-
Notifications
You must be signed in to change notification settings - Fork 0
/
hw8.jl
1331 lines (1029 loc) · 67.7 KB
/
hw8.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
### A Pluto.jl notebook ###
# v0.14.3
using Markdown
using InteractiveUtils
# This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error).
macro bind(def, element)
quote
local el = $(esc(element))
global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : missing
el
end
end
# ╔═╡ 05b01f6e-106a-11eb-2a88-5f523fafe433
begin
using Pkg
Pkg.activate(mktempdir())
Pkg.add([
Pkg.PackageSpec(name="PlutoUI", version="0.7"),
Pkg.PackageSpec(name="Plots", version="1.6-1"),
])
using Plots
gr()
using PlutoUI
end
# ╔═╡ 048890ee-106a-11eb-1a81-5744150543e8
md"_homework 8, version 1_"
# ╔═╡ 0579e962-106a-11eb-26b5-2160f461f4cc
md"""
# **Homework 8**: _Epidemic modeling II_
`18.S191`, Spring 2021
This notebook contains _built-in, live answer checks_! In some exercises you will see a coloured box, which runs a test case on your code, and provides feedback based on the result. Simply edit the code, run it, and the check runs again.
_For MIT students:_ there will also be some additional (secret) test cases that will be run as part of the grading process, and we will look at your notebook and write comments.
Feel free to ask questions!
"""
# ╔═╡ 0587db1c-106a-11eb-0560-c3d53c516805
# edit the code below to set your name and kerberos ID (i.e. email without @mit.edu)
student = (name = "Jazzy Doe", kerberos_id = "jazz")
# you might need to wait until all other cells in this notebook have completed running.
# scroll around the page to see what's up
# ╔═╡ 0565af4c-106a-11eb-0d38-2fb84493d86f
md"""
Submission by: **_$(student.name)_** ($(student.kerberos_id)@mit.edu)
"""
# ╔═╡ 05976f0c-106a-11eb-03a4-0febbc18fae8
md"_Let's create a package environment:_"
# ╔═╡ 0d191540-106e-11eb-1f20-bf72a75fb650
md"""
In the past couple homeworks, we've messed around with probability distributions and Monte Carlo simulations. This time, we'll build a more mathematical model, and we'll use optimization to fit it to given data.
Models have *parameters*, such as the rate of recovery from infection.
Where do the parameter values come from? Ideally we would like to extract them from data.
The goal of this homework is to do this by *fitting* a model to data.
For simplicity, we will use data that generated from a _spatial_ model - one that simulates the movement of a population in space - instead of real-world data,
and we will fit the simplest SIR model. But the same ideas apply more generally.
There are many ways to fit a function to data, but all must involve some form of **optimization**,
usually **minimization** of a particular function, a **loss function**; this is the basis of the vast field of **machine learning**.
The loss function is a function of the model parameters; it measures *how far* the model *output* is from the data,
for the given values of the parameters.
We emphasise that this material is pedagogical; there is no suggestion that these specific techniques should be used actual calculations; rather, it is the underlying ideas that are important.
"""
# ╔═╡ 3cd69418-10bb-11eb-2fb5-e93bac9e54a9
md"""
## **Exercise 1**: _Calculus without calculus_
"""
# ╔═╡ 17af6a00-112b-11eb-1c9c-bfd12931491d
md"""
Before we jump in to simulating the SIR equations, let's experiment with a simple 1D function. In calculus, we learn techniques for differentiating and integrating _symbolic_ equations, e.g. ``\frac{d}{dx} x^n = nx^{n-1}``. But in real applications, it is often impossible to apply these techniques, either because the problem is too complicated to solve symbolically, or because our problem has no symbolic expression, like when working with experimental results.
Instead, as you will recall from lecture, we use ✨ _computers_ ✨ to approximate derivatives and integrals. Instead of applying rules to symbolic expressions, we use much simpler strategies that _only use the output values of our function_.
One such example is the _finite difference_ method for approximating the _derivative_ of a function. It is inspired by the analytical definition of the derivative:
$$f'(a) := \lim_{h \rightarrow 0} \frac{f(a + h) - f(a)}{h}.$$
The finite difference method simply fixes a small value for $h$, say $h = 10^{-3}$, and then approximates the derivative as:
$$f'(a) \simeq \frac{f(a + h) - f(a)}{h}.$$
"""
# ╔═╡ 2a4050f6-112b-11eb-368a-f91d7a023c9d
md"""
#### Exercise 1.1 - _tangent line_
👉 Write a function `finite_difference_slope` that takes a function `f` and numbers `a` and `h`. It returns the slope ``f'(a)``, approximated using the finite difference formula above.
"""
# ╔═╡ d217a4b6-12e8-11eb-29ce-53ae143a39cd
function finite_difference_slope(f::Function, a, h=1e-3)
return missing
end
# ╔═╡ f0576e48-1261-11eb-0579-0b1372565ca7
finite_difference_slope(sqrt, 4.0, 5.0)
# ╔═╡ bf8a4556-112b-11eb-042e-d705a2ca922a
md"""
👉 Write a function `tangent_line` that takes the same arguments `f`, `a` and `g`, but it **returns a function**. This function (``\mathbb{R} \rightarrow \mathbb{R}``) is the _tangent line_ with slope ``f'(a)`` (computed using `finite_difference_slope`) that passes through ``(a, f(a))``.
"""
# ╔═╡ cbf0a27a-12e8-11eb-379d-85550b942ceb
function tangent_line(f, a, h)
return missing
end
# ╔═╡ 2b79b698-10b9-11eb-3bde-53fc1c48d5f7
# this is our test function
wavy(x) = .1x^3 - 1.6x^2 + 7x - 3;
# ╔═╡ a732bbcc-112c-11eb-1d65-110c049e226c
md"""
The slider below controls ``h`` using a _log scale_. In the (mathematical) definition of the derivative, we take ``\lim_{h \rightarrow 0}``. This corresponds to moving the slider to the left.
Notice that, as you decrease ``h``, the tangent line gets more accurate, but what happens if you make ``h`` too small?
"""
# ╔═╡ c9535ad6-10b9-11eb-0537-45f13931cd71
@bind log_h Slider(-16:0.01:.5, default=-.5)
# ╔═╡ 7495af52-10ba-11eb-245f-a98781ba123c
h_finite_diff = 10.0^log_h
# ╔═╡ 327de976-10b9-11eb-1916-69ad75fc8dc4
zeroten = LinRange(0.0, 10.0, 300);
# ╔═╡ abc54b82-10b9-11eb-1641-817e2f043d26
@bind a_finite_diff Slider(zeroten, default=4)
# ╔═╡ 3d44c264-10b9-11eb-0895-dbfc22ba0c37
let
p = plot(zeroten, wavy, label="f(x)")
scatter!(p, [a_finite_diff], [wavy(a_finite_diff)], label="a", color="red")
vline!(p, [a_finite_diff], label=nothing, color="red", linestyle=:dash)
scatter!(p, [a_finite_diff+h_finite_diff], [wavy(a_finite_diff+h_finite_diff)], label="a + h", color="green")
try
result = tangent_line(wavy, a_finite_diff, h_finite_diff)
plot!(p, zeroten, result, label="tangent", color="purple")
catch
end
plot!(p, xlim=(0,10), ylim=(-2, 8))
end |> as_svg
# ╔═╡ 43df67bc-10bb-11eb-1cbd-cd962a01e3ee
md"""
$(html"<span id=theslopeequation></span>")
#### Exercise 1.2 - _antiderivative_
In the finite differences method, we approximated the derivative of a function:
$$f'(a) \simeq \frac{f(a + h) - f(a)}{h}$$
We can do something very similar to approximate the 'antiderivate' of a function. Finding the antiderivative means that we use the _slope_ ``f'`` to compute ``f`` numerically!
This antiderivative problem is illustrated below. The only information that we have is the **slope** at any point ``a \in \mathbb{R}``, and we have one **initial value**, ``f(1)``.
"""
# ╔═╡ d5a8bd48-10bf-11eb-2291-fdaaff56e4e6
# in this exercise, only the derivative is given
wavy_deriv(x) = .3x^2 - 3.2x + 7;
# ╔═╡ 0b4e8cdc-10bd-11eb-296c-d51dc242a372
@bind a_euler Slider(zeroten, default=1)
# ╔═╡ 70df9a48-10bb-11eb-0b95-95a224b45921
let
slope = wavy_deriv(a_euler)
p = plot(LinRange(1.0 - 0.1, 1.0 + 0.1, 2), wavy, label=nothing, lw=3)
scatter!(p, [1], wavy, label="f(1)", color="blue", lw=3)
# p = plot()
x = [a_euler - 0.2,a_euler + 0.2]
for y in -4:10
plot!(p, x, slope .* (x .- a_euler) .+ y, label=nothing, color="purple", opacity=.6)
end
vline!(p, [a_euler], color="red", label="a", linestyle=:dash)
plot!(p, xlim=(0,10), ylim=(-2, 8))
end |> as_svg
# ╔═╡ 1d8ce3d6-112f-11eb-1343-079c18cdc89c
md"""
Using only this information, we want to **reconstruct** ``f``.
By rearranging [the equation above](#theslopeequation), we get the _Euler method_:
$$f(a+h) \simeq hf'(a) + f(a)$$
Using this formula, we only need to know the _value_ ``f(a)`` and the _slope_ ``f'(a)`` of a function at ``a`` to get the value at ``a+h``. Doing this repeatedly can give us the value at ``a+2h``, at ``a+3h``, etc., all from one initial value ``f(a)``.
👉 Write a function `euler_integrate_step` that applies this formula to a known function ``f'`` at ``a``, with step size ``h`` and the initial value ``f(a)``. It returns the next value, ``f(a+h)``.
"""
# ╔═╡ fa320028-12c4-11eb-0156-773e2aba8e58
function euler_integrate_step(fprime::Function, fa::Number,
a::Number, h::Number)
return missing
end
# ╔═╡ 2335cae6-112f-11eb-3c2c-254e82014567
md"""
👉 Write a function `euler_integrate` that takes takes a known function ``f'``, the initial value ``f(a)`` and a range `T` with `a == first(T)` and `h == step(T)`. It applies the function `euler_integrate_step` repeatedly, once per entry in `T`, to produce the sequence of values ``f(a+h)``, ``f(a+2h)``, etc.
"""
# ╔═╡ fff7754c-12c4-11eb-2521-052af1946b66
function euler_integrate(fprime::Function, fa::Number,
T::AbstractRange)
a0 = T[1]
h = step(T)
return missing
end
# ╔═╡ 4d0efa66-12c6-11eb-2027-53d34c68d5b0
md"""
Let's try it out on ``f'(x) = 3x^2`` and `T` ranging from ``0`` to ``10``.
We already know the analytical solution ``f(x) = x^3``, so the result should be an array going from (approximately) `0.0` to `1000.0`.
"""
# ╔═╡ b74d94b8-10bf-11eb-38c1-9f39dfcb1096
euler_test = let
fprime(x) = 3x^2
T = 0 : 0.1 : 10
euler_integrate(fprime, 0, T)
end
# ╔═╡ ab72fdbe-10be-11eb-3b33-eb4ab41730d6
@bind N_euler Slider(2:40)
# ╔═╡ 990236e0-10be-11eb-333a-d3080a224d34
let
a = 1
h = .3
history = euler_integrate(wavy_deriv, wavy(a), range(a; step=h, length=N_euler))
slope = wavy_deriv(a_euler)
p = plot(zeroten, wavy, label="exact solution", lw=3, opacity=.1, color="gray")
# p = plot()
last_a = a + (N_euler-1)*h
vline!(p, [last_a], color="red", label="a", linestyle=:dash)
try
plot!(p, a .+ h .* (1:N_euler), history,
color="blue", label=nothing)
scatter!(p, a .+ h .* (1:N_euler), history,
color="blue", label="appromixation",
markersize=2, markerstrokewidth=0)
plot!(p, [0,10], ([0,10] .- (last_a+h)) .* wavy_deriv(last_a+h) .+ history[end],
label="tangent",
color="purple")
catch
end
plot!(p, xlim=(0,10), ylim=(-2, 8))
end |> as_svg
# ╔═╡ d21fad2a-1253-11eb-304a-2bacf9064d0d
md"""
You see that our numerical antiderivate is not very accurate, but we can get a smaller error by choosing a smaller step size. Try it out!
There are also alternative integration methods that are more accurate with the same step size. Some methods also use the second derivative, other methods use multiple steps at once, etc.! This is the study of Numerical Methods.
"""
# ╔═╡ 518fb3aa-106e-11eb-0fcd-31091a8f12db
md"""
## **Exercise 2:** _Simulating the SIR differential equations_
We will look at a type of mathematical model for epidemic outbreaks called the **SIR model**. In this model, we consider three functions of time $$t$$: the fraction of the population $$s(t)$$ that is _susceptible_ to the disease, the fraction $$i(t)$$ that is _infected_, and the fraction $$r(t)$$ that has _recovered_. We've already used these three quantities in a simulation before, namely in the Monte Carlo simulation from last homework!
It turns out that, given some assumptions about how people from the three groups interact over time, we can model the behavior of the three quantities in terms of their **derivatives** with respect to time $$t$$. We use two parameters $$\beta$$ and $$\gamma$$, and with them, we can form a system of ordinary differential equations (ODEs) for the SIR model. They are as follows:
$$\begin{align*}
\dot{s} &= - \beta s \, i \\
\dot{i} &= + \beta s \, i - \gamma i \\
\dot{r} &= +\gamma i
\end{align*}$$
where ``\dot{s} := \frac{ds}{dt}`` is the derivative of $s$ with respect to time.
Recall that $s$ denotes the *proportion* (fraction) of the population that is susceptible, a number between $0$ and $1$.
We will use the simplest possible method to simulate these, namely the **Euler method**. The Euler method is not always a good method to solve ODEs accurately, but for our purposes it is good enough.
In the previous exercise, we introduced the Euler method for a 1D function, which you can see as an ODE that only depends on time. For the SIR equations, we have an ODE that only depends on the previous _value_, not on time, and we have 3 equations instead of 1.
The solution is quite simple, we apply the Euler method to *each* of the differential equations within a *single* time step to get new values for *each* of $s$, $i$ and $r$ at the end of the time step in terms of the values at the start of the time step. The Euler discretised equations are:
$$\begin{align*}
s(t+h) &= s(t) - h\,\cdot\beta s(t) \, i(t) \\
i(t+h) &= i(t) + h\,\cdot(\beta s(t) \, i(t) - \gamma i(t)) \\
r(t+h) &= r(t) + h\,\cdot \gamma i(t)
\end{align*}$$
👉 Implement a function `euler_SIR_step(β, γ, sir_0, h)` that performs a single Euler step for these equations with the given parameter values and initial values, with a step size $h$.
`sir_0` is a 3-element vector, and you should return a new 3-element vector with the values after the timestep.
"""
# ╔═╡ 1e5ca54e-12d8-11eb-18b8-39b909584c72
function euler_SIR_step(β, γ, sir_0::Vector, h::Number)
s, i, r = sir_0
return [
missing,
missing,
missing,
]
end
# ╔═╡ 84daf7c4-1244-11eb-0382-d1da633a63e2
euler_SIR_step(0.1, 0.05,
[0.99, 0.01, 0.00],
0.1)
# ╔═╡ 517efa24-1244-11eb-1f81-b7f95b87ce3b
md"""
👉 Implement a function `euler_SIR(β, γ, sir_0, T)` that applies the previously defined function over a time range $T$.
You should return a vector of vectors: a 3-element vector for each point in time.
"""
# ╔═╡ 51a0138a-1244-11eb-239f-a7413e2e44e4
function euler_SIR(β, γ, sir_0::Vector, T::AbstractRange)
# T is a range, you get the step size and number of steps like so:
h = step(T)
num_steps = length(T)
return missing
end
# ╔═╡ 4b791b76-12cd-11eb-1260-039c938f5443
sir_T = 0 : 0.1 : 60.0
# ╔═╡ 0a095a94-1245-11eb-001a-b908128532aa
sir_results = euler_SIR(0.3, 0.15,
[0.99, 0.01, 0.00],
sir_T)
# ╔═╡ 51c9a25e-1244-11eb-014f-0bcce2273cee
md"""
Let's plot $s$, $i$ and $r$ as a function of time.
"""
# ╔═╡ b4bb4b3a-12ce-11eb-3fe5-ad7ccd73febb
function plot_sir!(p, T, results; label="", kwargs...)
s = getindex.(results, [1])
i = getindex.(results, [2])
r = getindex.(results, [3])
plot!(p, T, s; color=1, label=label*" S", lw=3, kwargs...)
plot!(p, T, i; color=2, label=label*" I", lw=3, kwargs...)
plot!(p, T, r; color=3, label=label*" R", lw=3, kwargs...)
p
end
# ╔═╡ 58675b3c-1245-11eb-3548-c9cb8a6b3188
plot_sir!(plot(), sir_T, sir_results)
# ╔═╡ 586d0352-1245-11eb-2504-05d0aa2352c6
md"""
👉 Do you see an epidemic outbreak (i.e. a rapid growth in number of infected individuals, followed by a decline)? What happens after a long time? Does everybody get infected?
"""
# ╔═╡ 589b2b4c-1245-11eb-1ec7-693c6bda97c4
default_SIR_parameters_observation = md"""
_your answer here_
"""
# ╔═╡ 58b45a0e-1245-11eb-04d1-23a1f3a0f242
md"""
👉 Make an interactive visualization, similar to the above plot, in which you vary $\beta$ and $\gamma$ via sliders. What relation should $\beta$ and $\gamma$ have for an epidemic outbreak to occur?
"""
# ╔═╡ 68274534-1103-11eb-0d62-f1acb57721bc
# ╔═╡ 82539bbe-106e-11eb-0e9e-170dfa6a7dad
md"""
## **Exercise 3:** _Numerical gradient_
For fitting we need optimization, and for optimization we will use *derivatives* (rates of change). In Exercise 1, we wrote a function `finite_difference_slope(f, a)` to approximate ``f'(a)``. In this exercise we will write a function to compute _partial derivatives_.
"""
# ╔═╡ b394b44e-1245-11eb-2f86-8d10113e8cfc
md"""
#### Exercise 3.1
👉 Write functions `∂x(f, a, b)` and `∂y(f, a, b)` that calculate the **partial derivatives** $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at $(a, b)$ of a function $f : \mathbb{R}^2 \to \mathbb{R}$ (i.e. a function that takes two real numbers and returns one real).
Recall that $\frac{\partial f}{\partial x}$ is the derivative of the single-variable function $g(x) := f(x, b)$ obtained by fixing the value of $y$ to $b$.
You should use **anonymous functions** for this. These have the form `x -> x^2`, meaning "the function that sends $x$ to $x^2$".
"""
# ╔═╡ bd8522c6-12e8-11eb-306c-c764f78486ef
function ∂x(f::Function, a, b)
return missing
end
# ╔═╡ 321964ac-126d-11eb-0a04-0d3e3fb9b17c
∂x(
(x, y) -> 7x^2 + y,
3, 7
)
# ╔═╡ b7d3aa8c-12e8-11eb-3430-ff5d7df6a122
function ∂y(f::Function, a, b)
return missing
end
# ╔═╡ a15509ee-126c-11eb-1fa3-cdda55a47fcb
∂y(
(x, y) -> 7x^2 + y,
3, 7
)
# ╔═╡ b398a29a-1245-11eb-1476-ab65e92d1bc8
md"""
#### Exercise 3.2
👉 Write a function `gradient(f, a, b)` that calculates the **gradient** of a function $f$ at the point $(a, b)$, given by the vector $\nabla f(a, b) := (\frac{\partial f}{\partial x}(a, b), \frac{\partial f}{\partial y}(a, b))$.
"""
# ╔═╡ adbf65fe-12e8-11eb-04e9-3d763ba91a63
function gradient(f::Function, a, b)
return missing
end
# ╔═╡ 66b8e15e-126c-11eb-095e-39c2f6abc81d
gradient(
(x, y) -> 7x^2 + y,
3, 7
)
# ╔═╡ 82579b90-106e-11eb-0018-4553c29e57a2
md"""
## **Exercise 4:** _Minimisation using gradient descent_
In this exercise we will use **gradient descent** to find local **minima** of (smooth enough) functions, revisiting what we saw on the lectures.
As a refresher, we'll want to think of a function as a hill. To find a minimum we should "roll down the hill".
#### Exercise 4.1
We want to minimize a 1D function, i.e. a function $f: \mathbb{R} \to \mathbb{R}$. To do so we notice that the derivative tells us the direction in which the function *increases*. Positive slope means that the minimum is to the left, negative slope means to the right. So our _gradient descent method_ is to take steps in the *opposite* direction, of a small size $\eta \cdot f'(x_0)$.
👉 Write a function `gradient_descent_1d_step(f, x0)` that performs a single gradient descrent step, from the point `x0` and using your function `finite_difference_slope` to approximate the derivative. The result should be the next guess for ``x``.
"""
# ╔═╡ a7f1829c-12e8-11eb-15a1-5de40ed92587
function gradient_descent_1d_step(f, x0; η=0.01)
return missing
end
# ╔═╡ d33271a2-12df-11eb-172a-bd5600265f49
let
f = x -> x^2
# the minimum is at 0, so we should take a small step to the left
gradient_descent_1d_step(f, 5)
end
# ╔═╡ 8ae98c74-12e0-11eb-2802-d9a544d8b7ae
@bind N_gradient_1d Slider(0:20)
# ╔═╡ a53cf3f8-12e1-11eb-0b0c-2b794a7ac841
md" ``x_0 = `` $(@bind x0_gradient_1d Slider(-3:.01:1.5, default=-1, show_value=true))"
# ╔═╡ 90114f98-12e0-11eb-2011-a3207bbc24f6
function gradient_1d_viz(N_gradient_1d, x0)
f = x -> x^4 + 3x^3 - 3x + 5.
x = LinRange(-3, 1.5, 200)
history = accumulate(1:N_gradient_1d, init=x0) do old, _
gradient_descent_1d_step(f, old, η=.025)
end
all = [x0, history...]
# slope = wavy_deriv(a_euler)
p = plot(x, f, label="f(x)", lw=3, opacity=.6, color="gray")
# p = plot()
plot!(p, all, f,
color="blue", opacity=range(.5,step=.2,length=length(all)), label=nothing)
scatter!(p, all, f,
color="blue", label="gradient descent",
markersize=3, markerstrokewidth=0)
as_svg(p)
end
# ╔═╡ 88b30f10-12e1-11eb-383d-4f095625cd16
gradient_1d_viz(N_gradient_1d, x0_gradient_1d)
# ╔═╡ 754e4c48-12df-11eb-3818-f54f6fc7176b
md"""
👉 Write a function `gradient_descent_1d(f, x0)` that repeatedly applies the previous function (`N_steps` times), starting from the point `x0`, like in the vizualisation above. The result should be the final guess for ``x``.
"""
# ╔═╡ 9489009a-12e8-11eb-2fb7-97ba0bdf339c
function gradient_descent_1d(f, x0; η=0.01, N_steps=1000)
return missing
end
# ╔═╡ 34dc4b02-1248-11eb-26b2-5d2610cfeb41
let
f = x -> (x - 5)^2 - 3
# minimum should be at x = 5
gradient_descent_1d(f, 0.0)
end
# ╔═╡ e3120c18-1246-11eb-3bf4-7f4ac45856e0
md"""
Right now we take a fixed number of steps, even if the minimum is found quickly. What would be a better way to decide when to end the function?
"""
# ╔═╡ ebca11d8-12c9-11eb-3dde-c546eccf40fc
better_stopping_idea = md"""
_your answer here_
"""
# ╔═╡ 9fd2956a-1248-11eb-266d-f558cda55702
md"""
#### Exericse 4.2
Multivariable calculus tells us that the gradient $\nabla f(a, b)$ at a point $(a, b)$ is the direction in which the function *increases* the fastest. So again we should take a small step in the *opposite* direction. Note that the gradient is a *vector* which tells us which direction to move in the plane $(a, b)$. We multiply this vector with the scalar ``\eta`` to control the step size.
👉 Write functions `gradient_descent_2d_step(f, x0, y0)` and `gradient_descent_2d(f, x0, y0)` that do the same for functions $f(x, y)$ of two variables.
"""
# ╔═╡ 852be3c4-12e8-11eb-1bbb-5fbc0da74567
function gradient_descent_2d_step(f, x0, y0; η=0.01)
return missing
end
# ╔═╡ 8a114ca8-12e8-11eb-2de6-9149d1d3bc3d
function gradient_descent_2d(f, x0, y0; η=0.01)
return missing
end
# ╔═╡ 4454c2b2-12e3-11eb-012c-c362c4676bf6
@bind N_gradient_2d Slider(0:20)
# ╔═╡ 4aace1a8-12e3-11eb-3e07-b5827a2a6765
md" ``x_0 = `` $(@bind x0_gradient_2d Slider(-4:.01:4, default=0, show_value=true))"
# ╔═╡ 54a58f84-12e3-11eb-10b9-7d55a16c81ba
md" ``y_0 = `` $(@bind y0_gradient_2d Slider(-4:.01:4, default=0, show_value=true))"
# ╔═╡ a0045046-1248-11eb-13bd-8b8ad861b29a
himmelbau(x, y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2
# ╔═╡ 92854562-1249-11eb-0b81-156982df1284
gradient_descent_2d(himmelbau, 0, 0)
# ╔═╡ 7e318fea-12e7-11eb-3490-b17e0d4dbc50
md"""
We also prepared a 3D visualisation if you like! It's a bit slow...
"""
# ╔═╡ 605aafa4-12e7-11eb-2d13-7f7db3fac439
run_3d_visualisation = false
# ╔═╡ 5e0f16b4-12e3-11eb-212f-e565f97adfed
function gradient_2d_viz_3d(N_gradient_2d, x0, y0)
history = accumulate(1:N_gradient_2d, init=[x0, y0]) do old, _
gradient_descent_2d_step(himmelbau, old...)
end
all = [[x0, y0], history...]
p = surface(-4:0.4:5, -4:0.4:4, himmelbau)
trace = [himmelbau(s...) for s in all]
plot!(p, first.(all), last.(all), trace,
color="blue", opacity=range(.5,step=.2,length=length(all)), label=nothing)
scatter!(p, first.(all), last.(all), trace,
color="blue", label="gradient descent",
markersize=3, markerstrokewidth=0)
as_svg(p)
end
# ╔═╡ 9ae4ebac-12e3-11eb-0acc-23113f5264a9
if run_3d_visualisation
let
# we temporarily change the plotting backend to an interactive one
plotly()
# we dont use the sliders because this plot is quite slow
x0 = 0.5
N = 20
y0 = -3
p = gradient_2d_viz_3d(N, x0, y0)
gr()
p
end
end
# ╔═╡ b6ae4d7e-12e6-11eb-1f92-c95c040d4401
function gradient_2d_viz_2d(N_gradient_2d, x0, y0)
history = accumulate(1:N_gradient_2d, init=[x0, y0]) do old, _
gradient_descent_2d_step(himmelbau, old...)
end
all = [[x0, y0], history...]
p = heatmap(-4:0.4:5, -4:0.4:4, himmelbau)
plot!(p, first.(all), last.(all),
color="blue", opacity=range(.5,step=.2,length=length(all)), label=nothing)
scatter!(p, first.(all), last.(all),
color="blue", label="gradient descent",
markersize=3, markerstrokewidth=0)
as_svg(p)
end
# ╔═╡ fbb4a9a4-1248-11eb-00e2-fd346f0056db
gradient_2d_viz_2d(N_gradient_2d, x0_gradient_2d, y0_gradient_2d)
# ╔═╡ a03890d6-1248-11eb-37ee-85b0a5273e0c
md"""
👉 Can you find different minima?
"""
# ╔═╡ 6d1ee93e-1103-11eb-140f-63fca63f8b06
# ╔═╡ 8261eb92-106e-11eb-2ccc-1348f232f5c3
md"""
## **Exercise 5:** _Learning parameter values_
In this exercise we will apply gradient descent to fit a simple function $y = f_{\alpha, \beta}(x)$ to some data given as pairs $(x_i, y_i)$. Here $\alpha$ and $\beta$ are **parameters** that appear in the form of the function $f$. We want to find the parameters that provide the **best fit**, i.e. the version $f_{\alpha, \beta}$ of the function that is closest to the data when we vary $\alpha$ and $\beta$.
To do so we need to define what "best" means. We will define a measure of the distance between the function and the data, given by a **loss function**, which itself depends on the values of $\alpha$ and $\beta$. Then we will *minimize* the loss function over $\alpha$ and $\beta$ to find those values that minimize this distance, and hence are "best" in this precise sense.
The iterative procedure by which we gradually adjust the parameter values to improve the loss function is often called **machine learning** or just **learning**, since the computer is "discovering" information in a gradual way, which is supposed to remind us of how humans learn. [Hint: This is not how humans learn.]
#### Exercise 5.1 - _🎲 frequencies_
We generate a small dataset by throwing 10 dice, and counting the sum. We repeat this experiment many times, giving us a frequency distribution in a familiar shape.
"""
# ╔═╡ 65e691e4-124a-11eb-38b1-b1732403aa3d
import Statistics
# ╔═╡ 6f4aa432-1103-11eb-13da-fdd9eefc7c86
function dice_frequencies(N_dice, N_experiments)
experiment() = let
sum_of_rolls = sum(rand(1:6, N_dice))
end
results = [experiment() for _ in 1:N_experiments]
x = N_dice : N_dice*6
y = map(x) do total
sum(isequal(total), results)
end ./ N_experiments
x, y
end
# ╔═╡ dbe9635a-124b-11eb-111d-fb611954db56
dice_x, dice_y = dice_frequencies(10, 20_000)
# ╔═╡ 57090426-124e-11eb-0a17-1566ae96b7c2
md"""
Let's try to fit a gaussian (normal) distribution. Its PDF with mean $\mu$ and standard deviation $\sigma$ is
$$f_{\mu, \sigma}(x) := \frac{1}{\sigma \sqrt{2 \pi}}\exp \left[- \frac{(x - \mu)^2}{2 \sigma^2} \right]$$
👉 _(Not graded)_ Manually fit a Gaussian distribution to our data by adjusting ``\mu`` and ``\sigma`` until you find a good fit.
"""
# ╔═╡ 66192a74-124c-11eb-0c6a-d74aecb4c624
md"μ = $(@bind guess_μ Slider(1:0.1:last(dice_x); default = last(dice_x) * 0.4, show_value=true))"
# ╔═╡ 70f0fe9c-124c-11eb-3dc6-e102e68673d9
md"σ = $(@bind guess_σ Slider(0.1:0.1:last(dice_x)/2; default=12, show_value=true))"
# ╔═╡ 41b2262a-124e-11eb-2634-4385e2f3c6b6
md"Show manual fit: $(@bind show_manual_fit CheckBox())"
# ╔═╡ 0dea1f70-124c-11eb-1593-e535ab21976c
function gauss(x, μ, σ)
(1 / (sqrt(2π) * σ)) * exp(-(x-μ)^2 / σ^2 / 2)
end
# ╔═╡ 471cbd84-124c-11eb-356e-371d23011af5
md"""
What we just did was adjusting the function parameters until we found the best possible fit. Let's automate this process! To do so, we need to quantify how _good or bad_ a fit is.
👉 Define a **loss function** to measure the "distance" between the actual data and the function. It will depend on the values of $\mu$ and $\sigma$ that you choose:
$$\mathcal{L}(\mu, \sigma) := \sum_i [f_{\mu, \sigma}(x_i) - y_i]^2$$
"""
# ╔═╡ 2fc55daa-124f-11eb-399e-659e59148ef5
function loss_dice(μ, σ)
return missing
end
# ╔═╡ 3a6ec2e4-124f-11eb-0f68-791475bab5cd
loss_dice(guess_μ + 3, guess_σ) >
loss_dice(guess_μ, guess_σ)
# ╔═╡ 2fcb93aa-124f-11eb-10de-55fced6f4b83
md"""
👉 Use your `gradient_descent_2d` function to find a local minimum of $\mathcal{L}$, starting with initial values $\mu = 30$ and $\sigma = 1$. Call the found parameters `found_μ` and `found_σ`.
"""
# ╔═╡ a150fd60-124f-11eb-35d6-85104bcfd0fe
found_μ, found_σ = let
# your code here
missing, missing
end
# ╔═╡ ac320522-124b-11eb-1552-51c2adaf2521
let
p = plot(dice_x, dice_y, size=(600,200), label="data")
if show_manual_fit
plot!(p, dice_x, gauss.(dice_x, [guess_μ], [guess_σ]), label="manual fit")
end
try
plot!(p, dice_x, gauss.(dice_x, [found_μ], [found_σ]), label="optimized fit")
catch
end
p
end
# ╔═╡ 3f5e88bc-12c8-11eb-2d74-51f2f5060928
md"""
Go back to the graph to see your optimized gaussian curve!
If your fit is close, then probability theory tells us that the found parameter ``\mu`` should be close to the _weighted mean_ of our data, and ``\sigma`` should approximate the _sample standard deviation_. We have already computed these values, and we check how close they are:
"""
# ╔═╡ 65aa13fe-1266-11eb-03c2-5927dbeca36e
stats_μ = sum(dice_x .* dice_y)
# ╔═╡ c569a5d8-1267-11eb-392f-452de141161b
abs(stats_μ - found_μ)
# ╔═╡ 6faf4074-1266-11eb-1a0a-991fc2e991bb
stats_σ = sqrt(sum(dice_x.^2 .* dice_y) - stats_μ .^ 2)
# ╔═╡ e55d9c1e-1267-11eb-1b3c-5d772662518a
abs(stats_σ - found_σ)
# ╔═╡ 826bb0dc-106e-11eb-29eb-03e7ddf9e4b5
md"""
## **Exercise 6:** _Putting it all together — fitting an SIR model to data_
In this exercise we will fit the (non-spatial) SIR ODE model from Exercise 2 to some data generated from a different, _spatial_ epidemic model, as we mentioned at the beginning. If we are able to find a good fit, that would suggest that the spatial aspect "does not matter" too much for the dynamics of these models.
If the fit is not so good, perhaps there is an important effect of space. (As usual in statistics, and indeed in modelling in general, we should be very cautious of making claims of this nature.)
This fitting procedure will be different from that in Exercise 4, however: we no longer have an explicit form for the function that we are fitting. Rather, it is simply the output of an ODE! So what should we do?
We will try to find the parameters $\beta$ and $\gamma$ for which *the output of the ODEs when we simulate it with those parameters* best matches the data!
#### Exercise 6.1
Below is the result from the spatial model. These are the _average S, I, R fractions_ from running 20 simulations. Click on it!
"""
# ╔═╡ c56cc19c-12ca-11eb-3c6c-7f3ea98eeb4e
hw4_results_transposed = (S = [0.99, 0.9895, 0.9895, 0.989, 0.9885, 0.9885, 0.9885, 0.988, 0.9865, 0.986, 0.9855, 0.9855, 0.9855, 0.9845, 0.9845, 0.9845, 0.984, 0.984, 0.984, 0.9835, 0.9835, 0.982, 0.982, 0.982, 0.982, 0.9815, 0.981, 0.9805, 0.98, 0.98, 0.98, 0.98, 0.9795, 0.9795, 0.979, 0.979, 0.979, 0.978, 0.9775, 0.9775, 0.977, 0.976, 0.9755, 0.9745, 0.9735, 0.9735, 0.973, 0.972, 0.972, 0.972, 0.971, 0.971, 0.9695, 0.968, 0.9675, 0.967, 0.9665, 0.966, 0.9655, 0.9645, 0.9645, 0.9645, 0.964, 0.9615, 0.9595, 0.959, 0.958, 0.9575, 0.9575, 0.9575, 0.9565, 0.956, 0.954, 0.9535, 0.9535, 0.951, 0.95, 0.949, 0.9485, 0.948, 0.947, 0.9465, 0.9465, 0.9455, 0.945, 0.9425, 0.9415, 0.9405, 0.9395, 0.9385, 0.938, 0.937, 0.9355, 0.9355, 0.935, 0.9325, 0.932, 0.93, 0.929, 0.927, 0.9265, 0.926, 0.9245, 0.924, 0.9235, 0.923, 0.9225, 0.9225, 0.922, 0.9215, 0.9195, 0.918, 0.915, 0.9125, 0.911, 0.907, 0.9055, 0.9045, 0.9025, 0.9005, 0.899, 0.898, 0.8965, 0.8955, 0.893, 0.892, 0.89, 0.8875, 0.885, 0.8835, 0.882, 0.8805, 0.8785, 0.8755, 0.8735, 0.869, 0.868, 0.868, 0.8645, 0.8625, 0.8605, 0.8575, 0.8545, 0.8505, 0.847, 0.8455, 0.8435, 0.8415, 0.84, 0.8385, 0.8365, 0.8345, 0.829, 0.826, 0.824, 0.822, 0.817, 0.8145, 0.814, 0.811, 0.8095, 0.8075, 0.805, 0.8005, 0.7985, 0.7965, 0.793, 0.7895, 0.7865, 0.785, 0.7815, 0.779, 0.776, 0.769, 0.7655, 0.764, 0.7625, 0.7595, 0.7575, 0.754, 0.751, 0.7485, 0.743, 0.7395, 0.736, 0.7355, 0.732, 0.728, 0.725, 0.7235, 0.7215, 0.718, 0.7165, 0.7135, 0.7095, 0.709, 0.705, 0.7015, 0.699, 0.697, 0.694, 0.69, 0.685, 0.6835, 0.6805, 0.6795, 0.6765, 0.6745, 0.6735, 0.6705, 0.6665, 0.6625, 0.66, 0.656, 0.653, 0.65, 0.6465, 0.641, 0.639, 0.6365, 0.6335, 0.632, 0.6285, 0.6265, 0.623, 0.6195, 0.617, 0.6125, 0.609, 0.607, 0.6045, 0.601, 0.596, 0.591, 0.5905, 0.5885, 0.5825, 0.579, 0.576, 0.574, 0.5705, 0.569, 0.563, 0.559, 0.5565, 0.555, 0.5515, 0.546, 0.5455, 0.5435, 0.5395, 0.538, 0.535, 0.5315, 0.528, 0.525, 0.523, 0.519, 0.516, 0.513, 0.511, 0.509, 0.5065, 0.5045, 0.5015, 0.497, 0.4925, 0.488, 0.485, 0.4795, 0.473, 0.47, 0.465, 0.4595, 0.457, 0.454, 0.45, 0.447, 0.444, 0.4405, 0.4385, 0.4345, 0.431, 0.4275, 0.4245, 0.422, 0.421, 0.418, 0.414, 0.411, 0.4075, 0.404, 0.4015, 0.398, 0.3945, 0.3915, 0.39, 0.3875, 0.385, 0.3825, 0.379, 0.3765, 0.3725, 0.3685, 0.3655, 0.364, 0.359, 0.3555, 0.3555, 0.354, 0.351, 0.3495, 0.347, 0.345, 0.343, 0.341, 0.3365, 0.3325, 0.3325, 0.3275, 0.3255, 0.3225, 0.3205, 0.3195, 0.3175, 0.316, 0.313, 0.3125, 0.31, 0.308, 0.3055, 0.302, 0.301, 0.299, 0.297, 0.294, 0.29, 0.2895, 0.2855, 0.283, 0.2825, 0.279, 0.276, 0.273, 0.2695, 0.2665, 0.2655, 0.2635, 0.261, 0.2595, 0.258, 0.257, 0.254, 0.2535, 0.251, 0.25, 0.2465, 0.245, 0.2435, 0.2415, 0.2405, 0.238, 0.2365, 0.235, 0.2335, 0.2325, 0.23, 0.2275, 0.226, 0.2245, 0.2235, 0.223, 0.22, 0.218, 0.2165, 0.2135, 0.2135, 0.2095, 0.2075, 0.206, 0.205, 0.2045, 0.2025, 0.201, 0.2, 0.1985, 0.1985, 0.196, 0.1945, 0.1915, 0.1895, 0.188, 0.185, 0.184, 0.1835, 0.1835, 0.183, 0.183, 0.182, 0.182, 0.1805, 0.179, 0.1785, 0.177, 0.176, 0.1745, 0.174, 0.1735, 0.173, 0.1715, 0.171, 0.1685, 0.167, 0.1665, 0.165, 0.1645, 0.163, 0.162, 0.162, 0.1605, 0.1605, 0.16, 0.159, 0.158, 0.1555, 0.155, 0.1545, 0.1545, 0.152, 0.1505, 0.15, 0.149, 0.1475, 0.1465, 0.1445, 0.1435, 0.142, 0.1405, 0.14, 0.14, 0.139, 0.139, 0.1375, 0.137, 0.136, 0.1355, 0.135, 0.134, 0.1335, 0.133, 0.133, 0.1325, 0.1315, 0.1305, 0.13, 0.1295, 0.1295, 0.1275, 0.1265, 0.126, 0.126, 0.125, 0.124, 0.124, 0.1235, 0.1225, 0.1225, 0.1225, 0.122, 0.121, 0.1205, 0.1205, 0.1195, 0.1185, 0.117, 0.1145, 0.1135, 0.113, 0.113, 0.113, 0.112, 0.1105, 0.11, 0.109, 0.1085, 0.1055, 0.1055, 0.105, 0.105, 0.105, 0.105, 0.1035, 0.103, 0.1025, 0.102, 0.101, 0.1005, 0.0995, 0.099, 0.0975, 0.0965, 0.096, 0.096, 0.095, 0.095, 0.095, 0.0945, 0.0935, 0.0935, 0.0925, 0.091, 0.091, 0.0905, 0.09, 0.09, 0.09, 0.09, 0.0895, 0.0895, 0.0895, 0.088, 0.087, 0.0865, 0.0865, 0.086, 0.085, 0.085, 0.0845, 0.0845, 0.084, 0.084, 0.084, 0.084, 0.0835, 0.0825, 0.0825, 0.082, 0.082, 0.0815, 0.081, 0.081, 0.0805, 0.0795, 0.0795, 0.0795, 0.0795, 0.0795, 0.079, 0.0785, 0.078, 0.0775, 0.077, 0.076, 0.076, 0.076, 0.076, 0.076, 0.0755, 0.0755, 0.0755, 0.0755, 0.0755, 0.075, 0.075, 0.075, 0.075, 0.074, 0.074, 0.074, 0.0735, 0.0735, 0.0735, 0.0735, 0.073, 0.072, 0.072, 0.072, 0.072, 0.0715, 0.0715, 0.0715, 0.0705, 0.0705, 0.0695, 0.0695, 0.0695, 0.0695, 0.0695, 0.0695, 0.069, 0.069, 0.0685, 0.0685, 0.0685, 0.0685, 0.0685, 0.0685, 0.068, 0.0675, 0.0665, 0.0665, 0.0665, 0.0665, 0.0665, 0.066, 0.066, 0.066, 0.0655, 0.065, 0.065, 0.065, 0.0645, 0.0645, 0.0645, 0.0645, 0.064, 0.064, 0.0635, 0.0635, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.062, 0.062, 0.062, 0.062, 0.062, 0.062, 0.062, 0.062, 0.062, 0.062, 0.062, 0.0615, 0.0615, 0.0615, 0.0615, 0.0615, 0.0615, 0.061, 0.0605, 0.0605, 0.0605, 0.06, 0.0595, 0.0595, 0.0595, 0.059, 0.059, 0.0585, 0.0585, 0.0585, 0.0585, 0.0585, 0.0585, 0.0585, 0.0585, 0.0585, 0.0585, 0.0585, 0.0585, 0.0585, 0.058, 0.058, 0.058, 0.058, 0.0575, 0.0575, 0.0575, 0.0575, 0.0575, 0.0575, 0.0575, 0.0575, 0.0575, 0.0575, 0.0575, 0.0575, 0.0575, 0.0575, 0.0575, 0.0575, 0.0575, 0.057, 0.057, 0.057, 0.057, 0.057, 0.057, 0.057, 0.057, 0.057, 0.057, 0.057, 0.057, 0.0565, 0.0565, 0.0565, 0.0565, 0.0565, 0.0565, 0.0565, 0.0565, 0.0565, 0.0565, 0.0565, 0.0565, 0.0565, 0.056, 0.056, 0.056, 0.056, 0.056, 0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 0.055, 0.055, 0.0545, 0.054, 0.054, 0.054, 0.054, 0.054, 0.054, 0.054, 0.054, 0.054, 0.054, 0.054, 0.054, 0.054, 0.054, 0.054, 0.054, 0.054, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.0515, 0.0515, 0.0515, 0.0515, 0.0515, 0.0515, 0.0515, 0.0515, 0.0515, 0.0515, 0.0515, 0.0515, 0.0515, 0.0515, 0.0515, 0.0515, 0.051, 0.051, 0.051, 0.051, 0.051, 0.051, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05], I = [0.01, 0.0105, 0.0105, 0.011, 0.0115, 0.0115, 0.0115, 0.0115, 0.013, 0.0135, 0.014, 0.014, 0.014, 0.015, 0.015, 0.015, 0.0155, 0.0155, 0.0155, 0.016, 0.016, 0.0175, 0.0175, 0.0175, 0.017, 0.0175, 0.018, 0.0185, 0.019, 0.019, 0.019, 0.019, 0.0195, 0.0195, 0.02, 0.02, 0.0195, 0.0205, 0.0205, 0.0205, 0.021, 0.022, 0.022, 0.023, 0.024, 0.024, 0.0245, 0.0255, 0.0255, 0.0255, 0.0265, 0.0265, 0.028, 0.0295, 0.03, 0.0305, 0.031, 0.0315, 0.032, 0.033, 0.033, 0.033, 0.0335, 0.036, 0.037, 0.0375, 0.0385, 0.039, 0.039, 0.039, 0.0395, 0.0395, 0.0415, 0.042, 0.0415, 0.0435, 0.0445, 0.0455, 0.0455, 0.046, 0.047, 0.0475, 0.0475, 0.0485, 0.0485, 0.051, 0.052, 0.053, 0.053, 0.054, 0.0545, 0.0555, 0.057, 0.057, 0.0575, 0.06, 0.0605, 0.0625, 0.0635, 0.0645, 0.065, 0.0655, 0.067, 0.0675, 0.068, 0.0685, 0.069, 0.069, 0.0695, 0.07, 0.072, 0.0735, 0.076, 0.0785, 0.0795, 0.0835, 0.0845, 0.0855, 0.0875, 0.0895, 0.091, 0.0915, 0.093, 0.0935, 0.096, 0.097, 0.0985, 0.101, 0.1035, 0.105, 0.1065, 0.108, 0.1095, 0.1125, 0.1135, 0.1175, 0.1185, 0.1185, 0.122, 0.124, 0.126, 0.1285, 0.1315, 0.1355, 0.1385, 0.14, 0.1415, 0.1435, 0.1445, 0.144, 0.146, 0.148, 0.1535, 0.1565, 0.1585, 0.1605, 0.1655, 0.1675, 0.168, 0.171, 0.172, 0.174, 0.176, 0.1795, 0.181, 0.1815, 0.1845, 0.188, 0.191, 0.192, 0.1955, 0.1975, 0.199, 0.206, 0.209, 0.21, 0.2105, 0.213, 0.215, 0.218, 0.2205, 0.2225, 0.2275, 0.2305, 0.2335, 0.2335, 0.2365, 0.24, 0.242, 0.242, 0.244, 0.2465, 0.2475, 0.2505, 0.2535, 0.2525, 0.256, 0.259, 0.261, 0.2625, 0.2645, 0.268, 0.273, 0.273, 0.2745, 0.2755, 0.278, 0.28, 0.281, 0.2835, 0.2865, 0.2905, 0.292, 0.295, 0.2975, 0.3, 0.303, 0.308, 0.3095, 0.3115, 0.313, 0.3145, 0.318, 0.319, 0.3225, 0.326, 0.328, 0.332, 0.333, 0.334, 0.3355, 0.3385, 0.3435, 0.348, 0.3475, 0.347, 0.353, 0.356, 0.3585, 0.36, 0.3635, 0.365, 0.371, 0.3745, 0.376, 0.3765, 0.379, 0.3835, 0.384, 0.386, 0.3875, 0.3875, 0.3895, 0.3915, 0.395, 0.397, 0.3975, 0.3995, 0.402, 0.4035, 0.4055, 0.4075, 0.409, 0.41, 0.4115, 0.416, 0.42, 0.424, 0.4255, 0.4305, 0.4355, 0.4375, 0.441, 0.445, 0.4465, 0.4475, 0.4505, 0.4535, 0.4565, 0.4595, 0.4605, 0.4635, 0.4665, 0.4695, 0.472, 0.474, 0.4745, 0.4775, 0.48, 0.483, 0.4835, 0.4865, 0.489, 0.491, 0.4935, 0.495, 0.4945, 0.4965, 0.4985, 0.5, 0.502, 0.5045, 0.508, 0.51, 0.5125, 0.514, 0.518, 0.52, 0.5185, 0.519, 0.5215, 0.522, 0.5225, 0.5235, 0.5245, 0.525, 0.529, 0.5315, 0.5315, 0.5345, 0.5355, 0.5375, 0.5385, 0.538, 0.54, 0.541, 0.5435, 0.5425, 0.5445, 0.545, 0.547, 0.549, 0.549, 0.55, 0.551, 0.553, 0.5565, 0.557, 0.56, 0.562, 0.5615, 0.564, 0.5655, 0.5655, 0.5665, 0.569, 0.567, 0.5665, 0.569, 0.568, 0.568, 0.5675, 0.5695, 0.569, 0.5705, 0.5695, 0.572, 0.5725, 0.574, 0.575, 0.5755, 0.5775, 0.5775, 0.5785, 0.5785, 0.579, 0.5805, 0.582, 0.583, 0.583, 0.583, 0.5815, 0.5825, 0.584, 0.585, 0.5855, 0.584, 0.5865, 0.587, 0.5875, 0.5875, 0.5865, 0.587, 0.587, 0.5875, 0.588, 0.5865, 0.588, 0.5885, 0.5905, 0.5915, 0.5925, 0.5945, 0.5935, 0.592, 0.5905, 0.5905, 0.5905, 0.5905, 0.59, 0.59, 0.5905, 0.589, 0.589, 0.5885, 0.5875, 0.5875, 0.585, 0.584, 0.584, 0.583, 0.5835, 0.583, 0.582, 0.5825, 0.582, 0.5825, 0.582, 0.581, 0.582, 0.581, 0.579, 0.5785, 0.5775, 0.5795, 0.58, 0.579, 0.576, 0.578, 0.579, 0.579, 0.578, 0.5795, 0.5795, 0.5805, 0.58, 0.5805, 0.5815, 0.5805, 0.5795, 0.5795, 0.5775, 0.5765, 0.576, 0.5765, 0.576, 0.5755, 0.5755, 0.5755, 0.575, 0.5745, 0.5745, 0.574, 0.573, 0.573, 0.5715, 0.568, 0.5695, 0.5705, 0.571, 0.5705, 0.5695, 0.5695, 0.569, 0.569, 0.569, 0.5685, 0.566, 0.565, 0.5655, 0.565, 0.564, 0.564, 0.563, 0.563, 0.565, 0.564, 0.564, 0.563, 0.563, 0.5635, 0.564, 0.563, 0.5635, 0.563, 0.5655, 0.564, 0.5635, 0.562, 0.562, 0.5605, 0.5605, 0.5595, 0.559, 0.5595, 0.5595, 0.559, 0.558, 0.557, 0.5575, 0.5575, 0.556, 0.5555, 0.5545, 0.5525, 0.5495, 0.549, 0.549, 0.5475, 0.5475, 0.548, 0.548, 0.548, 0.547, 0.5445, 0.5425, 0.5425, 0.5425, 0.5415, 0.541, 0.5415, 0.541, 0.5405, 0.5395, 0.5395, 0.54, 0.539, 0.539, 0.5375, 0.5365, 0.5355, 0.535, 0.5345, 0.534, 0.5345, 0.534, 0.533, 0.5325, 0.5315, 0.532, 0.5315, 0.5315, 0.5315, 0.531, 0.53, 0.5295, 0.528, 0.526, 0.5255, 0.5235, 0.524, 0.523, 0.5215, 0.521, 0.521, 0.5205, 0.5205, 0.5205, 0.52, 0.519, 0.5185, 0.517, 0.5165, 0.5145, 0.5135, 0.513, 0.513, 0.513, 0.513, 0.5135, 0.5125, 0.5125, 0.511, 0.5115, 0.5125, 0.5115, 0.511, 0.511, 0.51, 0.5095, 0.509, 0.509, 0.5065, 0.5065, 0.506, 0.5045, 0.504, 0.502, 0.4995, 0.4995, 0.4995, 0.4995, 0.4985, 0.4965, 0.493, 0.492, 0.492, 0.491, 0.49, 0.4905, 0.4905, 0.4905, 0.4905, 0.4895, 0.489, 0.488, 0.4875, 0.488, 0.486, 0.4855, 0.4855, 0.485, 0.484, 0.483, 0.4825, 0.483, 0.482, 0.4815, 0.481, 0.4815, 0.4805, 0.4785, 0.4775, 0.477, 0.475, 0.4735, 0.473, 0.4725, 0.471, 0.4705, 0.47, 0.469, 0.4675, 0.4675, 0.466, 0.466, 0.4645, 0.4635, 0.4625, 0.4615, 0.461, 0.46, 0.4595, 0.458, 0.458, 0.457, 0.457, 0.4565, 0.4545, 0.454, 0.453, 0.452, 0.451, 0.4495, 0.449, 0.448, 0.4465, 0.4465, 0.4455, 0.4455, 0.4455, 0.4455, 0.4455, 0.445, 0.444, 0.444, 0.4425, 0.4415, 0.44, 0.4385, 0.438, 0.437, 0.436, 0.4355, 0.435, 0.4345, 0.432, 0.4295, 0.4295, 0.428, 0.427, 0.426, 0.4255, 0.4245, 0.4215, 0.4215, 0.4205, 0.4205, 0.42, 0.4195, 0.4195, 0.4185, 0.4165, 0.4155, 0.4135, 0.412, 0.4125, 0.4105, 0.41, 0.409, 0.4075, 0.407, 0.407, 0.4065, 0.405, 0.4045, 0.404, 0.4035, 0.404, 0.4015, 0.4, 0.3995, 0.398, 0.398, 0.397, 0.397, 0.397, 0.396, 0.396, 0.395, 0.3945, 0.395, 0.394, 0.393, 0.393, 0.393, 0.392, 0.391, 0.3905, 0.39, 0.389, 0.3885, 0.388, 0.387, 0.386, 0.385, 0.384, 0.384, 0.3835, 0.3825, 0.3825, 0.3825, 0.3815, 0.3815, 0.38, 0.38, 0.3795, 0.379, 0.379, 0.378, 0.377, 0.3765, 0.376, 0.3755, 0.3735, 0.3715, 0.371, 0.3715, 0.371, 0.3705, 0.37, 0.37, 0.369, 0.369, 0.3675, 0.367, 0.367, 0.3655, 0.364, 0.3625, 0.3615, 0.361, 0.3605, 0.3605, 0.36, 0.3595, 0.359, 0.3575, 0.3575, 0.357, 0.3565, 0.355, 0.355, 0.354, 0.3535, 0.353, 0.352, 0.352, 0.3515, 0.351, 0.3495, 0.3495, 0.349, 0.348, 0.3475, 0.345, 0.344, 0.3435, 0.3425, 0.3425, 0.341, 0.3395, 0.3395, 0.339, 0.3375, 0.337, 0.336, 0.336, 0.3345, 0.3345, 0.334, 0.3335, 0.3335, 0.3325, 0.3325, 0.3315, 0.3295, 0.3285, 0.328, 0.328, 0.326, 0.326, 0.326, 0.326, 0.326, 0.3255, 0.325, 0.3235, 0.3225, 0.3215, 0.3215, 0.3215, 0.321, 0.3195, 0.318, 0.3175, 0.317, 0.3165, 0.316, 0.3155, 0.3155, 0.315, 0.3145, 0.3135, 0.3135, 0.313, 0.3105, 0.31, 0.31, 0.308, 0.3075, 0.3075, 0.3075, 0.307, 0.305, 0.3045, 0.3035, 0.3035, 0.3015, 0.3015, 0.3015, 0.3015, 0.301, 0.3, 0.2995, 0.2995, 0.299, 0.299, 0.298, 0.298, 0.297, 0.2965, 0.2945, 0.294, 0.293, 0.293, 0.2915, 0.2915, 0.291, 0.2905, 0.29, 0.289, 0.289, 0.288, 0.288, 0.288, 0.288, 0.288, 0.2865, 0.2855, 0.2855, 0.2845, 0.2835, 0.283, 0.282, 0.2815, 0.281, 0.281, 0.2805, 0.281, 0.2805, 0.2795, 0.2785, 0.278, 0.278, 0.2785, 0.2785, 0.277, 0.2765, 0.275, 0.2745, 0.2745, 0.2745, 0.274, 0.273, 0.273, 0.273, 0.2715, 0.27, 0.2695, 0.2695, 0.269, 0.2685, 0.268, 0.267, 0.266, 0.266, 0.265, 0.2645, 0.2645, 0.2635, 0.263, 0.2625, 0.2625, 0.262, 0.262, 0.2605, 0.26, 0.259, 0.2575, 0.2565, 0.2555, 0.255, 0.254, 0.253, 0.2525, 0.251, 0.2505, 0.2505, 0.2505, 0.25, 0.2495, 0.2495, 0.2495, 0.249, 0.249, 0.249, 0.2485, 0.2475, 0.246, 0.246, 0.245, 0.245, 0.2445, 0.2445, 0.244, 0.244, 0.2435, 0.2425, 0.242, 0.242, 0.2415, 0.2405, 0.239, 0.238, 0.2375, 0.2365, 0.2365, 0.2365, 0.236, 0.236, 0.2365, 0.2365, 0.2365, 0.2365, 0.236, 0.235, 0.2345, 0.234, 0.234, 0.2335, 0.2335, 0.233, 0.233, 0.2325, 0.232, 0.2315, 0.231, 0.2295, 0.2285], R = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.0015, 0.0015, 0.002, 0.002, 0.002, 0.002, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0035, 0.0035, 0.0035, 0.0035, 0.0035, 0.0035, 0.004, 0.0045, 0.0045, 0.0045, 0.005, 0.0055, 0.0055, 0.0055, 0.006, 0.006, 0.006, 0.006, 0.006, 0.006, 0.0065, 0.0065, 0.0065, 0.0065, 0.0075, 0.0075, 0.0075, 0.0075, 0.0075, 0.0075, 0.0075, 0.0075, 0.0075, 0.0075, 0.0075, 0.0085, 0.0085, 0.0085, 0.0085, 0.0085, 0.0085, 0.0085, 0.0085, 0.0085, 0.0085, 0.0085, 0.0085, 0.0085, 0.009, 0.009, 0.0095, 0.0095, 0.01, 0.01, 0.01, 0.01, 0.01, 0.0105, 0.0105, 0.011, 0.011, 0.011, 0.0115, 0.0115, 0.0115, 0.0115, 0.0115, 0.0115, 0.012, 0.012, 0.013, 0.0135, 0.0135, 0.0135, 0.0135, 0.0135, 0.0135, 0.014, 0.014, 0.014, 0.0145, 0.0145, 0.015, 0.015, 0.0155, 0.0175, 0.0175, 0.0175, 0.0175, 0.0175, 0.0175, 0.0175, 0.0175, 0.018, 0.018, 0.018, 0.0185, 0.0185, 0.019, 0.02, 0.0205, 0.022, 0.0225, 0.0225, 0.0225, 0.023, 0.023, 0.0235, 0.025, 0.025, 0.0255, 0.026, 0.027, 0.0275, 0.0275, 0.028, 0.0285, 0.029, 0.0295, 0.03, 0.0305, 0.031, 0.0315, 0.032, 0.033, 0.0345, 0.0345, 0.0355, 0.036, 0.036, 0.037, 0.0385, 0.039, 0.0395, 0.04, 0.0405, 0.0415, 0.042, 0.042, 0.0435, 0.045, 0.045, 0.0455, 0.0455, 0.0455, 0.046, 0.047, 0.047, 0.048, 0.049, 0.0495, 0.05, 0.0505, 0.051, 0.0515, 0.052, 0.0535, 0.0535, 0.0535, 0.0545, 0.0545, 0.0545, 0.055, 0.0555, 0.058, 0.059, 0.06, 0.0605, 0.0605, 0.061, 0.062, 0.0645, 0.0645, 0.065, 0.0655, 0.066, 0.066, 0.066, 0.066, 0.0665, 0.0675, 0.0685, 0.0695, 0.0705, 0.0705, 0.0705, 0.073, 0.0745, 0.0755, 0.077, 0.077, 0.078, 0.0795, 0.0815, 0.082, 0.0835, 0.0835, 0.0835, 0.0845, 0.0855, 0.087, 0.087, 0.0875, 0.088, 0.0895, 0.09, 0.0915, 0.0925, 0.094, 0.0955, 0.0965, 0.0985, 0.0995, 0.0995, 0.0995, 0.1, 0.101, 0.102, 0.1025, 0.103, 0.1035, 0.104, 0.1045, 0.1045, 0.106, 0.106, 0.109, 0.1095, 0.1095, 0.111, 0.112, 0.1135, 0.1155, 0.116, 0.1165, 0.1175, 0.119, 0.119, 0.1195, 0.1215, 0.122, 0.122, 0.123, 0.1245, 0.126, 0.127, 0.1275, 0.1285, 0.1305, 0.1315, 0.1325, 0.134, 0.1345, 0.136, 0.136, 0.138, 0.139, 0.14, 0.141, 0.1425, 0.1425, 0.143, 0.1435, 0.145, 0.1455, 0.147, 0.1475, 0.149, 0.15, 0.151, 0.152, 0.153, 0.1535, 0.1535, 0.1545, 0.155, 0.156, 0.157, 0.1585, 0.1615, 0.164, 0.1645, 0.1675, 0.17, 0.17, 0.1725, 0.174, 0.1755, 0.1765, 0.1775, 0.1785, 0.1805, 0.1815, 0.1825, 0.1825, 0.1835, 0.184, 0.1845, 0.186, 0.1865, 0.188, 0.1885, 0.1895, 0.1905, 0.191, 0.1925, 0.1935, 0.1955, 0.1975, 0.198, 0.1985, 0.201, 0.2025, 0.204, 0.2055, 0.2065, 0.2075, 0.209, 0.2105, 0.212, 0.2125, 0.2135, 0.215, 0.216, 0.217, 0.218, 0.219, 0.2195, 0.2205, 0.2225, 0.2245, 0.226, 0.2265, 0.2265, 0.2275, 0.228, 0.2295, 0.2305, 0.2325, 0.234, 0.2355, 0.238, 0.2385, 0.2415, 0.243, 0.2445, 0.246, 0.248, 0.25, 0.2515, 0.2525, 0.2535, 0.2545, 0.256, 0.257, 0.2575, 0.2585, 0.261, 0.2625, 0.2645, 0.265, 0.265, 0.2665, 0.2695, 0.27, 0.2705, 0.271, 0.273, 0.273, 0.274, 0.275, 0.2765, 0.2775, 0.278, 0.2795, 0.2805, 0.2815, 0.2835, 0.286, 0.287, 0.2875, 0.2885, 0.2895, 0.2905, 0.291, 0.292, 0.2925, 0.293, 0.2945, 0.2965, 0.297, 0.299, 0.3025, 0.303, 0.303, 0.303, 0.3035, 0.3055, 0.3065, 0.307, 0.3075, 0.3085, 0.309, 0.3115, 0.313, 0.3135, 0.3145, 0.3155, 0.3165, 0.3185, 0.32, 0.3205, 0.3225, 0.323, 0.324, 0.324, 0.3245, 0.3255, 0.327, 0.3275, 0.3285, 0.329, 0.3305, 0.3315, 0.333, 0.333, 0.3345, 0.336, 0.3375, 0.3385, 0.3385, 0.3395, 0.3405, 0.3425, 0.344, 0.345, 0.346, 0.348, 0.3485, 0.3505, 0.3525, 0.3555, 0.3565, 0.3575, 0.359, 0.36, 0.361, 0.361, 0.3615, 0.363, 0.3655, 0.3675, 0.3675, 0.368, 0.369, 0.3695, 0.3705, 0.372, 0.373, 0.374, 0.3745, 0.375, 0.376, 0.3765, 0.378, 0.3795, 0.3805, 0.381, 0.3815, 0.3825, 0.383, 0.3835, 0.385, 0.3855, 0.387, 0.387, 0.3875, 0.388, 0.389, 0.3895, 0.3905, 0.391, 0.3925, 0.395, 0.396, 0.3985, 0.3985, 0.4, 0.4025, 0.403, 0.403, 0.4035, 0.4035, 0.404, 0.4045, 0.4055, 0.406, 0.4075, 0.4085, 0.4105, 0.4115, 0.412, 0.413, 0.413, 0.413, 0.413, 0.414, 0.414, 0.4155, 0.4155, 0.4155, 0.4165, 0.417, 0.417, 0.4185, 0.419, 0.4195, 0.4205, 0.423, 0.424, 0.4245, 0.426, 0.4265, 0.4285, 0.431, 0.4315, 0.4315, 0.432, 0.433, 0.435, 0.4385, 0.4395, 0.4395, 0.441, 0.4425, 0.443, 0.443, 0.443, 0.443, 0.444, 0.445, 0.446, 0.4465, 0.4465, 0.449, 0.4495, 0.4495, 0.4505, 0.4515, 0.4525, 0.453, 0.453, 0.454, 0.455, 0.4555, 0.456, 0.457, 0.459, 0.46, 0.4605, 0.4625, 0.464, 0.4645, 0.465, 0.4665, 0.467, 0.4675, 0.4685, 0.47, 0.47, 0.4715, 0.472, 0.4735, 0.4745, 0.4755, 0.4765, 0.477, 0.478, 0.4785, 0.48, 0.48, 0.481, 0.4815, 0.482, 0.484, 0.4845, 0.4855, 0.4865, 0.488, 0.49, 0.4905, 0.4915, 0.4935, 0.494, 0.495, 0.495, 0.4955, 0.4955, 0.496, 0.4965, 0.4975, 0.4975, 0.499, 0.5, 0.5015, 0.503, 0.5035, 0.5045, 0.5055, 0.506, 0.5065, 0.5075, 0.51, 0.5125, 0.5125, 0.5145, 0.5155, 0.5165, 0.517, 0.518, 0.521, 0.521, 0.522, 0.522, 0.5225, 0.523, 0.523, 0.524, 0.526, 0.527, 0.529, 0.5305, 0.5305, 0.5325, 0.533, 0.534, 0.5355, 0.536, 0.536, 0.5365, 0.538, 0.5385, 0.539, 0.5395, 0.5395, 0.542, 0.5435, 0.544, 0.5455, 0.5455, 0.5465, 0.5465, 0.5465, 0.5475, 0.5475, 0.5485, 0.549, 0.549, 0.55, 0.551, 0.551, 0.551, 0.5525, 0.5535, 0.554, 0.5545, 0.5555, 0.556, 0.5565, 0.5575, 0.5585, 0.5595, 0.5605, 0.561, 0.5615, 0.563, 0.5635, 0.5635, 0.5645, 0.5645, 0.566, 0.566, 0.5665, 0.567, 0.567, 0.568, 0.569, 0.5695, 0.57, 0.5705, 0.5725, 0.5745, 0.575, 0.5755, 0.576, 0.5765, 0.577, 0.577, 0.578, 0.578, 0.5795, 0.58, 0.58, 0.5815, 0.583, 0.5845, 0.5855, 0.586, 0.5865, 0.5865, 0.587, 0.5875, 0.588, 0.5895, 0.5895, 0.59, 0.5905, 0.592, 0.592, 0.593, 0.5935, 0.594, 0.595, 0.595, 0.596, 0.5965, 0.598, 0.598, 0.5985, 0.5995, 0.6, 0.6025, 0.6035, 0.604, 0.605, 0.605, 0.6065, 0.608, 0.608, 0.6085, 0.61, 0.6105, 0.6115, 0.6115, 0.613, 0.613, 0.6135, 0.614, 0.614, 0.615, 0.615, 0.616, 0.618, 0.619, 0.6195, 0.6195, 0.6215, 0.6215, 0.6215, 0.6215, 0.6215, 0.622, 0.6225, 0.624, 0.625, 0.626, 0.6265, 0.6265, 0.627, 0.6285, 0.63, 0.6305, 0.631, 0.6315, 0.632, 0.6325, 0.6325, 0.633, 0.6335, 0.6345, 0.6345, 0.635, 0.6375, 0.638, 0.638, 0.64, 0.6405, 0.6405, 0.6405, 0.641, 0.643, 0.6435, 0.6445, 0.6445, 0.6465, 0.6465, 0.6465, 0.6465, 0.647, 0.648, 0.6485, 0.6485, 0.649, 0.649, 0.65, 0.65, 0.651, 0.6515, 0.6535, 0.654, 0.655, 0.655, 0.6565, 0.6565, 0.657, 0.6575, 0.658, 0.659, 0.659, 0.6605, 0.6605, 0.6605, 0.6605, 0.6605, 0.662, 0.663, 0.663, 0.664, 0.665, 0.6655, 0.6665, 0.667, 0.6675, 0.6675, 0.668, 0.668, 0.6685, 0.6695, 0.6705, 0.671, 0.671, 0.671, 0.671, 0.6725, 0.673, 0.6745, 0.675, 0.675, 0.675, 0.6755, 0.6765, 0.6765, 0.6765, 0.678, 0.6795, 0.68, 0.68, 0.6805, 0.681, 0.6815, 0.6825, 0.6835, 0.6835, 0.6845, 0.685, 0.685, 0.686, 0.6865, 0.687, 0.687, 0.6875, 0.6875, 0.689, 0.6895, 0.6905, 0.692, 0.693, 0.694, 0.6945, 0.6955, 0.6965, 0.697, 0.6985, 0.699, 0.699, 0.699, 0.6995, 0.7, 0.7, 0.7, 0.7005, 0.7005, 0.7005, 0.701, 0.702, 0.7035, 0.7035, 0.7045, 0.7045, 0.705, 0.705, 0.7055, 0.7055, 0.706, 0.707, 0.7075, 0.7075, 0.708, 0.709, 0.7105, 0.7115, 0.712, 0.713, 0.713, 0.713, 0.7135, 0.7135, 0.7135, 0.7135, 0.7135, 0.7135, 0.714, 0.715, 0.7155, 0.716, 0.716, 0.7165, 0.7165, 0.717, 0.717, 0.7175, 0.718, 0.7185, 0.719, 0.7205, 0.7215]);
# ╔═╡ 249c297c-12ce-11eb-2054-d1e926335148
spatial_results = collect.(zip(hw4_results_transposed...))
# ╔═╡ 04364dee-12cb-11eb-2f94-bfd3fb405907
spatial_T = 1:length(spatial_results)
# ╔═╡ 480fde46-12d4-11eb-2dfb-1b71692c7420
md"""
👉 _(Not graded)_ Manually fit the SIR curves to our data by adjusting ``\beta`` and ``\gamma`` until you find a good fit. This will use the `euler_SIR` function from Exercise 2.
"""
# ╔═╡ 4837e1ae-12d2-11eb-0df9-21dcc1892fc9
md"β = $(@bind guess_β Slider(0.00:0.0001:0.1; default = 0.05, show_value=true))"
# ╔═╡ a9630d28-12d2-11eb-196b-773d8498b0bb
md"γ = $(@bind guess_γ Slider(0.00:0.0001:0.01; default = 0.005, show_value=true))"
# ╔═╡ 23c53be4-12d4-11eb-1d39-8d11b4431993
md"Show manual fit: $(@bind show_manual_sir_fit CheckBox())"
# ╔═╡ 6016fccc-12d4-11eb-0f58-b9cd331cc7b3
md"""
👉 To do this automatically, we will again need to define a loss function $\mathcal{L}(\beta, \gamma)$. This will compare *the solution of the SIR equations* with parameters $\beta$ and $\gamma$ with your data.
This time, instead of comparing two vectors of numbers, we need to compare two vectors of _vectors_, the S, I, R values.
"""
# ╔═╡ 754b5368-12e8-11eb-0763-e3ec56562c5f
function loss_sir(β, γ)
return missing
end
# ╔═╡ ee20199a-12d4-11eb-1c2c-3f571bbb232e
loss_sir(guess_β, guess_γ)
# ╔═╡ 38b09bd8-12d5-11eb-2f7b-579e9db3973d
md"""
👉 Use this loss function to find the optimal parameters ``\beta`` and ``\gamma``.
"""
# ╔═╡ 6e1b5b6a-12e8-11eb-3655-fb10c4566cdc
found_β, found_γ = let
# your code here
missing, missing
end
# ╔═╡ 496b8816-12d3-11eb-3cec-c777ba81eb60
let
p = plot()
plot_sir!(p, spatial_T, spatial_results, label="spatial", opacity=.7)
if show_manual_sir_fit
guess_results = euler_SIR(guess_β, guess_γ,
[0.99, 0.01, 0.00],
spatial_T)
plot_sir!(p, spatial_T, guess_results, label="manual", linestyle=:dash, lw=2)
end
try
@assert !(found_β isa Missing) && !(found_γ isa Missing)
found_results = euler_SIR(found_β, found_γ,
[0.99, 0.01, 0.00],
spatial_T)
plot_sir!(p, spatial_T, found_results, label="optimized", linestyle=:dot, lw=2)
catch
end
as_svg(p)
end
# ╔═╡ b94b7610-106d-11eb-2852-25337ce6ec3a
if student.name == "Jazzy Doe" || student.kerberos_id == "jazz"
md"""
!!! danger "Before you submit"
Remember to fill in your **name** and **Kerberos ID** at the top of this notebook.
"""
end
# ╔═╡ b94f9df8-106d-11eb-3be8-c5a1bb79d0d4
md"## Function library
Just some helper functions used in the notebook."
# ╔═╡ b9586d66-106d-11eb-0204-a91c8f8355f7
hint(text) = Markdown.MD(Markdown.Admonition("hint", "Hint", [text]))
# ╔═╡ 0f0b7ec4-112c-11eb-3399-59e22df07355
hint(md"""
Remember that [functions are objects](https://www.youtube.com/watch?v=_O-HBDZMLrM)! For example, here is a function that returns the square root function:
```julia
function the_square_root_function()
f = x -> sqrt(x)
return f
end
```
""")
# ╔═╡ b9616f92-106d-11eb-1bd1-ede92a617fdb
almost(text) = Markdown.MD(Markdown.Admonition("warning", "Almost there!", [text]))
# ╔═╡ b969dbaa-106d-11eb-3e5a-81766a333c49
still_missing(text=md"Replace `missing` with your answer.") = Markdown.MD(Markdown.Admonition("warning", "Here we go!", [text]))
# ╔═╡ b9728c20-106d-11eb-2286-4f670c229f3e
keep_working(text=md"The answer is not quite right.") = Markdown.MD(Markdown.Admonition("danger", "Keep working on it!", [text]))
# ╔═╡ b97afa48-106d-11eb-3c2c-cdee1d1cc6d7
yays = [md"Fantastic!", md"Splendid!", md"Great!", md"Yay ❤", md"Great! 🎉", md"Well done!", md"Keep it up!", md"Good job!", md"Awesome!", md"You got the right answer!", md"Let's move on to the next section."]
# ╔═╡ b98238ce-106d-11eb-1e39-f9eda5df76af
correct(text=rand(yays)) = Markdown.MD(Markdown.Admonition("correct", "Got it!", [text]))
# ╔═╡ 3df7d63a-12c4-11eb-11ca-0b8db4bd9121
let
result = euler_integrate_step(x -> x^2, 10, 11, 12)
if result isa Missing
still_missing()
elseif !(result isa Number)
keep_working(md"Make sure that you return a number.")
else
if result ≈ 6358
correct()
elseif result ≈ 1462
almost(md"Use ``f'(a+h)``, not ``f'(a)``.")
else
keep_working()
end
end
end
# ╔═╡ 15b50428-1264-11eb-163e-23e2f3590502
if euler_test isa Missing
still_missing()
elseif !(euler_test isa Vector) || (abs(length(euler_test) - 101) > 1)
keep_working(md"Make sure that you return a vector of numbers, of the same size as `T`.")
else
if abs(euler_test[1] - 0) > 1
keep_working()
elseif abs(euler_test[50] - 5^3) > 20
keep_working()
elseif abs(euler_test[end] - 10^3) > 100
keep_working()
else
correct()
end
end
# ╔═╡ ed344a8c-12df-11eb-03a3-2922620fd20f
let
result1 = gradient_descent_1d_step(x -> x^2, 10; η=1)
result2 = gradient_descent_1d_step(x -> x^2, 10; η=2)
if result1 isa Missing
still_missing()
elseif !(result1 isa Real)
keep_working(md"You need to return a number.")
else
if result2 < result1 < 10.0
correct()
else
keep_working()
end
end
end