze(1)
stop_hazard = data['stop_sign'].to(self.device, dtype=torch.int32).unsqueeze(1)
junction = data['junction'].to(self.device, dtype=torch.int32).unsqueeze(1)
route = data['route'][:, :self.config.num_route_points].to(self.device, dtype=torch.float32)
pred_wp, pred_target_speed, \
pred_checkpoint, pred_future_bounding_box, _ = self.model(bounding_boxes=bounding_box_label,
route=route,
target_point=target_point,
light_hazard=light_hazard,
stop_hazard=stop_hazard,
junction=junction,
velocity=ego_vel)
elif self.args.backbone in ('transFuser', 'aim', 'bev_encoder'):
checkpoint = data['route'][:, :self.config.predict_checkpoint_len].to(self.device, dtype=torch.float32)
rgb = data['rgb'].to(self.device, dtype=torch.float32)
if self.config.use_semantic:
semantic_label = data['semantic'].to(self.device, dtype=torch.long)
else:
semantic_label = None
if self.config.use_bev_semantic:
bev_semantic_label = data['bev_semantic'].to(self.device, dtype=torch.long)
else:
bev_semantic_label = None
if self.config.use_depth:
depth_label = data['depth'].to(self.device, dtype=torch.float32)
else:
depth_label = None
if self.config.lidar_seq_len > 1:
lidar = data['temporal_lidar'].to(self.device, dtype=torch.float32)
else:
lidar = data['lidar'].to(self.device, dtype=torch.float32)
pred_wp,\
pred_target_speed,\
pred_checkpoint,\
pred_semantic, \
pred_bev_semantic, \
pred_depth, \
pred_bounding_box, _, \
pred_wp_1, \
selected_path = self.model(rgb=rgb,
lidar_bev=lidar,
target_point=target_point,
ego_vel=ego_vel,
command=command)
else:
raise ValueError('The chosen vision backbone does not exist. The options are: transFuser, aim, bev_encoder')
compute_loss = self.model.module.compute_loss
visualize_model = self.model.module.visualize_model
if self.config.use_plant:
losses = compute_loss(pred_wp=pred_wp,
pred_target_speed=pred_target_speed,
pred_checkpoint=pred_checkpoint,
pred_future_bounding_box=pred_future_bounding_box,
waypoint_label=ego_waypoint,
target_speed_label=target_speed,
checkpoint_label=checkpoint,
future_bounding_box_label=future_bounding_box_label)
else:
losses = compute_loss(pred_wp=pred_wp,
pred_target_speed=pred_target_speed,
pred_checkpoint=pred_checkpoint,
pred_semantic=pred_semantic,
pred_bev_semantic=pred_bev_semantic,
pred_depth=pred_depth,
pred_bounding_box=pred_bounding_box,
waypoint_label=ego_waypoint,
target_speed_label=target_speed,
checkpoint_label=checkpoint,
semantic_label=semantic_label,
bev_semantic_label=bev_semantic_label,
depth_label=depth_label,
center_heatmap_label=bb_center_heatmap,
wh_label=bb_wh,
yaw_class_label=bb_yaw_class,
yaw_res_label=bb_yaw_res,
offset_label=bb_offset,
velocity_label=bb_velocity,
brake_target_label=bb_brake_target,
pixel_weight_label=bb_pixel_weight,
avg_factor_label=bb_avg_factor,
pred_wp_1=pred_wp_1,
selected_path=selected_path)
# Compute metrics for logging
metrics = {}
if validation:
if self.config.use_semantic:
ss_miou = torchmetrics.functional.jaccard_index(pred_semantic,
semantic_label,
task='multiclass',
num_classes=self.config.num_semantic_classes).item()
metrics['semantic_miou'] = ss_miou
if self.config.use_bev_semantic:
valid_bev_pixels = self.model.module.valid_bev_pixels
visible_bev_semantic_label = valid_bev_pixels.squeeze(1).int() * bev_semantic_label
# Set 0 class to ignore index -1
visible_bev_semantic_label = (valid_bev_pixels.squeeze(1).int() - 1) + visible_bev_semantic_label
bev_ss_miou = torchmetrics.functional.jaccard_index(pred_bev_semantic,
visible_bev_semantic_label,
task='multiclass',
ignore_index=-1,
num_classes=self.config.num_bev_semantic_classes).item()
metrics['bev_semantic_miou'] = bev_ss_miou
self.step += 1
# Debug visualizations
if self.config.debug and (self.step % self.config.train_debug_save_freq == 0) and \
(self.vis_save_path is not None) and not self.config.use_plant:
with torch.no_grad():
if self.config.detect_boxes:
pred_bounding_box = self.model.convert_features_to_bb_metric(pred_bounding_box)
else:
pred_bounding_box = None
visualize_model(self.vis_save_path,
self.step,
rgb,
lidar,
target_point,
pred_wp,
pred_semantic=pred_semantic,
pred_bev_semantic=pred_bev_semantic,
pred_depth=pred_depth,
pred_checkpoint=pred_checkpoint,
pred_speed=F.softmax(pred_target_speed, dim=1) if pred_target_speed is not None else None,
pred_bb=pred_bounding_box,
gt_wp=ego_waypoint,
gt_bbs=bounding_box_label,
gt_bev_semantic=bev_semantic_label,
gt_speed=ego_vel)
return losses, metrics
def train(self):
self.model.train()
num_batches = 0
loss_epoch = 0.0
detailed_losses_epoch = {key: 0.0 for key in self.detailed_loss_weights}
self.optimizer.zero_grad(set_to_none=False)
# Train loop
for i, data in enumerate(tqdm(self.dataloader_train, disable=self.rank != 0)):
with torch.autocast(device_type='cuda', dtype=torch.float16, enabled=bool(self.config.use_amp)):
losses, _ = self.load_data_compute_loss(data, validation=False)
loss = torch.zeros(1, dtype=torch.float32, device=self.device)
for key, value in losses.items():
if self.config.learn_multi_task_weights:
precision = torch.exp(-self.detailed_loss_weights[key])
loss += precision * value + self.detailed_loss_weights[key]
detailed_losses_epoch[key] += float(precision * value + self.detailed_loss_weights[key])
else:
loss += self.detailed_loss_weights[key] * value
detailed_losses_epoch[key] += float(self.detailed_loss_weights[key] * float(value.item()))
self.scaler.scale(loss).backward()
if self.config.use_grad_clip:
# Unscales the gradients of optimizers assigned params in-place
self.scaler.unscale_(self.optimizer)
# Since the gradients of optimizers assigned params are now unscaled, we can clip as usual.
torch.nn.utils.clip_grad_norm_(self.model.parameters(),
max_norm=int(self.config.grad_clip_max_norm),
error_if_nonfinite=True)
self.scaler.step(self.optimizer)
self.scaler.update()
self.optimizer.zero_grad(set_to_none=True)
num_batches += 1
loss_epoch += float(loss.item())
if self.config.use_cosine_schedule:
self.scheduler.step(self.cur_epoch + i / self.iters_per_epoch)
self.optimizer.zero_grad(set_to_none=True)
torch.cuda.empty_cache()
self.log_losses(loss_epoch, detailed_losses_epoch, num_batches, '')
@torch.inference_mode()
def validate(self):
self.model.eval()
num_batches = 0
loss_epoch = 0.0
detailed_val_losses_epoch = defaultdict(float)
# Evaluation loop loop
for data in tqdm(self.dataloader_val, disable=self.rank != 0):
losses, metrics = self.load_data_compute_loss(data, validation=True)
loss = torch.zeros(1, dtype=torch.float32, device=self.device)
for key, value in losses.items():
if self.config.learn_multi_task_weights:
precision = torch.exp(-self.detailed_loss_weights[key])
loss += precision * value + self.detailed_loss_weights[key]
# We log the unweighted validation loss for comparability
detailed_val_losses_epoch[key] += float(value)
else:
loss += self.detailed_loss_weights[key] * value
detailed_val_losses_epoch[key] += float(self.detailed_loss_weights[key] * float(value.item()))
for key, value in metrics.items():
detailed_val_losses_epoch[key] += float(value)
num_batches += 1
loss_epoch += float(loss.item())
del losses
del metrics
self.log_losses(loss_epoch, detailed_val_losses_epoch, num_batches, 'val_')
def log_losses(self, loss_epoch, detailed_losses_epoch, num_batches, prefix=''):
# Collecting the losses from all GPUs has led to issues.
# I simply log the loss from GPU 0 for now they should be similar.
if self.rank == 0:
self.writer.add_scalar(prefix + 'loss_total', loss_epoch / num_batches, self.cur_epoch)
for key, value in detailed_losses_epoch.items():
self.writer.add_scalar(prefix + key, value / num_batches, self.cur_epoch)
def save(self):
model_file = os.path.join(self.args.logdir, f'model_{self.cur_epoch:04d}.pth')
optimizer_file = os.path.join(self.args.logdir, f'optimizer_{self.cur_epoch:04d}.pth')
scaler_file = os.path.join(self.args.logdir, f'scaler_{self.cur_epoch:04d}.pth')
scheduler_file = os.path.join(self.args.logdir, f'scheduler_{self.cur_epoch:04d}.pth')
# The parallel weights are named differently with the module.
# We remove that, so that we can load the model with the same code.
torch.save(self.model.module.state_dict(), model_file)
torch.save(self.optimizer.state_dict(), optimizer_file)
torch.save(self.scaler.state_dict(), scaler_file)
torch.save(self.scheduler.state_dict(), scheduler_file)
# Remove last epochs files to avoid accumulating storage
if self.cur_epoch > 0:
last_model_file = os.path.join(self.args.logdir, f'model_{self.cur_epoch - 1:04d}.pth')
last_optimizer_file = os.path.join(self.args.logdir, f'optimizer_{self.cur_epoch - 1:04d}.pth')
last_scaler_file = os.path.join(self.args.logdir, f'scaler_{self.cur_epoch - 1:04d}.pth')
last_scheduler_file = os.path.join(self.args.logdir, f'scheduler_{self.cur_epoch - 1:04d}.pth')
if os.path.isfile(last_model_file):
os.remove(last_model_file)
if os.path.isfile(last_optimizer_file):
os.remove(last_optimizer_file)
if os.path.isfile(last_scaler_file):
os.remove(last_scaler_file)
if os.path.isfile(last_scheduler_file):
os.remove(last_scheduler_file)
# We need to seed the workers individually otherwise random processes in the
# dataloader return the same values across workers!
def seed_worker(worker_id): # pylint: disable=locally-disabled, unused-argument