forked from iam-abbas/cs-algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Vertex Cover Problem
86 lines (76 loc) · 1.91 KB
/
Vertex Cover Problem
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
// Program to print Vertex Cover of a given undirected graph
#include<iostream>
#include <list>
using namespace std;
// This class represents a undirected graph using adjacency list
class Graph
{
int V; // No. of vertices
list<int> *adj; // Pointer to an array containing adjacency lists
public:
Graph(int V); // Constructor
void addEdge(int v, int w); // function to add an edge to graph
void printVertexCover(); // prints vertex cover
};
Graph::Graph(int V)
{
this->V = V;
adj = new list<int>[V];
}
void Graph::addEdge(int v, int w)
{
adj[v].push_back(w); // Add w to v’s list.
adj[w].push_back(v); // Since the graph is undirected
}
// The function to print vertex cover
void Graph::printVertexCover()
{
// Initialize all vertices as not visited.
bool visited[V];
for (int i=0; i<V; i++)
visited[i] = false;
list<int>::iterator i;
// Consider all edges one by one
for (int u=0; u<V; u++)
{
// An edge is only picked when both visited[u] and visited[v]
// are false
if (visited[u] == false)
{
// Go through all adjacents of u and pick the first not
// yet visited vertex (We are basically picking an edge
// (u, v) from remaining edges.
for (i= adj[u].begin(); i != adj[u].end(); ++i)
{
int v = *i;
if (visited[v] == false)
{
// Add the vertices (u, v) to the result set.
// We make the vertex u and v visited so that
// all edges from/to them would be ignored
visited[v] = true;
visited[u] = true;
break;
}
}
}
}
// Print the vertex cover
for (int i=0; i<V; i++)
if (visited[i])
cout << i << " ";
}
// Driver program to test methods of graph class
int main()
{
// Create a graph given in the above diagram
Graph g(7);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 3);
g.addEdge(3, 4);
g.addEdge(4, 5);
g.addEdge(5, 6);
g.printVertexCover();
return 0;
}