-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathextract_feat.py
177 lines (135 loc) · 4.57 KB
/
extract_feat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Script to train
# importation
from numpy.fft import rfft, rfftfreq
from sklearn import preprocessing
import numpy as np
import os
import pandas as pd
import glob
data_path = '/data/VBL-VA001/'
totalFiles = 0
totalDir = 0
for base, dirs, files in os.walk(data_path):
print('Searching in : ', base)
for directories in dirs:
totalDir += 1
for Files in files:
totalFiles += 1
print('Total number of files', totalFiles)
print('Total number of directories', totalDir)
# Collecting number data
dir_path1 = data_path + '/normal/'
print('Total data Normal :', len([entry for entry in os.listdir(
dir_path1) if os.path.isfile(os.path.join(dir_path1, entry))]))
dir_path2 = data_path + '/misalignment/'
print('Total data misalignment :', len([entry for entry in os.listdir(
dir_path2) if os.path.isfile(os.path.join(dir_path2, entry))]))
dir_path3 = data_path + '/unbalance'
print('Total data unbalance :', len([entry for entry in os.listdir(
dir_path3) if os.path.isfile(os.path.join(dir_path3, entry))]))
dir_path4 = data_path + '/bearing'
print('Total data bearing fault:', len([entry for entry in os.listdir(
dir_path4) if os.path.isfile(os.path.join(dir_path4, entry))]))
# Collecting file names
normal = glob.glob(data_path + '/normal/*.csv')
misalignment = glob.glob(data_path + '/misalignment/*.csv')
unbalance = glob.glob(data_path + '/unbalance/*.csv')
bearing = glob.glob(data_path + '/bearing/*.csv')
def FFT(data):
'''FFT process, take real values only'''
data = np.asarray(data)
n = len(data)
dt = 1/20000 # time increment in each data
data = rfft(data)*dt
freq = rfftfreq(n, dt)
data = abs(data)
return data
# Feature Extraction function
def std(data):
'''Standard Deviation features'''
data = np.asarray(data)
stdev = pd.DataFrame(np.std(data, axis=1))
return stdev
def mean(data):
'''Mean features'''
data = np.asarray(data)
M = pd.DataFrame(np.mean(data, axis=1))
return M
def pp(data):
'''Peak-to-Peak features'''
data = np.asarray(data)
PP = pd.DataFrame(np.max(data, axis=1) - np.min(data, axis=1))
return PP
def Variance(data):
'''Variance features'''
data = np.asarray(data)
Var = pd.DataFrame(np.var(data, axis=1))
return Var
def rms(data):
'''RMS features'''
data = np.asarray(data)
Rms = pd.DataFrame(np.sqrt(np.mean(data**2, axis=1)))
return Rms
def Shapef(data):
'''Shape factor features'''
data = np.asarray(data)
shapef = pd.DataFrame(rms(data)/Ab_mean(data))
return shapef
def Impulsef(data):
'''Impulse factor features'''
data = np.asarray(data)
impulse = pd.DataFrame(np.max(data)/Ab_mean(data))
return impulse
def crestf(data):
'''Crest factor features'''
data = np.asarray(data)
crest = pd.DataFrame(np.max(data)/rms(data))
return crest
def kurtosis(data):
'''Kurtosis features'''
data = pd.DataFrame(data)
kurt = data.kurt(axis=1)
return kurt
def skew(data):
'''Skewness features'''
data = pd.DataFrame(data)
skw = data.skew(axis=1)
return skw
# Helper functions to calculate features
def Ab_mean(data):
data = np.asarray(data)
Abm = pd.DataFrame(np.mean(np.absolute(data), axis=1))
return Abm
def SQRT_AMPL(data):
data = np.asarray(data)
SQRTA = pd.DataFrame((np.mean(np.sqrt(np.absolute(data, axis=1))))**2)
return SQRTA
def clearancef(data):
data = np.asarray(data)
clrf = pd.DataFrame(np.max(data, axis=1)/SQRT_AMPL(data))
return clrf
# Extract features from X, Y, Z axis
def read_data(filenames):
data = pd.DataFrame()
for filename in filenames:
df = pd.read_csv(filename, usecols=[1], header=None)
data = pd.concat([data, df], axis=1, ignore_index=True)
return data
# read data from csv files
all_cond = [normal, misalignment, unbalance, bearing]
cond_names = ['normal', 'misalignment', 'unbalance', 'bearing']
data = {}
fft = {}
for cond, cond_name in zip(all_cond, cond_names):
for ax in ['x', 'y', 'z']:
name = f"{cond_name}_{ax}"
data[name] = read_data(cond).T.dropna(axis=1)
fft[name] = FFT(data[name])
# fft_merged = pd.concat(fft, axis=1)
# Find max and min value of fft
max_value = max(fft.values(), key=lambda item: max(max(sub_array) for sub_array in item))
MAX_FFT = max(max(sub_array) for sub_array in max_value)
min_value = min(fft.values(), key=lambda item: min(min(sub_array) for sub_array in item))
MIN_FFT = min(min(sub_array) for sub_array in min_value)
def NormalizeData(**kwargs): # Normalisasi (0-1)
return (data - MIN_FFT) / (MAX_FFT - MIN_FFT)