You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
{{ message }}
This repository has been archived by the owner on Jul 1, 2024. It is now read-only.
Hi! I found that the result of model.predict() does not match the output value of the last layer of model. If I use the model.predict API directly, the output of the model would be NaN. But if I get the outputs of the intermediate layers in model , I find that the outputs of all intermediate layers are normal (including the last layer). I think the result of model.predict() and the output value of the last layer of model should be equivalent. I am wondering what makes this difference.
[[nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
Description
Hi! I found that the result of model.predict() does not match the output value of the last layer of model. If I use the model.predict API directly, the output of the model would be NaN. But if I get the outputs of the intermediate layers in model , I find that the outputs of all intermediate layers are normal (including the last layer). I think the result of model.predict() and the output value of the last layer of model should be equivalent. I am wondering what makes this difference.
To Reproduce
The code to reproduce is shown below:
Output of model.predict() :
Output of the last three layers in the model:
I don't know why the output of model.predict() is NaN while that of the last layer is not.
The model and picture used in the code are uploaded here:
data.zip
Thanks in advance
What have you tried to solve it?
I use the latest version of mxnet (1.6.0), but the problem still exists.
Environment
You can use the following command to configure the environment
The text was updated successfully, but these errors were encountered: