-
Notifications
You must be signed in to change notification settings - Fork 18
/
generate_cifar10_tfrecords.py
116 lines (91 loc) · 3.77 KB
/
generate_cifar10_tfrecords.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# Copyright 2018-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# https://aws.amazon.com/apache-2-0/
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
from __future__ import absolute_import
import argparse
import os
import shutil
import sys
import tarfile
import tensorflow as tf
from six.moves import cPickle as pickle
from six.moves import xrange
CIFAR_FILENAME = 'cifar-10-python.tar.gz'
CIFAR_DOWNLOAD_URL = 'https://www.cs.toronto.edu/~kriz/' + CIFAR_FILENAME
CIFAR_LOCAL_FOLDER = 'cifar-10-batches-py'
def download_and_extract(data_dir):
# download CIFAR-10 if not already downloaded.
tf.contrib.learn.datasets.base.maybe_download(CIFAR_FILENAME, data_dir, CIFAR_DOWNLOAD_URL)
tarfile.open(os.path.join(data_dir, CIFAR_FILENAME), 'r:gz').extractall(data_dir)
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def _get_file_names():
"""Returns the file names expected to exist in the input_dir."""
return {
'train': ['data_batch_%d' % i for i in xrange(1, 5)],
'validation': ['data_batch_5'],
'eval': ['test_batch'],
}
def read_pickle_from_file(filename):
with tf.io.gfile.GFile(filename, 'rb') as f:
if sys.version_info.major >= 3:
return pickle.load(f, encoding='bytes')
else:
return pickle.load(f)
def convert_to_tfrecord(input_files, output_file):
"""Converts a file to TFRecords."""
print('Generating %s' % output_file)
with tf.io.TFRecordWriter(output_file) as record_writer:
for input_file in input_files:
data_dict = read_pickle_from_file(input_file)
data = data_dict[b'data']
labels = data_dict[b'labels']
num_entries_in_batch = len(labels)
for i in range(num_entries_in_batch):
example = tf.train.Example(features=tf.train.Features(
feature={
'image': _bytes_feature(data[i].tobytes()),
'label': _int64_feature(labels[i])
}))
record_writer.write(example.SerializeToString())
def main(data_dir):
print('Download from {} and extract.'.format(CIFAR_DOWNLOAD_URL))
download_and_extract(data_dir)
file_names = _get_file_names()
input_dir = os.path.join(data_dir, CIFAR_LOCAL_FOLDER)
for mode, files in file_names.items():
input_files = [os.path.join(input_dir, f) for f in files]
mode_dir = os.path.join(data_dir, mode)
output_file = os.path.join(mode_dir, mode + '.tfrecords')
if not os.path.exists(mode_dir):
os.makedirs(mode_dir)
try:
os.remove(output_file)
except OSError:
pass
# Convert to tf.train.Example and write the to TFRecords.
convert_to_tfrecord(input_files, output_file)
print('Done!')
shutil.rmtree(os.path.join(data_dir, 'cifar-10-batches-py'))
os.remove(os.path.join(data_dir, 'cifar-10-python.tar.gz')) # Remove the original .tzr.gz files
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--data-dir',
type=str,
default='',
help='Directory to download and extract CIFAR-10 to.'
)
args = parser.parse_args()
main(args.data_dir)