-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathLineTracker.py
306 lines (240 loc) · 19.8 KB
/
LineTracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# Created By Aaron Brown
# January 20, 2017
# Udacity Self-Driving Car Nanodegree
# Advance Lane Line Tracker used to generate input from camera images for autonomous cars
# Function: new_track
# Input (warped) (camera image of the road that has been preprocessed for perspective transformation (top-down view) and contains only 1-channel for pixels of interest)
# Description: Searches from bottom to top of the image for curving line shapes and returns the highest value curves found. Curve values are defined by the total number
# pixels those curves contain inside there center windows. Function expects lane lines to be roughly parallel so it uses contraints such as center distance between left and
# right curve that can only deviate by certain amounts defined by padding and slide_res. Function also expects curves to start at bottom and end at top of image as well as curve
# in some constant direction, either to the left or to the right. The momentum hyper parameter can help define the curves curving constraints, and height_res is useful to makes sure
# the tracker doesnt get misdriected by noisy pixels and misses a better path.
# The curve template used per vertical level
# (left_window + right_window)
#
# (padding) (padding) /\
# <------ |---window_width--| (+) |---window_width---| --------> |
# |---left_window---|_______________________|---right_window---| | level
# <------> |----------------center_dis-----------------| <------> |
# (slide_res) (slide_res) -
import numpy as np
import cv2
class Tracker():
# when starting a new instance please be sure to specify all unassigned variables
def __init__(self, Mycenter_dis, Mywindow_width, Mywindow_height, Mypadding, Myslide_res, Myframe_ps, Myline_momentum = .5, Myheight_res = [1,2,4], \
Mysmooth_factor = 15, Mycapture_height = 100, My_ym = 1, My_xm = 1, Myline_dist = 200):
# list that stores all the past (left,right) center set values used for smoothing the output
self.recent_centers = []
# base center pixel distance to use, tracker uses this as the sort of expected mean for center distance
self.center_dis = Mycenter_dis
# the window pixel width of the center values, used to count pixels inside center windows to determine curve values
self.window_width = Mywindow_width
# the window pixel height of the center values, used to count pixels inside center windows to determine curve values
# breaks the image into vertical levels
self.window_height = Mywindow_height
# The pixel distance in both directions to slide (left_window + right_window) template for searching
self.padding = Mypadding
# how much to shrink / extend the center_dis base in pixels
self.slide_res = Myslide_res
#(0-1) percentage of how much line is allowed to slow down from moving in curving direction
# examples:
# if 0, the line could move vast distance in curving direction and then suddenly move exactly vertical but this is not a good natural curve shape
# if 1, the line curving progression is constant or increasing, line is not allowed to decrease speed, this can easily throw it off path though
# A good value for momentum is something in the middle of 0-1
self.line_momentum = Myline_momentum
# the image is broken into levels from dividing image input height by window height.
# centers on bottom level are always calculated by level between 1-(top level) can be searched using different paths by different level skipping increments
# This approach just helps to ensure the most curves are considered so better chance to return the max value curve
# 1 is most standard but it could lead down a wrong path from noisy pixels so with 2,4 level increments as well there is a better chance to get the optimal curve
# Note inbetween levels from height_res > 1 are interpolated linearly.
self.height_res = Myheight_res
# How many previous best curve sets to average over to get smooth results.
self.smooth_factor = Mysmooth_factor
# The following parameters are used for the speed tracking algorithm that uses template matching to measure
# changes in distance traveled per frame
# mono channel image of the distored road with no black edging, used to calculate speed and movement progression
self.previous_capture = []
# image height of the reference to calculate speed and do horizontal line overlay
self.capture_height = Mycapture_height
self.ym_per_pix = My_ym # meters per pixel in vertical axis
self.xm_per_pix = My_xm # meters per pixel in horizontal axis
self.line_dist = (int)(Myline_dist/self.ym_per_pix) # how far apart horizontal lines are spaced apart in meters
self.horz_lines = [] # list of horizontal lines to show distance tracking
# frames per second in the video used for calculating speed
self.frame_ps = Myframe_ps
# keeps track off all distances moved for calculating speed
self.distances = []
# keeps track of all previous radius measurments and then can smooth it
self.curvatures = []
# keeps track of all previous speed measurments and then can smooth it
self.speeds = []
def speed_track(self, new_capture):
# see if previous reference caputre exists
if len(self.previous_capture) > 0:
# calculate the vertical movement
# take top slice of reference
reference = self.previous_capture[:self.window_height]
# measure how much reference has slided down in new capture
vertical_dist = np.argmin(cv2.matchTemplate(new_capture, reference, method=cv2.TM_SQDIFF))
self.distances.append(vertical_dist*self.ym_per_pix)
# progress lines
for i in range(len(self.horz_lines)-1,-1,-1):
# check if lines needs to be removed
if (self.horz_lines[i] + vertical_dist) > self.capture_height-1:
self.horz_lines.pop()
else:
self.horz_lines[i] += vertical_dist
# add line to list if needed
if(len(self.horz_lines) > 0):
if ((self.horz_lines[0]-self.line_dist) > 0):
# insert at front of list
self.horz_lines.insert(0,(self.horz_lines[0]-self.line_dist))
else:
self.horz_lines.append(0)
else:
# add horizontal lines for speed tracking
for horz_line in range(0,self.capture_height,self.line_dist):
self.horz_lines.append(horz_line)
# set the newest capture as the previous for next time
self.previous_capture = new_capture
# all line spacing and units per pixel are done in meters so its
# easiest to return speed in kmh
def CalculateSpeed(self, metric_mode = True):
# add last second of traveled meters
meters_ps = np.sum(self.distances[-self.frame_ps:], axis = 0) # meters per second
kmh = meters_ps*3.6
if (metric_mode != True):
self.speeds.append(kmh*(5./8))
else:
self.speeds.append(kmh)
# can average over the last five seconds
return np.average(self.speeds[-self.frame_ps*5:], axis = 0)
# use averaging to return a more stable curvature value
def SmoothCurve(self):
return np.average(self.curvatures[-self.smooth_factor:], axis = 0)
# the main tracking function for finding and storing lane segment positions
def new_track(self, warped):
collection_curve_centers = []
collection_curve_max = []
# Search reference sides
for line_ref in [-1,1]:#[-1,1]: # -1 for left reference and 1 for right reference
# Search curve directions
for curve_direction in [-1,1]:#[-1,1]: # -1 for curving left and 1 for curving right
# Search levels
for height_res in self.height_res:# iteration of different height resoultions where 1 is highest resoultion but might get side tracked
#local center storing to later find best picks
curve_centers = []
curve_max = 0
# if we dont have any reference positions to start we will just look at the highest amount of pixels in bottom quarter of image to get started
if (len(self.recent_centers) == 0):
l_sum = np.sum(warped[int(3*warped.shape[0]/4):,:int(warped.shape[1]/2)], axis=0)
l_center = int(np.argmax(l_sum))
r_sum = np.sum(warped[int(3*warped.shape[0]/4):,int(warped.shape[1]/2):], axis=0)
r_center = int(np.argmax(r_sum))+int(warped.shape[1]/2)
# use previous start positions to make the lanetracker move more stable
else:
r_center = self.recent_centers[-1][0][1]
l_center = self.recent_centers[-1][0][0]
# sliding around previous start point to see if we can get a section with high pixels
l_sum = np.sum(warped[int(17*warped.shape[0]/18):,l_center-self.padding:l_center+self.padding], axis=0)
# kind of important: switch the ordering so that a higher basis is given to orginal position instead of the very left range
# otherwise this could cause sliding problems acutally when all pixels are very high
l_sum = l_sum*np.concatenate((np.linspace(.5,1,self.padding),np.linspace(1,.5,self.padding)), axis=0)
# as before we needed to be careful when all pixels were very high, also need to do the same when pixels are very low
# basically if all range pixels are very high or low we prefer to use the old position and not try to slide...
if (len(l_sum) > 0) & (np.max(l_sum) > 100):
l_center = int(np.argmax(l_sum))+(l_center-self.padding)
# same thing we did for the left start but now for the right start
r_sum = np.sum(warped[int(17*warped.shape[0]/18):,r_center-self.padding:r_center+self.padding], axis=0)
r_sum = r_sum*np.concatenate((np.linspace(.5,1,self.padding),np.linspace(1,.5,self.padding)), axis=0)
if (len(r_sum) > 0) & (np.max(r_sum) > 100):
r_center = int(np.argmax(r_sum))+(r_center-self.padding)
# used to control the lane curvature, helps create nice shaped splines
l_dis = 0
r_dis = 0
# add what we found for the first layer
curve_centers.append((l_center,r_center))
# go through each layer locking for max pixel locations
for level in range(1,(int)(warped.shape[0]/self.window_height),height_res):
#local center storing to later find best picks
max_values = []
max_pos = []
# used for sliding around centers, and we use the last layer centers as reference
# This is a pretty complicated routine, but basically going through coupled convolutions and taking notice if we are curving right/left, which left/right lane is the position references
# Main setup is to find local optimum lane positions and add them to a list and compare all of them for the highest value at the end.
for pad in range(-self.padding*2,self.padding*2,self.slide_res):
conv_template = np.concatenate((np.ones(self.window_width),np.zeros(self.center_dis-self.window_width+pad),np.ones(self.window_width)))
conv_signal = np.convolve(conv_template, np.sum(warped[int(warped.shape[0]-(level+1)*40):int(warped.shape[0]-level*40),:], axis=0))
if ((((line_ref == 1) & (curve_direction == 1)) & (len(conv_signal[max(r_center+self.window_width/2+r_dis,0):min(r_center+self.window_width/2+self.padding+r_dis,warped.shape[1])]) != 0) ) | (((line_ref == 1) & (curve_direction == -1)) & (len(conv_signal[max(r_center+self.window_width/2-self.padding+r_dis,0):min(r_center+self.window_width/2+r_dis,warped.shape[1])]) != 0 )) \
| (((line_ref == -1) & (curve_direction == 1)) & ((len(conv_signal[max(l_center+self.window_width/2+self.center_dis+pad+l_dis,0):min(l_center+self.window_width/2+self.center_dis+pad+self.padding+l_dis,warped.shape[1])])) != 0)) | (((line_ref == -1) & (curve_direction == -1)) & ((len(conv_signal[max(l_center+self.window_width/2-self.padding+self.center_dis+pad+l_dis,0):min(l_center+self.window_width/2+self.center_dis+pad+l_dis,warped.shape[1])])) != 0) )):
if line_ref == 1:
if curve_direction == 1:
pos = np.argmax(conv_signal[max(r_center+self.window_width/2+r_dis,0):min(r_center+self.window_width/2+self.padding+r_dis,warped.shape[1])])+max(r_center+r_dis,0)
else:
pos = np.argmax(conv_signal[max(r_center+self.window_width/2-self.padding+r_dis,0):min(r_center+self.window_width/2+r_dis,warped.shape[1])])+max(r_center-self.padding+r_dis,0)
else:
if curve_direction == 1:
pos = np.argmax(conv_signal[max(l_center+self.window_width/2+self.center_dis+pad+l_dis,0):min(l_center+self.window_width/2+self.center_dis+pad+self.padding+l_dis,warped.shape[1])])+max(l_center+self.center_dis+pad+l_dis,0)
else:
pos = np.argmax(conv_signal[max(l_center+self.window_width/2-self.padding+self.center_dis+pad+l_dis,0):min(l_center+self.window_width/2+self.center_dis+pad+l_dis,warped.shape[1])])+max(l_center-self.padding+self.center_dis+pad+l_dis,0)
max_pos.append(pos)
if line_ref == 1:
if curve_direction == 1:
if abs(l_center - (pos-(self.center_dis+pad))) < (self.padding+abs(r_dis)):
max_value = np.amax(conv_signal[max(r_center+self.window_width/2+r_dis,0):min(r_center+self.window_width/2+self.padding+r_dis,warped.shape[1])])
else:
max_value = -10
else:
if abs(l_center - (pos-(self.center_dis+pad))) < (self.padding+abs(+r_dis)):
max_value = np.amax(conv_signal[max(r_center+self.window_width/2-self.padding+r_dis,0):min(r_center+self.window_width/2+r_dis,warped.shape[1])])
else:
max_value = -10
else:
if curve_direction == 1:
if abs(r_center - pos) < (self.padding+abs(l_dis)):
max_value = np.amax(conv_signal[max(l_center+self.window_width/2+self.center_dis+pad+l_dis,0):min(l_center+self.window_width/2+self.center_dis+pad+self.padding+l_dis,warped.shape[1])])
else:
max_value = -10
else:
if abs(r_center - pos) < (self.padding+abs(l_dis)):
max_value = np.amax(conv_signal[max(l_center+self.window_width/2-self.padding+self.center_dis+pad+l_dis,0):min(l_center+self.window_width/2+self.center_dis+pad+l_dis,warped.shape[1])])
else:
max_value = -10
max_values.append(max_value)
else:
if curve_direction == 1:
max_pos.append(r_center+r_dis)
max_values.append(10)
else:
max_pos.append(l_center+(self.center_dis+pad)+l_dis)
max_values.append(10)
pad = np.arange(-self.padding*2,self.padding*2,self.slide_res)
max_index = np.argmax(max_values)
r_dis = (max_pos[max_index] - r_center)*.5
l_dis = ((max_pos[max_index]-(self.center_dis+pad[max_index]))-l_center)*.5
r_center = max_pos[max_index]
l_center = r_center-(self.center_dis+pad[max_index])
# find centers and values of interpolated levels if height_res was more than 1
if (height_res > 1) & (level > 1):
right_level_xoffset = curve_centers[level-height_res][1] - r_center
left_level_xoffset = curve_centers[level-height_res][0] - l_center
for interpolated_level in range(level-height_res,level-1):
interpolated_ratio = (interpolated_level-(level-height_res)+1)/(height_res)
inter_r_center = r_center+right_level_xoffset*interpolated_ratio
inter_l_center = l_center+left_level_xoffset*interpolated_ratio
conv_template = np.ones(self.window_width)
conv_signal = np.convolve(conv_template, np.sum(warped[int(warped.shape[0]-(interpolated_level+1)*40):int(warped.shape[0]-interpolated_level*40),:], axis=0))
right_interpolated_value = conv_signal[inter_r_center+self.window_width/2]
left_interpolated_value = conv_signal[inter_l_center+self.window_width/2]
curve_centers.append((inter_l_center,inter_r_center))
curve_max += (left_interpolated_value+right_interpolated_value)
curve_centers.append((l_center,r_center))
curve_max += np.amax(max_values)
collection_curve_centers.append(curve_centers)
collection_curve_max.append(curve_max)
# return the highest valued centers positions out of all the local best candidates considered
return collection_curve_centers[np.argmax(collection_curve_max)]
def track_line(self, warped):
self.recent_centers.append(self.new_track(warped))
# return averaged values of the line centers, helps to keep the markers from jumping around too much
return np.average(self.recent_centers[-self.smooth_factor:], axis = 0)