forked from serrano-pozo-lab/glia-ihc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gbm-condition.Rmd
378 lines (278 loc) · 12.2 KB
/
gbm-condition.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
---
title: "Gradient Boosting Machines by Condition"
description: |
This R script trains gradient boosting machines (GBM) models to perform the binary condition classification task (i.e., predict CTRL vs. AD).
author:
- first_name: "Ayush"
last_name: "Noori"
url: https://www.github.com/ayushnoori
affiliation: Massachusetts General Hospital
affiliation_url: https://www.serranopozolab.org
orcid_id: 0000-0003-1420-1236
output:
distill::distill_article:
toc: true
---
```{r setup, include = FALSE}
knitr::opts_chunk$set(eval = FALSE)
```
# Dependencies
Load requisite packages and define directories.
```{r load-packages, message=FALSE, warning=FALSE}
# data manipulation
library(data.table)
library(purrr)
library(magrittr)
# data visualization
library(ggplot2)
# fast file system operations
library(fs)
# gradient boosted machines
library(caret)
library(gbm)
# ROC curve
library(pROC)
library(plotROC)
# utility functions
library(brainstorm)
```
Note that directories are relative to the R project path.
```{r define-directores}
# create file structure
celltypes = c("Astrocyte", "Microglia", "Vessel") %>% purrr::set_names()
# set directories
ddir = file.path("Results", "CNN", "1.1 - Condition Partition")
dir4 = file.path("Results", "4 - Spectral Clustering")
dir7 = file.path("Results", "7 - Gradient Boosting Machines", "Condition")
# create directory
if(!dir.exists(dir7)) {dir.create(dir7)}
# set seed
set.seed(1234)
```
# Load Data
Load processed ROI measurement data from the `4 - Spectral Clustering` directory. **Note that this script uses the same train/test/validation split as the convolutional neural network (CNN) by loading the data object created by the `CNN/1 - Partition ROIs` script.**
```{r load-data}
all = readRDS(file.path(dir4, "Z-Score Data.rds"))
split = readRDS(file.path(ddir, "ROI Partition by Condition.rds"))
```
# Merge Data
Define function to merge ROI measurement data with the predetermined train/test/validation split.
```{r merge-data}
# function to parse and merge data
merge_data = function(allx, splitx) {
# parse split data
splitx = splitx %>%
.[, ID := gsub("(\\.tif|AD_|CTRL_)", "", Name)] %>%
.[, .(ID, Partition)]
# merge data
allx = merge(allx, splitx, by = "ID", all.x = TRUE, all.y = FALSE)
return(allx)
}
```
Map function over data objects for cell-types with CNN output data.
```{r map-merge}
# function to parse and merge data
all = map(celltypes, ~merge_data(all[[.x]], split[[.x]]))
```
# Train GBM Model
Define function to plot ROC curves.
```{r plot-roc}
# function to plot ROC
plot_roc = function(dat, truth, prob, auc_lab) {
# print AUC
cat(paste0(auc_lab, "\n"))
# plot ROC curve
p = ggplot(dat, aes(d = get(truth), m = get(prob))) +
ggtitle("Gradient Boosting Machines ROC") +
geom_abline(aes(intercept = 0, slope = 1, color = "AUC = 0.5"), linetype = "dashed", size = 1)+
geom_roc(aes(color = auc_lab), labels = FALSE, pointsize = 0) +
geom_roc(linealpha = 0, n.cuts = 12, labelround = 2, labelsize = 3) +
scale_colour_manual(values = c("#FF9B71", "#63B0CD")) +
labs(x = "1 - Specificity", y = "Sensitivity", color = "Area Under the Curve (AUC)", subtitle = auc_lab) + theme_bw() +
theme(plot.title = element_text(size = 16, face = "bold"),
plot.subtitle = element_text(face = "italic"),
axis.title.x = element_text(size=14, face="bold"),
axis.title.y = element_text(size=14, face="bold"),
legend.title = element_text(size=12, face="bold"),
legend.text = element_text(size=12),
legend.position = c(0.72, 0.14),
legend.background = element_rect(fill = "white", color = "black"),
panel.border = element_rect(color = "black", fill = NA, size = 1))
return(p)
}
```
Function to plot multiple ROC curves including single-marker data.
```{r plot-sm}
# function to plot multiple ROC curves
plot_roc = function(dat, truth, prob, auc_lab) {
# print AUC
cat(paste0(auc_lab, "\n"))
# plot ROC curve
p = ggplot(dat, aes(d = get(truth), m = get(prob))) +
ggtitle("Gradient Boosting Machines ROC") +
geom_abline(aes(intercept = 0, slope = 1, color = "AUC = 0.5"), linetype = "dashed", size = 1)+
geom_roc(aes(color = auc_lab), labels = FALSE, pointsize = 0) +
geom_roc(linealpha = 0, n.cuts = 12, labelround = 2, labelsize = 3) +
scale_colour_manual(values = c("#FF9B71", "#63B0CD")) +
labs(x = "1 - Specificity", y = "Sensitivity", color = "Area Under the Curve (AUC)", subtitle = auc_lab) + theme_bw() +
theme(plot.title = element_text(size = 16, face = "bold"),
plot.subtitle = element_text(face = "italic"),
axis.title.x = element_text(size=14, face="bold"),
axis.title.y = element_text(size=14, face="bold"),
legend.title = element_text(size=12, face="bold"),
legend.text = element_text(size=12),
legend.position = c(0.72, 0.14),
legend.background = element_rect(fill = "white", color = "black"),
panel.border = element_rect(color = "black", fill = NA, size = 1))
return(p)
}
```
Define function to plot variable importance scores.
```{r plot-imp}
# function to plot variable importance
plot_imp = function(imp) {
# convert to data table
imp = as.data.table(imp$importance, keep.rownames = "Marker") %>%
setnames("Overall", "Importance") %>%
.[order(-Importance)] %>%
.[, Marker := factor(Marker, levels = rev(Marker))]
# plot variable importance
p = ggplot(imp, aes(x = Importance, y = Marker, fill = Importance,
label = round(Importance, 2))) +
geom_bar(stat = "identity", width = 0.7, color = "black") +
scale_fill_gradient(low = "#EADA86", high = "#B67977") +
geom_text(size = 3, hjust = 1.2, fontface = "bold")+
scale_x_continuous(limits = c(-0.4, max(imp$Importance)),
expand = expansion(mult = c(0, 0.05))) +
theme_bw() +
theme(plot.title = element_text(size = 16, hjust = 0.5, face = "bold"),
axis.title.y = element_blank(),
axis.text.y = element_text(size = 10, color = "black"),
axis.title.x = element_text(size = 12, face = "bold"),
axis.ticks.x = element_line(color = "black"),
axis.ticks.y = element_blank(),
panel.border = element_rect(color = "black", fill = NA, size = 1),
legend.position = "none")
return(p)
}
```
Define function to train single marker model.
```{r single-marker}
single_marker = function(sm, train_dat, test_dat, tC) {
# train model on training set (80%)
sm_model = train(x = train_dat[, ..sm], y = train_dat[, Condition],
method = "gbm", trControl = tC)
# test model on test set (20%)
sm_pred = predict(sm_model, test_dat[, ..sm])
sm_cm = confusionMatrix(sm_pred, test_dat[, Condition])
sm_prob = data.table(predict(sm_model, test_dat[, ..sm], type = "prob"),
test_dat[, .(Condition)])
# calculate AUC
sm_roc = roc(response = sm_prob$Condition, predictor = sm_prob$Control)
# return output
sm_list = list(Prediction = sm_pred, CM = sm_cm, Probs = sm_prob, ROC = sm_roc)
return(sm_list)
}
```
Define function to train the gradient boosting machines (GBM) model and save output.
```{r train-gbm}
train_gbm = function(dat, lab, mx, sm, scols) {
# create subdirectory if needed
wdir = file.path(dir7, lab)
if(!dir.exists(wdir)) {dir.create(wdir)}
# partition data into training/test
train_dat = dat[Partition %in% c("Train", "Validation"), ]
test_dat = dat[Partition == "Test", ]
# establish 10-fold cross validation to determine the out-of-sample error
tC = trainControl(method = "cv", number = 10, savePredictions = TRUE,
classProbs = TRUE, verboseIter = TRUE)
# estimate pre-processing transformation (centering, scaling, remove zero
# variance) from training data, apply to all data
normalize = preProcess(train_dat[, ..mx],
method = c("center", "scale", "zv"), verbose = TRUE)
train_dat[, (mx) := predict(normalize, train_dat[, mx, with = FALSE])]
test_dat[, (mx) := predict(normalize, test_dat[, mx, with = FALSE])]
# train model on training set (80%)
gbm_model = train(x = train_dat[, ..mx], y = train_dat[, Condition],
method = "gbm", trControl = tC)
gbm_imp = varImp(gbm_model, scale = FALSE)
# plot variable importance
ggsave(file.path(wdir, "Variable Importance.pdf"), plot_imp(gbm_imp),
width = 8, height = 2.5 + length(mx)/2)
# test model on test set (20%)
gbm_pred = predict(gbm_model, test_dat[, ..mx])
gbm_cm = confusionMatrix(gbm_pred, test_dat[, Condition])
gbm_prob = data.table(predict(gbm_model, test_dat[, ..mx], type = "prob"),
test_dat[, .(Condition)])
# calculate AUC
roc_calc = roc(response = gbm_prob$Condition, predictor = gbm_prob$Control)
roc_plot = plot_roc(gbm_prob, "Condition", "Control",
paste0("AUC = ", round(roc_calc$auc, 4)))
# save ROC curve
ggsave(file.path(wdir, "ROC Curve.pdf"), roc_plot, width = 6, height = 6)
# create single-marker models
sm_models = map(sm, ~single_marker(.x, train_dat, test_dat, tC)) %>%
purrr::set_names(sm)
# plot ROC curve
mx_auc_lab = paste0("Multiplex AUC = ", round(roc_calc$auc, 4))
sm_p = ggplot(gbm_prob, aes(d = Condition, m = Control)) +
ggtitle("Gradient Boosting Machines ROC") +
geom_abline(aes(intercept = 0, slope = 1), linetype = "dashed", size = 1, color = "gray")
# here, I use the bang-bang operator in quasiquotation (see rlang::nse-force)
for(i in 1:length(sm)) {
sm_auc_lab = paste0(sm[i], " AUC = ", round(sm_models[[sm[i]]]$ROC$auc, 4))
sm_p = sm_p + geom_roc(data = sm_models[[sm[i]]]$Probs, aes(d = Condition, m = Control, color = !!sm_auc_lab), labels = FALSE, pointsize = 0)
}
sm_p = sm_p +
geom_roc(aes(color = mx_auc_lab), labels = FALSE,
pointsize = 0) +
geom_roc(linealpha = 0, n.cuts = 12, labelround = 2, labelsize = 3) +
scale_colour_manual(values = scols) +
labs(x = "1 - Specificity", y = "Sensitivity", color = "Area Under the Curve (AUC)", subtitle = mx_auc_lab) + theme_bw() +
theme(plot.title = element_text(size = 16, face = "bold"),
plot.subtitle = element_text(face = "italic"),
axis.title.x = element_text(size=14, face="bold"),
axis.title.y = element_text(size=14, face="bold"),
legend.title = element_text(size=12, face="bold"),
legend.text = element_text(size=12),
legend.position = c(0.72, 0.12 + 0.03*length(sm)),
legend.background = element_rect(fill = "white", color = "black"),
panel.border = element_rect(color = "black", fill = NA, size = 1))
# save ROC curve
ggsave(file.path(wdir, "Single-Marker ROC Curve.pdf"), sm_p, width = 6, height = 6)
# send output to external file
logf = file.path(wdir, "GBM Log.txt")
if (file.exists(logf)) { file.remove(logf) }
# establish sink
sink(logf)
gbm_model %>%
list(., .$results, .$finalModel, gbm_imp,
as.matrix(gbm_imp$importance), gbm_cm) %>%
walk(., print)
sink()
# return full list of output
return(list(Test = test_dat, Train = train_dat, Model = gbm_model,
Prediction = gbm_pred, CM = gbm_cm, Scores = gbm_prob,
ROC = roc_calc, Importance = gbm_imp, Baseline = sm_models))
}
```
# Perform Machine Learning
Train the GBM model by mapping over `all`.
```{r perform-ml}
# define markers of interest
markers = list(Astrocyte = c("GFAP", "YKL40", "VIM", "TSPO",
"EAAT1", "EAAT2", "GS"),
Microglia = c("MHC2", "CD68", "TMEM119", "TSPO", "FTL"),
Vessel = c("GFAP", "YKL40", "VIM", "TSPO", "EAAT1", "EAAT2", "GS"))
# single markers
single_markers = list(Astrocyte = "GFAP",
Microglia = c("CD68", "MHC2"),
Vessel = "GFAP")
single_colors = list(Astrocyte = c("#577399", "#FE7A71"),
Microglia = c("#577399","#BDD5EA", "#FE7A71"),
Vessel = c("#577399", "#FE7A71"))
# train GBM model
gbm_results = imap(all, ~train_gbm(.x, .y, markers[[.y]], single_markers[[.y]], single_colors[[.y]]))
# save output
saveRDS(gbm_results, file.path(dir7, "GBM Results.rds"))
```