This approach aims to improve tokenization across multiple languages while minimizing changes to the model architecture. It uses a shared vocabulary for all languages, with additional language-specific tokens.
graph LR
A[Input Text] --> B[Language Detection]
B --> C[UTF-8 Encoding]
C --> D[Tokenization]
D --> E[Token Sequence Generation]
E --> F[Add Language-Specific Token]
F --> G[Final Token Sequence]
- Language Detection Module: Identifies the language of the input text.
- UTF-8 Encoder: Converts text to UTF-8 byte sequences.
- Tokenizer: Processes UTF-8 sequences into tokens.
- Language-Specific Token Adder: Prepends language identifier tokens.
sequenceDiagram
participant User
participant LD as Language Detector
participant UTF8 as UTF-8 Encoder
participant TK as Tokenizer
participant LST as Language-Specific Token Adder
User->>LD: Input Text
LD->>UTF8: Detected Language & Text
UTF8->>TK: UTF-8 Encoded Sequence
TK->>LST: Token Sequence
LST->>User: Final Token Sequence
The vocabulary consists of following tokens additional to the default latin based tokens:
- UTF-8 Byte Sequence Start specifier:
b\xe6
,b\xe7
, etc. Helps the tokenizer identify the start of a new UTF-8 sequence. - UTF-8 byte tokens (0-255): 256 tokens:
\x00
,\x01
, ...,\xff
- Subword tokens: Most common byte sequences:
\xe6\x88
,\xe5\x96
,b\xe8\x87
, etc. - Language-specific tokens:
<EN>
,<ES>
,<CH>
,</EN>
,</ES>
,</CH>
etc.
Total additional tokens: 256 (byte tokens) + ~1000 (subword tokens) + ~10 (language tokens) = 1266
Assume the input text is I love NLP.
= 我喜欢自然语言处理.
= Me encanta NLP.
English Output:
<EN><I>< love>< N><L><P><.></EN>
Chinese Output:
<CH><b\xe6><\x88><\x91><b\xe5><\x96\x9c><b\xe6><\xac><\xa2><b\xe8><\x87\xaa><b\xe7><\x84><\xb6><b\xe8\xaf><\xad><b\xe8><\xa8><\x80><b\xe5\xa4><\x84><b\xe7><\x90><\x86><.></CH>
Spanish Output:
<ES><Me>< enc><anta>< N><L><P><.></ES>
- Minimal increase in vocabulary size
- Unified tokenization approach across languages
- Efficient handling of multi-language inputs
- Reduced model complexity compared to Approach 1
- Potential loss of language-specific nuances in tokenization
- Increased reliance on the model to learn language-specific patterns
- Possible increase in sequence length for non-Latin script languages
- Develop a robust language detection module
- Create a UTF-8 encoding and tokenization pipeline
- Generate a shared vocabulary based on a multi-language corpus
- Implement the language-specific token addition mechanism
- Integrate the system with the existing model architecture
- Fine-tune the model on multi-language data using the new tokenization approach
This approach offers a balance between improved multi-language support and minimal changes to the model architecture, potentially leading to better performance across various languages without significantly increasing model complexity.