diff --git a/submissions/final-submission/final_submission.ipynb b/submissions/Final Submission/Building and Training Mini Network/Mini Network.ipynb similarity index 100% rename from submissions/final-submission/final_submission.ipynb rename to submissions/Final Submission/Building and Training Mini Network/Mini Network.ipynb diff --git a/submissions/Final Submission/Building and Training Mini Network/Mini Network.pdf b/submissions/Final Submission/Building and Training Mini Network/Mini Network.pdf new file mode 100644 index 0000000..81c4079 Binary files /dev/null and b/submissions/Final Submission/Building and Training Mini Network/Mini Network.pdf differ diff --git a/submissions/Final Submission/Data Collection and Preprocessing/Update_1.ipynb b/submissions/Final Submission/Data Collection and Preprocessing/Update_1.ipynb new file mode 100644 index 0000000..1b2d358 --- /dev/null +++ b/submissions/Final Submission/Data Collection and Preprocessing/Update_1.ipynb @@ -0,0 +1,1568 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Download the Repository\n", + "\n", + "[Repository Link](https://github.com/balnarendrasapa/road-detection)\n", + "\n", + "- This is our team's repository. This repository contains all the necessary code that we worked on and it also contains the dataset that we annotated.\n", + "\n", + "- You do not need to do anything like uploading and adjusting the paths. Just run the cells sequentially.\n", + "\n", + "- All the necessary commands are written in this notebook itself" + ], + "metadata": { + "id": "JzycIPSy2AKH" + } + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 0 + }, + "id": "dyznWPpKmNIs", + "outputId": "de527f56-f2a7-4593-c4c6-ab12b4646ca6" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Cloning into 'road-detection'...\n", + "remote: Enumerating objects: 324, done.\u001b[K\n", + "remote: Counting objects: 100% (65/65), done.\u001b[K\n", + "remote: Compressing objects: 100% (52/52), done.\u001b[K\n", + "remote: Total 324 (delta 12), reused 20 (delta 12), pack-reused 259\u001b[K\n", + "Receiving objects: 100% (324/324), 199.88 MiB | 31.94 MiB/s, done.\n", + "Resolving deltas: 100% (105/105), done.\n" + ] + } + ], + "source": [ + "!git clone https://github.com/balnarendrasapa/road-detection.git" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Install the Requirements\n", + "\n", + "- Install all the python dependencies\n", + "- After Installing dependencies, Restart the runtime. If you do not restart the runtime, the python will throw \"module not found error\"" + ], + "metadata": { + "id": "AVXcandz2wFA" + } + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 2320 + }, + "id": "298SpxZcDf1R", + "outputId": "c2a60646-eca6-47d0-d56c-61bc3fa7f08d" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: certifi==2023.7.22 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 1)) (2023.7.22)\n", + "Requirement already satisfied: charset-normalizer==3.3.2 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 2)) (3.3.2)\n", + "Collecting colorama==0.4.6 (from -r road-detection/TwinLiteNet/requirements.txt (line 3))\n", + " Downloading colorama-0.4.6-py2.py3-none-any.whl (25 kB)\n", + "Requirement already satisfied: contourpy==1.2.0 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 4)) (1.2.0)\n", + "Requirement already satisfied: cycler==0.12.1 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 5)) (0.12.1)\n", + "Collecting dnspython==2.4.2 (from -r road-detection/TwinLiteNet/requirements.txt (line 6))\n", + " Downloading dnspython-2.4.2-py3-none-any.whl (300 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m300.4/300.4 kB\u001b[0m \u001b[31m4.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting elephant==0.12.0 (from -r road-detection/TwinLiteNet/requirements.txt (line 7))\n", + " Downloading elephant-0.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m9.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: filelock==3.13.1 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 8)) (3.13.1)\n", + "Requirement already satisfied: fonttools==4.44.0 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 9)) (4.44.0)\n", + "Collecting fsspec==2023.10.0 (from -r road-detection/TwinLiteNet/requirements.txt (line 10))\n", + " Downloading fsspec-2023.10.0-py3-none-any.whl (166 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m166.4/166.4 kB\u001b[0m \u001b[31m11.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: idna==3.4 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 11)) (3.4)\n", + "Requirement already satisfied: Jinja2==3.1.2 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 12)) (3.1.2)\n", + "Collecting joblib==1.2.0 (from -r road-detection/TwinLiteNet/requirements.txt (line 13))\n", + " Downloading joblib-1.2.0-py3-none-any.whl (297 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m298.0/298.0 kB\u001b[0m \u001b[31m15.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: kiwisolver==1.4.5 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 14)) (1.4.5)\n", + "Requirement already satisfied: MarkupSafe==2.1.3 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 15)) (2.1.3)\n", + "Requirement already satisfied: matplotlib==3.7.1 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 16)) (3.7.1)\n", + "Requirement already satisfied: mpmath==1.3.0 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 17)) (1.3.0)\n", + "Collecting neo==0.12.0 (from -r road-detection/TwinLiteNet/requirements.txt (line 18))\n", + " Downloading neo-0.12.0-py3-none-any.whl (586 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m586.9/586.9 kB\u001b[0m \u001b[31m15.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: networkx==3.2.1 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 19)) (3.2.1)\n", + "Collecting numpy==1.24.3 (from -r road-detection/TwinLiteNet/requirements.txt (line 20))\n", + " Downloading numpy-1.24.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m17.3/17.3 MB\u001b[0m \u001b[31m53.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting opencv-python==4.7.0.72 (from -r road-detection/TwinLiteNet/requirements.txt (line 21))\n", + " Downloading opencv_python-4.7.0.72-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (61.8 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m61.8/61.8 MB\u001b[0m \u001b[31m10.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: packaging==23.2 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 22)) (23.2)\n", + "Collecting Pillow==9.5.0 (from -r road-detection/TwinLiteNet/requirements.txt (line 23))\n", + " Downloading Pillow-9.5.0-cp310-cp310-manylinux_2_28_x86_64.whl (3.4 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.4/3.4 MB\u001b[0m \u001b[31m58.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: pyparsing==3.1.1 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 24)) (3.1.1)\n", + "Requirement already satisfied: python-dateutil==2.8.2 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 25)) (2.8.2)\n", + "Collecting python-etcd==0.4.5 (from -r road-detection/TwinLiteNet/requirements.txt (line 26))\n", + " Downloading python-etcd-0.4.5.tar.gz (37 kB)\n", + " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "Requirement already satisfied: PyYAML==6.0.1 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 27)) (6.0.1)\n", + "Collecting quantities==0.14.1 (from -r road-detection/TwinLiteNet/requirements.txt (line 28))\n", + " Downloading quantities-0.14.1-py3-none-any.whl (87 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m87.9/87.9 kB\u001b[0m \u001b[31m11.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: requests==2.31.0 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 29)) (2.31.0)\n", + "Collecting scikit-learn==1.3.2 (from -r road-detection/TwinLiteNet/requirements.txt (line 30))\n", + " Downloading scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.8 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.8/10.8 MB\u001b[0m \u001b[31m65.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting scipy==1.10.1 (from -r road-detection/TwinLiteNet/requirements.txt (line 31))\n", + " Downloading scipy-1.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.4 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m34.4/34.4 MB\u001b[0m \u001b[31m29.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: six==1.16.0 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 32)) (1.16.0)\n", + "Requirement already satisfied: sympy==1.12 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 33)) (1.12)\n", + "Requirement already satisfied: threadpoolctl==3.2.0 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 34)) (3.2.0)\n", + "Requirement already satisfied: torch==2.1.0 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 35)) (2.1.0+cu118)\n", + "Requirement already satisfied: torchdata==0.7.0 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 36)) (0.7.0)\n", + "Collecting torchelastic==0.2.2 (from -r road-detection/TwinLiteNet/requirements.txt (line 37))\n", + " Downloading torchelastic-0.2.2-py3-none-any.whl (111 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m111.5/111.5 kB\u001b[0m \u001b[31m15.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: torchtext==0.16.0 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 38)) (0.16.0)\n", + "Requirement already satisfied: torchvision==0.16.0 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 39)) (0.16.0+cu118)\n", + "Requirement already satisfied: tqdm==4.66.1 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 40)) (4.66.1)\n", + "Collecting typing_extensions==4.8.0 (from -r road-detection/TwinLiteNet/requirements.txt (line 41))\n", + " Downloading typing_extensions-4.8.0-py3-none-any.whl (31 kB)\n", + "Requirement already satisfied: urllib3==2.0.7 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 42)) (2.0.7)\n", + "Requirement already satisfied: webcolors==1.13 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 43)) (1.13)\n", + "Collecting yacs==0.1.8 (from -r road-detection/TwinLiteNet/requirements.txt (line 44))\n", + " Downloading yacs-0.1.8-py3-none-any.whl (14 kB)\n", + "Collecting zipp==3.15.0 (from -r road-detection/TwinLiteNet/requirements.txt (line 45))\n", + " Downloading zipp-3.15.0-py3-none-any.whl (6.8 kB)\n", + "Requirement already satisfied: triton==2.1.0 in /usr/local/lib/python3.10/dist-packages (from torch==2.1.0->-r road-detection/TwinLiteNet/requirements.txt (line 35)) (2.1.0)\n", + "Building wheels for collected packages: python-etcd\n", + " Building wheel for python-etcd (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for python-etcd: filename=python_etcd-0.4.5-py3-none-any.whl size=38481 sha256=9db474052e1f4012c68d40d82fff1be4d4bf213aa023bb4722617e1b64390a78\n", + " Stored in directory: /root/.cache/pip/wheels/93/5f/1b/056db07a0ab1c0b7efe175928d2a10b614e0e00d7bab0b6496\n", + "Successfully built python-etcd\n", + "Installing collected packages: zipp, yacs, typing_extensions, Pillow, numpy, joblib, fsspec, dnspython, colorama, scipy, quantities, python-etcd, opencv-python, torchelastic, scikit-learn, neo, elephant\n", + " Attempting uninstall: zipp\n", + " Found existing installation: zipp 3.17.0\n", + " Uninstalling zipp-3.17.0:\n", + " Successfully uninstalled zipp-3.17.0\n", + " Attempting uninstall: typing_extensions\n", + " Found existing installation: typing_extensions 4.5.0\n", + " Uninstalling typing_extensions-4.5.0:\n", + " Successfully uninstalled typing_extensions-4.5.0\n", + " Attempting uninstall: Pillow\n", + " Found existing installation: Pillow 9.4.0\n", + " Uninstalling Pillow-9.4.0:\n", + " Successfully uninstalled Pillow-9.4.0\n", + " Attempting uninstall: numpy\n", + " Found existing installation: numpy 1.23.5\n", + " Uninstalling numpy-1.23.5:\n", + " Successfully uninstalled numpy-1.23.5\n", + " Attempting uninstall: joblib\n", + " Found existing installation: joblib 1.3.2\n", + " Uninstalling joblib-1.3.2:\n", + " Successfully uninstalled joblib-1.3.2\n", + " Attempting uninstall: fsspec\n", + " Found existing installation: fsspec 2023.6.0\n", + " Uninstalling fsspec-2023.6.0:\n", + " Successfully uninstalled fsspec-2023.6.0\n", + " Attempting uninstall: scipy\n", + " Found existing installation: scipy 1.11.3\n", + " Uninstalling scipy-1.11.3:\n", + " Successfully uninstalled scipy-1.11.3\n", + " Attempting uninstall: opencv-python\n", + " Found existing installation: opencv-python 4.8.0.76\n", + " Uninstalling opencv-python-4.8.0.76:\n", + " Successfully uninstalled opencv-python-4.8.0.76\n", + " Attempting uninstall: scikit-learn\n", + " Found existing installation: scikit-learn 1.2.2\n", + " Uninstalling scikit-learn-1.2.2:\n", + " Successfully uninstalled scikit-learn-1.2.2\n", + "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", + "lida 0.0.10 requires fastapi, which is not installed.\n", + "lida 0.0.10 requires kaleido, which is not installed.\n", + "lida 0.0.10 requires python-multipart, which is not installed.\n", + "lida 0.0.10 requires uvicorn, which is not installed.\n", + "gcsfs 2023.6.0 requires fsspec==2023.6.0, but you have fsspec 2023.10.0 which is incompatible.\n", + "tensorflow-probability 0.22.0 requires typing-extensions<4.6.0, but you have typing-extensions 4.8.0 which is incompatible.\u001b[0m\u001b[31m\n", + "\u001b[0mSuccessfully installed Pillow-9.5.0 colorama-0.4.6 dnspython-2.4.2 elephant-0.12.0 fsspec-2023.10.0 joblib-1.2.0 neo-0.12.0 numpy-1.24.3 opencv-python-4.7.0.72 python-etcd-0.4.5 quantities-0.14.1 scikit-learn-1.3.2 scipy-1.10.1 torchelastic-0.2.2 typing_extensions-4.8.0 yacs-0.1.8 zipp-3.15.0\n" + ] + }, + { + "output_type": "display_data", + "data": { + "application/vnd.colab-display-data+json": { + "pip_warning": { + "packages": [ + "PIL", + "numpy" + ] + } + } + }, + "metadata": {} + } + ], + "source": [ + "!pip install -r road-detection/TwinLiteNet/requirements.txt" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Copy Dataset from Repository\n", + "\n", + "- Our repository contains dataset.zip in datasets folder in the repository. copy that zip file to root" + ], + "metadata": { + "id": "WtYxavR2503Q" + } + }, + { + "cell_type": "code", + "source": [ + "!cp road-detection/datasets/dataset.zip ./" + ], + "metadata": { + "id": "ihjXltFR1OQI" + }, + "execution_count": 1, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "## Unzip the file" + ], + "metadata": { + "id": "ferlFJ_76GBA" + } + }, + { + "cell_type": "code", + "source": [ + "!unzip dataset.zip" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 0 + }, + "id": "w7AUZJZ0f491", + "outputId": "c3185efa-27a4-487d-d336-3e8960a81d58" + }, + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Archive: dataset.zip\n", + " creating: dataset/test/\n", + " creating: dataset/test/images/\n", + " inflating: dataset/test/images/road_image_160.png \n", + " inflating: dataset/test/images/road_image_161.png \n", + " inflating: dataset/test/images/road_image_162.png \n", + " inflating: dataset/test/images/road_image_163.png \n", + " inflating: dataset/test/images/road_image_164.png \n", + " inflating: dataset/test/images/road_image_165.png \n", + " inflating: dataset/test/images/road_image_166.png \n", + " inflating: dataset/test/images/road_image_167.png \n", + " inflating: dataset/test/images/road_image_168.png \n", + " inflating: dataset/test/images/road_image_169.png \n", + " inflating: dataset/test/images/road_image_170.png \n", + " inflating: dataset/test/images/road_image_171.png \n", + " inflating: dataset/test/images/road_image_172.png \n", + " inflating: dataset/test/images/road_image_173.png \n", + " inflating: dataset/test/images/road_image_174.png \n", + " inflating: dataset/test/images/road_image_175.png \n", + " inflating: dataset/test/images/road_image_176.png \n", + " inflating: dataset/test/images/road_image_177.png \n", + " inflating: dataset/test/images/road_image_178.png \n", + " inflating: dataset/test/images/road_image_179.png \n", + " creating: dataset/test/lane/\n", + " inflating: dataset/test/lane/road_image_160.png \n", + " inflating: dataset/test/lane/road_image_161.png \n", + " inflating: dataset/test/lane/road_image_162.png \n", + " inflating: dataset/test/lane/road_image_163.png \n", + " inflating: dataset/test/lane/road_image_164.png \n", + " inflating: dataset/test/lane/road_image_165.png \n", + " inflating: dataset/test/lane/road_image_166.png \n", + " inflating: dataset/test/lane/road_image_167.png \n", + " inflating: dataset/test/lane/road_image_168.png \n", + " inflating: dataset/test/lane/road_image_169.png \n", + " inflating: dataset/test/lane/road_image_170.png \n", + " inflating: dataset/test/lane/road_image_171.png \n", + " inflating: dataset/test/lane/road_image_172.png \n", + " inflating: dataset/test/lane/road_image_173.png \n", + " inflating: dataset/test/lane/road_image_174.png \n", + " inflating: dataset/test/lane/road_image_175.png \n", + " inflating: dataset/test/lane/road_image_176.png \n", + " inflating: dataset/test/lane/road_image_177.png \n", + " inflating: dataset/test/lane/road_image_178.png \n", + " inflating: dataset/test/lane/road_image_179.png \n", + " creating: dataset/test/segments/\n", + " inflating: dataset/test/segments/road_image_160.png \n", + " inflating: dataset/test/segments/road_image_161.png \n", + " inflating: dataset/test/segments/road_image_162.png \n", + " inflating: dataset/test/segments/road_image_163.png \n", + " inflating: dataset/test/segments/road_image_164.png \n", + " inflating: dataset/test/segments/road_image_165.png \n", + " inflating: dataset/test/segments/road_image_166.png \n", + " inflating: dataset/test/segments/road_image_167.png \n", + " inflating: dataset/test/segments/road_image_168.png \n", + " inflating: dataset/test/segments/road_image_169.png \n", + " inflating: dataset/test/segments/road_image_170.png \n", + " inflating: dataset/test/segments/road_image_171.png \n", + " inflating: dataset/test/segments/road_image_172.png \n", + " inflating: dataset/test/segments/road_image_173.png \n", + " inflating: dataset/test/segments/road_image_174.png \n", + " inflating: dataset/test/segments/road_image_175.png \n", + " inflating: dataset/test/segments/road_image_176.png \n", + " inflating: dataset/test/segments/road_image_177.png \n", + " inflating: dataset/test/segments/road_image_178.png \n", + " inflating: dataset/test/segments/road_image_179.png \n", + " creating: dataset/train/\n", + " creating: dataset/train/images/\n", + " inflating: dataset/train/images/road_image_0.png \n", + " inflating: dataset/train/images/road_image_1.png \n", + " inflating: dataset/train/images/road_image_10.png \n", + " inflating: dataset/train/images/road_image_100.png \n", + " inflating: dataset/train/images/road_image_101.png \n", + " inflating: dataset/train/images/road_image_102.png \n", + " inflating: dataset/train/images/road_image_103.png \n", + " inflating: dataset/train/images/road_image_104.png \n", + " inflating: dataset/train/images/road_image_105.png \n", + " inflating: dataset/train/images/road_image_106.png \n", + " inflating: dataset/train/images/road_image_107.png \n", + " inflating: dataset/train/images/road_image_108.png \n", + " inflating: dataset/train/images/road_image_109.png \n", + " inflating: dataset/train/images/road_image_11.png \n", + " inflating: dataset/train/images/road_image_110.png \n", + " inflating: dataset/train/images/road_image_111.png \n", + " inflating: dataset/train/images/road_image_112.png \n", + " inflating: dataset/train/images/road_image_113.png \n", + " inflating: dataset/train/images/road_image_114.png \n", + " inflating: dataset/train/images/road_image_115.png \n", + " inflating: dataset/train/images/road_image_116.png \n", + " inflating: dataset/train/images/road_image_117.png \n", + " inflating: dataset/train/images/road_image_118.png \n", + " inflating: dataset/train/images/road_image_119.png \n", + " inflating: dataset/train/images/road_image_12.png \n", + " inflating: dataset/train/images/road_image_120.png \n", + " inflating: dataset/train/images/road_image_121.png \n", + " inflating: dataset/train/images/road_image_122.png \n", + " inflating: dataset/train/images/road_image_123.png \n", + " inflating: dataset/train/images/road_image_124.png \n", + " inflating: dataset/train/images/road_image_125.png \n", + " inflating: dataset/train/images/road_image_126.png \n", + " inflating: dataset/train/images/road_image_127.png \n", + " inflating: dataset/train/images/road_image_128.png \n", + " inflating: dataset/train/images/road_image_129.png \n", + " inflating: dataset/train/images/road_image_13.png \n", + " inflating: dataset/train/images/road_image_130.png \n", + " inflating: dataset/train/images/road_image_131.png \n", + " inflating: dataset/train/images/road_image_132.png \n", + " inflating: dataset/train/images/road_image_133.png \n", + " inflating: dataset/train/images/road_image_134.png \n", + " inflating: dataset/train/images/road_image_135.png \n", + " inflating: dataset/train/images/road_image_136.png \n", + " inflating: dataset/train/images/road_image_137.png \n", + " inflating: dataset/train/images/road_image_138.png \n", + " inflating: dataset/train/images/road_image_139.png \n", + " inflating: dataset/train/images/road_image_14.png \n", + " inflating: dataset/train/images/road_image_140.png \n", + " inflating: dataset/train/images/road_image_141.png \n", + " inflating: dataset/train/images/road_image_142.png \n", + " inflating: dataset/train/images/road_image_143.png \n", + " inflating: dataset/train/images/road_image_144.png \n", + " inflating: dataset/train/images/road_image_145.png \n", + " inflating: dataset/train/images/road_image_146.png \n", + " inflating: dataset/train/images/road_image_147.png \n", + " inflating: dataset/train/images/road_image_148.png \n", + " inflating: dataset/train/images/road_image_149.png \n", + " inflating: dataset/train/images/road_image_15.png \n", + " inflating: dataset/train/images/road_image_150.png \n", + " inflating: dataset/train/images/road_image_151.png \n", + " inflating: dataset/train/images/road_image_152.png \n", + " inflating: dataset/train/images/road_image_153.png \n", + " inflating: dataset/train/images/road_image_154.png \n", + " inflating: dataset/train/images/road_image_155.png \n", + " inflating: dataset/train/images/road_image_156.png \n", + " inflating: dataset/train/images/road_image_157.png \n", + " inflating: dataset/train/images/road_image_158.png \n", + " inflating: dataset/train/images/road_image_159.png \n", + " inflating: dataset/train/images/road_image_16.png \n", + " inflating: dataset/train/images/road_image_17.png \n", + " inflating: dataset/train/images/road_image_18.png \n", + " inflating: dataset/train/images/road_image_19.png \n", + " inflating: dataset/train/images/road_image_2.png \n", + " inflating: dataset/train/images/road_image_20.png \n", + " inflating: dataset/train/images/road_image_21.png \n", + " inflating: dataset/train/images/road_image_22.png \n", + " inflating: dataset/train/images/road_image_23.png \n", + " inflating: dataset/train/images/road_image_24.png \n", + " inflating: dataset/train/images/road_image_25.png \n", + " inflating: dataset/train/images/road_image_26.png \n", + " inflating: dataset/train/images/road_image_27.png \n", + " inflating: dataset/train/images/road_image_28.png \n", + " inflating: dataset/train/images/road_image_29.png \n", + " inflating: dataset/train/images/road_image_3.png \n", + " inflating: dataset/train/images/road_image_30.png \n", + " inflating: dataset/train/images/road_image_31.png \n", + " inflating: dataset/train/images/road_image_32.png \n", + " inflating: dataset/train/images/road_image_33.png \n", + " inflating: dataset/train/images/road_image_34.png \n", + " inflating: dataset/train/images/road_image_35.png \n", + " inflating: dataset/train/images/road_image_36.png \n", + " inflating: dataset/train/images/road_image_37.png \n", + " inflating: dataset/train/images/road_image_38.png \n", + " inflating: dataset/train/images/road_image_39.png \n", + " inflating: dataset/train/images/road_image_4.png \n", + " inflating: dataset/train/images/road_image_40.png \n", + " inflating: dataset/train/images/road_image_41.png \n", + " inflating: dataset/train/images/road_image_42.png \n", + " inflating: dataset/train/images/road_image_43.png \n", + " inflating: dataset/train/images/road_image_44.png \n", + " inflating: dataset/train/images/road_image_45.png \n", + " inflating: dataset/train/images/road_image_46.png \n", + " inflating: dataset/train/images/road_image_47.png \n", + " inflating: dataset/train/images/road_image_48.png \n", + " inflating: dataset/train/images/road_image_49.png \n", + " inflating: dataset/train/images/road_image_5.png \n", + " inflating: dataset/train/images/road_image_50.png \n", + " inflating: dataset/train/images/road_image_51.png \n", + " inflating: dataset/train/images/road_image_52.png \n", + " inflating: dataset/train/images/road_image_53.png \n", + " inflating: dataset/train/images/road_image_54.png \n", + " inflating: dataset/train/images/road_image_55.png \n", + " inflating: dataset/train/images/road_image_56.png \n", + " inflating: dataset/train/images/road_image_57.png \n", + " inflating: dataset/train/images/road_image_58.png \n", + " inflating: dataset/train/images/road_image_59.png \n", + " inflating: dataset/train/images/road_image_6.png \n", + " inflating: dataset/train/images/road_image_60.png \n", + " inflating: dataset/train/images/road_image_61.png \n", + " inflating: dataset/train/images/road_image_62.png \n", + " inflating: dataset/train/images/road_image_63.png \n", + " inflating: dataset/train/images/road_image_64.png \n", + " inflating: dataset/train/images/road_image_65.png \n", + " inflating: dataset/train/images/road_image_66.png \n", + " inflating: dataset/train/images/road_image_67.png \n", + " inflating: dataset/train/images/road_image_68.png \n", + " inflating: dataset/train/images/road_image_69.png \n", + " inflating: dataset/train/images/road_image_7.png \n", + " inflating: dataset/train/images/road_image_70.png \n", + " inflating: dataset/train/images/road_image_71.png \n", + " inflating: dataset/train/images/road_image_72.png \n", + " inflating: dataset/train/images/road_image_73.png \n", + " inflating: dataset/train/images/road_image_74.png \n", + " inflating: dataset/train/images/road_image_75.png \n", + " inflating: dataset/train/images/road_image_76.png \n", + " inflating: dataset/train/images/road_image_77.png \n", + " inflating: dataset/train/images/road_image_78.png \n", + " inflating: dataset/train/images/road_image_79.png \n", + " inflating: dataset/train/images/road_image_8.png \n", + " inflating: dataset/train/images/road_image_80.png \n", + " inflating: dataset/train/images/road_image_81.png \n", + " inflating: dataset/train/images/road_image_82.png \n", + " inflating: dataset/train/images/road_image_83.png \n", + " inflating: dataset/train/images/road_image_84.png \n", + " inflating: dataset/train/images/road_image_85.png \n", + " inflating: dataset/train/images/road_image_86.png \n", + " inflating: dataset/train/images/road_image_87.png \n", + " inflating: dataset/train/images/road_image_88.png \n", + " inflating: dataset/train/images/road_image_89.png \n", + " inflating: dataset/train/images/road_image_9.png \n", + " inflating: dataset/train/images/road_image_90.png \n", + " inflating: dataset/train/images/road_image_91.png \n", + " inflating: dataset/train/images/road_image_92.png \n", + " inflating: dataset/train/images/road_image_93.png \n", + " inflating: dataset/train/images/road_image_94.png \n", + " inflating: dataset/train/images/road_image_95.png \n", + " inflating: dataset/train/images/road_image_96.png \n", + " inflating: dataset/train/images/road_image_97.png \n", + " inflating: dataset/train/images/road_image_98.png \n", + " inflating: dataset/train/images/road_image_99.png \n", + " creating: dataset/train/lane/\n", + " inflating: dataset/train/lane/road_image_0.png \n", + " inflating: dataset/train/lane/road_image_1.png \n", + " inflating: dataset/train/lane/road_image_10.png \n", + " inflating: dataset/train/lane/road_image_100.png \n", + " inflating: dataset/train/lane/road_image_101.png \n", + " inflating: dataset/train/lane/road_image_102.png \n", + " inflating: dataset/train/lane/road_image_103.png \n", + " inflating: dataset/train/lane/road_image_104.png \n", + " inflating: dataset/train/lane/road_image_105.png \n", + " inflating: dataset/train/lane/road_image_106.png \n", + " inflating: dataset/train/lane/road_image_107.png \n", + " inflating: dataset/train/lane/road_image_108.png \n", + " inflating: dataset/train/lane/road_image_109.png \n", + " inflating: dataset/train/lane/road_image_11.png \n", + " inflating: dataset/train/lane/road_image_110.png \n", + " inflating: dataset/train/lane/road_image_111.png \n", + " inflating: dataset/train/lane/road_image_112.png \n", + " inflating: dataset/train/lane/road_image_113.png \n", + " inflating: dataset/train/lane/road_image_114.png \n", + " inflating: dataset/train/lane/road_image_115.png \n", + " inflating: dataset/train/lane/road_image_116.png \n", + " inflating: dataset/train/lane/road_image_117.png \n", + " inflating: dataset/train/lane/road_image_118.png \n", + " inflating: dataset/train/lane/road_image_119.png \n", + " inflating: dataset/train/lane/road_image_12.png \n", + " inflating: dataset/train/lane/road_image_120.png \n", + " inflating: dataset/train/lane/road_image_121.png \n", + " inflating: dataset/train/lane/road_image_122.png \n", + " inflating: dataset/train/lane/road_image_123.png \n", + " inflating: dataset/train/lane/road_image_124.png \n", + " inflating: dataset/train/lane/road_image_125.png \n", + " inflating: dataset/train/lane/road_image_126.png \n", + " inflating: dataset/train/lane/road_image_127.png \n", + " inflating: dataset/train/lane/road_image_128.png \n", + " inflating: dataset/train/lane/road_image_129.png \n", + " inflating: dataset/train/lane/road_image_13.png \n", + " inflating: dataset/train/lane/road_image_130.png \n", + " inflating: dataset/train/lane/road_image_131.png \n", + " inflating: dataset/train/lane/road_image_132.png \n", + " inflating: dataset/train/lane/road_image_133.png \n", + " inflating: dataset/train/lane/road_image_134.png \n", + " inflating: dataset/train/lane/road_image_135.png \n", + " inflating: dataset/train/lane/road_image_136.png \n", + " inflating: dataset/train/lane/road_image_137.png \n", + " inflating: dataset/train/lane/road_image_138.png \n", + " inflating: dataset/train/lane/road_image_139.png \n", + " inflating: dataset/train/lane/road_image_14.png \n", + " inflating: dataset/train/lane/road_image_140.png \n", + " inflating: dataset/train/lane/road_image_141.png \n", + " inflating: dataset/train/lane/road_image_142.png \n", + " inflating: dataset/train/lane/road_image_143.png \n", + " inflating: dataset/train/lane/road_image_144.png \n", + " inflating: dataset/train/lane/road_image_145.png \n", + " inflating: dataset/train/lane/road_image_146.png \n", + " inflating: dataset/train/lane/road_image_147.png \n", + " inflating: dataset/train/lane/road_image_148.png \n", + " inflating: dataset/train/lane/road_image_149.png \n", + " inflating: dataset/train/lane/road_image_15.png \n", + " inflating: dataset/train/lane/road_image_150.png \n", + " inflating: dataset/train/lane/road_image_151.png \n", + " inflating: dataset/train/lane/road_image_152.png \n", + " inflating: dataset/train/lane/road_image_153.png \n", + " inflating: dataset/train/lane/road_image_154.png \n", + " inflating: dataset/train/lane/road_image_155.png \n", + " inflating: dataset/train/lane/road_image_156.png \n", + " inflating: dataset/train/lane/road_image_157.png \n", + " inflating: dataset/train/lane/road_image_158.png \n", + " inflating: dataset/train/lane/road_image_159.png \n", + " inflating: dataset/train/lane/road_image_16.png \n", + " inflating: dataset/train/lane/road_image_17.png \n", + " inflating: dataset/train/lane/road_image_18.png \n", + " inflating: dataset/train/lane/road_image_19.png \n", + " inflating: dataset/train/lane/road_image_2.png \n", + " inflating: dataset/train/lane/road_image_20.png \n", + " inflating: dataset/train/lane/road_image_21.png \n", + " inflating: dataset/train/lane/road_image_22.png \n", + " inflating: dataset/train/lane/road_image_23.png \n", + " inflating: dataset/train/lane/road_image_24.png \n", + " inflating: dataset/train/lane/road_image_25.png \n", + " inflating: dataset/train/lane/road_image_26.png \n", + " inflating: dataset/train/lane/road_image_27.png \n", + " inflating: dataset/train/lane/road_image_28.png \n", + " inflating: dataset/train/lane/road_image_29.png \n", + " inflating: dataset/train/lane/road_image_3.png \n", + " inflating: dataset/train/lane/road_image_30.png \n", + " inflating: dataset/train/lane/road_image_31.png \n", + " inflating: dataset/train/lane/road_image_32.png \n", + " inflating: dataset/train/lane/road_image_33.png \n", + " inflating: dataset/train/lane/road_image_34.png \n", + " inflating: dataset/train/lane/road_image_35.png \n", + " inflating: dataset/train/lane/road_image_36.png \n", + " inflating: dataset/train/lane/road_image_37.png \n", + " inflating: dataset/train/lane/road_image_38.png \n", + " inflating: dataset/train/lane/road_image_39.png \n", + " inflating: dataset/train/lane/road_image_4.png \n", + " inflating: dataset/train/lane/road_image_40.png \n", + " inflating: dataset/train/lane/road_image_41.png \n", + " inflating: dataset/train/lane/road_image_42.png \n", + " inflating: dataset/train/lane/road_image_43.png \n", + " inflating: dataset/train/lane/road_image_44.png \n", + " inflating: dataset/train/lane/road_image_45.png \n", + " inflating: dataset/train/lane/road_image_46.png \n", + " inflating: dataset/train/lane/road_image_47.png \n", + " inflating: dataset/train/lane/road_image_48.png \n", + " inflating: dataset/train/lane/road_image_49.png \n", + " inflating: dataset/train/lane/road_image_5.png \n", + " inflating: dataset/train/lane/road_image_50.png \n", + " inflating: dataset/train/lane/road_image_51.png \n", + " inflating: dataset/train/lane/road_image_52.png \n", + " inflating: dataset/train/lane/road_image_53.png \n", + " inflating: dataset/train/lane/road_image_54.png \n", + " inflating: dataset/train/lane/road_image_55.png \n", + " inflating: dataset/train/lane/road_image_56.png \n", + " inflating: dataset/train/lane/road_image_57.png \n", + " inflating: dataset/train/lane/road_image_58.png \n", + " inflating: dataset/train/lane/road_image_59.png \n", + " inflating: dataset/train/lane/road_image_6.png \n", + " inflating: dataset/train/lane/road_image_60.png \n", + " inflating: dataset/train/lane/road_image_61.png \n", + " inflating: dataset/train/lane/road_image_62.png \n", + " inflating: dataset/train/lane/road_image_63.png \n", + " inflating: dataset/train/lane/road_image_64.png \n", + " inflating: dataset/train/lane/road_image_65.png \n", + " inflating: dataset/train/lane/road_image_66.png \n", + " inflating: dataset/train/lane/road_image_67.png \n", + " inflating: dataset/train/lane/road_image_68.png \n", + " inflating: dataset/train/lane/road_image_69.png \n", + " inflating: dataset/train/lane/road_image_7.png \n", + " inflating: dataset/train/lane/road_image_70.png \n", + " inflating: dataset/train/lane/road_image_71.png \n", + " inflating: dataset/train/lane/road_image_72.png \n", + " inflating: dataset/train/lane/road_image_73.png \n", + " inflating: dataset/train/lane/road_image_74.png \n", + " inflating: dataset/train/lane/road_image_75.png \n", + " inflating: dataset/train/lane/road_image_76.png \n", + " inflating: dataset/train/lane/road_image_77.png \n", + " inflating: dataset/train/lane/road_image_78.png \n", + " inflating: dataset/train/lane/road_image_79.png \n", + " inflating: dataset/train/lane/road_image_8.png \n", + " inflating: dataset/train/lane/road_image_80.png \n", + " inflating: dataset/train/lane/road_image_81.png \n", + " inflating: dataset/train/lane/road_image_82.png \n", + " inflating: dataset/train/lane/road_image_83.png \n", + " inflating: dataset/train/lane/road_image_84.png \n", + " inflating: dataset/train/lane/road_image_85.png \n", + " inflating: dataset/train/lane/road_image_86.png \n", + " inflating: dataset/train/lane/road_image_87.png \n", + " inflating: dataset/train/lane/road_image_88.png \n", + " inflating: dataset/train/lane/road_image_89.png \n", + " inflating: dataset/train/lane/road_image_9.png \n", + " inflating: dataset/train/lane/road_image_90.png \n", + " inflating: dataset/train/lane/road_image_91.png \n", + " inflating: dataset/train/lane/road_image_92.png \n", + " inflating: dataset/train/lane/road_image_93.png \n", + " inflating: dataset/train/lane/road_image_94.png \n", + " inflating: dataset/train/lane/road_image_95.png \n", + " inflating: dataset/train/lane/road_image_96.png \n", + " inflating: dataset/train/lane/road_image_97.png \n", + " inflating: dataset/train/lane/road_image_98.png \n", + " inflating: dataset/train/lane/road_image_99.png \n", + " creating: dataset/train/segments/\n", + " inflating: dataset/train/segments/road_image_0.png \n", + " inflating: dataset/train/segments/road_image_1.png \n", + " inflating: dataset/train/segments/road_image_10.png \n", + " inflating: dataset/train/segments/road_image_100.png \n", + " inflating: dataset/train/segments/road_image_101.png \n", + " inflating: dataset/train/segments/road_image_102.png \n", + " inflating: dataset/train/segments/road_image_103.png \n", + " inflating: dataset/train/segments/road_image_104.png \n", + " inflating: dataset/train/segments/road_image_105.png \n", + " inflating: dataset/train/segments/road_image_106.png \n", + " inflating: dataset/train/segments/road_image_107.png \n", + " inflating: dataset/train/segments/road_image_108.png \n", + " inflating: dataset/train/segments/road_image_109.png \n", + " inflating: dataset/train/segments/road_image_11.png \n", + " inflating: dataset/train/segments/road_image_110.png \n", + " inflating: dataset/train/segments/road_image_111.png \n", + " inflating: dataset/train/segments/road_image_112.png \n", + " inflating: dataset/train/segments/road_image_113.png \n", + " inflating: dataset/train/segments/road_image_114.png \n", + " inflating: dataset/train/segments/road_image_115.png \n", + " inflating: dataset/train/segments/road_image_116.png \n", + " inflating: dataset/train/segments/road_image_117.png \n", + " inflating: dataset/train/segments/road_image_118.png \n", + " inflating: dataset/train/segments/road_image_119.png \n", + " inflating: dataset/train/segments/road_image_12.png \n", + " inflating: dataset/train/segments/road_image_120.png \n", + " inflating: dataset/train/segments/road_image_121.png \n", + " inflating: dataset/train/segments/road_image_122.png \n", + " inflating: dataset/train/segments/road_image_123.png \n", + " inflating: dataset/train/segments/road_image_124.png \n", + " inflating: dataset/train/segments/road_image_125.png \n", + " inflating: dataset/train/segments/road_image_126.png \n", + " inflating: dataset/train/segments/road_image_127.png \n", + " inflating: dataset/train/segments/road_image_128.png \n", + " inflating: dataset/train/segments/road_image_129.png \n", + " inflating: dataset/train/segments/road_image_13.png \n", + " inflating: dataset/train/segments/road_image_130.png \n", + " inflating: dataset/train/segments/road_image_131.png \n", + " inflating: dataset/train/segments/road_image_132.png \n", + " inflating: dataset/train/segments/road_image_133.png \n", + " inflating: dataset/train/segments/road_image_134.png \n", + " inflating: dataset/train/segments/road_image_135.png \n", + " inflating: dataset/train/segments/road_image_136.png \n", + " inflating: dataset/train/segments/road_image_137.png \n", + " inflating: dataset/train/segments/road_image_138.png \n", + " inflating: dataset/train/segments/road_image_139.png \n", + " inflating: dataset/train/segments/road_image_14.png \n", + " inflating: dataset/train/segments/road_image_140.png \n", + " inflating: dataset/train/segments/road_image_141.png \n", + " inflating: dataset/train/segments/road_image_142.png \n", + " inflating: dataset/train/segments/road_image_143.png \n", + " inflating: dataset/train/segments/road_image_144.png \n", + " inflating: dataset/train/segments/road_image_145.png \n", + " inflating: dataset/train/segments/road_image_146.png \n", + " inflating: dataset/train/segments/road_image_147.png \n", + " inflating: dataset/train/segments/road_image_148.png \n", + " inflating: dataset/train/segments/road_image_149.png \n", + " inflating: dataset/train/segments/road_image_15.png \n", + " inflating: dataset/train/segments/road_image_150.png \n", + " inflating: dataset/train/segments/road_image_151.png \n", + " inflating: dataset/train/segments/road_image_152.png \n", + " inflating: dataset/train/segments/road_image_153.png \n", + " inflating: dataset/train/segments/road_image_154.png \n", + " inflating: dataset/train/segments/road_image_155.png \n", + " inflating: dataset/train/segments/road_image_156.png \n", + " inflating: dataset/train/segments/road_image_157.png \n", + " inflating: dataset/train/segments/road_image_158.png \n", + " inflating: dataset/train/segments/road_image_159.png \n", + " inflating: dataset/train/segments/road_image_16.png \n", + " inflating: dataset/train/segments/road_image_17.png \n", + " inflating: dataset/train/segments/road_image_18.png \n", + " inflating: dataset/train/segments/road_image_19.png \n", + " inflating: dataset/train/segments/road_image_2.png \n", + " inflating: dataset/train/segments/road_image_20.png \n", + " inflating: dataset/train/segments/road_image_21.png \n", + " inflating: dataset/train/segments/road_image_22.png \n", + " inflating: dataset/train/segments/road_image_23.png \n", + " inflating: dataset/train/segments/road_image_24.png \n", + " inflating: dataset/train/segments/road_image_25.png \n", + " inflating: dataset/train/segments/road_image_26.png \n", + " inflating: dataset/train/segments/road_image_27.png \n", + " inflating: dataset/train/segments/road_image_28.png \n", + " inflating: dataset/train/segments/road_image_29.png \n", + " inflating: dataset/train/segments/road_image_3.png \n", + " inflating: dataset/train/segments/road_image_30.png \n", + " inflating: dataset/train/segments/road_image_31.png \n", + " inflating: dataset/train/segments/road_image_32.png \n", + " inflating: dataset/train/segments/road_image_33.png \n", + " inflating: dataset/train/segments/road_image_34.png \n", + " inflating: dataset/train/segments/road_image_35.png \n", + " inflating: dataset/train/segments/road_image_36.png \n", + " inflating: dataset/train/segments/road_image_37.png \n", + " inflating: dataset/train/segments/road_image_38.png \n", + " inflating: dataset/train/segments/road_image_39.png \n", + " inflating: dataset/train/segments/road_image_4.png \n", + " inflating: dataset/train/segments/road_image_40.png \n", + " inflating: dataset/train/segments/road_image_41.png \n", + " inflating: dataset/train/segments/road_image_42.png \n", + " inflating: dataset/train/segments/road_image_43.png \n", + " inflating: dataset/train/segments/road_image_44.png \n", + " inflating: dataset/train/segments/road_image_45.png \n", + " inflating: dataset/train/segments/road_image_46.png \n", + " inflating: dataset/train/segments/road_image_47.png \n", + " inflating: dataset/train/segments/road_image_48.png \n", + " inflating: dataset/train/segments/road_image_49.png \n", + " inflating: dataset/train/segments/road_image_5.png \n", + " inflating: dataset/train/segments/road_image_50.png \n", + " inflating: dataset/train/segments/road_image_51.png \n", + " inflating: dataset/train/segments/road_image_52.png \n", + " inflating: dataset/train/segments/road_image_53.png \n", + " inflating: dataset/train/segments/road_image_54.png \n", + " inflating: dataset/train/segments/road_image_55.png \n", + " inflating: dataset/train/segments/road_image_56.png \n", + " inflating: dataset/train/segments/road_image_57.png \n", + " inflating: dataset/train/segments/road_image_58.png \n", + " inflating: dataset/train/segments/road_image_59.png \n", + " inflating: dataset/train/segments/road_image_6.png \n", + " inflating: dataset/train/segments/road_image_60.png \n", + " inflating: dataset/train/segments/road_image_61.png \n", + " inflating: dataset/train/segments/road_image_62.png \n", + " inflating: dataset/train/segments/road_image_63.png \n", + " inflating: dataset/train/segments/road_image_64.png \n", + " inflating: dataset/train/segments/road_image_65.png \n", + " inflating: dataset/train/segments/road_image_66.png \n", + " inflating: dataset/train/segments/road_image_67.png \n", + " inflating: dataset/train/segments/road_image_68.png \n", + " inflating: dataset/train/segments/road_image_69.png \n", + " inflating: dataset/train/segments/road_image_7.png \n", + " inflating: dataset/train/segments/road_image_70.png \n", + " inflating: dataset/train/segments/road_image_71.png \n", + " inflating: dataset/train/segments/road_image_72.png \n", + " inflating: dataset/train/segments/road_image_73.png \n", + " inflating: dataset/train/segments/road_image_74.png \n", + " inflating: dataset/train/segments/road_image_75.png \n", + " inflating: dataset/train/segments/road_image_76.png \n", + " inflating: dataset/train/segments/road_image_77.png \n", + " inflating: dataset/train/segments/road_image_78.png \n", + " inflating: dataset/train/segments/road_image_79.png \n", + " inflating: dataset/train/segments/road_image_8.png \n", + " inflating: dataset/train/segments/road_image_80.png \n", + " inflating: dataset/train/segments/road_image_81.png \n", + " inflating: dataset/train/segments/road_image_82.png \n", + " inflating: dataset/train/segments/road_image_83.png \n", + " inflating: dataset/train/segments/road_image_84.png \n", + " inflating: dataset/train/segments/road_image_85.png \n", + " inflating: dataset/train/segments/road_image_86.png \n", + " inflating: dataset/train/segments/road_image_87.png \n", + " inflating: dataset/train/segments/road_image_88.png \n", + " inflating: dataset/train/segments/road_image_89.png \n", + " inflating: dataset/train/segments/road_image_9.png \n", + " inflating: dataset/train/segments/road_image_90.png \n", + " inflating: dataset/train/segments/road_image_91.png \n", + " inflating: dataset/train/segments/road_image_92.png \n", + " inflating: dataset/train/segments/road_image_93.png \n", + " inflating: dataset/train/segments/road_image_94.png \n", + " inflating: dataset/train/segments/road_image_95.png \n", + " inflating: dataset/train/segments/road_image_96.png \n", + " inflating: dataset/train/segments/road_image_97.png \n", + " inflating: dataset/train/segments/road_image_98.png \n", + " inflating: dataset/train/segments/road_image_99.png \n", + " creating: dataset/validation/\n", + " creating: dataset/validation/images/\n", + " inflating: dataset/validation/images/road_image_180.png \n", + " inflating: dataset/validation/images/road_image_181.png \n", + " inflating: dataset/validation/images/road_image_182.png \n", + " inflating: dataset/validation/images/road_image_183.png \n", + " inflating: dataset/validation/images/road_image_184.png \n", + " inflating: dataset/validation/images/road_image_185.png \n", + " inflating: dataset/validation/images/road_image_186.png \n", + " inflating: dataset/validation/images/road_image_187.png \n", + " inflating: dataset/validation/images/road_image_188.png \n", + " inflating: dataset/validation/images/road_image_189.png \n", + " inflating: dataset/validation/images/road_image_190.png \n", + " inflating: dataset/validation/images/road_image_191.png \n", + " inflating: dataset/validation/images/road_image_192.png \n", + " inflating: dataset/validation/images/road_image_193.png \n", + " inflating: dataset/validation/images/road_image_194.png \n", + " inflating: dataset/validation/images/road_image_195.png \n", + " inflating: dataset/validation/images/road_image_196.png \n", + " inflating: dataset/validation/images/road_image_197.png \n", + " inflating: dataset/validation/images/road_image_198.png \n", + " inflating: dataset/validation/images/road_image_199.png \n", + " creating: dataset/validation/lane/\n", + " inflating: dataset/validation/lane/road_image_180.png \n", + " inflating: dataset/validation/lane/road_image_181.png \n", + " inflating: dataset/validation/lane/road_image_182.png \n", + " inflating: dataset/validation/lane/road_image_183.png \n", + " inflating: dataset/validation/lane/road_image_184.png \n", + " inflating: dataset/validation/lane/road_image_185.png \n", + " inflating: dataset/validation/lane/road_image_186.png \n", + " inflating: dataset/validation/lane/road_image_187.png \n", + " inflating: dataset/validation/lane/road_image_188.png \n", + " inflating: dataset/validation/lane/road_image_189.png \n", + " inflating: dataset/validation/lane/road_image_190.png \n", + " inflating: dataset/validation/lane/road_image_191.png \n", + " inflating: dataset/validation/lane/road_image_192.png \n", + " inflating: dataset/validation/lane/road_image_193.png \n", + " inflating: dataset/validation/lane/road_image_194.png \n", + " inflating: dataset/validation/lane/road_image_195.png \n", + " inflating: dataset/validation/lane/road_image_196.png \n", + " inflating: dataset/validation/lane/road_image_197.png \n", + " inflating: dataset/validation/lane/road_image_198.png \n", + " inflating: dataset/validation/lane/road_image_199.png \n", + " creating: dataset/validation/segments/\n", + " inflating: dataset/validation/segments/road_image_180.png \n", + " inflating: dataset/validation/segments/road_image_181.png \n", + " inflating: dataset/validation/segments/road_image_182.png \n", + " inflating: dataset/validation/segments/road_image_183.png \n", + " inflating: dataset/validation/segments/road_image_184.png \n", + " inflating: dataset/validation/segments/road_image_185.png \n", + " inflating: dataset/validation/segments/road_image_186.png \n", + " inflating: dataset/validation/segments/road_image_187.png \n", + " inflating: dataset/validation/segments/road_image_188.png \n", + " inflating: dataset/validation/segments/road_image_189.png \n", + " inflating: dataset/validation/segments/road_image_190.png \n", + " inflating: dataset/validation/segments/road_image_191.png \n", + " inflating: dataset/validation/segments/road_image_192.png \n", + " inflating: dataset/validation/segments/road_image_193.png \n", + " inflating: dataset/validation/segments/road_image_194.png \n", + " inflating: dataset/validation/segments/road_image_195.png \n", + " inflating: dataset/validation/segments/road_image_196.png \n", + " inflating: dataset/validation/segments/road_image_197.png \n", + " inflating: dataset/validation/segments/road_image_198.png \n", + " inflating: dataset/validation/segments/road_image_199.png \n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Import the all the required libraries" + ], + "metadata": { + "id": "bpUdANiK6K-i" + } + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "hVDJcpeP5d1J" + }, + "outputs": [], + "source": [ + "import torch\n", + "import cv2\n", + "import torch.utils.data\n", + "import torchvision.transforms as transforms\n", + "import numpy as np\n", + "import os\n", + "import random\n", + "import math\n", + "from matplotlib import pyplot as plt\n", + "import torch.nn as nn" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Image transformation functions\n", + "\n", + "- By paper author" + ], + "metadata": { + "id": "MXX5-aH58B4c" + } + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "id": "ywi8_wbg5jZQ" + }, + "outputs": [], + "source": [ + "def augment_hsv(img, hgain=0.015, sgain=0.7, vgain=0.4):\n", + " \"\"\"change color hue, saturation, value\"\"\"\n", + " r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains\n", + " hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))\n", + " dtype = img.dtype # uint8\n", + "\n", + " x = np.arange(0, 256, dtype=np.int16)\n", + " lut_hue = ((x * r[0]) % 180).astype(dtype)\n", + " lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)\n", + " lut_val = np.clip(x * r[2], 0, 255).astype(dtype)\n", + "\n", + " img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)\n", + " cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "NMEu5Ey35mWQ" + }, + "outputs": [], + "source": [ + "def random_perspective(combination, degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, border=(0, 0)):\n", + " \"\"\"combination of img transform\"\"\"\n", + " # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))\n", + " # targets = [cls, xyxy]\n", + " img, gray, line = combination\n", + " height = img.shape[0] + border[0] * 2 # shape(h,w,c)\n", + " width = img.shape[1] + border[1] * 2\n", + "\n", + " # Center\n", + " C = np.eye(3)\n", + " C[0, 2] = -img.shape[1] / 2 # x translation (pixels)\n", + " C[1, 2] = -img.shape[0] / 2 # y translation (pixels)\n", + "\n", + " # Perspective\n", + " P = np.eye(3)\n", + " P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)\n", + " P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)\n", + "\n", + " # Rotation and Scale\n", + " R = np.eye(3)\n", + " a = random.uniform(-degrees, degrees)\n", + " # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations\n", + " s = random.uniform(1 - scale, 1 + scale)\n", + " # s = 2 ** random.uniform(-scale, scale)\n", + " R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)\n", + "\n", + " # Shear\n", + " S = np.eye(3)\n", + " S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)\n", + " S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)\n", + "\n", + " # Translation\n", + " T = np.eye(3)\n", + " T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)\n", + " T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)\n", + "\n", + " # Combined rotation matrix\n", + " M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT\n", + " if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed\n", + " if perspective:\n", + " img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))\n", + " gray = cv2.warpPerspective(gray, M, dsize=(width, height), borderValue=0)\n", + " line = cv2.warpPerspective(line, M, dsize=(width, height), borderValue=0)\n", + " else: # affine\n", + " img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))\n", + " gray = cv2.warpAffine(gray, M[:2], dsize=(width, height), borderValue=0)\n", + " line = cv2.warpAffine(line, M[:2], dsize=(width, height), borderValue=0)\n", + "\n", + "\n", + "\n", + " combination = (img, gray, line)\n", + " return combination" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Custom Dataset Class\n", + "\n", + "- This custom dataset class is based on the dataset class written by the author but with slight modifications like path. we have adjusted the path according to the google colab." + ], + "metadata": { + "id": "mFv9HU486TLr" + } + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "id": "_LoqglKDR2Sw" + }, + "outputs": [], + "source": [ + "class MyDataset(torch.utils.data.Dataset):\n", + " '''\n", + " Class to load the dataset\n", + " '''\n", + " def __init__(self, transform=None,valid=False):\n", + " '''\n", + " :param imList: image list (Note that these lists have been processed and pickled using the loadData.py)\n", + " :param labelList: label list (Note that these lists have been processed and pickled using the loadData.py)\n", + " :param transform: Type of transformation. SEe Transforms.py for supported transformations\n", + " '''\n", + "\n", + " self.transform = transform\n", + " self.Tensor = transforms.ToTensor()\n", + " self.valid=valid\n", + " if valid:\n", + " self.root='dataset/validation/images'\n", + " self.names=os.listdir(self.root)\n", + " else:\n", + " self.root='dataset/train/images/'\n", + " self.names=os.listdir(self.root)\n", + "\n", + " def __len__(self):\n", + " return len(self.names)\n", + "\n", + " def __getitem__(self, idx):\n", + " '''\n", + "\n", + " :param idx: Index of the image file\n", + " :return: returns the image and corresponding label file.\n", + " '''\n", + " W_=640\n", + " H_=360\n", + " image_name=os.path.join(self.root,self.names[idx])\n", + "\n", + " image = cv2.imread(image_name)\n", + " original_image = cv2.imread(image_name)\n", + " label1 = cv2.imread(image_name.replace(\"images\",\"segments\").replace(\"jpg\",\"png\"), 0)\n", + " label2 = cv2.imread(image_name.replace(\"images\",\"lane\").replace(\"jpg\",\"png\"), 0)\n", + " if not self.valid:\n", + " if random.random()<0.5:\n", + " combination = (image, label1, label2)\n", + " (image, label1, label2)= random_perspective(\n", + " combination=combination,\n", + " degrees=10,\n", + " translate=0.1,\n", + " scale=0.25,\n", + " shear=0.0\n", + " )\n", + " if random.random()<0.5:\n", + " augment_hsv(image)\n", + " if random.random() < 0.5:\n", + " image = np.fliplr(image)\n", + " label1 = np.fliplr(label1)\n", + " label2 = np.fliplr(label2)\n", + "\n", + " label1 = cv2.resize(label1, (W_, H_))\n", + " label2 = cv2.resize(label2, (W_, H_))\n", + " image = cv2.resize(image, (W_, H_))\n", + "\n", + " _,seg_b1 = cv2.threshold(label1,1,255,cv2.THRESH_BINARY_INV)\n", + " _,seg_b2 = cv2.threshold(label2,1,255,cv2.THRESH_BINARY_INV)\n", + " _,seg1 = cv2.threshold(label1,1,255,cv2.THRESH_BINARY)\n", + " _,seg2 = cv2.threshold(label2,1,255,cv2.THRESH_BINARY)\n", + "\n", + " seg1 = self.Tensor(seg1)\n", + " seg2 = self.Tensor(seg2)\n", + " seg_b1 = self.Tensor(seg_b1)\n", + " seg_b2 = self.Tensor(seg_b2)\n", + " seg_da = torch.stack((seg_b1[0], seg1[0]),0)\n", + " seg_ll = torch.stack((seg_b2[0], seg2[0]),0)\n", + " image = image[:, :, ::-1].transpose(2, 0, 1)\n", + " image = np.ascontiguousarray(image)\n", + "\n", + " return original_image, image_name,torch.from_numpy(image),(seg_da,seg_ll)" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Intialize a dataloader\n", + "\n", + "- Intialize a dataloader with batch size 8" + ], + "metadata": { + "id": "b6Ly9Ek16kg-" + } + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "qIK3UcD3STAG" + }, + "outputs": [], + "source": [ + "from torch.utils.data import DataLoader\n", + "\n", + "train_dataloader = DataLoader(MyDataset(), batch_size = 8, shuffle = True)" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Display images\n", + "\n", + "- Show first sample of each mini-batch with size 8" + ], + "metadata": { + "id": "ERrb-mex6rGx" + } + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "id": "DjQRwgtn5XJY", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 796 + }, + "outputId": "ce49ea03-7ac5-4639-f7aa-a3dc7b394ec8" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "dataset/train/images/road_image_3.png\n", + "dataset/train/images/road_image_44.png\n", + "dataset/train/images/road_image_78.png\n", + "dataset/train/images/road_image_146.png\n", + "dataset/train/images/road_image_156.png\n", + "dataset/train/images/road_image_102.png\n", + "dataset/train/images/road_image_35.png\n", + "dataset/train/images/road_image_106.png\n", + "dataset/train/images/road_image_4.png\n", + "dataset/train/images/road_image_70.png\n", + "dataset/train/images/road_image_114.png\n", + "dataset/train/images/road_image_72.png\n", + "dataset/train/images/road_image_92.png\n", + "dataset/train/images/road_image_113.png\n", + "dataset/train/images/road_image_143.png\n", + "dataset/train/images/road_image_98.png\n", + "dataset/train/images/road_image_15.png\n", + "dataset/train/images/road_image_2.png\n", + "dataset/train/images/road_image_139.png\n", + "dataset/train/images/road_image_91.png\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAGfCAYAAACEIXJYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9V7Bl6XmeCT6/WXbb40/ayszyDlWoAlAASNACpCCRFNUyDI0JjS4U0x1B9URw5kK8GCnUN7rqCE2E1NExPT3d061RiOqmJFI0IEAShCNsFaoKZTMrvTv+bLfs7+ZinawCREgCRSZB9Jw3KuLss2vvnevs9a1/ff/3ve/7iRBC4BjHOMYxjnGMYxzjzwnk9/sAjnGMYxzjGMc4xjG+HcfJyTGOcYxjHOMYx/hzhePk5BjHOMYxjnGMY/y5wnFycoxjHOMYxzjGMf5c4Tg5OcYxjnGMYxzjGH+ucJycHOMYxzjGMY5xjD9XOE5OjnGMYxzjGMc4xp8rHCcnxzjGMY5xjGMc488VjpOTYxzjGMc4xjGO8ecKx8nJMY5xjGMc4xjH+HOF71ty8k//6T/l3LlzpGnKCy+8wNe+9rXv16Ec4/uI4zg4xnEMHAOO4+AY34nvS3LyK7/yK/zSL/0S/+Af/ANeeuklnnnmGX76p3+anZ2d78fhHOP7hOM4OMZxDBwDjuPgGH8U4vsx+O+FF17ggx/8IP/kn/wTALz3nDlzhr/7d/8uf+/v/b0/68M5xvcJx3FwjOMYOAYcx8Ex/ij0n/U/2LYtL774Ir/8y7/87nNSSj7+8Y/z5S9/+bu+p2kamqZ593fvPQcHB6ysrCCEuO/HfIw/GUIIzOdzTp48iZRdse6PGwfHMfCDjT+NGIDjOPhBx/FacIzvFgPfDX/mycne3h7OOTY2Nr7j+Y2NDd56663v+p5/9I/+Ef/wH/7DP4vDO8Z9xM2bNzl9+jTwx4+D4xj43wb+JDEAx3HwvxUcrwXH+PYY+G74M09O/lPwy7/8y/zSL/3Su79Pp1POnj3L5z//Of5v/+INqq/9Bg+saGQkiaOISAmCgOADzhgCEAAfAuiY1kt6WUzd1KS9jNZ7jBBEUuAsGO/wwROsBxlQUuN9wLvud5IYTMAWDVprkkiCtPT7fWQcUZc1s/0JQipUGoGMCC6gY4Epa5RSeCKUSlBKMF5fwjlH25RMtncwVUkaaVaHGc88+TAffPZp1tbXUFojVQRCIBAoHWGNRUURSiuC93jvIQS8czjb4p3rngMgEIzFm4a2rqiKOdYYnLUgBUJIhBA4awkhEELAh+69UhxluAKEEEghkEqidYTWGikFCoEQMNnf5z//DPwXHxnwF3/yg8wXcz764R9hMBj8qcdAdP5RSHJSIdFRTD2Z0I8zhr2Uv/MLfw2rNR/+4HMMhz2+8uprXDh1hrpp+K0vfJ5f+ORPYYFvXbqCJ6D7fT7y2ON86ZuvsLw85uPPv59bu/v8269+nbAouXbzJn0dMR6OWdQND58/y69981Xu3LmJ8Y4PP/Qw167f5IHTp5kFeOfKFVSA7d09QtuSZBlBSZIQ0PUCI0EOR4ysI1Qlyw88wLRqWE0ziihmfrDP/PYdaCtOn3+UH/3Ex7lRVGwtCpbXlnh6bZl6b4emmPPUYw/z8PlzKCGZ1S3/0+e/xO58xmR/yrRqaaYzbGPIxyvMDuekiSAWUG5vMxj0uHXlMt5ZVD7CBwOmwhNQUhFkhBgtQwDdyxFxhA0WnWS4uiAAQhhs26B0hJcg0gSlEkTToHs90JLJr/6LP1EM/IfiYLS5ibcGKSUqzfDGILMMoTRJ3sfMFwgCOk4oDw+Ix8sEpZBSIZynLmfddWktUgjiJIM4wdQFEkiyHuXskGAdwXviPCfoGF9XiChBRxrjDVJITGuQ4yEyyhmMN3EObDnFllPcYkE8WELplCjOMMUUW08gCASBXn/MbLKNbWu8cUilujUn0mgV4a3Fe49QEhccKooRUuGqiiAFCAVIUBqpNL48RGoNQiJ0BEoigkQiyQerpMMNAgLnDMFa8K5bIxd7zHdv0x+tduuAqdGRRicZeAO2pa0qvLdIoHUGJQVNXeGdIcn6JEnG4c5dhBB4IEoTTNOwODi8L2vBxrmHSfMRlbUc7m7RH4+ppwsefeGjbN26Sa7g5p1b6FOnkfmQZusmMknoPf4sorW4ndtU+7sE70ArmM3RGxssP/9RHkv6XL19k+lkDzs9xCxKhJL0z5/lb/9ffpEXTp2iDhFKKkQIhAAiQAjgCRz9B4AU3WNB9/9DCNyr98ijR/fuWUEEBAKJ6N4XAu7ode7eJwbweBSSe4UjKQQuhG69RnTkUgFBdMeFEJjg+eaVqxRlxd50xmqvz+nlEZ/5wpe4ce0yIs3YeORxnPDs3LxNOz3k4OVvELxHadkduwC7v0O6cQrnLFQFg9MXyJKURV1il9epX38FPRyhh318bXG72yyuvPwfjYE/8+RkdXUVpRTb29vf8fz29jabm5vf9T1JkpAkyR95vt/vE6UZJslQOuC8Q8YxInhsVXY3T6WA7iQFBE4oirLGJd3FO59WoCReK7wX7waJ8B6dpET9mEDAGosXAtdafO1oZhUiSAiezROr6Aiq2hCQ9FeWGa+vUpc15axgf+uAfDQiG/SIkxQdKZqmIclitIyxrltw0t6QUw8NMK2hXRTMq4qvvHqFb711g48+/yQf+5GPsrK6ho6irnx5FNhSKhCCEDzBu+7CEGCNwbbte+EuBMFZ8B7vHd5YEAFnLUIppNKE4KiLBaYqcd4TXLcYCynoLqHQ/X707wopiaIIqSSS7vvzbUOUOvI8ZzAYEI4uom8vuf5x4+DfFwNhOkEOoZlNMfmALO3x4x/6EMa0vH3jFv3hCJXEnDxxgh9PEy7f2eHld67w0x/9CA+eP8eLb7+DUpp+L6cBjBL8jb/0F7i5s8evv3WJjf6ALB/yxt19Lt69SygK/sJP/Bg/87EXuHz1Jod7uxR1SVFM+ewbJQMviCcDghBI4zg8OECEgMr7DPMR+7dv0CqHsg3jLMfs7jN+4Cxpv8eNGzeIsgHZ8io7e3u4OGXloQcRiwXjEye5Whn2i5qpsRy+c5Xi9hbPbq7wF37sR3jswQfI+30mdUt55y4fuPAgF6/d5LPX7jDdvsPZpXWypXXemc0R/R5LqyO2rl2nFYJqVhCiDOFL8BbSBB8MUqbIrA+mIRQ1AolcW8X2E3TZ4MuAKx0iDqAVaX8VU1foKCLEMc4bpBCYvX2EUn/iGPgPxYFUCiW7a70/XKIpZ9jWILAMNh9gWtX4pqGtKmScoOIIG0VEUuOR9Pp9Ii+Z3LyE1xHkkqAFenWNWCp8Y0gHY2xTd6VoqZBRhAsCkaRgakJrSZfWiAYKlCB4aLzFJ32ytVPoYoopFqg0xQWPRpKNlmnbglxF2HpBWzfo3jJCLCDxJPmAupzhTIVOI1pjiNMMSaCYHND4BVGc4LxHxhFCgNCCoCDYBkIgmAalFAKPqT3J0hoyTglpihqtoZMe5WJCGmmQCmcMOu2jeyukeR+8pZgfgrPo9U2stWjvoJh3iVFTkYlAvTg82ogZkt4IISVpb4g1DVmeYazhHsPxfqwFk63bnH98hZOnT/PVy29StCVCaiZ7O5y58DgnTyxz+1P/Fru7jUpnqKaBsqK69g5PP/cC06bk2nSKVgrrG+TSEsI42qLgwWc/wK2mxNcLYEScDcAbTp45x+uHcw5vf5mRjPnhH/kEWmlc8EfZRZeGiBDwdE8pIXDeI4R4N0G597p3mxxHX8+9tbPbHIZ3vz8fwnsvEt3rvr2hde/+II6SEy+OXi2PEpsQyICPPvUk17Z2cG+/zfrGGl97+yLzckHVONYHGRe/8Hke+cCH4M5dDi+9RnAtnoDdm5KtbcJwiaUTp2GwTHXzCovrlzmYTBh96COkDz6C84Lx6bP4EJg0LclwwOzaxT8SA98Nf+bJSRzHPP/88/ze7/0eP//zPw90PcPf+73f4xd/8Rf/WJ/VncjQXZy2pHEON5mRJxopJE3TkvdynDXdwiolUsLyKCWKNY2x2FjTVA3eOSQSZw227XZgwkGIJHVZYqqW3mCINw6tFXplgFQJGqjLitEwo7UB17T4RUN/qYeIBP31EUubS7jWY7wn1jFxIukPe3jjKasah+iOx1boWCNiicwjolhDY7BJxO+/+AZffPF1LjxwitWlJU6fOcHm5jpra6uMh0MifXQqQ+hOupAopRGpAH8vSgXBe7h34UiBkPIoSASBgDMtUdojeIdUGmta8K77fpRGSNHtLpVCSAVHn6e0RiiNVIqWiEReQQrx7g7gfsXBw+cexEUZt8oKN59wYvNktxD6lPHqJsq3lJMJs+kAFSVs7e7yQ888xc7eHv/ytz7N6+9cYbi8yk88/yxX9rZpm4osiciTiHfu3OG/e+mbnI0SlrMeLkiqsuJTn/8cT5w7wyc+8jxf++YrfPraRUTbUC9KQpSwtrIJ1vHUubPMV5Z49e42cZRxuH+AaxuCK1FxRGEtvq2YHh6wNZ8x3jjBbDHj2tZtnnrwca5cuULpDCfGy4zSjI8//AC90ZBPf/HrOC05OUj55E/+MCc2VtncWKdsDN96521+9WtfJ2str924TXG4x+neiKcefJivX79FUUzQ3nGnmBMU+MGAuGwJPY/vj/DzCdprvOiBjPBKInSOn86Q4zGtabrYWspIViPc7RpZ1bi6wucxUSRJBitUswN8NcNHChl8t6u/TzEAIKOEbLRCNF6it7zC/luvEGUaISOKtsVHCW1Tk2QZSid4H9Be0FYlUiqCs2TDZUCQpCloTfCWUBWU1pHnA2wUQdOQ9keY4DBVCUqg0wTjWqRSGCmJspxmsk+kY3xZovIhDo/KBiRxn3K6TXCWVgicTuiN1lBSY9MhiTX0JexefJkkSXA6gjijnw9pTIFUCm8NxewQV9foLCXq94ico53PcQhkFCG1AwKuNfimpgmedDQiTlKENYgoRaYJpa/IQ4xxDT4RaCTeNjgREHGGSnNsCMQBhDcUO3eRUuDjFKIEEMS9GOECripJx32UikApnG3JxgCBqikJxr17c70fcRAlCVGW8tDjT/DNL/we6ydOs7d1l9neFnuzXV79w0NsVSEQmHCAzHtE/SFivmB25QrbiwXJ0irBWUQJKs9pi4K0P2R/7w6Hd2+RDEcsBORrI5K1FQ42T9Ju7bNz6Q0+/MiDXL15jUfOP8RR0eII3forjv74o3TlvcQFQBxVTULoEpKjtVOEe0lJeLcqIggoId6tXASO3nv0keIoEek2lAFPV3052lsiBCgROGwbPnXlKvt7+4yWR3z2lVc42N0ncZ7Dgy0GUYQtZ7z+xjdJtSY9e47goa0LNh56gmp/hlxexucx7cEe/QsP0pRT/NZt2r1t2qqivXyJH/sLn+T82Qf5tV/7dcbeYGJJ/T2cz+9LW+eXfumX+Ft/62/xgQ98gA996EP843/8jymKgr/9t//2H+tzAhC8QwSHtYa6LlFCUheeYT9HK4UzljiOaVpHlkUY40jTPkVZkfcyfFORRhll3VI3DW1ZkfVzfNAQS3SiiGxMkqZIrYl7MdZaTPCYpoI4JpXgfMA1Fp1mWOdoS481DcNxH68COtJksSYgqecLqrog6+UMxn1MbWjKBhcAD8o5rHXIRGMbz3w+JxsOaBy8uT/H3Tmg/ca3iIKgP+hz9uQ6j1w4zcow48IDp1kej1Fad+W+4LsSt45QSbeYhG+7KEKgW5y9QwBKRURxepSNQ+R9l5UflQI5at18B47aRlIppIrQwxoV3kaK7nnBd8+Q/zTiYOfuHZbWNtlcP0F/MOLGwR6//Y2v08rAk9XjDJTgA82zvH3tNo8+/BBPP3SBLEvJkpgrV2/yY889z/bkkI3xiM9/62U++PQT3Njd4wvf/Baf/dJXoGpYRDHRkmI9SVh+5HHe98RDnD+xiVCCfDwkHo5QjcEvSs6eOAutoy7m2I0NeqdPobfuMt26Sjs/RAiBiiNMVdDaliAVV2/fIlQLFnWNihN6UcKFM2d5YHOD3/6dT/GxT36cj77wIZJYc/3mNj/14Wd5/qmH0EnMIMsY93u4AG/cuUNZVgjjuLazxawsOL28ySCOeOPGNRbzCqVjhAcRpdjdHWgafDaEpE+wHjVaxzuPsnPM/AApxogoQ8UZUZJjao9uFEIEiskO0WhMlGqsnePqAtc0BDXFCguxRHogjfHO3LcYABg+9AwyUqheTiUCgwuPMdu5ix4t45uW7Mx54qrEt93ODwGhaZBRTJr2qacHtE2N1JqgdbfYW4iUoK4aVH+MaQp0nNKYlmAtvjZE/R5x1kMHSeUOsW2Dq2tsXeHiQJQGfFUhVIITAmc9wgs2lk4wn01Isx4ISdnWIMB5h3GBbO0MkVaoAPSGFAd3aRczbFNDCNi6q4hKobCLAqTEtgYdpyihEN7j3NE1ncSEqsYUJc4GoqCIRIRrDSKpKGYV0iuk8LTNAu0aynJKlA9ZlAvSfEhbVeS9PpGU2KbEmJZsMKZaTEiGayxtnEIlA2QkSHsDWmtJtOJw6zp4j53vk+arJP2CcnJ4X+IgzXvURcG1y+/gvaeVCqEj5ndvocZLxP0h/f4yAst8OgWpkUgIgpnqEs/k5Gnq7Rtdy9IYlJLMbrzDp998Bd1b4tzmaW7XNU2k8VGEufgGg+ee46//nb/D3qLgmtY8fJQHyKNqfThKOO6tuuEoc+lylYAUXb/FExBH/Zd7xZR7FZF7FZUukTmqmn9bC+ddHL3wXsXl3mL97isE3KlmvLa9w+feuszNd97BTA5xkwNCkiLaBltUyMMJ+0pB3qfeuks8XKW5cxuaFmEqTr7wEc799Cf57Fe/xN5bryH3d5lZS7q2Tjocs7h8iag/xE4P+eYXPkfxfMXpc2cpJvs89pGP8eWbl/+j5/P7kpz8wi/8Aru7u/z9v//32dra4tlnn+VTn/rUHyFEfS8QApyz1NYwGg1p25Y4liRJQhZ3LZnFokRHEUkUYa1nOmvwoSEUlrZ1DAcZvfGQ7d1DFo1heSNlOBiwPZ3SNG3XIikbTLPAe0ev36MtS7IkJo01cZIxGvXIB31u3NihPxoQJxEHU890UhEIaOGJlCLLIrJeDj4QWkvQChFJ4l6Crxu8MaAEjTW08zk6i4gGKXXbMN8+IMlSeuvLCN1DoglpxrX9kmv7b1NO9hlmmpMrfT74zBOcWF9lc32VJE7wxhOcQegY77t6RuAoMdHuqOIijyopRz+Pdrveu669E+7FukBqjRDfdsmIo/eLruQd7lVw+LYL5T7EwaA/7ErLpkEJGGQ5h/MJ3loOLl9my3v+u3/5r3nkkYe5sb3DY+fPsjQacuaxhzm5uU7bGHb291FS8l/83M+xXxaYpiUVkp9+9HHwgdPrq+zu7PKf/e/+CiEEdKIZjsd8/mvfYr43pa8zknjAXMUsqoKVQcS8nPPlr30ZLxVmPsXWRbfIhADO4qIIGQRhMcURkEoxGIw4tbKBEZ5JOeHEcIkLZ0/zM5/8OJcuXcc7y8c/9gKvbu8ziRSzsmJycMhSnkNp+LUvfI7tW3d47dpVtq5eJ0Uy0wnGe7RxlLMJZH3C0kkQHrG+SiQlfj6nPTzseuRJRrq0QnO3QvWG3W43DvgsI9QNItOo1QFmsYCyQIWM8s5dRGSIBgNkOiCoGIID262g0gms/e7n709rLRBLK6hIIz14U9HICJIc7wI+ADKCfIAeRigfqGb7hEyhexHpeA2imNBUyChBSE0IAhkEtqrBWrAB1zSkaydwzmF8QdwfEMUxwTmcCHhn8U1N2h8RpCJKcoKOEAjywRJVNcfUFWsbp0n7I+LREq33zGcTBIKmKun1hwQRcEmEN44syXDFhCibIao5Gtm1q6MEZxp0nGKNBefRcYpOM5y1yChC+ABSIYQi7kWoNEMPl9FxBjoi+EDmFWW5IO2PsY1BEjDOkSUpbV2SZgMIjrQ3RMQJOht217bSCKHJBysMljZBxVgfGA5XCAjSfIgSEK2cQgmB6C+TZz0mu1vw9jfvSxw0dc3O7VusnXiAADgdI5fWCLevo4SGKCEkGeXWbWSeE6RARBFmPme6cxvRtCAUeuUEze6tjlvU79PubCN0xOrj57lz6xoegZouaK5fRz/5JLe2d/if37zKnU//JuNnn+TxT/4cJ5OUby8TdXs78e5T3Vr6bbUVEd5ri3NU+Xg3pXjvc7rPCO9WpKUQ767J7/FJwlGDqGsliSOuipKC2gd+5c23+drLL+MOp/jpAf76dcLeHniLTFJklhNlKW1Z4icT3NZtoicHhCTBOsNDz/8QjbN8+kuf5/DSG4jJPrZYIBFUl9+hlQKtNFoI8pMPkPX6zPcPOf3ss7z2u5ex36WK+t3wfSPE/uIv/uIfu3T77+Je+csHQZ5nxEmCjhS9JMFag/Ewmczw3pFLxY1b2+g0QkqJjmPaxiAI1FWLK2pGox4OsECsYG045O7hlCiNQQXSPMa0LWVVEyUJOo4wbYsRgiqOSYY5J8+uURYtSawJrmVyWGIaQ5YnKBzStfTyjCiNGQz6xDKicY6gJE45ZKyIpSbSEaHfw1iHDw6fakZn18FCWzd4JWiDxZYLlNRIodD9EYVpeGdnwVu/8Xma6YSNtSEPXTjPh557igcfOEOScEScdUBHalUhRiAQSqGE7qooR9m5957gLCF4vHNdkCtNEAKhBO+VUY5KksESvO3uS9+Dg86fNA7mTclynvPEY4/Ry/vsfOVLRE3TkR1FwBQLBpFic2nE6mDA5HDG+tKY1hiWl8aY1nD61Am++sq3eOrEQzw2yAkBTi2NqOv30RjD5uoSwzxHKcHW1g6f/vyX+eqbl5A6IU4zhmg++MKH2Tk44HNf/SKzOGVWt1AtSFSMa2uCt8goIY4SRr0eh/t7tG1NKEuCbQlpTlWXvP+FD/L7X/8al95+i0vW8iM//MN89RuvMB70GKyvUQvBK7t7fP71O4iiYh48P37+An/z0Uf433/0o7z61tuMXeAz125TViVKe4ZRineWwjvyOGU5T4gGQyajHL+zz0E1RThDurxGvb9DPTsg+IDysktkrUHkOVpG2Lag3T+kme4To/DVAlgghcZrQTABJgdEA42IEqxrIIo7XtR9igEAM5+CllTzQ9JBHyUjdJSidYyPsq6KIDTeC6KoR5pLvAwIrWjjFN/vE4IlHY4pp4f0108R6ZiD7RsM18905MI4oawrBuMVgrUEPEVZMIgznGkJznWJZ+hu4Hl/wLwo8CqiLmfkUYwdjVnQElyNt5baNsT9HIztYjZNadoSnWWITKCTHlKBiiKszlDe0xRT5EDRNhWuKemtncAag9aaICTOW3r9JaY7N8gHS5imIk5zRNZHRGnHl1EK3zpSnSMzgVQRi2JCkia0TdXxyKTsKjLeE+U9EAGZpWRZRpoPqBdzRqM1omzAbHLA0qkzWO86Dtewu8bGqwkO2DzToygLfJzdtziI44S4N2SwvIoejqE/Qq+sI3a3aGcThuMxVTlFRhFJOkDnGZP9PTANkdZdRez2Nbw1nD3zILfefBHrPCrOSDdOEG+ssfG+Z2l37pAuLfP2r/wzmsuXcf0+t1c3UHHO3lde5PdOn+VvfegjBN+1Y4J4r10jjtIOjoiu4ttIrYHQJRjIo/e9x6I9yjne3egFAeqoFf8dpWwR3v3ZEWe7RMdLwduLGa+VNVdefYP6s59HO0swNf5gFxknuOkUGxW0e9uEsiA4S9Qb4OdT9q++jRyvoZRmIRSj06dpv/ol4iBQw2UWkynj9U0aY1FZhjnYQ0vB+okTlFXN7u2b7O5usfH4U7j2PRn4fwg/EGqdfx8EEq0kCIHSiqY1ZGlMVTUIydFOpEdwBmNst7M6CgdrHN4H8kQjtEQFiW1r1pdyJmVJUZT00hztAvWi46Qo1fEqgu8IrHXdkihBFRrq3UOSeYFOuwWibQIn15a6kqaJQATyNCWQIa2lqWqUEMzLorsBBIGMNC6A1YokT0mShBA8TWOwIdDUFY6A1hFBSkzbUk9L0n5GFCeE1qIlICVR3qcxsF0Itl69zkuX7nLmzAaba0uo4MmEZ5SnZElElqWsra1z5uyZTuljTacSEKLL1L0nhKN83jucczhrumqL0h2xSx7xzIMntDUI2VFd+Pe3df40kOcDiqrEmAYRjSi1whpFL824cO4cbVGipeR9jz/GqRMbvH3xEpfv3OX29i4/8sIHEFKwe3jIqfUVfHBdXAnB2RPrncrAe6TsmOnee0ajEUjFYW3ZunWdg7qibRo+/Qe/T/L004hz51nsbaOExylNY11XPk4ThFK0Eg6qGic1Ok4xcY3KUkKWM1he5uZsytbhhK27dxhEKQ/cucu//YMv8Fd+/me5tXPIHhJnPLtXb5NbSxVJ+ufOcf32Hf7bX/1fuLW7jZzVPH7mLC+/8Ro6SJ5+9DxRmlI0hjSJ+T/+tZ/j1Us3+czrl0hPbPCVrVtQH+BmM8RRhUNFEXY+Q4/W8cUcvKYVDpknBBtQIceHiiY0KGOw3qMqgw4xQQpsMQMpkShobacEuY9QeY6f7cN8QtsUqKVV0uVlBIq2NSiOlCxCIKIUrRLado4UoAM4rXFZRiYUbdMio5iimJGvniBbP4dvCpyWKASursF70v6ArD/GGYOranwIqDSHALHWzPd3CDJC9R2mnJD0RyRxj9ZbqrpgabhCPakIzpD3h+SDMXVbIUWKDwGNwgZPiFKa1pAunyCLU+pihopjqnKBDAGtY+rZhLQ3pFjM6GUZaZbjpcbaFplbknxA09ZIEQMSGRR5f0wIEo+iaWuiI6Ju3MtxTYvSMdloTDwcg3UoHdGaMVUxw8uYfClD6pQgJOO1TXSa44/4Z1XbvT+NEqTSGNNSNYZFVd63GEiXV+DBx3l5b4/8qecpZzMUgWhjk3C4jy9LgqlIVjdxTYtGsrG6xsF8Rt4f0yzmqOURkal54H0f5ODSG9TWs/HEE8ybkr2rl9i/cRmvFWtPPkL2zLNUb72F2NvDvPka7vp1zPZdvrU6pnn2OWIdvVu1EEd8j3vZxrfXlEN4T6XTraFdkvJu9Tl0LaJ7vEBx9DPAuy2eezwTL6AJgf2mRitJLDUDIdmrSv7rX/032CiiePkl4sEA31ZEG2dRh8uYrS1wBpX3kSqieedNhPPYyT7BOezhHpHSxIMh29cucnj3Jpv9MTf2tzHzCTrPmc8mBKlQwfHQ409SF1MSBScff4pmPuXlL32WNIlov8el4Ac7ORGgpUBKQfAO6yzpKMdKT122qEgxOZwicNR1g44TPN1OoNfPSJMUjyRRmkgrXAgoKcl1wt7uIWW/JcsjXNVS1i3NrEDHCls3KKmQUtJEmiiKMFWDAPrjEXGaQJ6xqOasjnosqprJ3gFCCqI86oi0QqIiRVVWuDYQRIydLxASBqsDWlNRVgWRkkRxiitr7KJhMZvRGMNgfQUbS6JeSmsdTbtAHUmn034PqQM6TWiqliROQUhuXt9la3tC1k9JlMQspoyyCOUsP/JDL3BiYx1pzVGwd8Q6FUUIKTtljhCY2mCbqlMGBdBJgopiJBqhI6SIEFqj35Uei39vW+dPAz/9Yz9B3dRYZ1BSkSgNCFaXl7l++w7/5//D3+CRBx/i7nTKH9y4xiCKMM7y5LPv4+ad2zx84UH6ed5Jo+W9nu7R7oXODMp736khhMCHQNFYUgTrS8swX3BHwuLqVYpvvIi6cIEwWxDHCUujFeqqYHb3DpKYrnDbEYi9qwnWIbIEvEdIya3Ll9hZFFSTCVopgqz4/MsvMc9H/Msvf43Rww/y5re+ydLSKg+sjkn2DnhjUfDmzg47l67wyOZp6sMZH/mh53nh/c/wW5/5PdIo4tGHznP9zi7j4YjpYsGiMuRZQmotV+7cQeiIaG0dVxSIXgrGYE2NGvVwiUUmQ9xshpQC6TTSJ52E2LVI0yKtIJIxblIi+govJKEx0B4lZj2BFpLvbb/0nwbdS1lsFeg4w8ynBOPonelTNjUiSbEuEPcGiEgTRSk+eJJa4OYFwSuUylDKQwTp6gk8AakT9HAVQ0BkfWxbIMNRcqI01oMioPM+/TijONhCZhnBe+y8IO4vES9vYCNFPlyhns/oxSP6+ZC2rnCNYSkfI4XEBYFSMcNegguW4D2R1F1l2DpG4zX2tm4Qj1YIeY6Uinhlg2GasVgsiEcrJEmCmE9IoxjTGuLhKhEBLRUqigmLBVonLK2foFhM0UrT4hBKE6sYlaRIpWnLBdG4UxGaEEiEIO4NsM4RRxHJcEjbtAzTIc2iQiUpUZLinMXaLpkXUuIIGOuhqVgsJpTFjDzv3bcYOBAS7t5CpTlyfZN4vExz5W0YDHHBMp9MgIDd30YNRrSLA06ef4jhmTPcvL2FI9DUC8TkkMvXr3DqQz/G1Ve/zHR/FzMaEi0vI+qa9p23mL7yEtGZM8TzAvvO20gPcb/HqRNP8sxjj5FG8ojverSS3FsC361yhHdJs+8lLl3hw3OvAHKPLHtPagPiiGgihcTTrUn3Ep1t0/BiWfDK5evcvHSJNI15/MGH+ZlHHuSLV28wOzjAXL9OONwnjhPMrRukp05QtC1Jb4zvj2nLOTrrIU6cQbQt9Z2rndqnbohWVqh3twlbBQxGzHsDRFl2G3epaeuaLOvxsY99jHGec+vmDXb39zl8/aVO5qw0TVVjm/8/qJwAXWWhLAjJvZuIABlRtwVCWOI8YTYtyAcDvFIoqcmkxFlL6yzW+U6O28vQUuEF9Hs5ZdvirSU4Tz+N6KcRxbxiMZ2jleyULc5gXIsQOWk/p5hM2b+zhVKafDhCK8l8OmP1zAYnzp+mWhQsphXKe5x39KUgiWOyccbBpCHPB10gtIG2rMmTGOEMLkCcSLTqkeVJtyM9UtpYYTjcO8T5QDFfYB0gFOGIM6LiGFKFC4Is0vimYbYosNaRphERgqV+gnUO25S8R/mWqChCx3GXoAiB9w5b11jTIqVCao2UCqVjpNIguyJiQOKlxPt7dZP7Vzl58olH2d7Zp6wKXru1xdLmaSIZWBsOiGPJYJjzweeepqga/od/8at87tIVPvzsU7z61kVWV5Z4+MIFCKGTQn/bIsC7D0X3t0pFXdfc3d7lfQ89gNCKw0XNt954m9evXCSMhvi9PcTlt5EEyuk+BI8pCpACZyqk6KTZbbVARBqUJhouEabTrtLkod3d61ROTUsbKXauXUUsLXH9YJeltWWmtSa+fI3lwYiBjohGfUysYXWZydZdnn/qSZaXxlzZ3eHcgw8SKbhy6y6T0tLPUnYKz6WvX2Vn7wb7wXFoGsxiSpz2cMEiGwvGoWONhy5RHQy7EnKxwJcV/u42ur+Ca2qUMQgZ46zDuQaVdPJaqWOCdARjcMEj4j8q/fzTRCMM2SMPIcqWzDlcUUAUEYwhGy91rdMkJU5ytI468rzqE8cpTVWDiUgGy7TFlHypR324h2tqaCui8RihM0ZxgvQQbIutZgjrsOUcT9NxO3SMckckdKlZPfcY0dI6WivqtiaLcuI4RQaBjiOUjOhnXSu5CRYpNf1ej6opmC6mECRJ1FVRZBTTG69grO0k/0KiopjKOJoA8XiE1JLRoEdVFOgkkOoYpMKbCucc/f6wU9IkCfgErxWxEBSH+91NL4qRkaS/vNr5ZHiLRpFlPdARdTknSXt4AlmcYx24OMZ4R13OCc6iI03ZWur5jDhKCFKwmO5Tz6bEcfpu1+F+wO3tI8IuPkkI23eI1taQwz7u1i38zg46TXHBEZoa4hQXAm9+62Wi4RKtc93GAUEoC6o71zn/oR8mTB7ixu3roCXlxUNIY9jfp/r6SzQXLtB77FEWd+/SzwdkecZDkcHevYEWdDykexZTR5Led1XDoeOK3OvcdDnLd/ty3hMg3CPQdj5XASkkQhwZPAj43PXr/Mbnv0AkNKmx7F7epiortqcz9vcPqF9/DdHW6LyHcA5hGtq7W5y68CRr/YxLN67DbYO5dQOsJV1dw4cHaLdvo+KIZvsOdusOwTvKxYxSKqSOumMbdvyr4XBIb3mFT3zwWf6r/+r3mNUNQkecPvcQy+vr9NdPEMcxd9/6o7yjfxc/0MlJZxImAId1jjRNaJqKSGkiLbFG0ks0/c1lqsYg4pRFVeOCp3UtSZIhgqBsGqx3ZHGM8RBFmkxHFGVJkAHpO/Oi1eUxvTzDWN8FhJRUxYLFdEFT1SRRTKQ03nmK6aQzqvGBuiwYrCyT9FLGy2PK+RxTtFhnaQuLD47BMEOEwMHeFKFjtJJMDiakSUyaCZJhjyAFrQe8IREKawxKODZWR8yLmvHGSid/FiBcR/Zt2haSiPGoz2JRIPMM0Ua0h1NOj3J+5AOPsLs3YXI4OaqI0MW/UuAtAv+u0sI503ERohidpCgdoXQEouuRindlcEcn6J42/z5WTv7nX/91hA+sr66wPVvQ2IpBmvFDzz3Ls+9/iqXRgCAlqyvL/MRHP8TKaMQTjz3Is8+8j3mxwDtHnMR8Wzby78RY99M4z8I6ZJrw6uGE/+mdS4SyYf/ubXSaUXsL4zEagVUBKk99uItvDaFpCNbgZSCgCGnCxtoJ6qahnM+QkUatr9EcTnDzApX1iI++NzVawrYNvl0wu3wFTqwSllfZH/Y5iBRCwuHeDuL2LZrrN/m//2d/lRzBl159i7VRn6+9/Ap70wU/9NTTnD1zluu3X+T88gqNXObq25cwO7tEKiIEiPIhUmlUHIGU+J1dvBGEIDFao7IcYT0ohfc1qtdHxDFmNkF4S5Ag0hgZXFehkAm2KPFlTfxdfCn+NKFcIEQRSkO2sYpSEa4sUMZyJKpF4dEEUiHo9YcYY/EpoGO0lOgAMk1x1iDzPolUnR+KaTt1StIj6y2zmE5IRgkiBJyOiISiKQuipIdvSoSKSJeXIOvhBORpSuMsKpJY64i63isoSYgUjW1pnCGLJI2tqdoarRWR1ljXUtQzrO8RlCIYg1IKneZdohEcme623otyQZCdGqwX5yihaG1DYy0yUUglMcHQtC1xP6NpKqSDbDDGG9ORRo1DRwLruxanF7CYT7GiM3YMZc2iKpBCYq3F29Cp9UxLniRoCa3t1gkXdXYDvq5YymJWhj3GecJr9ykGojiGKKLd20EUBWZyiLcG3esjpERnOd4bCJ7V8QrFdMKirmhCQI+WCMYRyxjb1GghOfPkYygVs0Vg0Sxw165AsOisT3P1Erq1zK9eR3nP3luvsfnhD1BXJWs6RtgWqVPc0bHdExH7f2eReXf7JjrvkncVPXTbvO9MTL4zQeHdVwX2TMPnvv5V7M0b1NMJq08/SxgOWVy5xJX9XdrWIquKaHWNaDTEa0WaRFSXLjLXCXd27iIGfbx3RCdOgjG4eoHQ+l0/llF/wKw/oJ1NCE2LTDOS4bgTjLQt9dYtDvYTLr404qd+8idY2dhkcfUqh1u38VrRLhasnH+In/rLP8s3fuNf/EfP5w90ciJEt6sNQeKcoTWmIwppRZpnnQla1TDqZcRSsVeVtEKSKsj63Y5FxxGhlbRNQ3BQ1jXLyyOs8yyNhiyKRdcvbwM6E8RS4YKlKmoGS0tES8sMl5fxrUUpiXQOayymdbTGYK2jqSv0oqCpasKgh4wEWS/FthYpBaaxNM0MoQVKB9pmjvWgI810/5AmS6mqgv54RF2VlG2LdB4ZJP1BhlaaLIsQGDweoboWQkg6kzhflDRxREKg9gGV97iwOuSHHjuJVpo8Tbh5d5vf/5ojjhNaG5BS4nxgNl9gje8cVGVgaTRkPBoyGg44eWqdPMsRUna7bCHI0gxrHYKA911z8Tukbn/KePtbL9NLc+rFnCaKWR6M+et/8af5qR/7KKtrK1jv+fqrr/OjL3yQ559/hrOnT5FlCZEULI+HxEn8bbuW7zzOe+6Nr97d4tX9Qw7rig2heWv/kJ033kLR+VqIXp9oZxcTRx1Z+GC/+9ubmtBYMAYpFK5qEL0+Ks9YeEt7RIBzxhAWC6Ik6RKUuoI0w9uWB86dpzWGW1cuw/YW/u4t7GiJ+OwZ5HhMvZhyMJ1gDnZJned//P/+CucfeojljU0WjUVGKYNe4KnHH+fRR86jBn3++R++yFffep3FbELoZWBs528x7kiv5uAAsh5CR4gkww0G3Q6p2sNZg28OwMeoKIWmAenQSYIxBiMCPjRIBI3vvBZkGmOF/26n708Nfmef3tkLiEFO4Q2JUmBsx0XxlnYxQ3tHM58ilzcwbUPZVGS9EUIILII0TRF1RZAWkfXpDZcpF1NEgDgEYh0zm+3gvUX5iOFgidYaetmQZOTxTYEp5zR1xWB5DZ3lGK2YNiVWwCjvUSymRFoigqAJlghH4UpssPjWkvqEQCCSiropqasSJSUheKSWqH6GEBKlNd47GtPgg8PapjN2ExpvLS4OhOCoQgN5VwG18xrnLMa2CDxSSJIoIY1yCA5vWxaTfdojsm/wnqauQdNJoIOgtRYhBVp2jtqDLGeYJMQ6J5aCzfEI6z3ZoE8URwSp2J9MObuxytp4iGlq/pf7FAMrT38AU8zY3+tcXlWcoIJgtLyBjXKE8NiDGdZayvQQqRKIY5LBEFNWyH4fdeYsURxTSPjCH36B3niDqCoIN68Rpof4tkYvg17fZPD00yTDIUsr67hrl7j66qs8/szTDMdLJHFM5TvDNS/ubaS/7WCP9kLh3s8Q3qusHK1F93yi4OhzOCLXEkB0j+/JledFgZnOSXoD4gCn+kNenx6y8uCjJLbh4h/8AdEDZ2A0wtUtpq6Ri4r8zAPYPO3ckecLLnzkh9jduoM5PMArhTcHnUIxz5FZTjJaQurOqTjpD+n1RwwHQ7bu3iI9dZ7pnWukac4//X/+D+ztHzLd30UKQTOd8MN/6ef5z//L/5IvfO6r39P5/IFOTkIAR0AogdYaRKBtG4To/Al0otEywZiWXt5jPve03tCLckxjiJQkGNv1b5OYOI5RsT5iWQuCUiRZhrOGWMcEoHYOqwQiUbjgUUF23AytUUlEHCQYSxInTGZTnPd4N8S5gBJQFgWRVmR5igstQXhcYwhS4lv/rrNrpCN0pIkHPfCO6f4EobrkaJgnHcFXCFpriNIYX1t8bVGAsw11a5gZg84zokSzqAo2B33KomA87PH+c+v0spS6aVmUDZ/67IvU1rFx5gHSXt6RXRHoXoxQnUmVc5bANoKAQqGwyCNlTzWfMxz22Rh1LP1mehIpR9zvykloamZNw3Ry0CWrjz3F9sEBhTGMXGBpPEYJeOviRZ5+8nFGoz5lWRHFHZfmPfzRxASgMJbXb+/wazeuMY4UK0YymVVkyYBodQOdxBQHe/hFiSoLQhQIZdGViO8leUoRrAPZVWjWVk4hs5SFaSHLqG5ex1UF1vvuMOoKC0gluHPjMk8/9iR3TYtGQbCcRLN9/TabcZ8r16/j9vfQxtGGwDs7Uy5vb/ORH/kY/9e/+lf52nAAAh66cIqJs/y3n/0Sr71zmWBq8qU+i+kCt1+Bq5FGYjSE0RgVFH7jFGoyhcMp9FJC3DkMh6ZFOoUPDWI+Q0YxpikQzhCURyz38ZKuBeICQViUzu9bDEDnM1gW867sbgJmOiUJCpTEuYAM4IoSlcQ01azbMEQJpimIVA+dJZS2wSqJkilR0rXy+nHCYnLAsD8iGQyp24oszhFBkA6XMc4TxxkCh0lihkvrmLYhCAUiQgpBURfEUUxlKgpX4VqHFhG9wQChJK13SKkwwmOaghgFSnUVCDxSarJ+ZybZGoMPHms6v5bWtZ1vhodef3RkstjtvlUQLA03cHSfE+sRCsn27m0wnqACbV1gqECA8o5YKzKtUF4SJ4rheEwca/I4opclLI/6rIwG9HsJSaTo9/sopSibhnlRYizs7B1QVIaiarm9fZNeL+dbb14mimOcbe9bDOwf7jAYLZEMRthiRpRl1Hu7PPjYU5y88DCf+R//m24jEGC+t0dv/QT9pVUeeOJZ3nnjWzjb0N58h/iBh+CB8+xtbxPXLT/2yZ/hX/83/zVuMUNoTTufEiUJi298nWJjncX5C4ylZrU/ZnLjDq/cvsNP/NzPIaOka8G8azny3hrz7RWUEALyOwq3XVLSbfi+0+NEdfzXdyXCiIAIggdGI/7Wj3+MT335RQ7mCzak5Jvb2+jBAOUkp9bWkSdOcvsb30DFCVhPL+lhBzmL3W2oK6SQ7L/xGsX1a2RZhhaSevsu8ug+2XeW3vISq89/iF7WpykX3LzyDrt7W5j5IcP101x45kPcvnkdrxOC86g4QaYpWZoR6po3Xn2NNI++p/P5A52c3Ms44yjC+YqmNfR6GWVRkcYxZV0xHo843J9wKo5ZG/YYOgsBxssjAKq67XYqSY+ybsmyrEsQ6obFfIGSXe+1cRYI2CSibBtEZdBSE/cHNEWNF1Du7KOQjJeXMMISZ1lnRy1l5zOgJUpFmNYwm80QAuq2xvvu9q2OrODroiJbzWiqmrTXw1pD0h9QFA0yyzBVg9SCEGmc9SyKEhXHGNu5TorgcXhEayiqGhF3cznEfEqcJTyynNEaw2zRUFUVX339GjIbEDc1TdkQguzmaGhNOZljW4uOZOcL4ANploLwFFXdmUIRUEnC9rzm0CxwIVC133YB3sc+c5xkeATZsI8WimpR8q9+8zeZO8fP/dQneO7RmJWlMWmsO7FR8OzvH7CyuoJ3Bim/s91wLylxIVBZxx/cvs0/u36FS5ffodzepld7xj4ijhIWk32MEoS9A5TSyDhDNAuCdcgsJbQF3jpEluIXJXhPJDRnVlYIQnF7b5uDw8mRikQSXNcOCTiatmZpeYmwKBAnN1CjIebubYanTlMFz2p/gFIgx2NEv0emYvoolpoWO5/zwskTPPzASR4583OUTcPvvnaRf/a//iZv3bpBcAYtQ9dSajsSNWmC7A1Roo+bHhBUwFcN0ntk6CoPynuCjpG9zvXVty1CK7w3iCgGb9Cd7hUfaWxVoCJJUJ1vyP2EXFlGEHDzjuOjkLikq1AkUuNlRJRmqDimXSy6SoFQeA95EuGtx7vAsL9M3Va0pmHcH5LEKWmSk6Y9VByzDNR1xWgwQqcpg7VNjG2wpiFKYuK4j3IOLyBLM/IsZ2+/u8M4Z7HeUlvHII/xzhMlikHaI8kyZuUMnUWkKsLWNVGIiWJN2zQopcnSnOl8Sr83oKm7SkmUZAQf6KU9nGshCJyzRFGMMpYkGxKMBddS+4rWmY7z4gNpHNNLI7RSDPOMpSxlPEg5vbLE0nCAlpAkEUoKdNQ500Y6omlbJpMJB3v7vP3WW0gZsz2pKKqauQnsFxV13aK0YpBFeGkpQ0SqMmSU3rcYaCc7LMoZmKabl3S4D1Iy2d/i3JPP4qw7urF74iiimB1y4cmneeEnPsHt6QxhWorDXVwxR5YL5PKIadly8ZWXkMsrKC3Rm6dJl1ep3nytI4VffYd2dwv7vud4/4/8BC+0E/7way+yPZ2zuZp2FZMj/olC0OKxLhAJSYx8l/j6nSoe3vM7edcrqvu9awh25P0gusdCdJW2qUq4tij40Rc+zCMPnOHAWN68+g5nn/kQJYGt29eJohgvYXVtk/c//0F+91O/jr92g0iDbw3GesJiymjjBG29YP35D2JsC7qLkyzr8ZEf/XFOrJ3kdz7924gsZ/X8g9Tbd5lcvkhke+zcuEYyXCJOE9pijjSGp5//EH/5L32Sp595iv/HP/+V7+l8/kAnJwi6Hn/bkI1TaLq0Mk1jqrKT+x3uH7J/cEgInsF4ibW1JaqmPWoHdc6t1gaiLCbPEmxr8cETJZ3FtQuGqjH0+jnGBbz3JELjI2gbQzYArTVeBIZLI9IoBiFIUoXWKXESoYTCtG1XfQieOElYWV6iqEuc9BzsHiCVIksTApI0TcBDP8+om05l5AJkkaRoSuqyYtDPCdZjCSihiEloWgs4kjjBCUj6Kcp1SpP3nTvFYyfXUVKhooivvHUV7wPTeUHtBCuba2jdcQ1w0NYVi9kcaxpEgDIYVKrRUjPb727G1hr6/exIxdMy29tnMZkQ4hh57iGU1PeVDAuwefI087rEC1hfXiMbjLhy/Rq/+enPsLG8xPsfOYfWktW1VQAGwyHD0aLrQavkux5d6z0v7e5zaf+AedUwMIHy1h2aK9cp5wUbTzzPqQfOculgh+2epk26mS5x28Brb6DTHCMleE8IDjwI7wimxrqYty++iUhzqqbu5o4Mh3gCVT3rrJOsIyjBfD4h7Y94+dJFzHhIZEM3OC7JmG9vs3fjOrKXIALIvPOxePTEJp/8a3+ZQT8jjjTzssYHuPjODVZ6Y/RyzfTONXTjcIVEyBg9ThGhQaYa4Q3W1kSjddrZDOnAz+edRfrSOvXenc64rbVoH/BCEFSE0Ck6y3H1HLV9iOj3EKIrrYt+2sXWfYQsaurFnHRtkzTv4+uSsipBq27zkfWIkxzTNqTxABc8DZ5U99EkpHGPJI6omgrrDDKEzsujqeiPV/He0+sP8M4wqWbEvkWrAc5BGwxeBSKdduZV88m7cv/WWMajNZy3TGb7RKJzm46zHOs95XyCjiNaa8izHgGHiBTCS3RQREmfvOdJ0wyEoj/sWkkqjmirsmvpphn40HFGgkcE2SWWxqDSjDTRRCToXlcB6Z/dYKmXsTzIGfRz8jRhMMgZ9VPKYk65mGOto1iU7M5KpvsHlEXBYlbQNgYbwLhAUAl1W7HUz6ltwCcDhPQklq6lkvQo2opaxLQKitbSNPdPShxPFrSqYmnzFHZ/F+M9MkqQTvCV3/41Nk6e4tb1awTX0lYFRAnT/UOuvHMRqRTnn3ieN7/yeYrLb6MP92FtA/nI4+y1HjUakz70MH7/AGcaBp/8S0gZUX3ja7SHe9jrV7jsDP+nv/aXWT11hsGwm6/lJFxsCvbbhswL3p5NidOUvtB8bLRCX3TxSbgnEz6C+KMrpzxKYoQQ2NASBU8jFe/M51zc2eNrN2+TnjzBXdPyrWvXuHb9Gv08Z8W31FnG3YtvIuMUn8ScevYD7O8dIiNFf20V6gofGx589HG2lGOQSxid4IFHHiOSEdcO9nj+mfdx5a2LfO0Pv8IzH/ow66vrmHMPcXdnCxln6NEyg41NgpAYGbO2uoL2DhMkH/+pnybr9/j//Otf45VXvjfW0Q92cnLE3kzTFOc9/cGgG0rUtiS9FGM6OtLpBy/Qti2VMWwfzrDWsSQ7dYROExCO2bzAys7TI45jvAzofoZDszQedERQF5DWkw1iamexTUvrLHmvj7cGay3OOtq6JThPnIAInrJaMD2YEMVR99qypN/r4Y4mTA6XBgilGPf6NI0BFMZYyrIk6WXYuiYgIYrI86Sbv4OgbdtOJRE8VtbEsaa1YALMygUAw16fFx48z2OnNxn0eizKmp1pgVGavdkE23aTiwkB3RqKWYGrG5J+1kkLnQIU0oMpLY2rGQ6HVGVJW5aUBFSsIQh6S0sIIRiMl3jnXRfA90hd9wNpkqF7fXqjEQ+ffYDtu9uc2DxNIHD75h3+zW/9Dn/z53+GOL5nAiaII41p2yOSpvgOoyOAadPyGxffYWcype8FL776KrMbt9C7+wjruX7nJtuRYHbqBPPZDnqQYE2LnS/QMqDyjHY+RSoJQSGlAB3hk07FUhYlwlhcWyNsS22arpV4xNEROPACU7WYxRzV1qj1TeKlJaqtbeKsoJhOwAX61vLYY0/ResvPfuQ5loZDPvzc+7i9u0MSRfjUY1PJ3/7Zj/OlN6/SfO0l/vDWTXxRIKQiOTvGFgVCxFgcoq3JT65Tbu0RCY2ZHiJMixrkeN+AlrRNSZzmmLronFSF7Foci31EFBPaBikFOk66Kb3zgtD/95tv/Wkg0j0a0aCjGNdUmLJAKE+sEyIVY5xHBU2a5CA7DkbT1mid4o3BtDXzao5Qgtn8kAjB7u5tlNaErN+1XxcOIQKDvAdSMi/mpHFMpOOuPSIaohAfVb4sMoq7frv1KK3QScZKb4DzjrIpcG2N956y9gTn0bHG2IokzYmjGNM0OAH1fEZV1jjnUEIhA1jT4FrbOWTHmlxnxDpiuT+gP+6zOsxYGuYMhj2yNKKfx+h3yZQS4zouXLkouL19m9nkkHo2p61r2qal8Q7vBRaJ8RKZD6ldSlkJjHdYJ4l7PVaWx2TDBO8UM6tQdYMrG4LQNNYSdIRHECvdtYWd+4+dyv9kPPzkc9y6egldVUwO99D5gGQw5hN//W9y7bVvMowUf/Dp32J/74CqKFBRwqIouPLyNzizeYqLX/8i1eE+oShwTU0qJEEJ9pbGiLNn0KfOksXXmH7rFYq6QKyukl04j7vsSJKU6fZdfvuLX+bhJ59gkCb4ANu+5SuzA27OS1zjqMsaaR3GOZILgR9dXUcB/qj38x3y4iMJ8rcXnmXHoKWsa9JI8xtXr/NvPvdF8v6Qum5J8wEXzj/AH376M7S3bjHeXGPetrz5+d/H3L5F+ugTpL0+1e07nMtiUiVZHo2IYsn+5IDty69z7sln2Ll2hd1bbzG7e4PR6gluTw+5PdnC3tqhPriLEZ5HHnySg8ag04zq9nXO/ehPECnF4cE+8zs3aeYTzjz1DDev3uCLX/5D/vv/93/PdG+L8D2GwA92ciICQijy0Yg4a1BxhFIBaSJ8CGRC4oyh9bDUz2lbixOB3qCP9SAjReMDKAUKCA6CxHqHEN1EY+88Qihs6/DBo2VEpGNmRUkkJaZqEYk7MtyRKCGJ44S6qjHNHO8szgfGm+ukSYJxDhkCQkqCh1hGXRLkLM4E2tailCLKMtqZR0hNpEVHVptX9NKMKNY4JZGyc8K1StG2DSdGI8rS0poK5ywPnVjnL77wHGmUIJREKMmianjlnVs0UrHUG1CpiqppKOYFbVuRpTFOS+qiJCwW5L0Bi2LKaLxMtJQQQqApCqI0IU409WyBs64jFntPNl6hrmusMLxnyHz/8Oyz7+Pa3buIJGVSLHj6ySf51utvILXigY117tzdoqorRqO1e0FDax37kwknNjbwBFwAFzyJVPgQmJU1WdkQqobPXLrIbH8PNRhgFwVxGyiLBU1d0iymqGLRlZEXc9S8xBYF0gd0v4cvBMIWXVtDRxAniMESwYJb7BNcddQqAxEcnXMB4GxXwZKqI6rNJngJynuiNGF/dxukpBdnLPf73Ll1nb/+iR/nr37yJ1laWSbPM6rWIIA8y/jVr77Cvne8ubeLUQqRaBimSO+od7dQeY8QPKI0+MpQzOqOGBo0qr/aKS4E6CQjSg3ONiglsepI1dVamv07BHWkjSwKXNsSDUeoJMM3LTq5v5yTJB4yfuAU++Ue3jRIJG1r8NKjI41XAmc8ZXlANl6mrSxaSZI0Rec5wQf0kZJlabjGoNenqroKm8RjnKEOBi1jZJx0QzPpjBFNcGRZN3G8aVqiKKFpW6qmYurm3boAqDg6sgCICEbRVCUIiZChu/5dR271ZobI+6RRTLCGno4YZSlKwFKaM4oTrK0Z5in9JKWfJowHPbIkJk8jtJQopajahrqpaQ7nlFs1RbFgPpmxmE2pixrjHD5IfBBYOPopQffxOibohIaAV4KsP+RgMsVoxXjQozGO/miAiAJbrSXtDblz/QauNSyKgiTL8N2IZHwINNbiXYtO4vsWAy4ETj/xOLZxFLMpzhqayQF5PyPfOEtfBfa27mC8IMn7RIMRbV1y5+Ib3Lz8djfV2VpoGoLXiLZh2B+wt7WFb2vs4QHqgXPok2coX/0GcX2Ocjimn+c0t68RNjbpnztHVXn+5cVLDAc9fuvqNbavXUN7jxqvdxuVq7dITm3y+pkzPCcCYyGP/Eu65s17ah1xz/Dk2/yXOkZKY1oOpzM++9UXyect7f5NivmUMlZ8oZjQNi315JBzjzyESlOyLGeRJuSnTqMmh0zeucjpT/w4fOYWN/cPMLN9fFMxWl1n/8ZlrrzyDZwxTLbuotNLrDz5LFJqlt/3DNNLMbHQzCYTnPAMl5ap97Ypd3fZPHueCx/8KC//9r+itjWXvvkNbNvw1c/uENoG4T3mezRk/MFOThAI5zEuYKWmPvIlSZXm3j45yXvQWuI4IoqhcRanJXhojSP4QJwmyCSiH/UAgW1bIhWTxHEn/pKS0IOqqggehNasLa9T1TX9foTQkjiKjuSfdLLmSNHWLYnu45wjSEHjur52nGiqukH3OodW1xpcGbBCMhiMKNuaEAR53sM5193sbUs+6FO33TCqtm07C/0kpnWd8ZEzBusNUsATJzf52Y8+z+baCtv7U0KAxaLi7Zt73Lq7T6wUWgvKsqIqS8KRwVKIIwKecj6jriuQgjSNuHPjOpvnzpIOewzTJQSCg+0tEJJiOkWnMUmSYGqHjiJw7ohAG+4r5+Ttq9cIeM6dO0+5KNg7POTE5iZLw4z3P/UYi/mUSKt70UIAxqMRN27eZGl5ld++fg0Za6SWbKY5EkEcBH/jA8/wW+9c5TdeeQXrPJFKWHnho5TvXMUsCmQ/g6tXiLXAV3OU1PjZAhnHnbmaDxCliKgz2JPDHJX3aZsarYBII2QMbdPtjuyRbNt2sm0ZOmNBnybQekRjaPZ3aZMUUbcooXnk8afQQqCF4K//lb9IbzRkVlYUxnNte5/+aMiBdbx8+w6//vJLTCcz7HyOrQooS1xR4gIkK+vUxQyaktA6EBFe0s2aaQ3WtSSnzjPYWOMgeOIoxh3sQduiBj1MWeMXE5SK8Eqg+30EEEkBWqCjPr66f0RIgKYuGQ7XkY3HVi29pXVkXZLGPRpjIdJ4b7G2xvqWuirp9QbM5xP6vSGtNXhnqKuC0WCE0glZFqhMRdnWNHVFEEcT0L1neXmd6eQQSSexb10n863rAiU1JgSktQThKMopeItSCXnSwx4RsdPhMlmccs/vc5imRCqil2T00oRxkrKUxWQ4Vkc98lQRS4lUAtM2HQlfKUzT4rynqUt2D+fMp3PKosC0DdW8IFhLay0mCLzjaL1MqFWPWsa0LmC9oHKBoGN0UEwP5sSJotePWR0OyIYDzi4vd/YKBGhb9ss5qVYQAsXkDk1VUxUz8AE3N0R5DxlHBCWxxiKFwN5HQuzFr32JfGmZLEnIBiMWB7sMN1bZ2d3m+rWr3LaG/mDI/t4BMh+CbRktrTDb3cLOZqSbp/DSE5I5g/EqS+Nlbn3ly6gsQ3iHvXOb2Y2rxOceJhqNUYcHyKJhtDTC9IbcuXmdz/7OZ/grH/tR5tsJBzJi7/U3kDv7BOthWNAGy+jsOerJhK3dHcpTpxiH0M0x8yCE/DYZcecR5cO3V58DFrjYNCz3+zz7+FNcia/yzuuvIssGtzXhYG/KADDFjLdefpm7h7tEq6s8+oEf5taVa8jgcKM1Ll2/QSti2kjB0gqiaZi2lunrr6EC3aT7vEeyeRI2NvAnNtne3ae8e5vx8jpX33gFNV5i/Yn3kS6t0k9j2sWMV7/wu1gpsbMFWsfIAFGWkS+vUh3s4hcLvpfiyQ90chJCwAqFG42Jxo5IgPAQCSgXBXmkMcYghGDhAr0kIXjABryEdNBDS0UUpRhjUFIDAecCrWnBB5rWdLbUcYIQCmNafJBo3e0KVKTxraWsio7UqjvvCe8dvXGPIyI9CIjTGG99x1i3CqmgNR3RFt25sCqlEK0gBEGaZkynB7i2IR32cUrhMkncy4mqhmKyICSd+Zk3Fq8UmYXTowErWQLWUlY1Adja3mV3YdgrDUtLy2zfvk2SJlSLBU1Z4oNH5DlL6RJNXZMPB4xWl5E6wlrLcNzHlAVagPEB5wNR3sO0Lfkgx4XAdP+AgKBpGvwjz73rhng/2zpPnL9AQeDW7g537m7x9EMP8wsf/0lMW3H+3Gk2N59nPBxwdLl3s4F0xNbuhOXTDW/PFvyvN69xWM8Z6JjlfMTm8oi0NvzOZ/+AZjHHW0N2YpNJOyesj/CpwJoKZxuoLME0IBqCtyTDTpnlmhYZwOsIORwRqhKnFbI6GrKoY4KpwYWOJyAltmnenZ8hYt3N1wgg4gi86+a5NDOE83ileOX1lzn74CM888iD3J7O2C4rvnjpOivnTvPS5au8dDDhxbt3+drrr9PMpsimxltPWHT+H9Y5ko012qYkLCowAt9Y8AaRpljZomkJ0mHmByyuNaA1JkQgNXA0TDLKUaOY0FYI7xE6wgdLLSFyDhlAju9vW8eZltnhHomMaWxABU3eW8FqgXc1WI+OMlSeI6RCyQjnPB5DYUq0jBj0h0RSIaWmaWvAUzQ1Sml0nBCnCQ5PJCOiJEWnKd52HLWqLhBNTSzvkX8FWZQBHp0pEqXIkx5xFJNlMVoplvIeuYpwWpIrxea4zzDV2LpEupYEj5YeJcA0h3ijmTlLVVXMZ1Nca/E+MJ8vsG1N07YE74hUZ45lfaA2lt5gTFU0zJ1iv7XMRUxtPEYKkJa2qRFK44VkJR3gnIVYofOI9c018lgTVETrJcQ5t+9e7zZXUbfJCsFhbYsKnrZt6WU9ysW888hIIoxrMdaSxxnRf2C2zp88CFqiOGN+uEMcZ8RJRBxpSHs88PCjvP31P+TU+QfZ3d4mSWJGa+ucefRx3rn4Bnu3r5MN1xHRGF8skFLR62WoOOLRRx/j3Okz/Oa//VeEySH+0lu4xQJrW+LVlFnTYMuKKEhqrTlsGkopENMpf+OHfpQvvvw617/xZWzwxGfOsIgCySMXqIxltyxwxtNPE5bibnyAEu9ZV94zaAt0s3SkELw+2eP/9dWXSKOEW2++iSxqoqpTCIamYTAacUZp3lYSRj12L1+in41Apaz3+4xXhuxUOS9/8xudrPzovukIkCfgNFJJYqWxa2sYY5hdukQmJQ8+9BRbhwsunDrF7pXLrKY93v7GNzj3yOMoHXjpM7+BrQtC2403WTr9AIPNk9x5+w0W+wf0eiPGSyvcuPit/+jp/IFOTroJjb5jBq8IpO4km1pKesuWWAhkWWLqmrppsT4QqxiU7AbqtZ5WCaxrsMahRMA6g7Oefj/H2oD1Hh9UZ9ATKwbDAf7IVbY/TAFH3M8RSuCNYzGdEVwg7eXdrkGLLtiCwBpLFEU4Z+kPctq6ofUe5wAvyPIUFbrpkjqStKYhzjJ8GmM6lTvBeBaHc+I8RacJlWkJwtEuCvQw5/xowKmTm5xaX6ZsWjIHN27d5c7unFsLS922KB1x6sJ5nPOd+6nQxIMUAhwezjqH02IBtUIlEb3+kCxLEEFgjMX5zhOhbUNn5LOYo+OY3mjAZP+AvN/HpEmnQuEoObtPGI9HlFXF7a27TPf2eKmq+MQHnuOFZ57k1MkTHNYN29t7zG3LxnCA9gHpA89/4Fl+besu/+rmLXZKy/zKTWaxRj/0OFdvb1He2aY9OECqCNdWzG/fIhQV+vQJXC8+8jyoUDoGA37vAB3Ar/RpD6cAhChC9vqdk5UHcbiPSlJINaERuGKGSDO8awiuk5N2wxMDIu+joxhbLMA4vFLvVlkIAqxhsbfF28Wc7f1txMMXOPHQg/xuuWD24jewe/vw1ltMd3doFzPS/rib83S43x1bmqC1IviAX1RIH+GOJIa+rhHlApXm+LZBqowoTrGH+4R8gJAR+AohBa7shkLatkRGCq8UQQpAIYIkEt2ASlMs7mMUgPNdpS5SEWlvjJcKkSeEIOkf3RC9UAgkSTIij5foDYagBNPFIcPBElma0h8uU9UlBovxLevLS52DcAgcTg9wOHCO2WKG8RZjDP3+GMo5aZIyzvuIIMjihJ6KkFohvSOWkn6WkscReRQQrkUHw2o/IdOBSFhcu4M3HtvaI6PmQGVa2qqknC8o5nOMc1jrMaZFCo0LnqpuEUhEFNN4TaNTZo2iQrEzKXCFpXaSIBWtC5DFOF+B7IzL+kmMDp7x8jLBeka9MVIKkjTB2IZZsaAJgtZ0FguLpsZ5i28s/TTG2BQlBd7OiXWMs11bsrUtzpQ0wpGqBKUks/nBfYsBoTUm7kE65Kn3PcxiZ4+7laGsLa9+8Q85/eijrJ3Z4JUvf4l4OCDq56yvrXN1a4uonJGfGrL/9mWss5x/6v1MJwcMBgNWRwMOD/dxxRydJrj5DBHFiKgTBfSynMcfe5JokPG6iPmtL32e+vJJgvQ8+8M/ThzF9A8Omd++1VX3b92kfvIJzIkz/MaNO5xuLX/lsUdQUoIPaCVxzh95nryHIAKz4PnMW5cwkwkbGyfY2d8CJxmsrXNw6SJ5ltE6y8W9PaLBgPLqZaJTp9lcWqEnNbeuH2C0xjYT/vKPfJivf/0bvP3yrW5idDGHRUCkKSFOWXrocbbmh4TZnBAqntvc5LHzD/LGbMbd29eZbd8hWlpBJRH1ZJ8rb71CMBXSeWyxwNuW/Wvv4FVMFCVsnrnA4d1b3L1x43s6nz/QyUkIEIxleuU6y3aIIxC8R+vOd4Sos9J2IUJGEtt2ZVfTNsRKEWcpwTuCNywmJa61tOZoIF8UESVJ1xJQgv7SqOuXKslg0EN0dgKYtmUxLdBRjMoU+doIYzozNCcC3ji89ygvUFKiJag0QgpFUAodPN50vJS6rhjEKTqNugw6TxA+4IMnixJa0yIiz6IsmR9MkEodZdWCUS/jzKjPYw+d5/3PPUtT11TFgp3tPW7d2eXqYdsNmxOBejHH+u64dKJJ+xleQuUa4jTGVg06SWjbFrMoqMuKpaVlnO8qQ1ESd9OdW4spK4wxHOzusnriRKdoCOFIDfUdYyHuC/7Np36TIAR3bt1GpRkrZy9wR0X0zpxkxzr++de/ydt7O7xy9zpnz57lo2ce4IceeIDIGP7Jt17jxt6M0LYQJC5Jufr2G6h5wXBlgyLKWdy50w3+MwaR5TitEd6j0hS7KPBFRahLJAGRJIQ4RvhAOJhCFBOiDNnLuhu+8J0SpK4hCqjVFURj8QsHEkQyQDhLsA0qyY9upk3nQSIl7miXo6Ju7onsSm9Md3b4zGuv0d6+AS7gDvbJiTCNgaKkP1jGtob24BBR18jRECUE9X5JEveIekOawy2CrbsBj8YiJJ0VvcuRUYxdzAjOQDFBjAfIjTF2qgg3byGWlvHGE5IcOeoh2oA72KO/MaRxtvNJ+B4nkf6nYnzyPLZ1BGcY9laZNzVJFBGaliQdAgKhI3q9MVonnceN7Bb8PO2T9wYEAY1tEUnUydLnBa40DAdLNE1FkvbAGiweJQSpjhnHGQ8/+BC9NCdXgkQLRFMzihWreYK1XXIRmpYkgmAqTF3TNCWmLmiLGB9FxFlK27TM51OaxQLT1hjrcMZ1fCBA6fho0GbAhs7krvGBmRG4bInthWHRGIwrCUkPoRQ6HuBCIE5jRoMBdVXQXxqiBKRZho5jXGtoFnOGwxHeOGrTEgVFZB2L2QRjHIW1VEVHhG7bLh5tgMmtyzTBMxit0CxKlO6Gl6oohkjipEcFjzEFk6aiae5fkhqCo9m+xHB1HWMWDPKMq9vdGIKnfuITnBpn9Io9hIoZb5xgOFri8PCAyfYdmoMJnBc88dTTfPPzn8Uvb/Kx557lxd/9FJ/71G+RX3iI6Ow5VJwikhy9eQom+5hbN3nkwoOsJRprHYs7V5G7B2g0jRS88corbD79ftZ/5mcJr7zC5No76PV1/MWLtK3h6t2UfGMdGzqjy46fH7rZTtwb8deZGbYhcLduGKyscV4o9q5dg8GYMJ3SFAvkcEA+m3Ji0Oet3bs0+7uI+QLjPZenc8R+QX/jJ6l2LiN8xXhjne1QIfKE6ORpkgceRLsWaxoYDJkEgS8q/HSCS2NuX36HjdWTHEwPONjdw3vDwe2r2HLOJMuw8zmuqY+cwrvqz3B5jTNnL3DrtZe4fe0KG089x+7dre/pfP5AJyddsz5gZofMtkvy8Zi2rilbi7MerXU3F0ZrrHdYHG1ddfM+pKIsKoQQNE1NMZ3jXDeNtzcY4+qa2eSwMyDqpTz4/id4880rlM4THRSIAE1ZopTANIY4z8mGKbZuCDIgdETTlt2iLSU6SYlVIEiNVqqT6Apoy4rWOJqqRQtQacqiqZkXC3SQxEncWYsriQ8eI5tubHkUUzYVjW0Zxik//8H389yTD5PkOSF4JoeHHO4fsnsw5e2tGY0VeFeAs5i27abtRhLXtlSLBVGSElKFiwQE31VvkogkysnyrOsdIrphYLbF1KYztrItcZawpJapFguc85RFQXuywh+1Ue4nrl2+hBCyUzAEz+72bX77+lVe/3KPIOHi5UugEw6vXGNeNVzZ2eHXrl0lUwlXrl7HG0PbtmgdkR7OyVrI5YDyYIY0gcgLSDNs2yJjja8KQmPxLuDrtmsWOUtQGpkkuKZBJjE+UoisDwh8eYiPPcILsC24gEhiROOg8UiVEWzZOe26Lut1VTfb6V7POQiQSQ5VgbUl4ojEiRSISGP2Dwm9Huatt/D7B+QvfJQq97TeUe3u4OYLfF0iQsAcdi1LFbopu/XhHj4KBCXxSEQwiCQiaIns9ZD9FD8eIHa2sbs7JA+exTYFvdVlZnfu4ASI/hDhHdIGRKKQ/ZyyKZCDHuQpy/Eyd168f3HgQqA/XCY0Ba01pGmOt5407ZPlw+57EqpruYlA4yqEtTR10Q3udEOmswNqWxGURKquWqo6HzdiKVlZXmEQpwx6fTItiUQgw5GIwPJAELsGXxeYpsDOGg7qmqaquuvWtHg8OopJ4xRkwItAWZXYSY13LW1VE0KnyAFJpDRJFGGtAxVRNoZHHn6It28fcHE+Y24DlYeQDSmDxIaCOE2JtYY4RmlFIiUiBPpZj0gqIgV5nGCdpWkaXAj4tsU4T1N1nktluWDQ63F4MGU6P8R6Cyqh1+9hrcOamiAgynvkmyuYrS2y9TXc4i7Bd0aXUZJ0m0Xn8FU3KNQH13mx3CesPXCegxs32LtyiXJvh7XVDaI05w9ffoX3ve8pTiytUFQCITy9KPDDH36e2sDF116lrLsW68knnuCVz/8+hzeusT1QbFUNvZNnYHWVaDBEpznWGPT6Bv33vx9x9QpXL19k9/EnOZHkmNtbDDZWKKIYdfIUOs25/c4bxFlO9tRTFOUcX5TIJY+7eZNmPCI//wCxEjjnIIB19yQ7R67VXeGVw+B4sVzw0nTG3qsvwcEcrCMRkrRuKG5eZeICi1u3uhlRwzGVdayoiOl0QqJTZLvDMLWYaImDwykHd7fIBwOKvV1cv4+xDUk2oN26Q/AelSSELMXXFdu3bvLF8tPcuPgGKkugl2GbgtDWmLqrpOpBD192jxGBZLxCeuIs/vVXOPPYB9g72AX/vcl1fsCTE9BSkvcGOFNQlwWnzpzgnbfeoZyWiCCQSnWeJTIgJVjbErzvJI9HMeBtIE4zpO51ZlqRRsYxebRMNZ8zr2q+/vLrnHvgLJPJhNu37iCiiOnOLm1Rkvb7RHmCu9ElN8hOMhqnKSAQSUTkHUYoJjt7iAD9cZ9yPgcfqJuKqq5IlGJ11KNqa9ASITSLtkIGQAds3VJjcZEEIWmCZZRk/OwHnuKR82dQUcRiOmW2qLh9Z4u6Nrx+dZt5bVGym4Vh6xpn2k622nQzHZZOnCA4j/ce6z1JP2cQjXDed66UbUMaZ93F40NHmvSeJM9xSmEbhYtjEtntmgZ4tpIEf+Qeez8rJypPOkW5DYS6onjnbS5+WnJXGESeYxZTouESammN9OQ5yqagFBH19VuY2QKKCoki1pbe5ga2nBCPx+xu36GdT1EomsmMeGUZU1eExQKZ9DDFDGG6uTk4h85ykpVlFnsHnelVkhBmB5CluMUcqTVIQahbdG+Ebxv8oiAoScDjsQgXujZKFOPatuvZS9ldzN5BFCN0RKiO2kAI4qUxNoDOe9Af4nRMsJbp/jZ125DlI+TRzTE4gylnqCxHJhkyy/HyyN4pTbDzErEoUUIgBjnkGTKO8cXiqGoTugF+RY1bTCmDQ6QZEolIM1hMcXUBcR/RSxEqQkQKIz2L8D3OSf9PRJ7kLI3GVFWCci1aaUYrq7TG0OsNKKsCpSMEglkxI5gWKQLDwRCtJI0r6S8PWItXiOKIYZaTq6iThgdBLiH2LcN+Tj8SyKaAeoEr5kz39piYFmNbQnAEF5AKJBqdpuT9PnE6wtYV5XxOM5njvcOHgHcea23HFYljkjhBxwk6ShmtrdEbjfnii69zd+E4NDlffnmbioiaEcQCqSNEpPFVSdYfMEhSkiQmzXOC8NimxtU11pRYoYnTlMYYtJKYusZ5hxKSpq2xTUWa9fCmoVw4JpNd6rYgCI1OPAaHs4aqmjHIRmSnN0gGMdPd20Qf+9D/j7w/DdIsO+/7wN9Z7vquuVRl7UvvKxpooAE0QEAgAIIUKVEySdthWyI19owdDFIOS9aEV87Iki2GFDPWh4mwHDOWtVq7SFGCSJAERYDE0mg00A2gl+qurq69Kvd817ueZT6cm1kNWTZJGfWB4RtR0V1VWfnm+95zz3me//NfUHd+GVe2eGvx3pMlOZVvsaIliSPatkLeRylx7+QFNh5/L69/6Tdpm5rtyRQfZSx39vja53+b7Ze+xpMXzmKdJ81ivvBrn+O9H/4oF86dYevaO+zfuMalrI9pGnpJymI+o1xOGZw8xd6NGyAEtdJkp87QtC1716+SHdtgf7CKXrRU0pAmmsX8IucuHmd/PWZ27U1sUdLUNYtI49oGTBuQp60t8I436opf2D/g2f6IxDjOJRGJkt14NFz7puF/vn6Nb7/8CiZKUaMV0pXjTL7zMosrb3H64iP4wQqL5Zyq2AFjOP3AI+xZsDoiyfuoZYWrlzTekw0i1sd9uLuJG4xBRWTpgDxZoSmXuKrBxQozP0COx/h9y8HtGxzcukmW5hjrYDTGlwVCKzAGW5YBLxAiNGJe4o3h+ku/TTIYkI422P/qb+Hs/wnUOt77oMTJcpRomE8nXC4K+qMROMH+3R28MbS2ZePCeZqmxLowzzVVEZI3mxZnXZD4tRIjFVGaIgyovkKPhwibsj+fsrx0mZV+n/Xjx7i7vcn49AbtsqBeljRVCQiauiJOIlrT0DRLrA3oTj4ahRyVpkUiQ/hWEiOkJh5p6hiMsUwODqjqGmMMs2WBTDVSKRbNAt8asrxHHCvyNOXU2hqfeOxhzm4cp9fPmc/nVEXJ7c0dtvcXvH33gO3pHFMtqY0hjlKSJMVFmroOnYKxLUVRIbUi6iXBEVIrOtkRKlbk/TT4vPiUNOr+XiraztLeyjDzb62HsgbbotIU7wwiBNTctzUgtESvreCdRKJo9ye0W1sUL79O9OH3U58+g9ufosuG2WQPH0WYZYEcDtBphl8uMEVJLcDN9knynDvzA5pyHrJxhMSblvL2LexsRrJxAmkM0npIc2RjSc+fxmNoiiXMFrjZHJWkWG9w8wlSxwitQvGhNLYqEQhklmGWc5wtQ2iedYFHZQwIhU8SvLGoKMX5rpHqogREE1wb3aJA9AcwGEB/QPLYY6gTJ6jeuQxFRTVcIvMU7fu4icXOA2lOjVdx5zbwrcBvBw6RKKqgElKhMEZBu6zQVhEZMGkOckGzmDM4eQIpBNN5iZnM0L0hppchewmmKZGtwSQQOY0vLXU1vW9rAODYsQ0Go3Xiogj5UgLyfp9mPqP1FrSmaCqyJKPX63Hy5DGEFAglyKOYJAkGZspDIgSxdPSEYxhBXzliW1Ee7DG9vMvWYh4Sy70nUgFpVEjSNKbXX6E3HKMSTV3VVMuC5XSf2d0l3tmO8Cxw3mG7sBUlJDrNSPOM9RMnWDlxiq1ZyfW9Oe9cuc7NZsRUeGQkWCznwRPDOoQUHN8Y0csyXC8HBFmS0DQV1rXUtqU1Ncp72mJJawx9P6RpaqRUOGtC3L2OqKsC29ZU5QJnDUkSM5/t0TQFyXAF11pwDW2Hvsk8w3lFHSW42iIevoA6fYL6nVuhYBIC6QS0jlTFSKkwSHpJ/76tgctf/OXQbFqD1DFq9QTGOmIUeSS58PBDnNhYD8KGZU3S77F+4TxXL13C2pp45Ri29GTDIaONU7z8xc9SHOyyuH6VaLyKFxKkoD6+js6PoXd2qd+6DB6KV7/NzX6PJE3oPVAy373O9MCQP/QEZm+H6vqbqLU19CDHXXqL6uWX0VkP3+9zsD/hG+oaK489zbnWYpQikgENhuAw+83ZhLdu3qa98nbYc73Erq7itUIqRTGfUG9vY5oKkaeIRmFmUy6cOsGrr7/B8Kn3spxfZ168iZ/scHbwCf7RP/pHOAvFdJ/eA49QK6AoqPd2A6fICfxihisjRBThoogUxXg4ZKljosGYg83vEK+t4VyBjFOiJKUqa7TW6Dhi785NZBRx/tlPUk22wBzgXfm7up+/r4sThMALy87WXU6tJ5i6BSuYmQOSLKE37rF19RpVXaAiTdLPQ3aOtTRFSds2pHmGcRYldDBOi1WQDdqCuliQHl/DR5pIJzhvuHn3JnG/H6LAyzlRmgar/MkU09lMew9oqIVFxgrXWopiHoiOShEJxWJZoasIFccII9GDlEgpxLLCVkuEcRwbD8nyjDyOObY24tyJUxxbWWWl36OfxMRRRDbo0ZqWZVGwP12wszvhjWvb3DqYsmhqnLOoSGNx6EEWjMekQNc1UkmifkY+HBD3MqxxRFKjhSKKQlaRcxbrHBhHUwSjuaauaasG01pa02IDwwbjHNJ6pAlOuuCOjPLu19XuHmDmS/SxdeTpcwwfewpXLKmdwd+4idAXaWONffpxrPMIFeFnc9T+AQiBWy7wsstlmk1h0GLrJkht6xo5GiNJcXsFcb8Hgxw7HqPqHq5tSE8dRzqHXS7xjcET0DpzcIDMe4jG4F0dPgMVBZi0qgLqkqRBOrhYQhokyLiQrot3YELUgtcxQniwFq80Qmmktah+H7GygswyxKCPnexipxPMsqDZ3EKmCXF6ErN/QKwkdd2QjNfQ/SEiiXGTEtda2rYKiFALIslQvQhWR+hz53BvXMOXDcnGOn4+xUz2UaMBVdWidBTyQ6pt3HKB6MfBp6MoQiEVRbRNiVbxUT7I/bqy3gArBE4JqqbBGEPpDa1zLOZFUGkBBZaV8Qp5f0CeRORakuBJMfQUjBTkGNrllOnuNsvphL3FInS8hIgJpVXYfCNNnMSMV1cYDlcQccTmzZsc7GxRlwVN3WDaBpxDCI8UCql1IMrDUX5WmqacPHsGNVzj1n7NZ1/b4tJBhQPKVlPXhtYa8jghjVPKcsGxYxsopUgjTVMsiKMYpKCqG5x1zIop2SCk8RbVAuEd+DYoy0wwWTMm5HMt5wddECAUzZLGt8haY10LxtA2BagYpR2+DYideOZR/PoJJt/6OvVsRq1AP34B9/Z12qoAlzBvG7K8j3Ngqxbf2qAQuk+XawOvSSBwTcVy6wbx+ml6qyu8//lPcvnrX+Ar/+yXcKbh6huXkJGgbir2bt2BtiGWKYNhjyvTCaOTG/zoH/8pfv3v/y/sbN/FSocerYSoB6URaYI6fpzmzh3SCw9BWeOm+1SzOd68QpqP8M4wr5b0LjyCaCzu0tu4tsA1DWp1BakiEI7mnbfYvnWdF4Xg8SffS8y90FEpg8X9A3mfuCrwbYMva3oPP0r11lvo6ZTxqYtMd7coTU00GNDu7eK1pGgqZkUNTc3+K1/DSoUXESrN2L1+BdPcxtoG39bU0wlWaYpyCasj/GyCbC22LBErGV4GcYmTESLrU29v4tswdlZOIlWCaS31fB4iWOZz1LENRFnjjWH30jfYv/VWSIX+XV6/v4sTgnkWUjCZB85IAkQiRuuI0bFVpFa0dR0IgUVBs1+EgmLQIx5kyDgiBpIso5qXtFWDToOzpRTQzGaISCMA2aWB1mWJ1ppWOGxbE0mFGqaIWganWGexiJAt4xxWhZFSJGNkqhiM+ox6PaZbeyT9HnGWkucZoyThBJIP5k+yvrrCoD9gdWVEf9BnsVgwn0wYr6xwYzHnK7euUbcGW1U4A+X2hPn+gtZYJIrSVVjnkEKQDnr09AihNDqNqF2L0gnl7gGbb12mN16hv7ZKEmcIJAhIspSmqqjmc9q6RqsoPCgyBB02VY2tG1rbhnl+FiHxuKol1hrnQ2FyfxknEF24gJtMMNs7eCkxbYMXCpFm6MUcub0FSUwjZLBar2u0sahyiUChagPeYYsFkYfqxiWEs2BavHWIwYCmKpFljTxxHLcyxAlH9zFR3t1G1g4RJbhFG3giUqEGQ4QlPNxZhpstoKmDXA8C90RqDk2pAzvT4U0DUQSRRgoJxgSirXdhU4wTKBfQdb0+VqQPXcAJT3vtOmZ3DxFFCAnmYA+dZMS9AaLfRy4WeATR6gjjPK4I4yFB4LN4mSAQgXulFdY6VJbjihJra0yxBCR2MscLQV1WiNaE1xvkyEFGU+wjtMTbYMXt2oaoP6Cxv/tN6V/nWrSBiDcvptR1iVaK0pakaU6exERSMshylIBEw7iecj7PWc8Uqimw5ZL5/h57syl3ygLbNLRtg3UWgSCOE7IsI0pi+qMhq+sb9EdDmrpib3uL61cuY9qGpq4wjcGYFg9opZCRIo5jtI6J4hidxGRZRpqm9FfGbJy7yFfevMkv/uMvskwHLGWMlTHagWksUZKSKOj3czSeQZkSx3HgJrmWKFKU1ZIWUCpGSYjSlEVdIGxL25Q403JsvIbWmpXVdaq2Znf7Dta1KAzNckaa9xB4irYiEholJbI/JB+vEScZtqlphhqdxhzcucnq+5+l/dICbxsWb1+j9+iDuH/2RdJeTt1WYDVeiBDdYRyRiu+rz8khfdQjECJG6AyvA1J27Mwp9PCHuPLiC+A9+/tLhLRs3/g1oiRGqITVRx/j9KlTvPIrkpd+/VdZjSrq2QSsDeqcNMUe7KOMQe7sUl15Gzufo5xgdO4i+y/fJtERF9/zDNHoGAtbEvd6lNu7QSV26jTzl76CHPehlyKyPmaxhHyA2J1w17yAfehRoiwP78N7jA0u4tJ5zp44xX6So3ZnVF/7OvLCWahLnAbvPGK+xHVhkrGMWBzsYxH4XkbiPHVR8n2f/CTFYsa3v3WFdrEI6N9wjHGGqN/HlEWI2mgMPlbINENrjSlKfFkhxjmsHud0f0ic5ojTp3ngmfczu3mdL//qPyMejxmfu8jmt75BubONihOGJ8+y/84bXUr9vRyh3+n6fV2cCARSalASJUHnOVVbYalZ3L2FBJSOQEOaD+hHqwghmO/thzwSocDSZcO0qDxFZSltUVEv55imRkURMooQWYTKY6TSWGuRiSKKE6QSuLbFG4GUMQKNlpLaNOHfCkiUZtTLyZGsjgacPLbKseEQ/aggUppIaYZ5xnh1FSUlVbFgPpuyvjZmOF7htZdfZDYv0EnC2Yce4M23XmevbiiKiqqqKZcF5d4EP2+RlSHVEVVTIlSETFOsFhSzBdVsTj4aILKULI7JR0O0lMynM2Y7u4BgcncTa02Y11cV3oWOKst7GGOIoyQocMQ9WbGQEllFqChGWIdFIVWXq9NJIu/XpS9epLn0FqIosQcTZAebJ2cfwM9LOAky0ai9beR8ie84IPbmVihA4wQs6F4PpyKIY+xkLzDOnadcTFCjEWJ9DbG2FsYq+1NwFuc82nt8XyKwuHmLWh3itvZDp+08vi6DD02xBNuG8Y7SIFXwN3EGJ2VAUKxBREn4d9YBNvhVxxG+qYIbq1LINIdqibCWKO9hJZjtu8i6wW5vo48dwzct5u4diqIge+AB4kEfH0e42SwUVFESiiDvyVfHeK1pijkyivBVg8iSkJSdKqIza7STKaK1AflpKkSdEucBxi2KBbQG4x1Cgog0SI/MEwSesi6IovubrbM92SLvDZESVkcj+llOpjW9PCcVktVMs5Ypcl8RuwLZFNQHd9m/NmW5XNJUNd4F/gfWIbwjSVOy3oAkyeiNxxw/fZrBcMhsPmNva5Pb19/B1A3GNNR1hXfgneVQphYpTdbLSbOcJInRcUwURaRpSm845MyDF7kxbfkf/8V3uDGp2FvZoLU+5B2hUEojYo3UGteWtKbCS0mUxlRtQ6JjyqbGOYc1hsrWRGkKNjQR8/IAYQ2Rs4xGI2pbkfRWabyjtgaPo13OKSe7pFpjK2jwQW2XRWS9IbW3uFjjteDYsdPcmk2Zbt3EXltQPvwoeuMky+WU+e4+PasYrqxQLSbY1iNwIf0ZQe0MQkZHpfj9uN7dCnlsMO/o9/EK2moWuv80BSFx1qBU2Jva2pIeO4YYrtGIcHgOTp9l5+q3qIxB6DiMYmfTMA7b38MfO0ZraoSwFMt98sef4lz9Hp45f4KvvXYZNZjgUsl0sQBcyBkbjtC9HmY2Q2zeRb7nGRAKO5uSnjpHm0a8tLfDg2fPB8Nyf+gZ63hpb4fN5QI/X+DrCmEs1ddfIN44SXTsLNWV68TrGxitEFIhTB0QpKJEpSmPv/dp3vzqV3jg4mnu3NR4dZv45Hna7eDqa3d2wtiqLAMSXBbotdXwTCwKvG3xAtrFDOZTfH/IbG+fC08+ifCGS9/6BulgjHWO/cuXgktyvUSIiOj8eXjnjaM7E+ILf2eDid/XxYn3LgzilWP1+JjatBjjgww3zqExFPMF1XRK1h+QjcdEccxg4xhJkrCYBvtdK8M6Vh6kUsRrfeQwQUiCDFJIWuVopCHVKSMRU7YVSZwiYwkyCXPVpmEQJfTTlMR71kdjTq6vsj4ckccRmJa6rqnbEHOeJgnrx48zWFlhMZ0x3d9la3Ozi0X3NMaxeuw4KyvrlOUdTF3z6osv8lR/wEMDxU5RcGc6Zw/BBMnBYoskznDGkMYZVVVR1jPKrc2QappnzLa2gi36+noIoMp6xFFCVRSAR24cZ+fuHdq6Ct1301DVFaZtWV0/Rt0x76WQLJdzrHXkgwHax2AccZxiWgtt+H74744K/15fpixRx9ZwVYmdTXFVHQqI8RrxE4/gtKK9cS1A6l7gnEFUS4iAgzkirhFW4hsH4xG2bXBNHdQsWgcFyuoK5tgaLopwixKVJvgW7P4EN1vgFwvEoBds3u9uYycTcJ3Po2mhWCKcCU7DQuBx4bNp2xDw5Rw0LViDj2KEVCGXR4f8J1FXeG8QsotWTzNsuYBI40cD4ihGVA3l1XeCSRRBfi5GYyKlKF5/jfLaNVTeRybBGNDO5pCmmEwibYOUHu0srrTEq+u0XiCVgL4OSIAw6GEP4TagqdBJQrayQolFrqxgTYtrC4SSEIciXuUZtmmgBar7i5ycGI/pD1ZJo4Qs0gwUHM8E64lnFDtssUs1WVDMpyyqgqooqKvA7fIenLVIJdBKkuY5/X6fJE0Zra1w5uJFZBRx4+o1rl5+i7oosNbgjO3ytEw3pgmhmlIFwnoUBbO2vJeTpBlRFJHEMcdObXDxscf4zVev89mXr3FQSbL+iJXFnCRP6KcZKorQsWZaLNlfzImTHG9alBKhk3XBbdJZaHA0ClScU+Lw1iC9J4s0ddug8gSZxrRVxbScBzWZNQilyPIebjnH1xVpmuKSjESp4BQ96GPqOXU7p5q3zKe7VOWSxduX6a+uM/3cr5D9Gz+Bb1rcyojtz/0m/XJOJWxAL50PIZFtHfZqTyj+7uslOtNHhzBLzJVXuH79VT77m7/AiXMPYfa3AjpsDe18Cb5LAnceO9mnkmEcs3drB0kEHmRbY0SEmR4AkqipaS9fxu1uI5MkZGG1LQf7+1xa7vODf+Dj3NhvufPKy7CY48opJAm10ojVVdLkGCLrgQ7J0VJ4fFNy8eGHOD8cUQnPySzuUomhaFu+deUqu29fQXhwcUTaH+EWc8x0yugBzR/5d/89/vGvfI55cQBZQn1nG4kCZxG2ZbG3g9aSb37taxzMFUr3AheuN4RmD9HtUzLv4w72UFmKjwRqdYSfLnDCBQuFpMd8ZwecIe7nXH3jVa4Zx9nHn6LY3+f6pe/QGIMSh7Jowf5L3ww2BJ3AGHLgd5aU/74uTgCUFGSrI7brfXQUHF6ljpCxwlKTHFtBjIO8tk0EjWtQ1lMbR766QtOWVASVjZUKnEApTX/YD5b3WiG0DhZo0qOFIE8z0lSTK00mIBcwVjE9KRhkKcePH2e0skLVtOzt7bG/s81OWYZuKklI05QLDz3E2vo6N69e5a0XvgZAL0vDz9kEn5TN2zfZ39ni5OmzPPGe91KXFdt3bjPd3cc4Q19IHk8jRH8DIzXlhQepnGJZtNTGslxW7E8mLBdzBisrmLbhYGsbHcd45zFVS9k2CO9xdYmOYlZPnGCwusJyOmNxMMG2hjhJSbOM6d4urWnJez2yXo4X0FQ1bdPSmml46IcrAb6OsmAqdJ+v9q3LIRPDO+R4DFmGLyvazTu4119FnT8HsxmmrpH9HtL1EJM5QkvoB2t4b2qazS1UeQxWhuhzT8LKGNnvwbCPb1rkxnHsokDs7OL397CzBcwr3GQWmOrO473DHkwQ3oUsHQ+keXBR1XGnEovwpkVojRcEW2sZI9IE7y0yTvB1BV4HxVbbjZicwQpwWLSOggtrVVLfuYW1DfnxE5CmOClwTYkbZAgBumxoigq/LGijCdHxU8TjNUjzkNejHO18jq+qMAMf9Kl6OpB1FxNoa/yywC2X+P4IeeoYXnm81szLBrIcp9aReHxbIoQ+In0a57FlE7KF5sv7ug6OD4ZsjHoczwSn+pLMVtTFnOXujP22oS2L4P1ThCwo70Kf7b1DCEmSxsRJQp5lJEnKqfNnOHX+AkXdcOPqde7evIGpK4y1QUbe+QRFSoVML62J44Q4jomSJBBClULHMUmSoqMYISWTxnB65RhffnuLf/z1KxQt1HWDVBGrvT7SGqgrqmqBlY7aB8NyFWl8nARSvwhjVCsEvdGAqG0xziCEJLUOgyXFsRINEashUbyqKyrfEjtPjEZKQW91DSUlLk2QzpH2V6ho6eUp2ksO9jcpNq9jdraJ82EISDzYJ0oyivmUBI989dvkUUr01tvoqqItGxQWKTSkQbm4WMyJsl4Yq95X7V7nSC01Ukc8+cTD9FTM1195hTMnT/Fv/sSP89//pf8PSyHBhYBVIVQgn2djTN3SW+wHe4noBObGFez0gCjNUVUD/T5yNAwI5myCEhJXt6hkxPD4aVYebdh+5be5fuUKvXOPotbHGFuRnHwUWy5wdQVRjGsamO0gHJg8RSlJFsU8f+ECP9SPKRYHzOc+uIU7wW7bUtQ16XhMubtLff0aIq/pP/4k7WzKWqx58uGL/NJvpDQ3dvHFAXI8Cs7NixmPPPE+7HzKcjrj0rdfYfjg9+PlHqdOn+LqYhsjJAhBfOwYIkloTI2dTHDzGTJNcXWNjCOctSS9Y6g44mBzB51ljDdOUu5tcv21V1k5eYJkfALX34DZLizfBBUhyDlMXPb/pylOhAChEElKnq6wnEzCHF9AozxqrY/Ek7o0wORC4YXHtAbrG4wT9POMtXhInEdoHboerwUyllhr0Tpstv0kJ0eQOU/mHQMp6UeaNFLkacbq+nGOnT5Dax13b1zn7a9/ncV8BgTnWqXD2GNldZX3ffBD7G5v88IXf4uyLI9eJ5DsYpLY0rRNCMyqKt55603eefsyw/GYU2fPceaBB/DWsr+7w+bWFsVshpSSRCl6OuLkOIU4w6tVSnsKi8IITdtadvYOsM5R1RZnHXvbO+xv3UHHOXioFwW6lzMYjxA+uBWOVldoWkOBJ9d9rDEs5jOSLCdKQjVc1xVSCZQzeKsCH8I5nHf3lXci6wZ9fB1vengLIkmgN0TVNc2lt2iv3SB+9MGwEdzeIrlwLnh97O/hlUK0FinAuwJvSuTqadzxVcTqGLuygogTVJJgLLCzi1vOYTJDzpaIlRWsb/F7+9CGhFkvQDRtKEyiBJEP8HWJSmMcLqhvtMaZFqEkXgBJgsMisiTwWSKJNw3ShqDFkAnm8MUc2hqDQHiLqyrk5ibGGRZViT5xjOziGWgM5f4eYn+ONya8lhBQ18iqwty8gRytIFZGiOEAEceI7e3g7HnyGGLUAyTUS7zykCrkeIDvZ5g8xVQlom3wkUE5cJEI8nITlHCkcSi8IokQCa6oMYP7u9V8/+mE9Z5jtrfL4vqMRYBDaOqaYrnA1NVRwqtzoYsXSqKlJssyBoM+aa/H+Qcf5MTZM2xv73P5rasspwcsJgfYqsQa28njVcgd6bbaNE2J4oQoCrwsKSVSa+IkIclyVJzgnaNwgmuzit/+1Zep+isYHUFR440lso5lW5InMbOiorAtVlhqb8gHQ+amoqwLnAvFaZ73yTokRscRTV1jXQiO7MsIZ1sWHpIkpnXgcWi9QhQlaCR4y3QxR8sIM+ijlGa/bYgGIbywWdbYvR385ibaGawSiNognCHKe3jvaWYzos//BlE6Qv3al9FJjo4ynHE4IcFLmirwf+IoQqqIurp/ReqDjz3N7u4upmlYO3We59/3OGup5+2rV7l1e5tf//xv0LaHZoAhWFNIhZBhrWgPPR+s/FfW+kzuJLR7DegxuIZodQ0ZJ5SX30BkKSrJEBZOn36QU6fOsx47hotNXvnWJbJ3tlju3QiI6HKGqxuSjVOoPKO+dTc0IpFErD2IV4qyKXjx2lUWtzdpN7eREka9AU1rqfopm1cuYecLIuNwswPqxZwHHnqSuDfm09//cV69fI2ibpBJjNlZoMen6D3yBHqxx5mPf4JqexvjHZe/8y2aFqLIcebcGW7fvIyZRuAM5c524LWVZTfa9NARuj0hrLYpN6kKiJMeZ556hupgSjWfUxzsUlkfjCOXW9jlBOF9yCSq7wCHTJOg9Pzd2Ib/nnaMn//5n+cXfuEXuHTpElmW8ZGPfIS/+Bf/Io8++ujR11RVxX/6n/6n/L2/9/eo65of/MEf5H/4H/4HNjY2jr7mxo0b/PRP/zS/+Zu/Sb/f56d+6qf4+Z//ebT+PW5gHnykEFlGNNSM8xhnGqq6DmmfQlA1LTLS6L4mVhFxGqOkJEtTemmGVoI0ioOsUGowIdtgXi2JIkEO9Ixl0Lb0lCJWEiUjoihidf04Zx94gDTPuXPzJl/70m9zsLsT/ECECJufitAyFB3nH3qQD3z4eb794otcffttmrbF2tCBee+DvDiO0EkSUImmI48JsMaws7XF5t27CCSj8ZgTp07x2FNPM+j3mU0m3L19i93dbYrFInTNSqG1Io0TlI6Js5zhisLKlMorRJRSnd2gKB5kMl0ynS2ZT/bpjcc0ixnCCYSHtrGdQRTcuXOd2fyAslwgpWZl9RiD/phBf9wZxgnqYs7Oi/+An/vnr/Fzf8bzkY98+H91675Xa8AtlzBdQq+PSBQYS3zhLEoK/ME+5uYdzM27oaNPYnyscWtjWMmQiwLmS2gcDHuIxy4gHnsA7cBvbSHiBCkUbm+P2GvK7W3ccolYzJHOwHwSZtHeBwdY70FrojSnXswRdR0KlF4WyGVxgpvNkJHGz9tg4hZHgcEuwccC6jYgLN7j6iI4gnqCi21V4NNg1OSdD6TY+QKZpcFTYNnishyV9zh24gLjZJ2sbVEPP0MUJygdcXAwJRuNuOsM836K21hDovA7E/RgAEmKWZTILAu8FOdplUKfOYWPJH4xR7YV5juv4e5uYeYLkDKohs6fQ62vgA7ya1c0uNffxG/ugAu70fb2NsPh8Hu+DprNa+zGaeAdWEPb1LR1TVWWmLbpkI5DVoJAakmahqKkN+hz5vx5zj30ILu7B7zyzW/TFiWmqVnOppTLBa0xgRAuBErJe82EVgghieMYqVSXOqzQOgIpw8jIGIrK8OlPfZz86h3efvUOhXVhrNAafNvgsNTlAukSqqbCaIFOM2QrkLGmqZpQqGQ9pNYY75g1NUtnMK0liTLSOO/GVBKhLMt6xv6sIIljpIzw0uOkYn+xYFYuAvG5k6iPByPWjq2zt7eNdI56PsHv3KG59c4RSlublijPqMslxnnau9eZHOxi6gKlNPn4GONzTxEPVojikGFUlQv23/kmi81reGtI107dt73A6Iwz7/0+ZDygl+XcVEPKWHHu2Y9RlA2Xr99BJDlSgiDCeoP3BiUjhHNc+fILvLXzHUYnT/B/+0M1//DuhNduBq9WVxXUV99GDlfw1uPmc0R/xLFnP0RSLbj2zZe5e/cKjx5fZeVES7tsUPtTvNKouEWNV0jylOL62/jlAlsWiH4PjUONV2E650KWc2x0jK98/vOsnT2P1immNeQnjhEPRrjCYRdTaAIv6u53vgPW8re+800uPnCOKImwTYNOh6TW8cAAZpXn1a99lWa2x/Pvfx9vfuubLPe2GI3g9PkLiBckQoYYC2EdUoKrmzCO9h6hdXD7rltwHucCn6ot5uxfv8nkznWaukSPT1DOppjZbjfC80gVAxJrKg5LEyETvEy+98XJF7/4RX7mZ36G5557DmMM/+V/+V/ymc98htdff51erwfAn/pTf4p//s//Of/wH/5DRqMRP/uzP8uP/diP8eUvfxkAay0/8iM/wokTJ/jKV77C3bt3+cmf/EmiKOIv/IW/8HtajBBm8PVywUxVRJEiTSNWxjnOWMDThyP0I89y0jwljmIknqa7AWVTIwFhPSmC2DnOA5lzJEKEyHMhiaRiZWWV0+fPs7ZxgmJRcOnV17h1/SpVWeCcR3ZFiZQSrXSAe5OUp559H0888z5e+tIXufb2lUAmtYFQig/3qm3DBqiUIkpShAp+JL5pA9/Ah0BAaw37ezsc7O7wxre/TZqmbJw4ycWHH+KpZ5+lqRs2b91i8/YtZtMJi8UyFCpR2DzTKKGvYxALVJbi8oT9TDBfH7As1tjbPyAaDDl2fB1vg5qlLivu3Nrk9p2rnL/wBP3hCkoprrz9LW7fucoz7/0+XNsgNNy5c4VyNuM/+o/+Y37408/xX/1X/8/vumvf0zWgI8x0CkWJOnkKnyTYWUVjaogU6uQJ7HKJiCPUhTO4Xo5zDb6oUSsrEKc40yI31kNuzsEeqjdAjoa002nIldjdpZ0ucPMpSmrUaIioypA+HEWwtoKzBl9WRIM+0foazPrYeYGIVcdLkuFw7KW4OEgI1SDHFstDMDp05UogUFDVCBq8aEHKsFF0cLWMUqQPZG+d9YmHqwyGq4xHqwwHY9ZXVlkbjll9z4hEyjBSUArvHbPpFAPcnc+5a1rmWczt29epshF+Yw0nJNHJ40HOHmn8sE+sFSwWsCxo6zYUeXv7iAtnECeOIWcF9tLb2G9/B/X934f1HoTFvfYGfmcf+cA5cA739jX+2B/7Y7zwwgvf83Vg25bKOtqmpqkbrAmBdqYzvAqhmgIhJUmakOc5UZzQH6/wnufeT5blfPsbLzOfzbBdGGdVFiGFt5N0KhU6bSlDcRJHEQiBVIHQLERwccY6rGtwdcXMzpjPZ4zGK/QHOa/d3cVHMXU5o61rIgdKRVjT0otDfhXeh/A9gnlkUZUopYnzPqUz2Lrt1FChoVJSMqkWROjOSNGQpDm9LCciJyLkdFkJi6IkjRMy5zDWYOuGOEtZNhXtrmG+t8fYO9piRjRawzlB3CUlt/MFXrTIJCNZO0Z19Q16Zx6gf/w0qc648+2vcOfV3+L8h/4w1XJBnKTsX36J5e5NTrz/B7BI9l/77fu2Fzzyke9jcPIMdZTxxb/6V8JoLU45ef4hxGAVUUN/IyPuZ/RX1ihn+2Hj9Z6WGOKMcp6xurbG5ltb7NzcCc+dEIBECBVGHEmOdw3CQr21xY3rr3HmE3+Ehc+5tO/YqzWpjklWTlDcvoL3AhElmDhDFBXtzhbkPUhidJJjnOehcxcZoWmrBT/06T/AhXPn2ZvM+eabVzmZZawMRkxu76GnDWWdEMc58zffwi42qc89zdatF+l/4Dk+/bEfZLG9xfLSZ3n0yt/n9JMXuF7couhpZncDImvm+5i8x/qpU2w8+iR3hccsFrT7e4i2RSQh1JNuPCuUQlqHF45mtotQETrJiCIHkSZJVjDLGc41qPWTiMbjigWgEFGGkPqIcyJU2nFRfufr91ScfO5zn/uu3//1v/7XOX78ON/4xjf4+Mc/znQ65a/+1b/K3/k7f4dPfvKTAPy1v/bXePzxx3nhhRf48Ic/zK/92q/x+uuv8/nPf56NjQ3e+9738uf//J/nP/vP/jP+7J/9s0Ei93u4pIAoiskSG/JeXCC1jgY94iwijmJ857LgvKepa5w34D3aWMSsJFERubNkQCYlWoqwsEUgyGV5zsmz57j48KMoqXjnrTf5xgu/xPTgAGPt0TxNdoRHKQRKKbTSJEnKBz/2cR5+4gm+9Guf4+a1azStCf4h1nR+ICLwl63FGHtEINU6QgpJoxrqqsI5AnlKynsjE+coigVX37nMtatX0FHE2toa5y5e5Lnv+xhplrGzvc2Nq++wvXmX5XwJfhk2W62IlEZpRSolgzhBDiLMaIgREbUVFI0h6fXwCE6fv8BjzzwTcoSkACxPfuC9/P/+8p9nsL5KL+lxsLfP9vZNjj//kzz25NM89Z6n+XP/7Z/lj/zhH+frX/86n/rUp763ayDSuLpC4AMRVkua3f3A8xglqKwXYMkspa1r5P4ecpAjkLi2RWcZIg2dfLt9F20sfnMHK2XgzHiNWy5IsgyimN7GBiIKHTTG0VRLpPPYk+tQVjTC4ccrJGVLvb2Jcw3We3zjsYsFostnIta4SKF6Ca5uEWULTYPXGhkJVNZHRQlCa3SSEyc5cZQQRwlax/SzHqP+gNFgwGjYZzwc0ct7ZFlGnmXoKAqdvVI440LXrwTj0RAtFau7u6xt7zCvDKeydSbnV1mMc+o8ZqotRdXQ1hVytI7d24GDCW46Q/UznJZEn/lE4NF4j5cHyEcfwX71Bex8gR/muOUC7myjzp5GJBmil+HevsbXvva1+7IXzKYTtNI0TY3r3I6FEKEwE4AQZGlKlmckSYYQgvFoxDPPf4iyqnjpy1+hXB4WIiFZ21pLFGmsJRQDQiClCBwTqY6i7L0neAHJsMcoJTuFWthH0izn2Q+8Hx1FDPKc5mCPxrU4D7JzoW3qkiRSNK1Be5BOMJ9PSXo51gbDttoYUIJqvgA8ovNNUVKGME5bULc1WRTTtDVtXRDJhHF/jHCaermgqZdUTYvTEPf75HGK0oplYShmE+SyYHbrClQLfG9AcvER/GLKdHuTOO2hhivUeYZJclae/BAijkhlUGU9+Pwf5Dv//K+yXB6QZivUTcX0zmVOvu9TjE5fpKkqxBPPc/eFz96XvWDj/FnK5ZI8y6j27jI+tcHozAme/bF/kytv3+D6P3uLXi/mkY9/msHJ07zy1Zeor1/ixBPPUBUhEDWJPcQRt/ZXGJ57D+l6hfFgqh54j5Mal4ScM0YjsizikQcucPPVF5GPfBgTxxAvyaKUAwu6Nw6ZaqN1fvBHfohv/fI/451qSf7Y40Qrazw4XKVuan7i/R9gFKecOnkMMd1nf3uf0+Meax95H4OVde5UFa9vl1y+sQXFAoPG1hXehFiAePUY6WDMk488wHcOtpi6luHYMtRXefJYD7Tg0jvTbpw8B5Vxe3uTWEh8WSLqGi/AeXsUi3E42vGmwTZl8Onq8uuMsVx/6beP/gxA9VeI1lbpJ5q9y0tES0hTd++CSXSOj1ehufY73s//Q4Pg6TS4Pq6urgLwjW98g7Zt+fSnP330NY899hjnzp3jq1/9Kh/+8If56le/ytNPP/1dY54f/MEf5Kd/+qd57bXXeN/73ve/ep26rqnre8Fhs9kM6KovJUnTnOPjlDiNCAFfdLbrhqKukV6gvEC2jrSxRK1Fe0dPKTIBsW9RXfZGqAs8cRRx4uRpHnr8CYYrK9y5cYOv/Mavs3XnDlXdBH+V7gqbluwUhCLwSzrE5GM/8BkefeppvvArn+XG1Wu0rekyJgy2G+cEUl7IVpAmWD8rrZAiSALjOAkdW13T1BVYe4SKOd/B1d6Dt1hjuHv7Nndv3+Glr36N4XjE6XNneOjRR3nuIx+lWC65euUyN65eYzaZsLRlyG1BEOmIJAlptVJKeloz1BGuaREqot+T2MEAg6asKpzW4MLmceLkMVaPn0ReUyGx+fQToeNH8sCDDwDw4osv8qlPfep7ugZkFCOzHq4qYX8/KFiWBTKPyY6fobeyymQ2ASewVYPuCVLdY1m1wXtmMKAul8RZD28dsixwsyXZ+jGq5QyRpkTHVhDekY42cInG+mAnL4XDCojiiDZWeJ0hvKOtK1y/h0jPI5oKX5YQ95CmwUcaaRxqbx/tQip00hszQBE7iZIqFCE6Jo8TkiSMI7M0JUkSkiQhjmISHUYHqkPElBToTuXjrKFxlrYR9NKUqmpwniO7dNEpSdZWVlDzJbGQDMuKcr/E7he0AtooZ+4jprsts5nDxmvUx8c4Cc60uGKO6m9g5lOMmSC9wgJ4jWgEclKHg/rYiUCqi8JWc/bs2fuyF7R1g1UWZ00YwQiJVKHAVEqR5Tl5h+4iJf045vmPfIT9+YSXX3o5pDNbS13XOBs4X7ZtO3t5h1KSLvAkGE9phVbBC0ZqHe5Dx0Nx3qNEKF7iJCWKLdev3+Dxp5/kmeNj3tifsygbXC/DW0dVt2RJRj/VbO/thVdRCmkaGtPS0NK0wSNCCEEsI2zboLXoOEwSZzyJTgCJjNIgS3cCESmWVUldLKkm++SDIU5r0tEApySuqWlnC0RVMc6HzPf2WN69jnDQ7G6TnL1IO1hB+inRYEyT9aDXC+NHrTCzGbFOEEphuqbKaUW+OmK+fQe8Y3jmQayQtN6SDMb3bS+Ikz4HW5uYeYkrlkRao1WEc552PkWahjRfIzl5mpWVPkJr0jMX2XjiURa14+6Vm+wXLaff/zxfe+1b6HPP0ty5xeq5C0xu3EIttlk5uYH2krYuEUmEEPCeDz3H/KsvMKsrcIq4N0QA5596hl5/yGtf/GXSNOHG1haFNYwff5Lz7/8gTzzwMM898jDXLr3JhpY88vBFXNPSXxuxMRzQWovuDXBC85MffJbf8vA/37gJJ0/wkU98P4vtW1y+9CZla1EO7NU3eWN2h/nuFpU6zsrGOWy7yeuv1bz3mdM8cPEppPznQUlTV9x4820u//ovY4vgWySHfWxZI1qHNwYhQHqB7Xg6OuqFaAIs2fgM1lS4usA0S3SckR07T3L+HB948jSfv3MVPwHftuDlEToskxQX/+5cgv+1ixPnHP/Jf/Kf8NGPfpSnnnoKgM3NTeI4Zjwef9fXbmxssLm5efQ1716Ih39/+Hf/quvnf/7n+W/+m//mX/l3XgjiNEXLlmrRkOQpogXhBK5u0WVNXFbk1pF5T3rYUWod0BOpurGKIJKC9WPHeODRRzl74SLz6ZQ3XnmFa29fYbZYBMKZd4c2PyE3Rt6L3Q2JvQlKB9Olj//AZ3jyve/nhS9+nqtvXQ5pxc6F+bd1QTHQeYB4H0KyWtGgRQxW4EU4vACUUsSdCqBtaoIg71Az7rHGhYC4TrLnhcA4y+7ONvt7u7z6yrdJkpSTp07xwKOP8IM/+gwCwe2bN7hy+S3u3r7DfFkwW4Yxg9aaSIVZutIarQNXJ/wSpELijObv/8Lf5eIDD/Ds048xWxTcMkukUiSDleBzQvALAdja2vqerwHvPcRJqNC9w+9sI5VgdHKNer6kjCJGWY/eiQ32TU0kNeVsSppm6CSmPJigJFhfoIxHW0E0HlNNJ5DFEKkQKrisiCOHmUxxwtFWFXGa48uWcrYIoXltg12WSKXxKxqVDyHroVJHun6CUdZnrFPGPqJvQmCcRhB5SKQgTwIilUQaSRgdjIY5g36PKE6OOBOB2qKII4VSAcXxHYoWHK8DeS2KFBurQ+5uTwCBDxHWOOex3mOtpW0tZVVT1TVtVTOdHDCfL6nqhqKEYulo/JC2gZltqaWkEI7SQjlpEIXDN4r67cuI8QoqHQbSqYhBCNRgBaLO8wY4duzYfdkLWmuIZRjbpEkChEZBCBEya9I0JJULiRSSR595mt54yJe/8tt471BK4Z3oPk8QJqCf1powFibsea7LNKJDZaQK0ReHj6PvPKaEBJzDtDVSag5297jyzlUunFzjwTevc9taFlhq5am1J48VxlqyJKYyFiWD7HaxO0VoHcbAbUs2GCN0DCginaFk8M3JEoVWEYlzIZvJGor5BONron6MMRUi1cT9XiA+d/tN1PkqaRMsGZTOSfqrZMPVQBjPEmRjQIdMLpoWqjZ4sWQRPa9oiyW2LNi69HXSlQ16J05ihMSZGiEl2XCAB9pWobLhfdsLojjh9IVHePlrX0YIR1sWRFKynC2xyxqtY1zbcuvll3jgR38ULzy+bUi8oMozMqmJVMx4ZQWMZbRxir29LdYee4a7dw6wThIfO4NKEg5efwXvoNrdZmogSldJlKDXT4itp57OWTn1IPP9A55+9lnWTp3BWYc6dRaZp3zkPc+yOh7x8LnT9DA8cPEs/X7KtXe2+Ln/119mvrfLhz78If7Dn/4Pqa0jihXPPPkI/7633Hn+Awjh+Xd+9o/xWy+9zq27u/SSiF/+e3+Tz3/+S4g4Z22Uc/7ieeJ8QOOuM+hbZkWwkbAeWjVgtxEkxx5C2Yq6qan23umMrFM8Em+be3wUqUiHJ2jLOW0zRyVZGEPHOVoqov4YdB916ybjxx5A5zlm3nbJJaFJRYRzRQ1S6u1/5a39rutfuzj5mZ/5GV599VW+9KUv/et+i9/19V/8F/8Ff/pP/+mj389mM86ePYtzHmccNDVtVaGMwc6m6Lalh+/cYgWRECgpkEoTHXowSImUIeMiz/s8+PBDPPH0e8n6A66+eYlf/ce/yNbmHZqmpbWms6041NDTFSQeQeh2dRQRJ4EUlyQJf+DTn+Hp93+QV1/+Oq9985WO/Gq67AfXFSnB7+Lw8EYRXEWFwTuPjhTOGJRWRw61WodqXSoVJLwdm1oqibcBiXH4YOQFR/Cyx9M0DcvLcy5ffpM4illdX+eBhx7m+Y99nN6gz87WNm+98Qa3rl9jNplS1xaKqkODNAKPjjRJFBNFml/4lV/nzu3b/Mf/l59EH2wxdo686YqbIL6+91HdpzVAv48XEjVeDYhTkrD24HnMaEiS5TTW03pBZS1r/TGTxQSVCNpqgaeHsiIQkl2LLSuEiIIrZNOCS3GLGTrv47WgagJ5zs0r4iQjJqE0LdYCDmxpUURk+ZiV9bNsDNZZyXokOqaXZAyjiFGaBgkmYXwQRZo40t2YLnTvw37GcJCRRDG1Ccoq2xl7CSGJtCRSCq06QLUjyBobvkeYkwdS2my+pCxLpAwhgu8uhm1rMW2L8pZESfJBj7XVPvt7E6aTCQf7LdK1WB1jrSMqW+azOUnT0jctRVNTO8PW5ddgPid/38cQNsIqaFxAGawNB7ttvzfOoP/be4E7ysjygFLBpThJEvrDAVpHnWsxWN8ynR7wxqVXmc0LkjQNnwmepg08NCllyJ/qfEdbY/CEWAbnPYnP8B7iSCOERkchT8Y6h8cd+XmYpsXRAILP/+rn+eEf/cN89IkHuHz9t9k3joX16CihdIZ5WdAUy5CfJTW9bID0sFjOQ2p2krAyPk7rQrpxrCPapqUpC4w3WOVC0ZpIkmxAriMQHqE0/WOnaaoChyDv5cRxRGNbtJDU0xnZICHXCXo2Y9pfBRmhRms0bUU26NHgiAYr9I+fZFYsiZQOSbhtQ7Sasv+tL1MvJpz8yA/jPaS9nEWkAAFSUJYFWqkwmrpPa+Ds2fMMV9e5c+UKH/lDf4TWClQ2xO9ts7HaJ3nyUYx3IGAtjTlz/iTtHcsjjz7E9vY+8uSIXnOG3jDjxPE1BjH0Tqxz+vgKB+fHpGd7HDt/kmpniwvvfRzjDG1xnI0TpynqmjjJUGlOWVratTWIR9zdPOA9Tz3Lj/3RT5L3eqRxAsYyXluhai1OaM4+/CiV8cy2p+xM5iihyAZjrr7zDte39sn7Q6K2IY0TPvGRD7E32eObL3+LX//Nr3Dlnev80I98Buckux//JHc2b1G3IJXAiofYqTaZNwUbMmexvRmmA1hQKQUZ6uwjDGKovv0C/d4QYx3WOLzUWFuHsY0QoaiPMrRtMG1BkmaBR+YcWq+TnT9PtH6S8uZXEFIieglSW1CS4eA4s80bxL0x8epxvIqp/3fu7+H1r1Wc/OzP/iyf/exn+a3f+i3OnDlz9OcnTpygaRomk8l3oSdbW1ucOHHi6GtefPHF7/p+h1X04df8y9chnP0vX4e8ELm5xWhZIQWkUhBHCoEgiqIQ46xUcDHVGmMtyhuiNOHs2XM89tTTnH3gQQ729vj6l7/CO2+9yXw+PyoefAfTHkKqoa2iY+VLxGHRkySha4sjPvbJT/PeD32Uq5cv8dXf/E2qqsIdEl99QF8ONzk6tMN3jjvKg8UgIkHbOJRW+NajdODNhM1XoQkHlZASI0Rg6dMlfjoXxk7eH2U0BEmqw7nQGda25u6d29y9c4cXvvJlxuMxFx96iCeffpo/8OlPMTk44J23LnPtyhX2dnbCe/AOV4ZD8gtffZG3r93gj//Yj2KMYX9/jzRJSaLgoNuWC2AlZKx012FH9D1dA14gjg8Rg5w0H9O+c41CRbQK8jwOI72VITqOqfan1MUUW5YoqTClwbcGU84RDuK0h5tPMXc2kaMebrPGS4k8eRKfZaAFTrQkwzE4qOZL0v4qvRMXGHhY74041hsxVDEJkkgEqXqepsRxhPCgdUCesAHlKKuKqm3IEs3J42v0+z3qpmU6L5jMZmFUeEiS1oHUqaTEe0fddMM9H9aoMQbTmqN1YlQ4YJfLCtVFDwi69QAh3r5uqZsGa8NI0FqLtY5er8fK6ojFcsHW3R12dvfAGtJYowTEEiIBV159iXpvk/NPfxwtMtraYaRg6SIOvEMvm4Aq1SHsa2dn577sBXjCZywOvS4UkY7J8ryzCFAByTAG4wxPPPMMm7dvhxFQ29K2hqoqQzfYPTNCyuBwqlR47r3ruGISawxGClyHrCTdz6aVQiiF0x7rHFoKiqrLuLKWf/G5z/H9P/AD/Jl/94e5fP0Or13f4qXNCVteUNUFg/EY0zokksgr0D2ifoJREnQMUqOVpJ/1cc4T9TLytE/V5XrFkSJJE1QccXxtDakFtjVEWmKaJrxfJVBCYExLEsf0bYPUwYbg+vY26YkzHD9xitWVFa688R0sDsZrrJ+7gOgP8bMpbb2kWi6RWcb2t75CcbDFqU/8OL0kQ+YpKo6IRmO8s9TzGW1ZhPvQNSz3Yy946PQG6WDIj/3ETzBaG5B4WM4nnDl3NjRKHso2ZIMNej1+5GPPhkBTrambOnDMbNin+Td/iF6ehkgOJPzYcwyj4F0kIORyEZycnQ+Fbds6yrphbzqjaZvARfIf5uTxNcajPsu6paxbamO4dveAnYMpSdZDC4XAI4Tn2MYJ/u//j5/DWBvwBhVhW4drLFoKnC0Z9Uf84R/4NLEOFg46TjBesLbyR+j1ImKlOH1szEc//lEWxnP5nXeYLWb01jb5mP0Ws/2CSsW8/8PvpS0fYTKd8NZym7aYMNnaIh4co9jfwiw9+WiVYrobSL1S0VQLpJRYL9CDY9imxNYNzXJGsb9FM9lh//YdzHwZFD94ykWQ3wupaXev4v3vrlH5PRUn3nv+5J/8k/ziL/4iX/jCF7h48eJ3/f373/9+oijiN37jN/jxH/9xAN58801u3LjB888/D8Dzzz/Pf/ff/Xdsb29z/PhxAH7913+d4XDIE0888Xv5cUInKSFxhswZpA4PbihMgtGQinS3mXukd6yvrvLIk0/x2HveQ5wkXH79Nf7RX/+fuXvnNnXdHvFA3vUSgOgiYQ8LlACtK6lRUShMvPckkebDH/sY7/vwR7l76zq/8dlfoiiCrv8QRXD/kpW79z6gMs6Fbjc0GpgOVjbGEEURxtgjUzPRuSAGJCV0pkiJMBZLCwTHSmc7J9J3v5azHZJhO7++UNjsbm+zu73LN194kXzQ4/TZMzz65JM8+8EPAXDj2jUuvfYq169e45/+6q/z9rUb/Pgf/AxxFFGURZi9yzlpkiClZH77Naw7g8fzzjtXAfjgBz/4PV8D8WgQPlfnEeOM6MNP4a0nswIV9wIJ1cNyWWIXByih8LMSORxgrcdP5gjTEnmNu7sVZv1RH+dydCuIopiojUlW1/DWMBitsTJeJ1OaUZqzEmf0dIx2HmEsSkAaJ/QH/c6C2qGVJEkj8IK6aaiqFmdalJZsrA44fmwFhGQyXXDn7g7GHc4FQpGhVCiCfVfMuk5+fihB98515mCBfOa7olRpycbxMXu7B6HAkTKYDR66ojqH9w5jWkxrAgm0cz01naeHVJL19TVOnjrBbDbj+vVbHExmeCG48eaLTHdv8/SH/iA6zmjalqpp0Mai4yEHQpAd7BKPj9E4wR5w8+bN+7IXyI4T4pxHKtVJfhXeEw77sNiP5PtN3bB+fINI65BBpQRpmmJNizEtzkIcp3gPy+UyjIi679+4hrppgsFanBAncXe/BEnSOfx2DYh1DtM0OOdojaEsCv7pP/hHfOgjz/Pc+57hgTMbnHj9Cl+8fJPbcUTrBC5LiFSCXQqyOGe5XOK8oXUti3JBHGdMplPSNEQHaB2jogQpBI1UwTjROeaHBYhWiEQTRRolQyE7yBOkzEmUpBed5mA6wdSGM488SC95imOrK9y6u8nJBx9iMp+R9vqM1teYVAUWi057+Lhl71u/xXLzGqc+9qOofISKNHVVce78g9jQxbHYusXw+BmKuqCc7923veCNV79D3OvRNg3ccmRKsHXrNtdu3sZ7h0NimhrTtmgkjW2wBCfug50d0rxP4xy2dTRNgwwx4FSmxraW8WiV2rSsjFfo9fr08oxev0eepwyzlEGWksaaNOsxHA2IdfCgqVrL7Z0Fu5MZd3f3aRsbmlopGTpBP8vo93IG/TxI033w4orjqBv9Az4U1nVrQiFd1MRxQF0doYk9tX6MP/EnfpI7W1t8/aWv84VvvcZoNGS4vsa5i+d57gPv54/+0R+lqVv6aUIvz0i0whnL5P/6R0HAt968AsMR29t7XLt8lW99+3XasmJ/a5sf/qN/mNWRRruWsvEsioKyWIKxLKcHlNUM6d7PieMnMMZiWk9TNxR1S7WYoPIR1hrGp8/x1X/wP/2O9/P3VJz8zM/8DH/n7/wdfumXfonBYHA0ExyNRmRZxmg04j/4D/4D/vSf/tOsrq4yHA75k3/yT/L888/z4Q8Hr4vPfOYzPPHEE/zxP/7H+Ut/6S+xubnJf/1f/9f8zM/8zL+6I/rfvcKQV4p38z9EYM3TFQLO088zzl64wNPve5bT5y6wu73FC1/8Am+9+irT2RznPMbZjnncRROJw+yeQypPKEoC8V+iYo2KAvHVe0+iFR/40HM8932fZD474Ff/yT9muVjeI7oKcS8Mz4euKryDrnjwXZKvEgjvscaEBSyCGZySEmMNSsgumUAgRPfzShlyODpVkicYpOPpCEwdlE+wTj8k0B6OivCii293OAGzg4bpwQGvvvJtsjTl5OlTPPrEE/yBT32S//Yv/r955+Zt/vM/86doiiW7O7uUZUGkdDj4nOfhCxe48o1/wlsfOMN3TsT83M/9WQCee+657/kaSIZ9XJ4GPsWsQJ9eR0YpZrrEyhbGfWabd8l6KzR1i4o9cmVEXZRIHaGyHnY+Q/SHyGzM+tox1k+cJhOaU/0BwzQjioPqy3lPHGm0kJi6ZjmfI6olcWbo9/r0hn0ircP9c5a44x+Z1rBcFLSNQQjPoBdz9uIp4jRhOlly884uTWtxPnCMpJDBi0GE+3+4PjyBh3A4wjgsUKy1R5wTui7OO49ykhMba1y+fJ26bkPBrhR044lDMrYzjqYJ/irWdpbs1tG2DcZYZtMFnmDodfHBizysJP/k7/5PbN9+m6c+8BmiOMa7Fi09gzzFERCF1Y3zTG+/ybqOiLqi/IMf/OB92QucC5954N8EPo12uns/JToKoxctNXXV8M1vvMz3feLjXHjgIpffukyaJqgowrSSVgVSd1kUtKZFa0Vd17RtsOBv21D8i7qmTRqiKpig5b0e3juizswxZDfFDAaSqq5DcJqQGGN54Utf4ca1Gzz3kQ/y6Q+9h7U85fXr21wrDd+ZlRSASWOaoqKqq5Af5iVNuaRQJVrHNOUMpMC2DdK0JHFKXc3JkpTKGMoyQXrP/nJBb9gnz4KFftgmJTqG0nrSNCM3hmUzY7S6SpzEFLHk1EPnKDZWGS2XOG8p6oZYpBwTGzRlzaVX/gmTa2/w8Kf/bbzOKKslsyYEpm5v3qXXGzC++CR3v/mbVA89jc4y9t761n3bC/7G3/oHWBdMDoX3KAHlwQ7p+onwfpMEhCWSmrw3RkeQpxm94QjhLMMkIok143GfKI0ZDfqsjfqkkSSOIwb9AXmSEOnACbM+mN456wiBmRZjDXXTslxaivqAvemCvWXBomxQBK7YqNdj2Bsw6OdkaRAgJHEUUBgIfknO4zpukHOHvxyKMDqsraFsWpJYE0VRQEa7c3BluMIP/8BnqOuaO7sHXLm1w/7BFZq2YVFVNOUSmaZEUhDHmkES0x8MGeQZddsyqiounFgjwnLuwukQXunh4rmTpFmftONsVtaxN52wMhoGVDhSaO+x1vFvSQE4WueprUP54K5urGG5XPCHv9fFyV/5K38FgE984hPf9ed/7a/9Nf7En/gTAPzlv/yXkVLy4z/+499lwnZ4KaX47Gc/y0//9E/z/PPP0+v1+Kmf+in+3J/7c7+XHwUISEDrIJXyaHQTNuCgcDl58iRPPvM+Hn/Pe3Dec+mVV/gXn/0sd27fom7bQB5FgBf3kA08EtHB6WF+HUZuoRNTKoyHVCdxE4CWgvc++z6e/+QPYazh8//0F9nf2UVF0ZGkMUiOu261OxjcuyVWHJJiA0wYCHouEBeNhTi4T1p7T2qMEDh/Ty0EEMtOOtkahAxqEm99N+bhsOoK77XrnA/fiCAUegECDZ9HWRRcuXyZt996C60Uf+Nv/S8A/Nyf/24Pgn//j/07nDx+nP29fZ57+mm2oz3+xv/43/PX/4rj+X/JhO17uQaapiEej0hObFBPZzTzGikq2qZCyB5xY8HL0E2pMOYxeNAZUa9PvnYc5ksyqzibjjg1XiXPUrJEkypNVddBrZRa0igCYyjrAAFvrK2QZxlpmmCMxbYNAk+SxF0hYZlOQg6LknByY4WTG6tUjWFz64D5suoKC9+pbjTWeg6dsZQQocC2nWS1Kx6CcV84jANfyR+NDY9GeM6TJBFrKwMSLZkcFLRRUPdIGXg2xgQPm8BRkbRtG9altYG8bR3OmjCHdo66qphMpgghef1bwavkla9+9rvux0NPfZTjZx7COc35Rz7Ajbe+wfY738L7MHL823/7b9+XdeDoeCadrbyQMqCgrTnyIWmaNviTJAk3r9/kYG+fZ5//EE1Tc/fOJmkWUoMpSsCHHBNnA2/EBT6LEBIpO/SlNSwXS5IkwXlHUzfUVUmv1yPNMuI4oBlIySCJO6SjpKqCTPnmzZvsfnafiw88wHve9wynjq/xGy+8ykG5YLNumQuFFIrRyhrCS6qmQQlN3ZZoC3VTYDW0ziBdCnqM947FckZTFShHQGSB1tRMD9U+cULc7+G1Jk1TjmcpQ50gOs7BOMmYmYJWhmTafjyirht81DKQYIqaiViw/9YrALz5y3/zu+7F+vs+QdVUHB+tMXz0fTjbsvfmN/HOkqwe590pS9/LNfCDf+gPMl5dI41jkkgTaUmiJXGaEamILAlNhhKCWEehYFGHtg9gnEMJBSI8u4KQeu9tQL1M7Zg3NdYGT6vGmO458VjXcc8Iz2rVGFpr8QiO9QecGh+OHAW9PDsqSpTSQQnW8ZzoZLreB88sOHxE750X8WEWkHddE1F2arHwGkoKakAIxcbaMU4fO47Sh2dZIM9XdU1R1UxmM7Z2dzmYl9y+u8f+dM5sXlGWJdu3b1KbFtfUiEQjnKPFEscpaSyhdVSLBYO1NfK8z+poFMwe8awdW2WQ5cRpiHToZRkrgx4O2Nnb+V3dT+HvZ2Tsfbpmsxmj0YiXvv4if+bvXyK99HkeGzfoJGV1fYUnnnoPT773WdZPbHDnxg2+8ZUv8+Zr32E+m3UHMkd8Dwcd8iLv4QuHSEy3sSgZFtAhoVbpkBkhO3Os9733PfzQT/zbRHHKF37ln/LVL/4WaZZ1SIU/4gQcsv2d80eH0iF2EhCZ8D2VVPeg6ShCCkFrDEkSB9TEdQsZ0UHH9qhbRIB3wS8lwPMm2G53r2e7n+FwRPBdI6x/6feHVUx4qPzROCv8W0jSiFOnT/PIE49z8dHHWFvfYDad8trLr/AXvtjw7314yL/xmfczm8145j3PMZ1Ov8sd9HuxBvqf+jTR2hqml9FfX6FdLFnuH6CVRsQh1AwTsoNklKFUQlsWSJWQDldBa9byEY/1RhzPAqxqXQiUTJQmTSKsscHzQwpWV8esrqyiVCBYeu9I4qAAa40NBOqmDTHxAuJIcf7MMcYrQ/b2pty+u09V1ThHh5QECfchf0lL1RFfA2onpQx4V3ffrA2vcW/9hDXrOvREII4KlCSJ+Hf/rc/wK7/2Ja68cwdPUKcdytQPvXYOVT5CyHAIuYCatE0Y75h3FUStCWRt2ZHker2c/qjPaNjjYDLh2tWbTCeTDokMabnOO5xp+daXf+l7ugbevQ7+/H/+n5PGyRFH7HBzP3wGtdLkvRwdRYCkaVsGwz4f+/6Pc/zECV752kvcvnWLKAqjVNMYis4gryxKluUS21qKsiSKwpqwztI2DdY5VBQIq7orhKI0YTgYBB5KFHfIV5By13V7VKCEny8Ywz3y2MM8+MgjtF5y7e4elzYnvHxnl1uzkmVtqFrT8UQSpA+E/mUzp6AJxVjrOk+xkCTurcOXRUASojhkpMrw3pO8T9zr4QXkUrOS5gzyPkmiydKImhaJ7SwSPMum4fhggC8qbt64SjxYC4olL2gqw+1bN7FNE0IiTUXZVvjlnChWxHmP2hoSrWjmE67+8t+9L3vBL33tddKsF0azHXrpnO+eia4384eHvwvGm1JgjKPtEEOJpLXhvoY4grAHBgTTo6MIpVVnomnRqkOrfXD4bpoGicAB1nnSOAlBtEox6PeRSpLESTe+P+QtgpbqaERb1nXw5UmSUBAjArLZjQpF15Aeemx5F/bm1lgOCdxJHBF3JO3DXlYqxWHsaPDwCnuNlPfOQIfHdGPiujHUbUtZ1iyWFZPlnEVRUC1L5uWS6XJGVRYUVYk3Aqyn8B5b1zRNjSkrinLOcrmEJgSXxtEA43pc/fW/8juugd/X2TpSBjncaDjgg88/xBPvf45zDz1MVSz5ztdf5Bf+l7/B5q1btE1wYnX4o4Lg0LOAjuTqOq+RI0KdCOMSqVRg/0eBVCd1ILwppXDW8MQTj/HpH/03SNIer738Ii988YukWY4QnQoEOvnmIRTfFQiHxVGH3sgOuThCRpzokBIDKtymsqzIOmWBdWHjQISuOxDdVHfQhLj2QJhVKBVUGbZDbw6LksNK3LugHjn8s3dLpSEE7Eo81vmj94UQVIXl7Tcv8+altxDys6yMxjzw2MM89OAD9DIHXnQS0u+FXudffUUPPojHEVUV5WJJnA/JGwtO0kSapH+S8uoNlM4hyvFtS75+mrXBKufyIUMpiHVMP45II4UmdFPWWKxpcK1jZTRiNDrVFX6+U2J0haSOaBpDWdbB/8ZatJSMxznnz50gy1Nu397hG6+8TVXWWBsKGikDUoIIIzWBQ3pJ62y3tu+NFJ1zuMNxTsddOETfwv0LBcRhl3xYQDoXxolJmtBaQ9OaAC13BoFCdGMi746C8AR0hQhHBe+h7N3Z4LosIRgIWsekrplPF2xKwXDc533vf4ZICa68/Q7Xr92gdg7jOgXZfbwaY5HKoLuRTNO2pFGEdxbRSYLLoiRJHUmSkiQxi/mC3/jc53nfB57lvR/6ACdOneCtNy5RliUiEiRpZx/e6yGkpKoqhFSUdQUCoigK41EbSJZNVaF1cGlN0oS2bkjTEPqXJjHIIM2P4og4jiiLEmsdCImzLa9882XeePV1zl04zyNPPs7jD53lo5MF33nnDm/vTPn2nR0mpaaWmiiK8Y3BNwJMcO9UThIpiVCKuq4QzqKykJklhcRLj7EGgWO+t43dcRhviXXKvL+K9qHrPvvAOeI8p5emWCwi0SRKc1CUuNbSXztGFGfkSUJbG2xssSdPMz84AOvY3t1k4/hpXFUxn+ySRT0kNZWtQaf3bQ1MZ3OqxqKlxvtwyMdRBD64gZvONfzwCHDW0lhz1BAkcVClBZ8nEcakQqOUoLWWPElwBCQ71pq2O+qb7rmP4xgZhyYjigJfJI4jPMFHKo40XgQSa8fPxXlPliV4GZrmxhgWy5Io0iQ6wrtAQjxE3O8JNYKjtHcW76Fu27BnS4G1jsViSds2YQytgwdPpINfUjj2BG3HW/QCrHVhOiBVVzBJ0jgmSxJWB4OuMb13RjoXzi5jHVXTsuhCZJedLUFZh9Tu1jRM5jOm0xlbezvMdjdpcFz9XdzP39/FiQAl4A/9xI/xh77/PVx7+zL/9G//TS595zvMZvOwsfpAChWHs/vuEBad4kHKUHzIrkg5RC+s80QqqH7CnJ57BDsTJMEXLpzjUz/yo/RGK2zduckv/8I/Dlv3oaSwQ0xCcdIpJPBHFTAdguOB7p+F1zYWdPfzWI8gcE6sMVR1RZokR4ekUqorrOj06BKcParWwWMPkY+jyx95rBwdcLw77uAQTvRH4y5LeJi11t1DKwh1uj/yTDjY3+frX/4qL/32l5nkH8e5LHAh7iM4V8+myKrF7U9RpzaoZw3COOxkil8dsaAgP3WBXGiS1nNmvMqxOGM175N33YUS0FYlbR3gzDiJWVlfYzQ8HoLTmoBWSBnMyw75J3Udcpx0d288nvW1IQ8+eJooinjn2iZ37+5RVs0RV0RJea8osQ7pBF50cj0d1qFUgV9kGwsuWJmbrlO7N8bxR6ovOgUYLsQ50JE3pQjrL42T4ErsD71NDEq1YVMmeIQcKrvCfT9Uk7mjwt06cyR1PlwX4ffmqAjf2a7Z294nyVLOXzjF008/zubdbV577XW2Nu/etzUAYfxyqEKKoxgpOEJ6FAG6d85RdRlRea9HlmY0TcNLL77E9Ws3+PBHP8xHP/n9vH3pTW5dv9F12hV4T69DMq335DKjrmqqToFENwq1zmKrgEbVdcVisUB1BnpxHNMfDEjTtEspjhiNRljnaNqAtMUqBym4ff0a16++w+rKOg898Qjf//R5Pu4lV25t8vLlW7y+PWPHWBZaEkuNjzKssST9PmW1pDEtqvNvkkpjmqCacG2DsS22rnCtQQuN9mDKGbNlhXCerDdgOVtnWTvuYhmOUqTyZFqTxjG9RBLpEbmOKBZLmtYwW1bUreHUubMYY0lGQ6wQVEVBojRaSjyKumgxVfu/cxf/j127+wdkaShCpJS0pqGpw/1uTUsvz4PJYZc2X3cjv6ZpsDaMOvIkxXpHHIfIBwgqlV6SYJ1HScFkOsN3I3DnQ6EiO9fuKNIhV0lA1HnXSBH4Wl7AbDY/8q4y1gb0Ik0C6uGhqCr2DvZJkphY67BXdON8iQh2Ac5RVYcKvICgRCq8lnCAt2it8F4jlKYsK8pqihSCum0YDwakaUKaph0Hqg0eQJ6j3CjHIWJ0CLt0ERqiazcFIaZFSHpJzDhNUTooCaUQGO9o2sC/mVcNs6JkWhQY27K7v8M3/r///e94P39fFydBSKP56r/4F7z9+b/L1s4erpNDHiIEh8VImDsfOsCGqlhIEaYV3biCjoAoZJhBHhYmqvP1CAeyB+fY2DjOD//RH2Pt+AnKYsmv/dI/Ybks6Q8G3SYfNiwh5BGvI1S9R/hi95+w0Vsr8M52TpQEuEKEICZjPFEc8kHapkEISOIUY0I3LEVYFI0zOB+i0/EBmo+iCOcMWul7n4PpDtPD4kSGKhy6AuVdRdUhCfhw47dd92w7EhgdKUx0D7EQMoy86JIn34VG3Zc1YAQ+ypBDUDLHNjWmbjueRsw4G7MWDzmdDTidp6zkOZGOwDts21Ic7GPbGimC/8O5Rx4iy3OquqYqa1pjSZKUPE2QQlJVdYB0D/kfbUuUaB64sMH5cyeZFRWX3rrN7t70SAHTdkhLHEdIqXDOo2QoVC0e4YKBnzXBF6BtW+q6DgWNCcWH9/dM9kK33a0h58JoxruwdgUcdofex8yXJVkvxza2I2GHYtIYQ9NB1YfkaA5rWO8xxtIa242P6NQ9h6PBQJg9vJrOw0R00evNvOXVV99Ca8Xq2grPfehDWFvzylf+2X1bB2kcyJPOeRofvEq0jhBS3WtSHEipuigIR5wkaK2xzrN5+w6/+tlf5fGnHuOJ9zzN2QvneevV19nf36MoQtHaGwxQUURZVvjuwVBKYozrZJZ14HYp1Y3MPG1bhjFZE/goEKSwea9H3usTJ2k4DJTCNA1N1QTTQyGYTyd8/SsvIMTXuHDxAg8/9ihP/sBzHMyXXL27y9XtGa/dhNcPlrhBRu0sXgYn4qZa4q3DFEtM25LmA6Kkh2orRNLDFEsSFVEvC4yxaO0xdUOTGHbubmKjiGw0wOYpK+MVmqYO5m9asTNfkmuDmZcs9iYIpXECls7R7/UYRzEHkwlCKY4dP8n+5AA5iMgEzJb3L5V4a2uLlZWQ2uw9RFqRxjEqCt5Qxnpipdg7mGCcI4lj8ixHSUk/zUOhkQYScUAK/BF6OJ3PQzBrFAUFpVaIKCbPc5aLZWgYj4gBocCvrQ3IDVC3tos7ECyKgkgHImu/l3euzQLrYbko2NzaZm1tlSxekKUxSZJgraMxphu3NHhrUELQdI2y1ZqmNQEtieOwxygJbWiqnA/O5RGC6XzJ9Vu3sNawtrpGmqWkSXKE9jQdwhR33jqH3j9RFBO29874k8OmHpQI0S3AUYESRcFpfJymrPZ6oUEAFvN/tUT8X75+XxcnPjBHuXzpMk22CBJMDjv1bmTRzedC5DNHMzwh5NHIwQNKdIZW4pBjEYzHdBx3nZE4gstPHD/Oj/zYj3H89Fmcd3z1C7/B25cuE6dx1xHfU/6EjfEeWuI7eeEhqhLMt8LrIlXIMxCAsEdFgZQymGVpjbSSpm6COkdK1CGfxQcJJSZA2mEsoO5l9QiJlO7ovckOuqNtO7g+VP6HqiDn75nDySM+ToDzuo/p6LCCTi0h3FGlZ8zhfThMXrhPa8ALZJrB8RMolQTDsyjmmIpZIWYlikmBTGs0nqYsgpKhKMB7hsMhGyfO0ev1ujFHy3Q6I8szxisrOO9pWxOkyNbirD8aGySx5pGHz3Lu3EnmsyUvvvwWe/vTMHe3hqZpg5V5Z9IHMnTyUt7Lr/B819y6qkNwXdsG9cwhinFEhO1GMIfdi+uIpgKPF7YrjAO3AQ/Xb+6wtT0J98eEQDvvw0yZd43vDotkeUSK5t74z7tuLNMpxIL96dHaPiz2u2r0iJvUmpY7tze5c2eLfn5/t5qs3wcfSLtCKiDkzgQyayi0rW9BBJSoaRqazhskyfPwjJmWV7/1Gjeu3eSpZ57imQ9+gNlkwjuXr7B5Z5P5fE6SpkEqrCRahfspccQ+pm1bpJcoLWib5ujelGXFwjsGvZwkiiiWS4rlkjiekGc5SZ4TJUmA3bOUug5Im3WOLMtRSnL9ylWuvv0OvX7OxsmTnDxzhnNPnObps6u8cX2bt7Ym3CgaKiu4XbV4HTp9iaS3cgJvHda2eJ9gnCcerGLKkqQ/xAAGiPo9VBSzmE9J8x6FM1g8i7oB2cm1hUd7T2QsqZVYr5jtTdif7mNua05ubHB6fZVxv08WRWRphpWKuq1QQDmd3Lc1IIRiZ2+fWEckcczq2mogpU9n1F3m0vraCloqsiylKCvAomXc/b7A1A3GWcyRcCHIz+m4X3mWdvW9o1guaU1LlqYB/URQNS3Ncsn66krwQmpqhAeLYLksaEzLweSANEk4c+p0QEJsoBwsy5qiWFJVJctiycb6OtZaqqrC+vDc7e7vMegOekE4zwICWCO6TLiiKI6QnDhJkVKQpwngkTKgPBvHTyCkYFkU7O5PkAjqqqTfy0mzLPBiIBCB2zaMu6KAOHnnMd514bayQysjTNewZHEcaAci2BdY71BS4TtOXVkuflf38/d3cYInVsEZs2naDs4OQtpDgilHJcghm1MeacylepdjZkdOOuJHdGTYwwP5cKMZj0f8wI/8CGcvPgRCcPmN1/jKF34LD928ORQDgSzJUTjfobLikExqu7HO4Ts55KWITnXjncMJgXCd6ZZznWtshG3BGhO68K4at4cohwwIyyG3RiqNNW0gW3YR5IdeK1EUXF+NEAhjAonL2lC4Cdc5Dgd29z2E6Z4E1dugJjoiH3ZjJes8piNmAkfI0f24omRAkmREImNNJBz3mr7RjKRGe0dsTae4qJktl5i2QUrJ+vF11lbXSNIUZyxlGaLl4zgmzzKstSyWReBpHI42rEUJSb+fc+r0WU5srHEwXfD1b77J3u4+dd3QNDVt0wYIuJP4ecIoUEr1Lk6TAOdDMJ+zFMumK2ADamGNwdtAzD1EuY7WULde/GEhLoJCQPhubGgdzkFjaj73ud+mqgPUHbgkJnCbnOlItAEuEaFOCsZPnbnfoYTR2nuF9WE3eZgl5Uwbsoa6Of5hAf/uSZ6Qkr294r6tAYBBv3f0/8HV2eHqBq0jEqVo6ppDQqTvCOnWGJSOglmaUmS9HkmsmU2nfOkLX2J17TWeeuYp3vvBD7C/u8fVK1fY3tyGjmSaJglVVbEoClpjSLM8EIoJ8ty2abt9IQTzNY05IloGRNOyXC5YFkuQkjzvMRyOSNMEREDqlssli0WNkoHnNp/O2Nvd483XLtEf9Xno0cf4vicv8IlnE3ZnBW/e2OS1rSl350tuTSZM6sBPMHWB8Ra8J1ExcRRTe4Wpa9RgiJIh7kLFMZgWp0DimE/2KJYLvBA44egPRkQqQi4L9hcVsVJUixl+vqCpaqbOoVww8Vsd9TkoWpbWsTpaIR+N0QLeuU9roCjCfWm9p7Ut5WaDVmEUmyYpkQjp1dY5qvmSXr9H01qm8wOKpkHiybMeB9MZXsIw77O1u0Oe5aHFkoKd3V2SNCNWGgTM5vNQ6DZN8ETSiiTSzOfzDqkP++CyqimKBXS5VisrY4RSLIsyqP1aQ9M03NrZoWhqxHTKbDFHyRBQGStNay0njx9nZ38vkL+9pygrJrM5eZZjTct8sSDVmrJtyXoZe3u75L2cJAru5ZPJlPFgwHSxQMowrrfG0huN0Fqzt7/HqG25PZ9SFgXj8QqD4RhjbFBgHTtGVTfhzDGWNE3CuFrpTiDiaDqej5QyKKAOpxZdM1RWvzv07Pd3ceI8ONvJB20oMA53SQ7n993csMug8XgODa6sDR9cB2ofmVQJKTtWdnSUpdM0LasrK/yBT36ax9/zDEIKDvb2+NVf/EXKoqTXzzs7/Huvfch38d510B1HzrDvlnyGwyEcEtaG0U7waHFHpFghBN4ETooQgrKuO2gwDuZLrSGOY7w45J90BwkCpXSYh1vbyaE71rYDpYNEuRWAsaHAcw5s55TpLO5dBQocEiU7hMdxNIv3znWfsgAZQhiBI5nz/bg2hmuM45xVp0iMJ8KhqANEbg3zbqQSJQkrK2PGK2OyNKU1QSpbl1XgAcRBZmtaQ1O3wdTs0ETLBofetbURF8+fYrwyYrEs+c5rV7hze5uyKKnr6iiiQHZIySGzXkruQZ468IAOk6sRhNdsm2CAZi227cYm90gggeck7vGA7hG7u0u8m0MU1rsQgtliieti4QXinllbV+AcVhWHYxrbjXWElEihMF2xLYTAH76+fxdxWkqEPSy6/ZG3kLWB9xT+rcKa7419/f/WpeKEWOtgHudLWlMe3cM4isn7fbx31FVJR6UhIExBmeGVOlLfRVGM1pLJ/j5f+s3f4uTJUzz85KM8+8HnmE/nXLt6la3NLebTKVJHIT5BR5i2DRlI1oY5vtLoWFOVZVDeKQkudLZ0aqw8zQOvwDmmkwlN3ZAkCWmaEMUxaZaR5XkgQjcGZw1JNx4s5wu+8ZWvkmQpZ86e4cLDD/IHP/g4H61abm7ucun2Dm/c3mOrbNiN+uw3lqauwQmq2RKd9yBNwICOg3urVBqlIoTw1FVBbRrM7IBYx+Acu7vbSK9QxmLrFmtqtPP4Yo7SMZOdTcq24fSFB7DTgqI1HBsOWen3QMC5SPHC/VoDQnJy4wSLsiCKE7TSxEmMVppFsWRaNQwyRZrEZHlGay1NGwwRrTNMl0t29vcxzmObmomeUpQldVOTZ3kw6evIz3EuaYxluSyo65Kqrjlx7DhpFKOjCOMc89mUNE0oyxLrPP1Bn+lkShxFpEmGsyFDiQ5VN9Yym02p65rRYMiyqujnefdsiiP35qZ1FOWUNE5YzOcopZi1E9bX1mmalrouWSwWNN3aLsoqKKuUQitJbYJaDOHRcUSeZxRlSS/LGQ2G6DRBVjUbJ1fYunuXze0dxqMhKyur1GVF3KUySykpiqproJb0er0QZgwYZztjToWQoHSMcA7fITu/m+v3d3FCNxuEMEqwtvNwCEQj13WnQoILtmVd0RByTQIaEDZxHYdFrLTuPE30kTdJ1TT0e30+/JGP8Nz3fTTk2rSGL/zqL7O1uU2ap2gd3YPKD1Uuh+5+R9D5vfwU/D1vikBwDJKuQ8jfH0Lk3iGFuocK+ZBYnHSjntY3YW6tJHVdd4QshZOhsj3sxg8t0MNnFIqvtmnC6Ml5lNLh53Qu/OrGUxCqYU+YI7rOC0OIQxIo93g03feSUgTPDueOOD736zrXQF9CJMKhrUVAmZombPKrq6tkWRb8DSJNU4fCJcuCu6OQqnug61DZC9HlqIT3FSnB6dPHOXfuBFJp9g9mvPX2q+xs7rJYLmm7jifIuMVRUGK3QOkYqgHW7NAm3x1MzgYyZNN0/BJnjxxaj5x8OzSErpA95DC9O15BdKjf4foI9UkIObDO07ZN2Ji0Bi9xznQI2OEPydH4SEoZiirrCC7C/ojjclhcQyhIJfcUPoexDHRoISKoeg7HUIdZM/frGg4G3Wzdg1QIKajrJhRKziBaUJEmzfuhQOmk0R6PMQ3GQNu2FGVBmmbEHYomleTOndts3r1LfzTksScf59EnHuPMubO8c+Uqt2/eIs171FVFXZaUVUVT1wiRMZlM0Tpi0Ne0pg0QdzcKM9bStg2TegpCkHUGaVQVxhiKokBISZ5l5L0ecdIpfkRyxHeSAuJO6n7j7Xd469IbxHHGiZMbnL14nk89eZY/9KEnmc5Lbu7PeOHt21zbm/P21hR/bEzRNjjjSOJeeN7rhkQnGF8jOm6TlhFRHIUDvG7wpsGaTmQAeFtjrMWUM5IkR3pDsW+55gwqzoOPx8mTTCchH2h1mN23NTAYDdFJQngF3yG2krKuybMM51qEgto7mmUVFFxVRV03zMsykGC7Z3OwssZkMgmmYYslTdMwcAN6vR7z2Tw0N96ztjrGec94FBQ6jTVMi5KqLFBSUjY13nnKpmFzdw+lFY8+eBEpZcdH8ZRNSyRVGP8qzebePlmcYHFEGxuIfo/WhGe4aS2DwYCr195hNBgitWK+XNLLe0wmB1SNCYRcpWmMRQhQcYypK+IsxTnH/nRCqjVSRxxMJwwHQ9qqYta919QakjiQdE+dPM3N2zfZ2tqiqBpWxmO29/bo5RmD3gAdhUDagEIZJpP9YAJYVcRRgo6Du3kSaRwQ64j54v8EY53DeXcYiYQHPhbhLd3jkXikUEdFiPeBFGc7LgBSdt2CPkJMPD5AsgJa6+hlGe9/9r189JOfCm6YHl7+2ld56asvBvMnqbDOdnMPeXSwvPtIDmjDIT+E4AJ4dKaLo685Cm7rfGAPR0/eWoTQHfkx8EuUUmF+XtdEcdSR80z35/e8Wpx1HfoS2NVt02CPODZd+qpzQSotAyFTKtmpNO418K0xR6Oy/z97/x1t2XWdd6K/tdaOJ90cqu6tXAAKhUQEAhSzKLKV1ZJlW622gv1stWRLTmpJfmqPIcrdz3b382gPW27ZT7aHZFuyrBzaMpsmRREEMwiAyEBVoXLVzeHEndda74+1z60CCZAghZIIq+bARVXdc+65++w9z15zffP7vgmuSBqzyMdoELj2g1T1z1mDrcm2NyLaSuFbi7UVgR84JM1WBJ7ClwrfD5HSoyhKQuGg8ygKETW5Nc8Lp0CyTnlS1u6orWaDY0f3cWB5ESMEG5s7XLm0xs72LskocQtZlqG1cURXJWuWvmA8LEtKuZcDY0XV+HtZltc77IqyKl1fd89WXtcE5TFT24KpWxJQtw0dUuXqb1fwjvNb1D0ebUqsde02jd5DPMa8mTF9zyF7NSF6LC+31KRx5ZCb8lpxsecuXJsfjo0GrX55+27caqp9NG9YDgA0m00830NKhfKd22uU5/R7PYy1ZFlOYN0clU67gy5LitLNFVKe2PvMGmMYjYbkmSIMQqJGjOf5eJ5i2Ovz6Y99wk05bjaI44YzfwS8ZpMojvBGI0aDAckoIY4bDpmpSqLAx4GTGi8IKIvCITbGSVGLsiTNnLlfs9nA9wOwUGQ5w+EQ3/cJQ2do5YcBnpLu82csnufRiGOmPbd49bt9nnriaawQRI2YffsWWVpa4q++515yDZfWtnjq8hZPXVznwlZOWlZoKTFFgbEKqQ3aanReEagAP4xIK0vYamCNdkhgnpINeoSNNlhDq92hGI0waQpKk/R3iFoWP2yxdvEKfqvN7MJ8vQm6MaHrlrOSkrzIKY2l0K69kqQJV1dXscBEs4kQkp3dbdqdjiOsm4oiy2h1JhgNh5RlsYc2T83M7PHMyuGI5f1LaFMx6g9I84Jef0AQuNEpSjkkO4xD4iji6toGWVFSla7tMzUx4aaW1xuJrCzZ2tmhGYacPn+B/u4OUeCKnFgbZqYmyYuCJCtoNhtkaY7yPGanZxkNB+z0dlzLp8zJUncP39jcZHZmiouXr3BwaYmyLCnLnLWNIc1mg2SYMDU7QzHICfyA3d6ua41LhecrJyqwMOh3abU7zMwvMj0zw5XLV+n1e7RbbdAVzzz3FBPtCYq8YGZ+ljCICAJ3fbU2bI120bqi3Z5gMNSkRUYjCkleIyn6DV2c2JqnIet/jBknnvL2ppOOTWjc9ESv5nS4HejYOdLzPfdc6RQz2jqn2Ko0NJoNjh07wru/6ZtptluAYOXKJT7xRx+h1M4YjXr/OF6Mx0ods7eLFYwlxON2y9i+/toUWVdIaFOPYLfjaZDX3gc4jwpt3O3ek7K21/YpS/enIyqaa4QkAUaArEdWu7lDAVmWUdukuEJOOaKTqSXIVWVrQhOOaGztnnHXnkW4Gb/vawiJxYIZSytrJciNA07I0wQZuV1vIRLarTadyUmazTaBHzikAecFE8YxYBkO0z3DOowhLcu9ttrUZJtbjy8zPzfFTjfhzLmr7O72GfQH5FlGluZkRV6bIjn107jA1DXyMEYkrDFU1rURlXLuxcbaemFyDPhxO0dX5TWJbjWWxdq9Ysa1TUztkzIeRjkuROrcrZFAa6/xfExdXVb6GiriCvnKyQ2hNupzBEzH1ZJ719jWbH8pVc1TGXv0jP155B6JfPz61GZwCIkU7jjkjUwCHIcrkIowjhCet+cjIqQbeJdnOVmWEVpLMS7MpcLzA3RtWmaqcVHoCKImyxx/JIxrxNKj2Wy6m32W04wb3HrbLew7sIzEDTVcvbpCt9sjSxMGgyFlnu8dx2g0IqjbzEp5+EHoNhOe70joRqOLkm63i0C4oYVSobTHaJQghHCEREFN6mygPFlzmVzr1Kv9mHzPeanoouTCmbOcf+k8nu+zdGCZ5YPLfNeDt/Jt99/C2u6Q05fWOHVli0vdgNVRxbB0BnGNuFW3bDVRYwJlLEXWQ4Y+VgVuvo5wZmECgddoQ1W51BgN8IRyAwmFxCQJ66trXD4/uGE50Ov2qUpNkqdu8GMQEnsBhTVs726Tpwlzc/NYY9jt7WAFJEnGbI2u5nmG0ZpGs4nvQZ47Wa1VHq1mE6xhfXOT8xfPMzE5gxKSbn9Aq9lEW0OhNf3tDQ4fPsSZs2foDRNKY4k9H6ym2W7T7hyiLCuS1JFci6IgSwuGo5zV9U2y0Ygw8J3hooH1zR3CMKTSFZF2PBNPCsJGg0EyYjBKiOMWZXfgEHNAIDEGpianiKKYPCtBeGRpD60roijiypWrNQoypCpSPM9D+h660nQaMdPTUyg1zcbWFkZv056YYHH/PpSS9HpdKqmYn9/HKE2JW00uXbhI4HsM0xETU9NobZiamaPdbNLt9ZzRpPKocufj8lrijV2cGIOtkYTx4j7mZDghT03ao7551/C4X08pVcr1it3NWDrpX1VQ1a2JKIqYX5jnfd/6bczMzwOuX/aHf/D7rK+tu0WvvlnUB3TdpGG3eFRV6Y5BXyfPvY4rMGbJjA3aXNvJDTR0MxsAK0DaveeKerihc511AKsQ41222Ft4/XpXS01OHbPPpXQTbvM8x/PUtfNZn8cxIqOpiz85pjLJmldg6p65rFs/7CEGpj53onIM2rEu/kaFay0ZWp0W05MTNJttrHWDs6x1gx/dvBpBlmaUZVWb19UEZOFIwPv3zXLHySPMzkxy8eIajz52in5/xGA4pCgKRqMRVemkfLYuOGTtHkx9nqjROFesyb0CQtUnoCqrvcm/VeUs0Yui2GvxjWcwjYsLTznUws1yeWVvmr2BgIg9IvM1ozzJ2M4dY2vfm2sqK2dKVaMk1AWNFdi6oHDtGosuy1rpVeepHY9fuEbQHUvVGZO+6+PdY3uZG4ucCEB5HqF0c6Z839uTChtj6O5s1z4vFf3RiDCMHL9MKXwUQvgY5VAsrEOFjNZkWU5We9yEQUAYhQR+gK88eru7fPbTGzSfeZ6jx49yy4lbOHz0CJvrG1y5eImdnR1GwxFpmpJn7rOWpqkjWfs+yg9oKunaIqVT6GAsWZaiKydDH2Y5QgiiKAYBQ6NpN5sYYSiqHoHn5nuFYYSnPHRVMRj03b1DSqIwco/HMQrB1UuXuXLxEpUxzMzOcejYYd5x52G+7uRhVjd3WNnpc3pllxc3h2wlBb2s2Jv1VeW5s3fPSxCS0G+gQh+jS4qqQoUhxnWiUY2mQ6WDiMpYqizB9LfdaIYbFKYq8MJJmp6i1x/QjGMKC72dLo1mDFYw6PWwtcka2pAnA3aVYHVrnalGxNzsPDv9Af1B7iwlwpB0MCD0A4ZJAtrSG/RYXd9ECNi/tMzW9hbS92nFDdrtNqubW/hRjOmPoCzxo5Aqrzi0tEyappggxAs8RFn7V+mKp557hp3dHXwhEKpNLBxR3iLQxvlLKc+nu7FNoxkharT/6OHDnD13kUvnz3L3HXfx/PPPUOUZh44dd/c6LFWp0cLlvik9Rlmf3d0dlBIIKwi9ECOcws+TjqeWJCnb3S4zk5PMz85A3W3Y2N5BmgJZVnhByEKjyaUrl1jYt+hs6pMRvf7AFWAXLxC3W5R5gcYQBDH79+9nmGev6Xq+oYuTsZxyrHDxvdrn4Xo5sLzemr7mfmBrxY5CW5DGYqnqnjWARUjF9PQ03/wd38GBI0ehhtI/8/BHePrzT1NWFZ2JNp5yEtHxTVqPe+tC1KPXqbkmZq8wGVvoj6XGe++F+iZe82G0rsDNtkWg0NZxahTjYXDufVb1QDJqrb1U9Y21yPc06Y5b4hasSjtZcggko4Qg8Oqd17WBcGMlkFQeUoh6hoO7KSHGJmDWET2lvE6rb8ZdCOpN/R7qcyNidmaKKGoQRjFKBIyGCVIqgijGWEFeVCjpRt1XZQnCuetWWhNHAUcP7+Pk7UfwfZ9Tpy7wmc88y6A/ch4fVUWSJmRZ6pAOIfCDwCFw9ZsbN0eukX5doTDmbwB7C55bzM1eO8fZwlfuOtZIC+PXsdYVMLU/x7jIGHM8xoWkseMiS3LNaFBcs6THGUWZ2szNKbauFQ9jJdmewZt7cahvik5yD1VZ7hVD7vDGM5lsfaxOpoy45h45LtKd0unGck6KsiAsS7zAxxMC6Un8ICDwfYbDIZPTM1gEaTJCG+skx3UbMwwCsAKpnL+IrXkhzllWjz9t5KXjaJnKke+lUgRBgK4qTj//ImdOn2b5wDK33Hor9z74AIP+gEsXLrKxuuYKlDwnSRLSJKUsSydnr9HRuNHEaOeH0my16h11SjIakue5m91TlvhSkIwS51iNwHgGY1NGw6FTi9Tzk6Iocq+Rud9rcbyWIIyIm02Up+jv7PC5jXWElMzOTLN/eT9vPr6fh04eYac7Ym2nz9nVLc6u73K1l7M7FPTSFC9soo0lTfto5fIELGWt9CvKlChuoI0gCB1B2Mra0fsGtniTIiff3HZGabs9kiTFIggbMUlaIH1XjFbGtdaENSwuLzFKC5L1FaaWljh36TJC+czMzVIlWS2jNxRlwdbGGlGjSWkMk5MT7OzuUuUF7XaL9a0t5uYWWV9b5cLFC0xOTTK/sMDObpe1rW3e8sB9eEFAv9fHm/axpRsrUpYFaVGyMD/PpYsXMWVGfzBktzfkbQ89hMaN0Sjygl07YH5+jvXNdQyCOAjwPJ/lpX1sblxBhgGHjx4jEJas0iwtLTsVq1L0tzcJgohTZ16i1WnTarewwvET280GYFhZX8X3AoqyoKpKJjptjKk4f+kyUaNBlWVMzEzRjNusrK7iW0MjbjIzPcPuoIewgvmFBVqNNv1kRL/XJ89L0mREZQzNJlxducrF869Nr/WGLk6MqRNHV64yNLUVcL2zNDUhyhfOfljUsk5ZkxRrs2/8wKfIcvKqpCgr4kbE9NQU7/yG93DLyTsQ9Tj2KxfO8smHP+Yg5MB3u0Ucf2RPhQN1i8ntOpWSFIW78Y+f4+Dw8XApwZ48t17EpXVEXtQ1rxRhLXieW/Urx+kYL35m/PvqxU5Kxy1xH6qyvv+5PaySkrJyFuhoQyOK9m66SgpsZWt4ftzWGR9XfQMqqr0CBeuOXSKu+xm3OFnPc1bINxjOj8LYcSoqjacgarZrnkQtwUVQmaKWuzkyaTOOOHBwkTvuOIYUkhdePMtLZ68wHIwocmeyVtZ2/7omoYZxoyYliz1lCq4u2yuEhawlx5WpjZDMHiriYFqDrHvXemxHPy5ax2hE3R4bz9GxjCdPi5q0Os6ta7k0vv4OOXRtg/FwvzFa54YPOnt8KWXND6llwnW7cYywuRSu3WcZD650SI8z25N4UlLVKjRE/RmwMCZym7HhmxmjQje2OPF8Z6xXFSWitucft0+kknRNn9n5eYaDATvb23VB5WZQKWVc7lt3rZUva8Jq5XJ/3CozmkRn+EpRVJqoEUO96Puh44isXL7K+bMXmJ+b4eitx7n9zpPcdvsJLl+6xNVLlxn0B+zKLmmS7imniiRxvDHfd+3kyhnEaa1pyQ5R00nY0yShzHPyskTWyru8KPfIylGNulioLfpDfD+gUbeiijwjzVKGg74r4MOQuBmjvIDdzS021zec22gYsLgwz/7lJe54ywkqFJfWtrm03mWtm3BhWPDS+haGEOF5VKW7l2prUHGDOIjxgtCNDLHgCR/GuXcDAbS1zU1m5vcRKoWRklGasri4jwtXrhAFDuGJG80a8QWrK86ePsVOt0/catEvKqYWFlAC2vW/R6MRVleM8i2mJid58cwpms0OKgiZmpgiKQomgkkmOxP0e13iRpO5uXnOv3SaS/Y8hTbcdssxgrBB3GjRaDRY3dhgbm6O0WDAxvYOZV5w+uw5oiBEhA2H7u1s8cyp5zl84DD79y1itIXSzVcKGm12treIwpC0LMALaDU7fPqTH2dudp7OZJvZmVm2+0MQkKQZE5NTXLp4kZmZGYyuuLqyyvR0Ragkvf42CEEyGJIkCdNzc8xOTqCtYHd3F11We15LuxfO44UxRZIiPY+yMgRegELQT/qwKZBWo4WgPTmJKAt8T7K5vcXm1gZxo+k4K6/lM33jUuXGhxQ4Zr4YS4Tr9oN0PBNbLyBCSkQNa/u1RHjcayjKCoQbDa+tg0JbzRZvfughHvi6tzrjIQTDQZ8P/t7v0O328H3n7ud7qvaDqCW/pdvpSnFdGwVRFybX4Exd24wbe6042RvmV/NdXN0h9tQebsEyezbCptL4fq0KqucijK2wA98H5VAgIaVb8CyEvsLUiiarDVK5giUUIcOR070HQch4/o8QTj2ka/8VTwYInJrF7BFoRT1J09QcCUFRGowVaK4nyt6YSNKU2blFlB8glUdZVhhTMPZeMdqgPIkQlij0OX58mRMnDqO15sknnufKyha9Xr8e2OfMz9I0dXJgzw3+clyhGoGSteNv3dbaU8dYDcax0aVwXCBRIxhGuwGMe0S9wuXJmICJoG7ZuMW+ZvLskVOllLVTrB1jHnWLouZ2jEsCcZ1JXv33cSsH6+S941aca/G93AywqtETU/Nd9rqVdqwsq+f1SIWu3/v1yF9N3d1DdmyNnoyL5hsZSir8MLymdKo/N46HZWm2Gs7eWyniRoNet0eeZyRJSpqltFstyqKoxxWU9dA3RVGWbnqslIDnCMxaU5qMLM8Iw9CZFyr3+z3PI/AUW5vbrK6t88yTz3Lk2BGO3Xqco8ePsb25zaULF1nfWCfP8r1Jxt1ul7xu4VRlxaA7IKz5I5Hn1Vwii+95RJYaTXF26mMe2ygZuSrFQpplBL7bWSvPI46iPQuBsbdNMhoyGPRQyj0eRqFDkcqCtctXWLl0mVJrpqdmOHT8MO+46xB+1GCYllxc3+HUpXUub/VYHeVc3u2R1UV1ORhg4gbWU+RFRuC7qcASgfBu3JLTabXZXL1KWZbsX9hP0IjpD4ZURYGtEb5+v8/kRJtG3KYscrrdLm956EHa01OYQlNkOedeOo2eX+DK5UukhabTbtHqTIIfMDUxw2jURwjD5NQkaxubxHFMK454+oUXMcbxSG47eYe7T2rD4uICSZY5g8WioD05STpMSMsSz/eIGzFFVZBXGqFLqipnY/Uq8cQExw4f5+KlFaLIx/cCgn6fMI4xVUmeZVS1VP7AwQOkaUJRVfh+SFWBrTQbOxtEcYuzl7YxCGRNtF9Y2E8UhPR3tnnu1DPMLiwyNzVDGIX0RkOiMGJzfQPjSagM6e4OwpM04yahHzC9OMlwNCRPEwoSmnED6UuEFQyTjK2NNQ4eOcbS/gXW1jdY3rePqoIra1cZFX8G2jqGMSmTugVx3ehpITA1YmCsM0hzC46HUGPSoiOClmWJxdZs+JB77rmHd773fW43hGtpfPwjH3ZOtGXJZLODEm53ZcqytiR3RYnb1bK3KImagzBurbgbtkN0pJBOC17vWE1NOh3f4rUxNUriWjuI60iXOFJj/e29YsgTbiFTynFQJKLmG9S8GlM6GNYaEIqicGqVKIrdDJdKu569qiXCqkZmhFMCuUGCtibdXpvw7DgLbvH2PYXBktek0RtZnDTbkwjlFiWp3eLpJulWSOGu92S7yfGj+zl52yEGw4Qnn3yRs+euMkoyrNEMh6O9Hn+ltfOO2Vt8bV341URgUxue1XnhUAO551VhrlO+uJ2xM1MTAnRROBVALVWGOj/1NSXN3kBGO36cvXM4lndro/f4R3vX31U4ewMhx8c6TvSxM7GLa8ierXdE4+OodLXHQRF7jaFxK8eVH1pXTvpec1rGbT/Ltes8VgO5YmuMzNy4yLLMzctpNFz70Yo9lY4f+MSNppse7NX242FImiR0qopRv0eSZviBT1VWTgpeS+87tUNrVTpFjRcEUJZ1ceoGbaZp6orhUUIYOZWGVIo4cL/rzIunOfXiKRYW5jhy7Bh333cPZVmyvrLGytUV+sMhE9PTDHp9RqMRo+HIFVplgdEVvheQZikICOrZPHmeMxgOnYV54QzmPM8jzTLHp5HC8US0xqTOZFAIca3t02g62wTrWsD9fh/TMyihCMKAZsvt8kPfJ08TXnjyGZ589DHiZoP9+/Zz6PhRbn/bSQpt2eoOubq+w8WNXVb7CZe2YjbTkqHW2FrWXRo3x0bcwLbObrdHuxHTmpujP0op0ZSVpdFoYo1hbnaSze0trJT0h065cu/9D6AqzcbKKnmSsrq6ynDYp58kjIYJjSCgzArOr58m1yW33Ho7QghGg4Qr1RqjUcrK6hpPP/MUs5NTLCzO88xTZ8mGQ9oTk+zbt5+rV66yb98+B3oX7h5TZDlruzt4QjA9PUsgBJvbmzQbDYJmg5mFeeLIZ3Fulsurq/S6Pe48eZL1jU3ChmV6eoowjsiHI6YmOxzYv8DW5g5nz77EtrfF2s42iwtLgGR9a5PpiWkqDLu720zPzLJ27iz7Dx5gZn6ehZ1F+v0+wjg/pZHWTLQ7HD12jJX1NUBy28kTnH7+efwgoNVssr2zS5qVtFsxszPThFHM6toVtjc2SW3Fvvl5VleusNPvQV6wsnLVfWaQbK6vvKbr+YYuTrQ2GOEcHoPQpzTa2fyO767SGc84EzKL9BRVDbWLehaAtZZ+khFFAcrCbSdu433f+q002w56sghOv/gcT3zmM+RliV8T7Cz1PAF7jVMhpAQ9Ji7i5noYUyMYyrkT1mqHSruCSAhBVatvhLGO+FqTW4WxCGER0nFgxsWLrosNo+0eWbU3GBCFAc1Gg7IokcbsGWv5SlFVBqPGqIyiKB3RVSq117rwPJ+irBgMR7RbTYx1RCxdFs77w7r3JoVCeRZbVfXIcbe7r8pqr+2gPEVRjgfD3bgbUlVpsjSpkRy3oCjPESI77Sa33XaE5eV5klHCRx55jKur2+RZTlWU5EVOVTrXzko7CbZXjxnHsofG6arCr+d1WGkRFipb7eXWWA2GNVR5WZvXudlG4FoeFktVFDU8avYWeteWcS0UVaNwdsw/caQWjNV15+c6b5Ix6bVGp5Sq2xK25hbV/CqEQyxszU3Za0lhr1P12JqQrff4UNfC7vGIhLB7RYbBtaBEjejtvbaokSZ3BCDcMcHLXvR1Dz8IXI4KQRRGFGWBQtbkY8e1CQLHyaiqEh2F+J4b7xAGPlGSkiSjmqScA67w8jzfSYSVYmKigVKKbrfrDA09x8cqigKplJtXNMgo8owoivdGIiAECsHG2iZXL6/Qarc4cvwIR44d48DhQ2xubHL1ylV2GruMBgNGzRFZ7qZsj4ttP/BJklE9/E2jfJ92p42p3HGMxx34gXbDKGt5vBTXuGxGWERhKOpFKIpip/xRHkHgXGyNMaRZSqUNO9s7CGFpNptMdCaIAp+qKHjp9BleePEUUgqmpqdYOnCQO5YWefNtB+iNMi5eXaebFFzYGfLi2g5rhaA7Spwb6Q10i479gCQtOH/lBazWKD/AVppDx28hLyoGaUZqNFONmDuO38bq1SucO3WG0aCPtpZ9S8sIJTlw5Bjd3oCJjiLPci5dPE+r3WKiM8GVK5dptVpsbazj+T6tqRnOXblMkmTopuazjz7KrcduYZSm3H7ids6dO8Pk5ASHlvfz6JNPcMvho6xs7BDHITNTk2TDEd3uLlIIetvr+J3DhIEgEg2mJ6dJs4x2q01ZVSRFzsb2DhvbWywfWKI7TPCkx8bFy5RFxq0nbqU0JVdXVum021y+coXIkwx7XebnF5iKWxxamOWzzzzN/sMH2VrfYGZmhlazyf7lZbq7Wyg/JOx3mWzEXLpyhUG/z9baVYSCydlZrly6zMrmFgtT0zRbTVwTGZ555kmefvJRjh4+QiEEeXuSqfYkvcGQ0Jd019ZpNCO2dwfY14iivqGLkyxNMZWh0JairNDCQVlCunZDFIROJqg8kKaexSP3bMGNFfTqOQRCSA4fOsi3ffd3Mz0/726yQtDr9fjD//IB1jd39tQXpi4aFFwns3Q+K25WiaXUYwmlxNh6OJN1/iQSQaozxBgLFxJdOQTGjaO3CE/u7W4xY+Oumusx3tda1z6xsGe5LoRCmwLPCqh3dpW19Vhs7Yh/taLBjEkTddtJCDccKvDdNEmllGtPSB+lapKncjdHISTaWnzlORtk4867MRXKwSj0k6KWyN7A4kQbvDEBt17/FuenuePkMQ4eXCRJUp59/iVefPE8w8GQLM/IsmwPQh9fz6CeobTX76sbG1pXrrNWk6itBSvE3oDGqiaZWmtcb7ZysmRdlaDrgX2mNlar9F4OCWv3fBn2fqdx39sjl9b5g7Vutk29yI8l39eWe8FYXzMeZjmWfFdV6bx5aidi6nbL2ITtmrLGOOSnvnGM1UbjXNfGoMatUq4p31wB5V7D7KGY5gvIurYmTd648PyAIAhJkhECgVcXHtSI0HhIme97TqUXx46zkecEgb9XTKyvre2Rh4MgrM+NRnoeo6QekqfUHgo7HA6dIki71o4UgrwoGCUpoyTBD3xazRZYSxhFBL7PaDjkqSee5rlnXuTQkUMcOXaEe+69h6Io2FhbZ3Vlje3tbZJBn8FgWFvvC4IoIs9yN2wy8BkOR+AJYj+gpRRFkdMWE6RJrfYpiz0yb1EWeMrDbYksSa9LlqZufpjv10W5M1z0PXeOhPLRRcH29hZbm5vIICAKQpqNBn4UEQYh6Sjl+eee55mnniaKY5rtNsvLyxw4ssDdtx7k5KUVuknJ5W7ChX7CuZVVrtygHFhfW2Vu6QDz0/MURYkKQ6amJxkVFUeOHyeOA+LhJIPtLT760T+iSBKmpyZBCRQK35NMdCZ59GN/RGf/AVpCsdPdYWJiiiAI2Ld/kc987I8YDPp0puc4dOwWkIpASO694wRZMqIoci6tXuFtX/c2pBRMdCbodDpkRcn8zDyXV9eZmZ7h8pXLjIqSjasXWViYJ8tLOlNzpJvr7Fw4y9zifhq33c7zLzzH1NwCM1NTTLRbHDq4j0G/j85LFhcWOH3mDJfWVohtwW/83P/OiQffzm0PfB1FUXCwPUFZpew7dIhkNMTYku1ewtqFiyzt38+Bw4e5684TPP3k04yyjOnpDmsbWwhP8fjTTzIzNcvUzBTTc7MEYez8WsKY1VPPcWB5gYmpCdLhiO1Bn+N33sHMbIezLzxPr9unEUS0p6a4dPEcUzOz5FZD7lSHCwcPvLbP9A3Kkz+ZEIJwcoadxn6q8hRB7UJnrMVXPnmpieOIa7NALB6CCuHkbVVFWH8oO+0O3/DN38TC0nLN84CyrPjYf/0gp59/ga3dPtOTnVqWKmuyrYOtS1uhpKA0Y2+PMdWWPddYox3M7Uiw7PFSzNgvQqpaoikxuGLLUxJPOKdX5xlh6+LDgC0B4YaXeT5BEFEVBaMkQeAkz2EY1EjGWNLp2hOltTXnRGGRWFvt8WakVCDdLBIoHbGzdrT1pPPF8JRDezzlxmwLKbHG7e61NpTCZ7tqoE2Crkq3UN+gUJLa+EcyvzDDXSePcvTIfpIk5bOPPs1LL11iOEqcGZd2PhbJKHHtCM/D8wPiKNxDFGpqaf2f461IKah0hdAS6ckaCre1x4Rz6jW6qonLZo/AbGsiaJEXe62TccEpEHuS3jG7Qwo3dHHsMWKMwQiHcI2nQdc0qmuKGJyzsDF1oTVGfYS7Xq7lUhFHEVWpqWxZIzfXz8qpd7N1XlArmqz7iDm5ujWY2tV27AlT/8Y9nsq4lWSpJcl23Mq8xl+5UWEA6XnE4/k2tjZkk5IoipzBnq7QusIPAoSUNJstt8BmKb7nTLcWFhfRlSZJE4aDAVj3mc3zIcqvidb2mprNr5G2ymhn7R34SKHwfcdNSkcJSkikFKRpTrMZ4yuPwHPjAF589jmee/Y55ufnWT6wzPFbj7F86CDdnV1WLl9mfX2DYd9xorK8oN0yJKMhVVnh+QGectckSdO68IRmu+V+r++TpSN8L3CE1JrvFNWtoapGmtI03TMQbDRipIAiLQgDN98nCmPCKCDJMtIkcXb8UhAEEb7nE7aadFoth7r0+zzz+c+DEExOTTG/b5HFhQlu2zfFMC+5vK/B3/u3NygJbMXu5jqzcwv4ccxEp83k7Axx3GGzv8nz569y69HbWD50jCc/+QnKrI8ucq5cvMDtd9/L1uY2V86fJ240iT3FoUPH4LJHb3eHKX+aSy+d4YWHP4hQCvHgO5BhxKjXI88GJN2Ik3fdw9e1Orx05hSXL1xgcXmZy1cuEwZH6NefxeX9+5FKsbC4j6tXrnDs4CH6Q+d/056c5sWPfpKku8ld3/P9WGHJdclks0kgFTs7W7QaTXZ2doCMl86f58TttzO/uMgHfuNXWD9/hjxLmT9+O804ZrffZ/nAMqESnDvjcmhnu8vd992PTjM2t7Z5oiroTMxw5cqznPrkR1i9cIYT7/zv6EzNUVaak3ffTaAkw1GGlB5TU9NMe5IP/Nv/H8qTvPXbv5unP/sZKl2w7/hxVp97nv76Va4+9SgTh25h+citnD3zAlmRsrR8lKnpWVav/hlo61ij8XubbJ/8brbP/994eQ8vbrpFAwjCgEwYfE8xLAx5BaEMsLLeLQpNUUFrZoEH3vEQG/FR/u+nthj0BnhS0t9e4w8/+CRZOYftLFD5IdYKfB3gK0uVGQLPx7OSLCvBuH51aZyEVRuLMiVKFyAkBofaVEagrWsXeDWnw5Oudxz4qm73gE01ge/hBx5UktIKPN93uwLprPYxFhV6iMJZ4WshqfKcIG7iG4UpUoz0MNZHKJ9hMiL2PaQ1UJqaLOZ4KVYItBBI3UIJixWWKtf4nkdSFCgvpKosmBKpC0qkk12inbGVknhtwaXWbaSdJe6/fdfB/deRgV/vyIuKtlI8cO9Jbj2+xHCY8Phjz/LcCy/R7bmhXIPeoF4w68K1luBZwZ5j5Vjt4ngz40lMoBT1jtLuGfhJyR4PSNd+JVZrMAZtqj3yqa4qR5KulSvjlpc1bpiCK04MUno1n0hfVyyMUR1dK0Xqdo9l73y67qWTCQs7Piaxpyoak1U95eOHIVJVlMPCAUS16mYsQ9ZVxXiO1Mv8VMTYaRhXpTB2ph0Tuc0eOrFXVNUHNy5494i/NzBU3VYRQux5mxjr3FMd/6j2XDaGPMvxfYNfD/2TUtZTX93YhfHsG2fM5UiMRldkWYqUglazSaWd1b3veW7OSD3Hxfd8iqIgLwomJiYwqmI4HKE8iRKSokjRlSYMQlqTk7TaHYSwDHo9nt3Z4dQLLzC/sMBtJ27l5N13cqwo2VhdZ3Vlla3NLTCWuNkgSzPiVlFP29XOZ0QKBoMh2jjFjTW2tjyvkIDnW/wwIkszPM+j1AaNu25JmuB5qlZ1OYn02LdIVxUah7Q1Wg3yMXk8cU6furfDlueKtEajQaPZRHoeG2urXL50iSgKaTWbLO7fz7HZiRuWA3fddQ9f//Xv5vEnn+aJJx7j7W/9OlQQ0oiaPPEbDzMzP8nzLzyJMIbDtx0nsHDw0CH+7T/6B6ycP8Xc4WPsO3wYJQVPfOwPSXa28NtTzr4fTXNijrA9hS5TFJLpqRnWXzrNwv55pqdnyYd9TJExt7BIa3qarfUN3nT3nUxPT/Pciy/ywL33sb66SneYMz89AzpnMBhw6eoKx+66ixeff5r9t9/NS595mGFRcfHCeQ4ePk4UuQF+5y+d421vewunP/9pRv0+8cJBCq0pqpJ73/Funv34HxK1J5BByOrKOptrlxAYlvYtsri0xNlzF0hHI/Jen2RrldNPfJYj99zP0tFbWNy3wNlGmzLN6K1d4dCdbyIfZTz9zPMcXlokbk1grOXqxQtkWULg+wx21jn34otsXblEHHhc6G4yf+vdCGNYP/8is57P4oEDbK6sku2ucnn9k5RHb+Hbvvcv8ez/82tf9nq+IYuTMcGyKAres9Dl9H/5LOf8EGGnCUwDz2tilEIJhdKl21ZpgZEeVWUJQmf9bqSHHhWYTcPp//wY9kOPYwpDlmUIo5HSYoyPNj6qOYkpDH4cIHWFzgoCU2F8kF5MRYTu9RyfQ0qMDRC+h01KRFlQlQVYg7BuCB/GESmlpxACpPLRVYCtCmw2QjZb4IXIqsBTFhmEiDByXNrKLUTK99GBR2BCTDpEDwfYVhuTKlQkAYUuPKxSVFkGlJQWPFFicNJfq+sZREWOqhKsBD+ICKOYUnlIYcmH28iw7dQeKkJphTURKvKRYYit8ro9JCiLnOLi87zr6DluWX4f/V6P3W7/Zdft9cyBOJA0Q8VLp05z8exZur0+w9GQ3d0uWZZTVZqiyAnDGOX7rv1SEz89KTHSoTpjFEFKNwV6rwlR8ypsrapxAjFnSCRr3sfYhRVr6mKllt5Vrk1iaqRirLapu0TO58RUNSo29uIZN5TY458ArvU2Pn977RjXQhyTZW0xNiMcux9Tt3ZyMI5YnYwGewXOmG8y5tc4qbLem7MzttiuhdKutVSjcKLmyuwpiPaOrYZ2qP1OKkceHat1Xm9y9Pj10sy5/vqB79qI1v3OJE0JAh8s9WiGAiElaZY4snjdvrJY/DAgzwviZkyWZozSBKGkk8WWjp+Vpgm7/b6jtAFl5ZOXOVEYIaTc8xaK44iNjU2ssTQaEcZKCusGoXlKst3dIS0ylPJotZpUZYWUgl4yZGd7mxeef4GZ2VmOHF5i//5Fbrv9Fg4eOcj6+iZXL1/ek48XleM4dSY6ZGlKo9EgzzK0MZRVie+FNMKIoiqpioJkNCKIG46YLSVWOEPHQjvyu8K15XqDAcr38JQjMRZlRVYWNBoNrBW1l1KFFzjPjvHQyyQZYrcsnvKZmp7GDwI3EVxX7O523WTe1zkPxq/VHyU89txztNotbjt5gpWVq+RlxnNPPkkjjnjz/Q/wof/ng3zy93+T+C/8ADPz+/iDX/5FVl96ju2Vl2g+9zTv/K7vodCGQX+AH23zrrd/PTvra1x46TRrq+uYOKLKEi498VmSB97E0aNHOHBwHx/+7d/k3IvPQ9hk+eRd3Pmm+7l07hwHlxeZbC9z5OABVlZX6PZ6DHt9Pvuxh7n9rhOsrG3RG47I84R9Cws88+E/ACwvPf5pbnvLOwgDj1Ey4IMf+gCH9y/y+U9+kscf+SS9zRW+42/8HWamJ+l2e1y+cIHm8m1sXniB85//LHe95Z1srl3i2cc/S3bHnfgqYG3lEhNTs/hYst11+mtXWW+3mJibY2PlCoORc+9deeEZNi9d5OhD7+DWO+7hytoarbYrxJvNmGPHD3HlhWcYdLdZP3sanQ5Jc4+o02bfbSdId7aRfoNRt8vqlcsIz+PIybt5+g//C1dLzeba+mvKAWFvpJTiBsW5c+c4duzYn/Zh3IyvMC5fvszy8vLr8lo3c+CNGa9nDsDNPHijxs17wc34cjnwhkROpqenAbh06RITEzcOJvyzEv1+nwMHDnD58mU6nc7r/vrWWgaDAfv373/dXvNmDrz+cSPz4EbkANzMg9c7bt4LbsbXSg68IYuTsTPqxMTEDTl5f1aj0+ncsPP5et80bubAjYsblQc3YuG4mQc3Jm7eC27Gn3YOyC/7jJtxM27GzbgZN+Nm3Iw/wbhZnNyMm3EzbsbNuBk342sq3pDFSRiGvP/97ycMwz/tQ/lvIt6I5/ONeMxf6/FGPKdvxGP+Wo434vl8Ix7z13J8rZzPN6Ra52bcjJtxM27GzbgZ/+3GGxI5uRk342bcjJtxM27Gf7txszi5GTfjZtyMm3EzbsbXVNwsTm7GzbgZN+Nm3Iyb8TUVN4uTm3EzbsbNuBk342Z8TcXN4uRm3IybcTNuxs24GV9T8adWnPz8z/88hw8fJooiHnroIR599NE/kZ/9sxI/+7M/Ww+Bu/Z14sSJvcezLONHf/RHmZmZodVq8d3f/d2sr6+/7DUuXbrEt37rt9JoNJifn+cnf/InqarqdT3Or/Za3syB1xZvhDy4mQM3Nt4IOQA38+BGxhslB14W9k8hfu3Xfs0GQWB/8Rd/0T733HP2h37oh+zk5KRdX1+/oT/7Zyne//732zvuuMOurq7ufW1ubu49/iM/8iP2wIED9iMf+Yh97LHH7Fve8hb71re+de/xqqrsnXfead/73vfaz3/+8/YDH/iAnZ2dtT/90z/9uh3jV3stb+bAa4+v9Ty4mQM3Pr7Wc8Dam3lwo+ONkANfGH8qxcmDDz5of/RHf3Tv31pru3//fvuP//E/vqE/+2cp3v/+99t77rnnFR/rdrvW9337m7/5m3vfe+GFFyxgP/3pT1trrf3ABz5gpZR2bW1t7zn/6l/9K9vpdGye56/LMX611/JmDrz2+FrPg5s5cOPjaz0HrL2ZBzc63gg58IXxJz74rygKHn/8cX76p39673tSSt773vfy6U9/+hV/Js9z8jynKAoee+wx/ubf/JucO3eOmZkZhBC8853v5JFHHuFv/I2/8Sf1Nr7mI89zTp8+zeLiIlEU8eCDD/L+97+fAwcO8Mgjj1CWJQ8++CD9fh+A/fv3s7y8zEc/+lFOnjzJww8/zMmTJ4njeO85b33rW+n3+3z2s5/lnnvuec3HYq+bQjke0vWV5sHNHPjq4mslD16PHBi/n8FgwGOPPcbf/tt/m263y87ODjMzMzdz4FXiayUH4Oa94E8rvtZz4NWe+CcaV69etYD91Kc+9bLv/+RP/qR98MEHX/Fn3v/+91vg5tcb/Ovy5ctfdR7czIH/Nr7+ODlwMw/+2/m6eS+4+XV9DrxS/IkjJ19N/PRP/zQ//uM/zurqKidOnOB3f/d3+a7v+i7+zt/+uzRbbTyl+Pbv+FY+9tGH+cTHPs7p06fIigxrNZ5UzM/NEgUh1sLM/AzPP/8id93zJr7lW7+FF198gT/33X+ef/MLv8CnP/0ZtNbMTE/xs//wH7J65Sr//J/9M9qdDjMzM/ytv/N3+P3f/k12uwM+/alP8dBbHuTuu+8hjCIGgwGNZoOFxX1Ipbjt1lvo9/tMdNqUZYmSgjOnX+LAoUMYY5hfXCTPC37r136Nh97yEEIpjh49huepa2/cAuKVz4l9+f8AEPWT7cuf9Sohvuhxa0GI6x//wr99wU+Ia7+3KAt+4Rf+NUWesrG6QbvdIm5EtJotbjt5ku///h+g3W5/ieP50vFqOTA3M4WUbqfVac8wHA1497veDkJireDMmdNcunShfn8Wa+H7v+/7eOc738FTTz7Nb//ObyOlZG19DWOgM9Hir/2//ir/8T/+GoPhAG00999/P8889RS+7yGk5M477uLUiy/ihwEb6xvcd/89/K2/8z+zsnKZ2ekZOp0OUnpcuXqZC+deoig0q2vrfNO3fDPpKGF3dxurLdZohFI8++zzPP7kE3RaHTbWN7iycpXv/Z4/z0/+vb+PVApt9N6J/8KU+MIrLK5dlC/KDxDj/6771jWC3P/3//g/AM1//23fztbWBkJ5TE1PEwYR3d1dhBQsLO5jd3ub/mDA0vJ+qsrw4Q/9V+Io5NLlK/z6r/8Gxhr+h7/4F/krf+UHOfvSWf7Xf/AP2N7dZWNr94+VA+M8+N7v/V5OnDjBhz/8YW677TYOHjzIW971HqbiJtVwl7DRQZuKoruFQGCtAeUT7TtEPLcfoTxMVSKx2KSP1hUlknLQw1iLLXNUECF9H6sNVCV5fxM/bhF2ZsALUH4TU6UgFLLRRPg+QoUYqwmsxhfgBSGmLMjTEaPdHfwoImhNYqoCaS06T6iqHFOVxK0JbFWi/BDCGC9sIpUkS4YgfYwSCG0weUae9NFFgUZgsoSqLMmTETYd4jfbtOb2ETRagEBFMcbzwEpsmjDa3aDob2F0QVHk6LJEeAHSj5jYfwQZRkjlYYXADLpIa/HDAKsClFAUOkej2PDb6KBJmfboGcNQexRhG6U1Vkq0tcgiI6pS9PYqOq/QzQlEFJF9+N/dkHvBpYvnkVLxM3/rJ3jiudPErQazU5PEjQabW10uXbmKBZQfcPLEu3nh+U+xvvUSzahNHHpgLUVZ0ogbGKvJ0hQhLAf2LxOHLSot+Uvf/XU0OxEp5+mECzx+ynJgVnJmvWIyElgLSwcP8XsPn6M1fZT77Uf5cz/4PhrtmH/7n57j0/3j/PW7N3jw3W/h9HOrfOr5ER/9wO+wfvU0tx1apixKPGnRRmOMxRiDL6CoKub3LbBvaYEf/V/+HvHEFKBxH2jh/rQGMO77RgMV2NLd2LEgNFtrXf7rr/wB+vxzzO6fJ0szdvOC05cTcq/NSm/Ebr/HxtoGYdgkiEKKbEh/tIUUimYckZc5S4feRHvyJNlglZiUzd4WU1P7mJqY44kXPs/x/QeZnZ7lubPPsLvd46H730XUCPjQR3+DQW+bxCZfNgf+xIuT2dlZlFJfxAReX19ncXHxFX8mDEPCMCSKIpRSJEkCgOcFhEFIEPg0Gw2qSnPbiRMcPnKUF198gbNnz1DkGatrG4RBwPzcLEoqwiDE9xStdpvtrW2k8jhx+wm2Nrd59pmn6fd6IKA9OcEtx47xxJNPkSYjdrd3GSQjpLS89S0PsXTwEPv37WdpeQkhBY1Gk0arSRgExI0GOzvb7O7usry8hOf55MXztFotqrKk1WjSaDQI45jNzS1+53d/j7//9/8Xjh49iv1SRYW9/o8vfp4QAuwXvsLLC5Hxc175Fb7oFd1iVq9oe5OY6pcUwv3lt37rtzl96kXe9ta3Iq3kwQcfYHp2hrvuvofPfuaz135vHV9pHrxaDkgpamjQMhjuYhE0m02qSpPnFVi7Bx2Oi5NGo8Hs3DwHDx4iSRKqSiOERCooipK40WBx3yLp+RRbuZ/Ji4Jms4GUHn7gY6zBGuNgzt6AVrMBVvCr//FXuXJ1lfe99z2MhglTs1McPnKYOG7wyMMf5cCBg0hjufXWE3hRRFmVxHGbJM1461vfTq/X5V/+/M+xsLBAu91Geh6mLk6+oMx41ev3KvVs/aD4ouJECkG/P+CjH/0o7/2Gd5EXBb/0738FYw3f+s3fyMzcIr/8K79Ms9nkh3/oh/j9//wHrK2v8c3/3Xt56uln+PCH/5A777iDT33qUwhASYlSknZngtvvvJOve+vb+cB/+YM/dg6M8+DIkSMopRgOh0xMTADgGUPv6nnCZpNYSiprCafmqPo7BLNLRLP7EAhUEOAZixEVxfYGw50NgvllVBwThTEGsLrEGLBljogkpAP8qVk8z0dYQ5UPCaMI05xEBDF4PtIY8H1iP0CUGSYbUA13kFGDuDPhimVdocsMAZTDLkWRErU7hI0Go51NhAqIJ2fw/BCpPIQUqFYLIwPyqiTwNZaKRjxPqQ2m0mTDPlmWIsMWha2osiH9q+fw4iZxZ4pW8wAmS8FUSCmZWNjHQEmqtIcftQCLDSLat9wHVQXGYvIhWIPfahEIicVSaRB+QBE22bABuVFklaJSHXKbELZaCB1gohBrNUZrSIeU/V2MF2AyjRjtInTrj50Hr3Yv6ExMoIQk8hRKSZTnMT07gxfHxO0put0hxhis8mhNTjM5vcjO7gVCP8SaCiVASYEnJVL5GG2wGAIvpBE36PdTlg4uk+cjfKDTbBE3KmZmZli58jStucMICUXaY3bfMmUR0PADOp0OcbuJ0SC8Fl7Up92aoNUaIPwS6floUzE9EVEMfLTQWEokiqI0eKEk1BYpAwSKTrtFPNHEFSLX35AFiryqLwABAABJREFU1wS4Fqjcl9X19wzDnivOikqQDFOCdgOdZHieR+b5YCSd9jT7Fo/QmZig3Wpx5cJL3H37Uc6+cIbO/BKlyejnU8igxdrFi7QWlgmjGE/6JFmGrQzaKIZpwWA4JA4atOIW5y+fYjga0G7OkAyTl+XAK8WfeHESBAH3338/H/nIR/jO7/xOAIwxfOQjH+HHfuzHXtPPfuxjHwMgTROazSZaS7QxaK1RnmJ58SCzCwvEjQZPfO4zCCEoioILly+z2+sTBSGe57G6soLv+wjg9KkzdLu77Fvch+crulvb7O52UZ6i0WgghWBx3wISxSgZ0WzGeL6iMzXB9s4W7U6H3V6X++67H8/3EAgacczW5ja9Xp/pmWmmp6cpigLf9zHGoI1hbm6Oy1eu4nuKJ598iqPHjrhyYFxg2Gt75S9ZtOzFFz9LAFaAsFwPjVx77DW8XjJKGA2HNJpNhBCEYYjv+SAEaZrxyEc/yqGDywRhwD1vupsHHnozrXaHRx55hCuXLr/qtfxK8+ALc8Be9+E0xmCtJYoihnXyG23co3v1mEUpSVEUxM0GSZLVJ6Z+t9Zy+sxLaF3RbDYYDPoIqCVzkjiOKIoc3/OwxoCFoizBGjzP5zOfeZQkHfLMs88AAmstoi4AjLX85R/4fiYnp/jko59kY20TLwpQUtBqx3z0jz7EN37TN/L93/d9RGH0siu5B4KIa/8e345eS1a8YuyhJpLPP/l5Ll+6xK3HjnH8+FF++u/9BEJKWq02FsH/+6d+Ak95TE5N831/6X+kLEuklPzzf/5/sbGxQXrsGK1mk6LIEYDRmsAPyIuCBx96iA/8wX9+1Wv51ebARz7yEd7znvcAoHSF9HxUECGabZr+JGUyJOwcI5iYoeju4EswZcGoLCjzBJsleFEThKDlBVRGI7EQNDGmQkYRGE1lKqQFKQDlobKUbHeTYOEgSnkoKSDPMKMdCgtCKXSVUyQjsvVVVBgSNicw0sdUFYGvKCzoLKE36NLoTGFMRWNmAUxFnhukX2ErTaUNvhfgCbB+hBUKKUAoQRQ2EL6PHA4p0hHewkHy0QCwBM022aBLdvoZ4qkFwlYHoyuKwQ6mTPHCGD9qoKTC70xhTIHVJVobhNFQlXhSEDRaWD+m4XkYAxdHmjLJsJ4gsJaG5xHYgKy7i45nMEIhpEDubiCzIUJKrPBRUz7WWEyevO55ML4XjGHBqU6bRhTRbEwQBg2U9MiKEVgwKIQKMJUhCtvEYUwUerTiNmma4BmPKAwpTeXWeWvxfcVolJJlQ7IspTA5DeHWjWQ4IG4vMTk3z1Ss6PZLklRz5fR5lk98HZ3ARwp3X8nygqJISNKSItlBSo2wUFWGCst2Dt1+n42NNRb2zdGJmpR5gTIe2liChqHZirFIwOfln/7xff16DkeNpIhrG9FK71AUBYXRCCtIe0MiC760DLKEJBlw4uS9DJOMmbkFAiVZOLjELffcxWiUMbV4GD9QfPDDn2Fz6zxWFyAko+GAqoD9S8cQQpEWOZXQNeprWN/eotvrcu8t7+TM1Sdf9ZpeH38qbZ0f//Ef5wd/8Ad54IEHePDBB/ln/+yfMRqN+Ct/5a+8pp/9gR/4AQB8z6eqSnzfoyxLVlaucOb0Ge5+070sLu6n1W7i+R4LiwtsbmyggF6vx1BKXnrpJWZmZ+l02jQaEXNzc6yvrjAapYSxz759+7h08SKXLl/mluNHGY0GlFXF6voGRw4dIBmNKCvNytWrPP7Yo7QaTXr9Afe+6V6kkGhdoY2m1Wpy/vwFjDYcO36cZDSiKArSNGV9fQ2jNc1Gg8FgiK8U1hiElNfyTsAXbZu/4rB1YXL9976yZe25Z5/jmaefYW5hFmssRV7QajWJopjbT96BABbmF3j729+BlIpmu82HPvQh/vPv/R633HrbK77mV5sH1+fAtbdg9woQ3w+QKicMJVEcuXZV/X4FIJXA932CMHLVe33zGC/2RldcuHiJ5aUl8iJDSokUguFwQBSFgMAPQkxVsby8hLEWTymmJif5n//u3+XWE7cyHCX0dneZmpsjTzOs0WyurnH/g2+h2+vy4z/+d8nyAqwl8AN+4id+gtnZWba7Ozz88Y/zF77rOxF7TZoxTPXFLbzxo+NT8Up7keu/L6wr6GwNgQkhQcGHP/RhojDgvvvexNWVVX7p3/07hFTcefIk+/bv5+GPPYzn+3znt38HD3/sEdY21vmWb/pmFhfmWViY533vfS87W1vs7O5gsWRZTlmVWAzz8/PYV9kl/XFy4Ad/8Ae54447ACiyBM9XeEpS9rYplCLsTCNabbSQyIlZ8sEuXlVBEBE0mlhr8I1GlyVFWWCFBWMpB12EtVTZiCLtI43B8wOEVOg8w1SaaHaBsBEjTUnZ7SIUmCon7MyCVCjbIOn1GWxvEjcajLa3iCen8cOYbJQz2l7DWE3o+yTrKxBGBK2E7u4W2lii1gQqjEF4aGmojCb2AkTcRlclvhDoPMUWOXG7DUpihSRqTaGHXWQQEU0oUIKw0QKhEEZghEc8NYdJh66gixoI6VGtnKfIRjQXDyP8ABGEeJ5ESA+pK7IsZSgjOlKwP5Z0tSbwFYM8JRSSQXOGIq9A5whrUAis0Vhr8IIAI0NEWbyqsdbrci8A15pJE5LRgKRMQQ+ZmJ4hHRQMhj2QHgGSNC2pKsswGbl7ge9TlDmVMURhAMa42kS4jYkxFVEcoYxBj3LKliX2FM1mTJqXrG1vM9GMOLQ8w+Ur28zMH6NIUkxkwRPIMKDRVHhJgtU5UhoCTxLHDfIsI0lyjFGM8oKdXp+pTosCD89ziJvQ7v7UaEYYPCDklT/tXyKsxQsaSAmmyDBVifAESlnKqiDNNKM0J2pMsNPrEUiBLgu62+tYXVDkKdlwhJiZokxWKLM+GphodbhkNGHcJIiaNJuuXXPo4FE2Nlco0or1rascPXQ7/VFCcb58TYf7p1KcfM/3fA+bm5v8zM/8DGtra7zpTW/igx/8IAsLC6/pZy9dusRP/dRPIZVCeR51fwFTaS5fPM/Fi+d529vfRVmUSCFZX10ljhvMzM1RFgVrqytcuXKF9d//Pebm5nnHu76eXr/P8vIBLly4iK4KlJLsX9pHkee8dPYsS/v2MTs7y77FBT7+8U9w5513EgY+c3NzfMu3fCuHjhxmOBgShiEAVVkxNTmJVB4b65tcvXSFA4cP4nmKPE05c+Y0h48cIUtGzEzNkKcprU67Rk2++H2/ljJiXMe87N9f+CLjBW68WNgvX6ZYa7l69SovnTrFxXPnOHjoMPfcey+NVpOyKDBa0263ePd73sPygYNkWcLv/OZv82u/+p+YX5jDmFd+3a82D67PAddNffmbNtagdUXghzTisH6b1wo83/fxPA/f81BSYjAOqRKuTVRVbsHa2toiDB10rKQrONMsZX1jk3arxWg0JMsSjhw5ilQKi2Vx3z4eeuitDJIBl89d5O7770NXFVvbW6xeuswdd9/JU59/ggPLy9xy/BiPPvppysLyX//wQ9x/330cOnSE7c3NPVjk5V20uvp6lXvSqxUm1/+pq5J+v0e7M+HOna1IeikPP/xRbrvtFg4ePsilS6vsX9iHEILpyQkm2h2OHDyEFJI4jpmfnUNXBb4neOihB/jmb/lWmq0Jfv/3f2/vGNI0xVQluiwJAp9Xy7A/Tg5sbm7yD//hP3TXNI5pTc8hdYXfaCLjFiAhL0FZtFT4rQmM1QhjsAZ8Kcl628jAx+LQV6qCqkixVeFawHELJaVD4YxGBRF+awp/dhEhFKPNFZrtNsZUKM8n3d1ACMmo1yXp7qCLDBtFNFtNOpNTCKXIE2gdPkoFDDY3sFWF7/tgDEgPq3OG2xt4UYvG7AIyCom9EKsknucjdYDWGoElUBKjLVGjCVpDYBDtRQQCTwUgJELVJa6xSCXRZY5FuJbT5CzlaEg0OUuncwzhRZAMkVGMLlOE8Miriq7ySUcJAYa+DOiJgFFeUQiPfNDHiBGqPQcYbJYhTYmdbGH6kgof31SUAmSRvu55ML4XuBCOJ+NJwmaTyYkJmq0God8AKfB8Dykso8FwD8XOi5Qg8ClNRVHkpIWHQ2I1BktepEy0pgjCGL/ZRJVDjDWUeUqZp0y1fSLlUeQZ291NpiZbFFR0okmoXN4bW6IN2PY0YTvB8yXWFGhjsdaglART0Ig8juxbYGaig7EOIzEKsIIyz5FWU+Z5/V6/BCnxlUKAVB6VgVFhmRaKrNIoP8aKgtIYvMBDoOkN+2T5CJBoJAZotDogFVHoENFSG5b2HSaIG25DKD2GoyGD4TbL+5aRKNqdNhe2z3H77XfSbE1zZWWVrBy8psP9UyPE/tiP/diXbeO8WvzwD/+wK04EhFEMRmONxQrB9MwsmxsbbKyvUhYFUgrK0jAcDhBScOedd7G7ve0IW1JgtCZuNtje3uLi+fPcfvIkWZpSaUMYRTQaER2vwyhNefqpZ1haXqLI38TnPvc5kjTh2LFjzM7NsLGxydTUNFY4Ap4FLl66yvLyEksHlgiUx2c/+1keeugtTE1Okac5aytrxI0mcRRx77338tjnPsdb3/oWwjACrluQvkLY5Is2qfYV/v4Fz3k1DoO1ljRJeenUad7+7ncxPTNDliSceek0zUZMt9vl7W97Ow+9+UGOHb8VhOA//ep/4rd+/TfwPUUY+F98PNfFV5sH4xz4whi3YIzWVFKzub3zRc8I/MDxTwDlKXSh99omQkjywhWnaZpibcD01CSB71NWFdZaRsMhst3G8wJGowEGg7WQ5hlVVYIQRFFM3I4dQiHAGsuVy5e47Y6TtDtt/sYP/4jbdcxME4cxTz/5BE8+8ThFqZmYnHKcg+v2mXvXRVwjPX+529I1MPca/lJWBZtbG6xvbtJqtQiCgDNnznL+/Hm+42/+CFHcoN1p8+Y33w9SMTExQavZ4s677sQYSxSF3HnXHRw4tMQoHXL48CF63V3SUYIUCiFcK8tY7XgWCJRSr5CU1+KrzYEf+7Ef4wd+4AeYmJhgcukwaE0UhlipAHcsWik8YbHZEBM1kNaB3dLzsLpANpoo5aMN4CtEECGjJqGUFKVrUSnh2gyhUsggxGtOILWmSnoEjRghBSbXZN0NRt0dtJQYA3mRocucUW8bPMlCZ4IyT6mKgrQ3JBv28Jpt2vP70WVJOuwRdWYpy5xwYprWvoPEjQnyYZ9k+zJZv4tUCuH5NKcXwPdBeVRFitYlvlRIBNpoZLNJVRToosJUKWWSUPS28fyAeHIWf2IBrKa/eolq0KM1u0g1VBi9SzbsEUdNhxqGMaozi28MaWuGlSIjKw14AaFV9NMBhdGYIkNlQ7SVCBFiZIZKCkcithoqQ1XmmCB43fPg+nvB+HqVlUYUOWVVUOQlo0FC6Pv4UQjCx6KxtsICWmusKRFCoLwAKSRl5ZBvBERRgK9zsl4OZUFGiR36xM0KGYZMtJqOXF1VtBoT9EcFM82YvlZ4UjvUSoZYFFVuHHKJocpzhkNBrt3mSJuKKAwJhCSzksj30LpCKN9xuKYmmZnb5xAZA19KhfvKIVCehxWSpCgotcaYirSoMEI4RLws0VoTBoHj7UgfU4FBoE1FI5DoqsRTCmWh0pYkz6l0RZqNmF84SOA3kEowTAbkeUrgBwgbMExHvHT5M/jKJ30NxrJvCLXOq0VRVgz6/ZqMaNFVRVVpxxGRiiAMCYIAz/MYjUZUukL6HspTBMrj3gceYGtriyCMeN83fiOfePjjfOzhh5mfnyPLUofpWWi1mzQbDZaWlvid3/pNfE/hKcVwMGRtdZXf/e3fYnJykgcefIgDBw8CAqkkW1tbrK+tcf/999FsNsFYtrc2iaIDRFHIxUuXOXXmDO96xzs5eOQQzWabjY1NDhw48EXVwhd2F1+pXHkZpeQLeVJf+D1w7+/6f4+fNCbdWku/12Njc5OsyBiOhmxtbfH0k0+zs7PNN7zn6/n0Jz/N0SNHefCtb6WsSh599FFWrq6glOLue97EiZO3E0aNr+LqfvUxSlzrDOlTlFW9YJq9xVoK6fqvVcHk1ATGGLY2tzDWIKXAGoNSCmMMaZoRhhGdiQm2trcQQBzHbG1tMznRwWJ56cxLfOyRjxFFMYcPHmJ7e5c0S0hGKeurK0ghKZKUZuAx2N6iKAsGaUIcNVhf3eDBhx7k8JFjbO/sMDHR4a//6N9EFwkWi7yugbNXbLwCd8hiX9bqeflz6zQQgiJLOffSaX7t13+Ld37917O5vsmgP0AgePs73oaUHk8//Sz/5J/8E/wg4M6TJ7jnnnv5T7/263ie4gd/4Pv44Ac/zIWLF7jzjhN893d9F9YajDF43rXbia40QridqlI+UtzYSRmiqghCt7AoP0AbEMIijaHKM6wpkdZSVRXKaEw6wHi+I776HkIJrFToqkBUFZXVKGtQQYhQPlaXVGWBCkJ8U1CkKWVV0mi3GW5tkHW3MVWJ32iihCDpD8nThCgImZxbIGg02bhwlmF3C4kAzyOenqM1s0AQNeiur2CKlHR7hcbiYYJmi3xnC93vo62l8mKaSzMYXWF1RSUkwgrXfghCTG4Rnuf+XuSIvEBZtwhKFYAdQtQgbLSokgFKCGzpFtvm3H7Qmmx7Ha0EYdRA+j4UKbYsMRuXqbrbTMwsg9dkqEIG5YhRVVFiwApUWVABBBFCp0hl3LntrWGTITpNEbMLX7JIfX3C4gceXhDiBzF5pWn6Hn6jQbe/g+kapmaWsUaDKYl8n9AP8KRCS43UBiklQRAgpUSbilxrIj/CUqGCGNMPwTjvECVjpBqxfGAa3wh2tgdMzLbZWL1CON3CTozfsms7YzRFUQEZ1lZU2kNrV67kSUaR51hdooRC10R/gSEtSjxfstPb5nf/zb/im37wf+LQrScQ8is7n1IqsJKqMuSFpgJ8IfB9D4TBmIpKVyhPYk0JQlKiqcoCYyuEAmtL17EQsLmxwm1H72CiPYPBJ/BC4qhDtzdga3sHYUEJj7IyDJNNtK5otRbp57tf9ljf0MVJu9VkZnYWKcFimJicIAgCkmSIwEGYcaPB3ffczcMf/Rimqtje2gYhUEpy4OAB/MBjcmKCfUtLfN9f+cs8/fSTrFxdod8fMDk1xcLCPicPDEKmp6eYn53h0c99jiD091CB93z9uzHGcPddd+2RWAWC5aX9nDn9EmXl2NILiwuEYchwOGR2fh5tDE88/hgLi4uceukUJ26/leXlZbeYAtdwE8dmfRlv5NXAlC9FPNj7u7iOhPDKT9Jas729zb/8Fz9Pv9sjjCM2N7a4fPEimxsbVFXBqTMvIaXk6LFjaGP4+X/xL+j3+/jKY3Zqivvuu5f7H3oIbf5YhJkvGXttsOvex+7OjkMdpO+ImYFPkRdYzN57rsqCLMsZ9PtMz8wwMzvDYDDA8xRCSHfercVTkrX1dcI4JgoDpHKP+UoSRTGDfp9BOuBXfvk/MjM1yfLyAf79f/hl8qJkemaSRhRSlCWL84s8cPdJyqJk1O+RDEd0Wh263R06U5OUWjO/sMgv/eIv0hsM+Fs/9tc59eIL7Nu/xOTkFBaDsLbOhWtX63rmyV5761UlPJaqKtne2eXFF55nMBpy95138fhjj3H82CFOnryDsix505vu4Wd/9meYmZ3D8zyk9HjTffcCliCIuPXEHQhhmZ6eJkszrlw6B6JusVr3y8qydG0QTxEE/pc2W3odIvADAt/HaEs+GhA2muhKOw6XtVghsUWKqaoa0QFrDDaMUUKiiwyTDhFSoeqiKpqYAz+gfjKDrXV0v4fjcBniZotkZ4u036UxOU0YN8mKgiIdUlU7CKOZnJ3HkRQlFk08PU/UmSKMQ9cqSjOKZEQQRRjdojHTQcVtulfO4wkQs4tEcRsbNlBB4BZ/pWqJuZOZGq1Ju1sUO5t4bUGj3QYVYoVBVxXZoI9VHkGngTYWFTXxGx38qOEUSVYz2FpF+gppLaYsSfKM5vwSViiKQY9maxItIiJjSI2loUKyssQ3OVqC8hVoje3vIqIAEguejx70KJFILwBdYK+3Snjdw30iWqFHMwqRYUQzatHpTJConHZrEmstnU6Hyek2aepT6BIhJaJyC7YUCqxAW1cQGKNBGxoNn0GVM8pzRr0BDb/AimksJZfOd8mLBO11OLTQYXtrh9n5gwy8Fvj1vVsqhPIQAoTwEMItvYVxSKOvFHEYEIYBytSqKW3Ac5slz/eY6DTxpeLK+nbNGfvK76tCCKxS5FrTHaVoYanQdBOJ0biNmzEMBgOMNqhAMdnp4NU7Yik8hPQwukJJSRRNkiQVeV6glGCUDkmzHmWZcvz4Ca6ujjBWs7G5guf53H70nVxdP/OajvUNXZxIYVBKUFUlZekkoLfdfjvnzpzGGoMfxCRJwsWzZ1HS7SuVlEicegIhCMIAIeDiuXNcvXoVJQWh79Ht9UjSDM8PWFhYYDgaYoG5+RkOHTrEqVOnWF1bR0pFo9lmenaWmdlZ56mAKy6mpqc4fssxzp07S+AHnLj9JL1eH+V5rK2uMTk5ycGDB5memeHY0eM898wzTE9PgxDoSlOVJVNTU3QmOtjrC4ovkZR7C9arFTHX71y+iCVbZ6C1fPyRj/P45x6nu9vFGM1wa4vd3V2qStPutJFSsLZytW6blfziL/4STz39FCdO3EYzinj7Q1/Hd3/nd6MaIc888+xXfY2/XLQ6E2SJ6wGP39+F8xdYWjqA8quazGaRSmEqJ72z1mJw6pmyKFlf38T3PVqtFsZoGk2n4DDGID2PqqrY3dlmemYOoyt3M5PuXOmqRCmP3Z0u9993L9/8Td/CTq/LhfNnWV5aIopiiqLgwPJBJqYmqGooKy9z/CBgfW2TVqvNZGeC207ewdL+Zf7lv/qXFEXJc889S5Ym3PfAQ4g6p8QXyMRfMxcJgdEVxhimpqf4pvd9I1VVcOstt/JLv/Qf+JEf+ctMTExx/txZgqjhVFlSoJSHHwQI5X6Z7/lEUYixliQZsba6yvkLF1iYWybwvb22TllWey02IQVK3shFCaoyR0qJsJbA82t+hYemdDB6WWClh/RDvHph12WBKjLKskAJhR/GhO020vcJGm2EseggIvYV/cGAxuIhPE8itcb3PdJ0RBBE2FaHsirpXj6LNhBEDcKoReCH+EGDQW8XvzNFc2G/Q5cqt7CUw74rZMqS0dY6jalZh9AMusTtSXSlGe1sI6YkYRiDtUgsHmCNa/qZPKPSFV6zgwpDMBYhPIyUWGPxwgZRGNPoTJEVOYFUCKHQ6QibJlRG4ynBxPwy1WiX9TPPE7WnmD5+B8rCYGuVqigxGAwKFcbMqBDrRcyIkhUvZqfVoextYdNdhCkosxylImSeUkVtV+wXCZUEmWY3NA8QAnRBfzggHfZI0xaFSYkbU/QHu1gkYXsGqwLSNMdqS0WFEhJrLbrmq5Xa3TeslYzl9klmKNOEoNVgsimp8gpRGdoTHfpnL3PisMeZ1W0OLs6y8olLtBcb2NJihcaaijzLMUVKVZRYqxx6oTUGKI3GWIvWlly7dpIQFmEFHpJKSjJdUhrHpxlvol79PNR/vsL9XyMZFQaLotSGLCsIW1PElcHYLlYqPCnq82DY6fXQUpBnqVPp5Y5/Z8cKNnDkd6HwhCIvEzrNSWYm5tneueKsGPKMkyfexPbONqfOffI1Xco3dHHy7DPP0564Qr/fY/nAMt1ul0998pM045B2p4Xve0xMTvBdf+HP88v//j/Q3d0l8AOkFAgpHRStPHRV8YlPfIL1lVWiKKbRbNBsNQmCkHNnz/D8889x7Pgxrl5d4erKKs1WkyNHj9Ld3SXPCz72yCMs7tvHxvo6d959NwcPH8ZaS7PZJI5jsiyjt9PlU5/6FMePH0ebEltZTr34IlEc4wc+D7z5AX7tV36Vn/2Zn0XWNxBjNN/1Xd/BN37TN9V1w2sTE38ReiKu/WVMDNW6ellyjzkY1hqyLAMLMzNTnL9wnpUrV/A9j+FoVEtsW5RlQZEXxHHEcDSk1+9x4OABWq0WizMz/MXv/HP4geLzTz3FC8+fep2u+BfHzPQMO0CRp+iqwmIdsREw2pkYFWXhilEc0vL8i6f45m/771lb28BYS+h5pElCkiS0Wg2OHTnMU9PTrKyugDUUZenaO1HORLvt2iNlhTaWpeWDbG5tgvRQ0kPjSGdlZYgaTbZ3ugyTEffcez9PPf0UUkqiKCRJRgRhQJHn/NzP/Ry+lOzs7nLw4GHSZMRv/eZv8ef+/J9jZ3uTN933gFNw1ddp7xq/7NpeFy/rAV57QlEWe3/eevutvPD8czz+xOeRUvD13/A+Kq2pdEF/I+Gf/tN/jjaG2269hXe+4x388q/8CnlR8MN/7a/y2Ucf49SZ03zj+95HMw655+77acQNPOWKE2Fdf9oYg9XGkS/VjS1OrPLwPM9J9BEYA5nVTr0VNvZaPX6jibA4Qz2B43DUnwvl+fhegMYg/ACb5/jGUKYltr9L3t+tW22GPE0BQ5k7s0eBBCtotjpYaymqAUGjhQxDZm69g7DZhFIjEDWZcuTI5EIggojmwn4sijTLEUIRNVvE83PIuIFEOMxPeeTbq/R6W44fpRS2KjB5gT8xQzQ141pQRjNWp+k8Q0mLNhbPWqTvo4sC60msDAiVcimSjNCVde8bi85T0mGXLEmRYUw4OY1WMcZKBnlBT0tyG5N6IaLXxU97CGspw4gwH1FSUKGhNY3KR5jcx+8NqGo+3Q3MBKpKY6yk3Wgw0eywb2GZKjc0oogwjFmYnWVpeT/rV08Rhg2qqtgji46RDWtKlJJYC0Vl2B46+XRrZo6t8+exLYFRAYaE7X5KGITs7iYcWJ7l1LkVTtx1ktVeA785haCJEL4z6gsj4tBDiIC8sJiidAietWA0pizBuE2VFA6BF0oReApdaYI4wnoeXhh8xWIdcGaVEkFSlPTTBCUEQms86RG3FdZqrBSOj2Ld5iKOnJ+YkJ6zwQAKa6isZpD2EJ7CDyNwDUuU9AmCBsNRF2NhmO1y8sSDNMKQz115lKwYvqZjfUMXJ+MioiwLiqLg6uXL2HrnW5aVa01sbfOff/f32draxlOSIAxrFYTFao3WxrGiheLc+fMoJZmanMTzfRb27+Pbv+vP8Sv/4Zc5f+4cWleMBkMuXbpM3GzS6bQJAo/9+xZRStLpdNi/tB9wbZFz5y+wvLTE4r59LMwv8MjHHmYw6JOMRtzzpvsw1rC5uYGUzlio0YjIksQVBwBCkOf5nleGvc487cvGF26vr1ucq6rkmaefRRtNGIRYayiKgqqqKMuSfq/Hc88+y9mXzrK2voY2miRxCbW4uI93vuvdrK+vc/7sOXa722R5zvzCPHGzRXdri3e96x2IOOCPPv4IZVFx8MDy63TFvzi2tjaYmJikCAN0VTEaDrDGOJM0a/YW8/E5BBj1Bzz/wnMUxTXWu7GONV9Vmp3uLgcOHmJtYwOB83HBQr/fo9GICT3XLkqTBOKYOIqpTMLu9jZ/+KEPUWnNB//rh3jfN7ybxx5/ko3NTWY6Hf7R//5PKMuSt731zdx/3/0IqfBDjyc+9znuuesu2q02QeDg/qos6O52WV1doSoKwjhGjy18ja05Jry8RbdXlXwh29n5mZRlgZCSRhwx7A64//4382/+9S9xy63HOHnyDjY21mk0mrQ7MT/8P/01giBESWem9kN/7a9ijWVhcZFvaE1w3z330Oo06Q/7SF+xs7uD9Ly9c2yM4+8YY5BC4N3g4iRvL9KUrmCUQYDRFaHysEUOWDzPETyV52GVwquLGasttkiRvkJ5AcJaTJKgs03KKidoTbm+e1FS5hlSQJb2KdMRSB+hBFprQCKURFcFVVGiogZTx0447kIYY7OcMkvRtiKMmig/RLQ9pJQY61EMdlFxAy9u4jdbWOEhlaQqcpQQqDwlGfQcwTCMXD4bw6go8YOAqswpyhJf+QhPYfMCKUChMJUrVjwkZXcHETXcLleBwGCqCiF9jFDMHLwFYzR5r0uaDF1hNzXnlD9VhZKCrDlJUhoqqzCjEVRDkGBGCYRNyixBeQ1MMUCVPkb5iKkYbTrI6sYiJwIIPEMYSDqtFoHno3VFkqRkeUqWZ8xZSy7dYmqswfMCPOnXnKQCFSiajTb90bD+7CiMqFseaPKiQnmCLM/BWOYXJrl86SKLCwvs9kYszM/yiY8+T3PyON2dbbRJMFpSFCVSWqJmhIwmaEy18BoG5QWEgY8MAhQCTwiUlvhCIXy1h/QXeYESkkBwHdfkVfr4r7JMaG1quwWJlJbSWvzQpz8cUeLsEayGZqPpiP7CMOjukKcjpBBoXdbePhKsQQmfIktBO7frQpdUlaYqSi6cP0VvtIunfOKwQVEWbGxeYd/8Ec6tPP1lr+UbujiRUtCInZHQ8WPHUVKSJQlXLl1CeYo4jmm1mtx6+61cuHgRwEm2cDdNP3CJa4xhamqS2dlZ+r0u21vbnDt3lqrSnDp1msmJSXZ3Nli5epXN7R2OHDtKkZdsb29SlDm7uzs0mi2OHD+GHzjpqqcUWZry2Oce48GHHnT8FClZW10lajRYWV3BlBXnzl8iz3KiMMIPArIsw/d9ojCg1xuwtbnJ1atXWF4+4N70Vy7eeYXzJrnllqMUZUUYhfUC7tpcZVFw/tx50izjwsVLtDsdZqdnkFLiBz7tTpvBsE9ZFszOzTA3N4vveaxcXWFne5v3fP17MEHIHz7yCFPTM+RZURuY3ZhIRgOs0XQmJgmDELBIqciyDCmDPf8Sd94c1+gb3vteHv/c51hePlT7nNRFn3U92fPnLnD69GmW9i9hKFnav5/TLz6PMYZ+r8/EhNpT4ayvr3Fg+QDdwYBmp81P/NRP4fs+f+vv/G067Q7d7i5VWbBv3xJvffvb8KRCKMnv/87vokun/gnDiLe/810cv+VWjDYsLS0x6O3Sbk1wPj3HaDQijONrb1rgyJC8kqz4OpLzdSCLAPIsRwiBH0QsLOyju7vDiRO3MTs/xURnkksXz3Ho4GEuXV7ht377twHB7Owsb77/AR5+5GG0Nrzvvd/As888y7lz55meneTBBx5wSp2aRDg+pqJwrH9tDFKpG16clH4THUnnfTTsIvwYk6V1v97HCoHwA4zyEGWByXNMGOD5ASYIEdZgCsdL8oSlMAZtLUUyoEpTsnRE0GoTRjFyEBA02mChynOKbIQVEj+IsAj8sEFrcT94PtYPUGGIEYowcsoeX0iElJQW19bJc7xmCxk3CReWMJXGyxKSjavoPKc37DHq7lKVGVGzSeEHzq8ibuJPzuAHIXo4YLR2xSlOggjpBUjPQ/kBXhi6hcVzhnFVMsRvtFBRTJnnmCrDVBVeGKLLAiM0sjlJc2aRMK7JsaWGypJrg8ozWsJjkKaIKkcYgSordFlgK+e0WhYJstHBZD2ErbCRjwpiZLd/w3LAGgPKY//+fUTRZcK4yWy7Q7s9RWdqkalnnnNNMSPYWLnKcDTE910hKwSUpiKrSiJrKYsCrTVGWDzPo9CWKi+wRlCVAktA4AuEHLK7O2B+PqTUlrtv3cfzZzdoLR1B6ZBOo4XvtRGqCQiHLkon5RZaQplRFDlFocmSHGkhL0uKIiP0PCoBsR9ghWDf8iLGGJrNACFexZ/hy4QQgJTkxlLiUVmD15mk3DVu7VIelXaeMFLMgbVEcYPJqWl8FVDkBiVB1kVbpQ1x1KYROxuMuZkZfE+wuXuZ3f4qrUaH6fYsWTrkatJlqjVLp9l6Tcf6Bi9OFF5dDFhredvb3kp/t8vVlSukaUqv30cKyQc/+GEC3ycMQpRSSOW5qk8pd4Op3BwDJQWtVos8L/CVx3Aw4Jknn8QPAjoTE8zMTHP40AE+8+lPMze/yOTkJLoytNoT3H3PPSwu7rt2cAIWFxf5+MMf56677gQbc/fdd3HqhRfBGK5eucyB5YMMu0Mef/xp3v72h5BKsbiwSBRHTE5NUlWaqalpLl24yPKBA3trkUUghP2yIMrLkP/rBudYa1hb32BldY277r4TJd1iq3XF2TMv8clHHuETn/gkb3v729jtdtna3GA0GoGAi5cv4/u+4xVUFYEfgLXMzs7w7ne/k0NHjnLq9EvMzi7Q6+5QlSWdTuf1vvTXhSDPM3Z3tpmYmHQqLd/fU2+ZPZOVa6v19PQ0S8v7+Y3f+G3n3FojERZXVGpd0et1sViarUZd4DjirbGG6ZlpojhkNBySFw61S5OMF198kZ//v36O7Z0un3v8Cb7lm97HU089S5pl/KX/4Xv4T7/+GxhrecfbHmJ6agrl160grXn88c9x5swZvu3bv40f/pEf5V/83P+J8t3Hs9/fZXp27gve9pe7+LYuSmqA3zo0qSrczuapJz/P1NQEUlm+4RveR1aU6Npvo9lo8eZ7H0AqSaPRYP/+Jd7+jrejK8vCwiLGwNzsArvdbYajlDvmZikrQxAECCGx1hExdaVd3hmDd4M5Jz0Z0fEUskzwOjMIa5yk1msijMbYCmkFdjgAq928GeNRFaVTMAinQijTBMIIETeIMkjyjOHuJkIqJJZsaw0L6KrAGI3wfPzWBGFrkmjC8cXCVgslPKwSWF3h+RGGDFFpAi+gEoLSuskoNFoIL0A0nVFasn6VwcXTpLvbGGEJ2zPEnSkmFmKkUlRl7vg7QmCVK7bzfpesu4WK28ST00hdoZoTmPYMni2hqrCehylz5/irHKmxjJoETRDM1mo2TTUcIfMMv92BqiDb3cFYxaAsKaRHJj0SDTZQSF/SlgEZmkwaTJWjvRALKAT0txHWYJtTeMMBpmHQN7BI1VWJUZJzl7fY7fYYZinDQYtg9SpChWz3dqh0RTQ1x6zvCtksTcBaQj8ApJOV1yK3IAgojVPvZEWBxbXatRTkZUWRu+JXWhgkgv1Thl5aMNVosvPCo8wffzOVkFipMaYgzUoqSrTxQYTgQRD5eErSbsT4yiGMYdggzxW+UiRl7u5RWMo8JQgDvInJ6wjmX1lvR+AoDcPckmtLlpck2z1S0yAInMy+MoYgamItKAlR6JOMEqyQUMuNrVJoa/E96I8GZGVO6IVsbm7gSZ9Bssub7n03/d46aW+IVA5NWZhZ5KlTrzxx/AvjDV2cmHpuilIKAUzPznDLiRMcv+0E586fZXVlhX6/R1VVjnSWJDz7zNM0wgjlO0JREIVUlbPiVlIifB+lFPsX9zM5M43neSRpAtYQ+AF/4Xv/Er3egCefeJx0NMTc/ya2tjadVLgmA46VHu12izvvOsnmxiYbG+s8+NBDlEXOxsYWRVmhlOTt73w75146S54lrK6uUpYFFsv84iJraxcJw5Cl5aWX7YKvjy+UkH45MQ9Ysizjo3/0UQ4fPcbv/NbvcP+99zI1O4MAZqanmZufZ2Z6ivZEhyRJGA4Trly+hPQ8FhcWMdpQFLmDxqWgFYb80A/9NVbXNnj2+ecQVtNqNmg1W/T7Pcd4v4EhanVIt7tLFMW02h1arRZShXWbYcwqcIu0EJK777mXX//VX3Oojr42WE9K6QpVpejudvds2pVXu/cCU9MTzMzNcvr555ykfDjESRgV73vvexmORpw4fpS77r6bfQuLDPpd7rrzTobDAVVecPTWo1y8cNnt5iVURcGpU6f5/h/8AfKy5B/9b/8fpDDsbG/SbDYY9vtIUS9m1yu4XvUSX8dNcizavfeW5znz83Pce/999Hpdvud7/0eWlpc5d/YMjUYLi/N5ubxyGancHKqNrS3SLMMYzdUrl8nzkv5wwNUrl7lTOltuhERKufd7tdZUxrgedVXccM5JhqTnRUxhIE8dYc/z3ZUXEjEcuPtEo4nneQRKYU2FLjJ06dCVMi9QSpEPB6T9LsPeLkhHJPaFZDga4McNgmaLKHDuwo3JWfy44ZAsAV7gO3t361pIpa7Q/b5r+SDpb29hlUQ0Wxih0GWJ1Aadp5AnFIMu0hoaU3MEceSGDEqFzkuIYlTUwOqKst9FlSUqBr/VQbU7eGEDIQU2LxBY5KjrVF7GYoUjCFdFhRsQJ7FZigpDZM0RAvCj2HmkaAPCg2Ybneb4fkCMICxd66OsRlQqZGAMlbUUpoDOJGVZICuFkQrVnEAHITZsoK1xZnCtyRuWAy88+knu/Lp3kOQWa6wb3IckjhqoqqoLZ0BYTFlgTU6r0aIoCpQX0my0GY56TjllPJJ0iO97SCyx76ECJ9WmPl9WehibI8IGRgs6kSI1KZuZxV+8D1OV5EXmTNa8mEa7RTHwSKwFWyKFIjPlNQWedEKIUldgFakRiLCBsBYpHJKnjaUoK/ZsIL6isPV8MUugwJYlHc/n0iBBxyGVMVRak2c5g34XaxfRpWbQHzAcjqisRPohwnNzBS0WpTyC2kJgt7fL5MwiaTFkanofR4/dQZ4d4MMf/FUmR3McOnIrl89vMzUxSbL15Xknb+jiJMsyh8YLgbZOemWsZW5hgYnpaQ4e2uLjD/8ReZbuMa57vR5d28X3fT7xyCMs7FskGY148KEHkRgunL/AxsYGSkl836PRjJmYnKDf7xHHDbZ3tjl29AibK1fJKrfrmpicIE1TijwnjKK94iQIQ+6+5x52dnYwWvPk5z9PFIVMTk1x/uxZ0jSjO+gSxQFlmYGxYA0bq2vkacbVq1dZe9M9PPSWh6696b0iZQ9D+ZLn6OWPuh8WUlLkOU8//RSPf+5RHnzzA3tIzac+8Sl6gwG33n6CT3/yU+zbvw/P9yiLCmEsDzxwP0EQMkpGbG9tATAx2eH0+Qv80R89TKfdZGlpCSUlzUbDnZfqtdkVf3VR8y+EI/kOhwNmZ+cIw5BR6ky0osAnCAIGw6FDVHSFlIrpmVmmZmZIhsM9x00pRd2ycehUniUoTzLR6RBEIUtLy1jg6Sc/j+8plKfwfI8wipjutNDWoPyA+aUD+FHMwSNHKMuSVqfD0VuOO/WL71Pp81S1okVKQXe3x9XLlxjsDhgNRzSaMVVZEMcNer3eXsvJ2msI0N41vd735BVI09ZCliU8/9zz/Otf+AWmJtoEgaLX7eEFAV//nvdx5913Mju3D2pO0qWLl53sstXi4OHDrF69AhoOHFyiyguy/gBTVIyGQ6K4QbPZdGRP436/MQaJoCy1G5bo+TcwByBBkhSWZjrClglKKXwlIYzwpIcoIoSw+L5EGI1OE4rUFVwIQTEaooKICkmapeRZii4yUAK/OUk0OcVko4MXhdiicIPiohg/ijFZhjAWP2qS9vuuVaBcu0AGzs3VFjlFniODABvHaGsgz/CsAOWBFM6DxVPIVodgYhZw6kJrLFWjBUphcYRGv9FCISiNJgojyjzDZAlKejWxucKfmIQsRyp3PTAV2vOcrLUqMVmCLnNE1HBGllpTliW2qgiCACM9hFCEzQabo5IkLUmFIPR8BjJgN81IvCbGCxHT03jGIHubWGHwt86hFw4iUYiyoIwnEFtXsDdwxfmn/9v/yf/6TztYJHHUJoxCDhw4SGUElYbWxjrWWISVCFkhlIcftjB2CP9/6v403rLrLO9F/2OM2a5293tXX6VS31iNbVmyZeNWNnYS2kACBEgHcRySALknDTm5gZzgQO49OYGQEJpATgjBdA6ODcatLNtqLUslqUrV97tvVr9mN5r7YazakmyDDce6v5/nB1Vp711Ve6059hzveN/n+T9YRqMeSilf/BmNQGKdQ1uNsArtCow1FNqCEAyGY4QMybMRrUadnbFhejogW99ABPso02lCOcESWMegN8TanEFW+UmyydnZ7KC1piwqBoMcVxlQeHG304hK4pCEcYATPtBwNBzh7EtH5btUo11n3p90CenF6bPNhi/ek5De9oBm3ROV4jAmimJqaTo50vm/S0lJHAgKPWJ6agaM9ePzYoxUAXHsn1ez0/O0m9MoFdHf6bC+cYGiyojiJjvbHU6fP8nU9BxsXf2q9/MbujgJAt8Sd5PCpCi9/iNJU+KJhoNJ4JrAt+miOCHPxlRVxbkzZ1i5usyD7/pmPv+5R9jaXOfmW2/zlEnnYV2hCkjTFCEEs/Oz/OFHPsxHP/IRwihgdnaW+1//eqqqYmlpiSRJXmKSEOx0utRrKUt79lCv13nh+HFOnniB666/genpaRaXFvnEx/+YvQcOMR4O2NjcxFhLOkkrjqKQRrO569T4Wq4v76ywO9GwxnDmzFmGgyFFUbK8skKrNYVUip3tbZrNNjfddCO/94EP0B/06XW7HDx0gDAIePd73smpU6eJ4pgwDCm7JTfddCNOCD7y0T8mLypajQYL8wskSQp4EWaceB7C/38uAcL6zJ+0RrMpOLBvL8urK4yzbLdrUlUlg0EPJxzNVou9+/azfOUSw2Hfn/4nbibnHEIKVtfWuPW2W1jd2GR5eZlWq0FZ5EhRoyq1HyMB/UGfZ774DE998RmOHTvGq+++i+MnXqDX7/EP/8E/4N///M9jtOGb3vR67rnnNROVvvUOASk4fvwER4/ewMLCPOPxGBXFzLen2dnp/umvmWvMg6/8ULpWLDscs7MzvPnN38T2jj9VHzpwgNfd//rdcEIf9lfnB7//e0lqNc/9UIogCH0BJyV5nrG9tcVzx56l2+/irGV7exttDNdWoJ5QL8EhJPAKd04wmmEONmyxGMVEZowMI6QuiE2JVR7nXuY5AoeuDDZOfA6W1shQQOJFx8nSQYKpOYJsRFKrESiBtA4VxBDFiFoL8O1+URaoKKLMMsY7G4TtaXQUIawlCGLK0RB0hdWGShc00gVcNkJYQ9CYxuoCW1U4AVFrGlPVfZ3pLKYoQClEkCAkk/GrgCjygkgnUAJKJzCh88WKkIjIw+ioKiiGqFoTEYTIsvTCb1NMUoqFL0hGpd+I0hrKCcZCMC4qmpEXApfOIVRMsx4jshGVDCjAhxWO12HUJxtsQ1gncIZSpj6QMO8hGm1EVWGRUG/hXsFlMMjGnDr2HLkTjCuNdpr19WWKyjIeFQwGHSqtqc8s4GyFsxVb28uEQQQYnC2RIsIWFaX21l6wWCS1KMZZg1KKOA5JYklrWrG+1UGGCba4woE9r2K7v8XCbJ34+GmMuJ54MUYFMVYq6tNtglGdJBghZOQdU0mTw9ffwblnV3DGoJIIKRyB8MMxI4Qn1lrreVuhop7UKLOCqiwmjkuBkJMQz68yPnXWURQV0gWElWKkC7aHBVNL/vVlxRiDB7+5SXFSq9WwAoqsJA4N1eRnu9IVcZhS6YreoINygl6/xzAbUUsizp87RRRaphqLhCqklkYkQUpRfm338xu6OLm2CVrj58vOwckXTvDkk0+wtGcfBw8dmkTb+7ZmnufU6w1IEsDRaDQJ4xhjDIuL85w7fZLf+93fpVZLMNY7eY5efz3D4ZiyLKnKctISUxRZwYULF3n66Wd445veBAjG4zHrG5scPnII5+DUydNsb27yzne+g4XFRXZ2thiPhqxcvUIYBhhrOHTwEFmW05yZZs+evXQ7HZzIUSqg2W7T6XTo93tMTU2htSbPC+oNP0L6WsWx13AmWht+8zf+B6NhnyiKuXThArNzczz1hS/wTd/0Jq5cvsjZU2eoT5Dc83Oz4ARHjhwhjELmlxYJwpD+cMjKygqf+uQnKPKCqXaD93zLtzEzM0u97h/mamLVVkHA7CuoOfGjGjdJ1/UDnOnpKfK8xGFwIkAbhzYvF+VmmbdyXrxwkVqtxuzcHGm9gdUFSZr498yBEJJ+t8fJ488Tpynz83MEQeQF1WHA4cOHCIKAam2D+YU9/OAP/nX++l+HYb9LkqT0+n2qqmDvvgO8613vwBpHWZV87GMfu3Z3AE+d/Z7v/T6ipMajjzxCFIZcPH+e173+PjY2Niai3a9hfPcSR5e41i6e2NAH/R5Hjhzh4IFD6FKTJDEHDh2iVqt7p1ZZMhgMuXTxEv/v//1fkFc+fVmpYJcj8z1/5bvI84oPfOC3GQ2HvO3tb/UwsAlRc2KFwxiDDBRioucqy6/xifTnvJwBGynyIAIsYdiAakQtDMEUlBZKW2JVgAsjglaCAmQQ+lOyc+g8w2RjTD4kqLdoJCmBM4jICxIR4KwAa7FVhhCKfDgkGw0Im02CZhOhDUiDSlO0c4haDWl956QRthBGY1VAFCcgHE47MCXSOrAV0nniqsOzLpwAbEEQerFtoBRlWWGdpRwNMUWGarURSR0Rp4iywEYpWkiicZ8wTn3wIQ4t8a4KKXHaUuYFSIHC3x+ZZYi4xg4hurLEQlBqzaVKkEaSuBgSYxDG4UqNxhFKUHLCixp1UFGMa09R1RYI0hY2rBNWBdLlIMGF8Su2BpJanfmlJQr7ArUoBaWpN1rIvMRpD+pxQtDdWuXk6CGKsiAIQw9ekwFC2EmXIsK4DGsMUiriUDHKcsxknC0isNbRqDdoTztMWZI25+j2u8w0ZlinIJ96FUQtru48y7kXLnH4ttvI8xyDF4vjDGWR0x+X1KZn2H/4KHE+wgh8ISs8zdgK4cfKYURVQj7K2Nzs8yv/18/RmpkmDGMMECYxR6+/jnd+63f9KYfZSbQElmwyKuqXDq0990lKT8st8tInrQM4wWhcoFSEDUKQEqGU1+IohUVQZGNazSkG/a4PyK0yShnjrGamtURVFYx6PWbaczSn5rh49WtDS3xDFydB6DMHjPY3cm1t3fMsnGNne5MgkC+ZufsOyrWHtZSKPfv2EAQxuip5+4MP8prXvpZf+k+/yKnjx1m5uoxD0B/2eeMDb+LJxx/zLfk4JEpjojRGDId0djpsrK3RarV83PX6BocOHQTgphtv4HefPsapF15gbmGB22+7gzAIOP3CSWq1OqPBgCAMWGguUuicne1tlpeX/Sl3FrQxhGHEcDjiytWrOOuhYYeOHJqgwoV/wMHLdqkX3SkvfswDcyRB6J0sRVFSq6XsbG9x+603k6QJF5++RFqr0x0MGQ29qn7fwYM8e+w5yqri7nvu5uryCnk2ZqrVYjwcYbVGzU4TTPgISgjPkYhC9h04iHWO55479sotgknhpaRkdnaO2fk5yqqkqipwjo2NVZqNFoOBoSw9qCuOY1QQTpwkEms1Vy5fot5oMNVuMTc357US1gCWajKW6vf6NBqNyUnLYoxlNB6xOL+A1hUXL1/h5/7Dv6fXG/LU00/zpgdez5mz5xiORvzQ3/pb/N7vfxDn4FV33EItSQjDcBIYCFk25td/9VdJkpR2q8VwNKTVbLIwN88Lx0/4Zfsn1aNfggT/0lHftf/XZcmRI0e44667uO1Vd1DkBePxCBBcvHiRpaU9fOELTzDVavO//eP/zWO3pPJWy0AhhWR6us3Kygrf/m1/ga3tbSSSQHmdyu73KATZOOOLzxzjVbffysVLF/8cOSB/tmsq71KKBtIUVLJCy4oIy6jw8/mo3sAFAaEKvP7CgQJfWEQR+WiM0yVhnBBYhzTGp/PKGKTCmQopPfisKnMEglKXBHNzpNMzRHFIKAOkEBR5galKD1uzmmo0JIwCXFlCEPhsH8DqCpXGYAKcrqjyMVSGQAq09W1zFUQ+gE5rnPKCTKVCnHEkSUSFQeRjKAucDCBOsGVJ2Whh61PE5RhZZgir0WXlk8+RGGdQE8ieE5JUBlTGkI/7tJM6pYCVUYVWgrVxHznaIK7PMDAKWZSE+ZAgqpEbSaoMNpBMNeoUSUI9iBlJgxOG0GTYJMUNCqSzRNbxlaP//p9ff/Hd7wQiOoMx3V6HWqvFYGxptqYpsgFJ3KSmQiqTMezvoILQ5y85z/fBVpRVhhANqklHPssLusMxsYoIQkWSRCjjU3xL69B5RRwItjo5jcNzXFjfoQhS1s8dJ126jtNVl5X/8xf4+z/7Uzhh0XnJ5fNXQMWIIKZwmkazzh2vvpfHP/nHpIFACImxYIQ3bNjKYIUmjELCUFFUkqvbOXZlmSCKfVctDAnjOl/ttKqUIpASicQGktHIYnDEaUpeGMrKgPHwOTVZb9polBIoBdGkQIlCjxkIVMR0e5beWDEa9Th83Y1cXjvDsD/i6E23oaRXyo2zIavLFxiORoRqFtj6qvfzG7s4CTyroCygKkt2trcnG8c1j8K10DE5gUNN6KDXkiClopbGTLXb9Hs9rly65DdXAU89+SRvbra5dOEyzz/3nzl0eD9xmtJoNP2Muiwoq5LRcEC90SAIQ65cvcrKygr3untBCPqDIWVVEkYhX3j8cYqioNfrk6QJ7ZlZlleWeeSRR3jDA2+gLAtOnTyJ1j6MamtzEz2xOSdJQpF7XoMKAqwxiCDgxfPxV6pM2BVC+u66YzweEwYBg0Efa/zIIopC6o0mZVlx6eIF3vOev8CepSVGoxaHDh0kSWOO3nCUleVlzp49Q6AUf+Ev/gUatRoPferTCOXhQEWeIQXIYJbFPXs4cOQ6Ll2+zOlTp+h3vzR87+t7LS0sMjM7x9b2FidPnuT2W29HqYCyKBiNhzg39C144fUdapLuWhYezuYmjJPhoE+SRDQaNQ4fOcL5c2dREo+Rxouvh4MhValJkhrGWvL+ACEkszMzRFHE2976DlZWVti3fx+HDx6kUWuQjYdMtdrUkwSnLe2GH9VJNQnKs37cNByNJxtExmg8wlhDo9Fka2trQh5mUoi4P/0ZtOsmvtY58aevJIyZWZyn2+uwevUKeZFT5gXnL1zkMw89zA//8A/xmU99mm/9tm/jf/3hRyiqkrnZWe6/7/V86lOfojcY8M0Pvp0rl6/yh3/0x2RZzr2veTX9fp+dnZ63CwsPGcuLguPPn+LsqVOcPXOe6Vb7FV0DhRIsuJy0KknREIa4KPaJ01XpBZlCMl5fJqrVGfW2KUcDoqTG2DqC9ixaKUJrUWkdK0BPcmykDCbdBh9wZ4E4reHGJXprkyCOETrGqYjCFKAtEiizkbfyJj6x1SmFxoHRiHIi0CwLL1jVJYEQPhkbUNb6lGJnJw4SPSmQFCCQtsIaQximVNkIGYbIOMEJSSwcwXiIyAY4W1FNNFZx4oMojXXosiRS3hSQlxml1ZQyoBCWi5vnmKvNMLKKTavRDnQxZCwl1gqiwlLYAsYZNPbgqgGBGzDWmnEpcG5IGcbMDLeQwtGtLEFVIWb2UkWvXOdkfmmJrDJULiCKW0iZMjW1QKUFKjCMxmOkUswt7ePgvtvpbF9lY+ssSoU+Lb4YIZUmlBIjASfQeHG8CtQuW6TIS1CgZEzckAg9ohYKtBMc2DfLc+fOUZ/axzi3DK2kLSXWSoIgxqmQuDEFOMZ5nyLXhMWQpTv3YsMEhEEIRU06331UEiUFVkmSeg0ZgJMKS4AWjiBIsa4ikAFKfnVdl3NQGjBO4owk0w5rmOx7btfdWBpDZQ2BkGAqdFEwHgyQMsHVvL6kqkqioEVvNOTS8hnqaeoDMtMargpI4zoyMuRVgbaGvUv7Ob9yDme/tpPKN3RxYt1kLuagqiqCIKDRbLK1swXCvXjSdG5ipfV/ztnJqMdBEEaMRiOefuYZlHBY408Uhw4f4eZbbub7v/+v8Uu//CucP3eB5597np2dHW6+5VaGgwGnT59iZnaG6dlZNjc2OHf6HDLwjog4STh46BDveOc7ePoLTyKl5Py5s1w4f54DBw5y+PARwPLMF7/A2uoqe/fsYWFubiLEjRBS0ul0GfQHrK+usbS0hJMSXZWMx2Pi+KU/5L6D8hWO1OyKYIXgzOnTvn0rA6oqZ3Z6jiIfY61jfXWNWpJQVRWD4YCdrW0cmumZWdIkYX5hEaUkZVnyxx/9KA+88Q1Mz86gVEAQBuRZxqHDh3jVq+9Ba8NDn/okW1s+TO/cqdOv2Br4S3/pW3jiiSd44dRJb+sTkMQxWdZnOPKBdtYZb2vlmpXa3/vReOzX0WQtCOFHhI8//iRVmbNv/36ybORPJ+AnsALCIEDrcgJtq6jKkuFwwPzCNELBkeuOkNRS9u5ZYnZuDq011x09yg/90N/epVB+7uGHGY9GjIZDQJDECQ++7R1IJfjEpz5J6mpsbW3T6/eQXHMZvPy+fqkM7suuyYeN1nzhySdptFoURcH58xf5uX//7xmPRiwtLnDv6+7lu777Ozl95gwXLp6n0Why09EbcDga9RpzM9PcebtvSy8tzBOpkDvveBWj8Qgh/ahhft6v3WsBf1IK2u0mX3zqSZqNBvPz81/5e/w6XVVVEc02mLaCwAa+oCwy0BVBkmKFQuceVW/6FQQBMkrIRyNoTqGSFOkczlrKqsAJUKHn5qgoRliLMwoSQTAJExTGeIqnNVCMcaFBOuHBbNW1lFuv41HO6zuE1eAcVkiccqAUxmkIFFL4roouc5QUGOm7o0oKrFUIU+GwuKrEInBaY4RBJClSSX+/rQYHMRrjLBoQQYzOhmijidO6b9nLkHE+osxHyNYU56shYxHQJiYHLhdDstJAVmDSFq4qEZHXX2StKawuiUY90ANcAEFjCtXb8Y5FPSYpMiKhCaRC5ZkPJQwM4WjzFVsDRbyIrHKuXL3AxvZVgiBkOBiSRDVM6QNApVQEYcr0wiGyfEyw43+WpUiRDqIoQQQRkbAEIkRbTRBGIH12lMMhQoEQIZ3tbZxOqEVTPP7CCaqq5KZbj3J4zyzFYxU6aaCCBq+68SBx3EZnYF2AKYw/Y6gGhe4yX59lqpUwt7Cf/pWzNBqK0lqkkGjrkJHfprNBRllZhlpTaoupDI6MKA7REybLn345rLNYB6WUKAfDLMc4i1QBthxTlTlaW8qsQGuHCARJvUVUa5LU6lgpCAIxcRoqkMLvu2mLrBxw6eJZdrY3iKixubXMsNomUhEH9h7GWo21JWGUwdfA4vvGLk6MRQpHreYrNsekI6IUcsLukEq9eDq2fgO/hjnXWlMUBQjB5YtXeORzD/txiXVs72xTlAWXL18iiWP6vQ69TodiNOCF48cptEYqxWg05t/+zL9lYX6OLCvY3NzgwXe9048OlOToDTewZ+8eTp44zrGnvcPjyuXLZFnGG9/0TczPzVNWljPnzjOzMMcLp0+RxDFJEnv8/nSbRqvlCzGDd/h0u0xNT3/5G/In7FG6KglCz2rJxjmbGxs4PFyoliYURcHZs+cYjQv+1U/9H2xubBJFEW5zh7I0HL3+KL3+BsvLyxw5fBBjDC+8cIq9BzwYLkli/tK3fhvzCwt87rOfBSkY9DooHEVR+Pf4FboOHTnCxz/xiV2b77XLGE8I3v1x3dViCIx1FEVJv9cD/Lp4qZqjLAsuX7xEo9Xi0KEDSBGwub6KvkZXjEJGoz5p2qAoClotD/Xbv3cPv/qr/4XhYMRTX3yGN77hfk6ceIGNrU1+9O//fX7hP/0iWmve/KbXc99993nRo/EnFW0Np8+doZbWKMuKKAiZmm7TaDRotJr+W5t0/l4sTODFmd5LBj7i5YOd0XjEyvJVptotojTl0NIiP/Lev0sYxzz19FMYrZmbX+ADH/gd2q02cZxghf9zVji2t7fZ6XYpy5KdTofBcEhelgyGI4QQTM/MkBfFLh3WfwuSY8eOce7sOW666XofCvgKXtoa+tmYxdhj5OMgQDtF0myRa0fV2wZguLFMPuwxdfAG4ukloqUYKyV2nHm0dxJ727hTPpR8PKQqepMCVeCKAuEsgZKEU7OYskAZ77oiCHDGIFVIICVaBYRhsCsUtoAMAu8urHwRIYy39goHzvncJhWG6LIE6ZOxq2wEQbTrJvOjayBJsUWGw3p3kLUofJGNVIg4RdoKYS2qPe2tqAg/pgsD8iAgaU5zYbTJTlVgdUUuLHlpiSKFzgc4Y1H9Hd95jDNUkSPGHWxao0rrKFGj3F7DxYl/3SVoIVBY+kFEo8oRs0uo7XWy8fBrOt3/ea/neiE3NaDemmd6qqCylqQ2TaAEgRTIniKQAQ5FY+YA7VHOlYtfRGuHcxVSBuiqJAwDgjBCODnRM1oaYQNtS4zVjPKMolSIWkKgYvJK0x8XnDx1kdF4SFbUsfWDFMEc2qWMij7DrAehQPcyymIMGLJ+H1NmjBONcTk33Hg9Hz35PAjr9TxBCNpSWR9cOb+nAdpS5AWdbt8zSBxYVxFHIbqqXjyDf+lYf/IfpRRpElNrTtNqt1GbA6LIEEYxcRwRBuGkG14ilS9Cev0BnV6Pa0AGfzDzztK8GDI1O0dBATuO/QcOsbZ9mX6nx0ZnhX37DzDY7OO0IW2kxJFlNOx+TffzG7o4uXTxHHHs8zS6vS77D+zn05/4JHEc02g0GA2GqEARhqEXs4pJt0UwGe8YyrJiY2OD6elpoigiH+dEcUhVFDz33HO0pqa45567eeoLTxGEihtuuomq1Hz2859HTFSTrUad5avLdLs9Ot0dVlZWmJmZZTwa8vQXn+G222/lNffexy233cHq8hU++9CnKcZjLl+8xNWry+w7cIh2s8mpU2cQCAptGHd6SCXJsoxWq4HEUU4Cx7yegt3wuV0Y25ceoiefOH36NHv37UdrTRAFXlCLYGnPXtbXVj2TpdHgYp4zPTXN9vY2jWaDZqOJkILt7R2SOGTvniVuufU2HvrUp7lw/gJaa4y1LC0tMhqN+aNf+3WGgy579u6hljYQlFS9AX9i1fR1uH7u3/9f/sEJu/+Ow1GWmiwrdq2tu5+eAI2M1gyHY29Ft273rZOT038URYyGQ1aWV3jVnXdTrzc8XwCH0QYpJFPT01hnqaUp2zs7TM1M889+4h+ggoA8z4mjiJ2dbco8Z3FxiTe+4X6U8PCqz33+Ed91CAMEfiw5GPZJYq+jCiMPPkprdd8FcNaLMl+8rbsvyu26dSYfmbwY/3KF1xXd8So625tEScqv/MqvcfzEcT/GikJ++v3/Biw8+8wxDh3cixDQrKUkUUAYBCwsLLCxvk6/1yOUgdc+5RmNJEIpyfrEohlMoHECmJ2ZZtjzjJvpmRl09spRggHSok+wM2Yj72HyEe19R6jP72HsBLYckve2MEXuCZt7DqJaU9i0jnMGqQ3CecS7s576qmQM0hFEERKHzXOqwgvVmei9ytGQSAqsNQTKB0QKXe0KtEPhqIocjUQWQ6wMfQ6PDPy/pxRWV0jlSdVSSCweJiYR3o0hA3/Iwuec2CybFCgKbTVWCkRQw47HCOcPWwJQShCGEYQKGaZYXaF1xTVDVaHBJDFjZ+m6gtIZqv4AHdWQtqQa5JDnqMgnF8ukjuhu+EBFBGJnA7t4GI1BxVPIKGZsFUGgMc7zW0y9ydgpjIrRcYMkryB85cRHXRtyUjc58sC76Xzi98lWVymrDOsi0rhNID2jJAxixhXIQFLl/vnkC1KDtZYsL1HSW4611mRZThLUqKoc6xz1VoNmktLv9nEm9nrHrR7n+yOW17Zpzxwk3wS3sMTOYEy0f5qNy1ewLoIgojWzgCPEKR822EhqJCqirIbsP3wH2c45QjwjSAa+W6udQk3s+L1un/GgT5zGhDIAIXddq7vXl/y219nm9KnTDPojVjZ7LN1wC0lzluL4KYzxGVFI6S3uQrC4sJckSsi0JUlTWs0WSVLHhilChGSTDks9qbG5vcP62hXqtRRdeRfYKOtx4MBR6o0pSqvJq4pnTzzG5vaybxJ8Ddc3dHFitKHfH7K5ucH+/ftZvnKVqizJy4J+v49ATHD1AC+eOIKJbsMa32UZTHQgzUZr0nWR9AcDnn7qGZ5/7lmqCe3yzMlTrK1dZdgfMDc7w9b2DmmS8s1/9T387L/5GdbWVkmShNWVFW6//Q7iOGZzY53/9Qdnee3rXsd1111Ho9miyAsae5usri6zvLxMWm8wNTPDa153LxcuXaJWrzEaDhmNx4xHI06fPsvc7DRRFPPc889z5x138GIl8pVLZPeSD0ghOHPqFEVe0t3e8YnHWrN69SpRmtDt9Wi1WzRbLe655x7m5+Y4e+4s7akpRuMRe/fto1FP+fQnP82xp5+h3+tR5LnXXGQZ/Tjk5PHnGfS7zMzMsLS4h+2tHbZ3dhiORwxHo1d0HbxY+ng+yTUYrplsFC9+odi1zDp8IKAA7EverUApwigkCsPd4mttdZVavcFwOPIFjBQgJGVRUVWa0XiMw3Hs2PP8t//+3+h2ezz9zDHe8dZv4vLVFXY6O3zLe97N408+hVSKQwf2ce3w60MeIYwiDh08RD2t8cyx53DOMRgMqNdrzM3N7hYm116ve8nr3Z3ofenoR3hmycMPPYS1hqPXX0cURfzV7/4uup0dtC4JAkWrPcUv//Ivo4SjVqvR6Xa92HxixT995gwb25sezra6jLMwNTPDxuYmtqpotdukSTLJBfLv83A4ZH5unnqtQbPRogxeue4ZQKfqEUztJ2zWqDmLnFsgA1xVIJQgmt9P5CzZsIuKIlQQ4/KMrLtBrTVLlWcIUxG3Zqj6OxghSJtTKCGwxuCMJkpShJLYyiKtwVaFt1VKB8J3bKx1yMTr2opshItSjKmITIVFI5SctPQDlBA46a3MHvI3KUKMoaoKP/83mXdK5Znn4yiFVL6Nb0SA1gZBhYpryFIT1GoEZYFTgkAqnFAYHDJKkFGKNY6izBgpS5YN6RRDdsY7aGMJrcWNhlRlTihj4rDuaaZUiNEOxvi/s6wKRFkgwy2sCFFhhM4LbL2FLbuEeQcTJyiXkwlHXI4oG7MUOoPOVxdC/nkvbWFsJI3rbuH1P/iPWHn2CywfewJpJXEYTkCGbsLGgjwfYYQ/2JiJM88ajRQB2jrvOMR/XAUBMkiI45CyKPCik4AkTKg3vQ233WpzdW0HG1sWbrqLy8OUmblF9u0XdHsd1i9vEcT7ePILF3nwgee5dPEqlY7pDkpatZSNy+e47vp7WLkk6G2ewTgz2bMsoQp8Z0R627DVFmsnmutSE8TSw9v+BDHaoNvl7ImTnDlzlU5nyOb6Joeu96aAymiCNKUyDq0rstGQnd42WbafUVZgbcUoG9PPM6RVRK4GKB/BUI0pyxFRGLO9tcXTw0eRElr1KVqNKRCQl0MuL5+hMH3m5o6yvXXxa7qf39DFydT0NIuLi9RqKXv27MFZO8n38JwFY6pdLUoYRbtOAi9AFLtCQQ9YqyMm8BtnDEWRMzU9SxAoRsMRla6o1eqMhzkvnDhNqSs/69OaJx5/Aue8Ha/Vbk/gcJaiKPjMZx6iLEpuvfVWyrLgoU99in37D3Ln3ffgcGR5zniccfHChckIJKfT2SFOYr8JOkev1+PpLz7Fu9/9bro7HZqt1sta6P562Za1e2mtabfbrK2tY60jCL1CPQxDxnnGuMgpioL5A3upN1LW17dYWVtmp9OhVm9Qb9RZXVmm3+3S7XZot6d2N0BrLFhHEIQ0Gk2SOEFXhrzIubqywubmlheSfdn3+vW9XjrUEM5h8ad4IaUv09yLm7hndniisDWGtJbirNstoK6N//yI0BFM3DRXr1yhXq+TJLHX2QSKIFTs27ePfq9LGHgL3sz0LKYyTDUaJHFCMcoYd3uMh2OOH3vOS7VNxc233MLOzranEkuBlIL19TWiKGVmaoqiLMmznOFgwHZnh4c/+xkeeOBNL3/VX8GmJV72jsDlK1d4//v/DW964D6OHDmCtYa0nlDqGotL1/FLv/hLnDz5K1y5conDB/YyOz3DzPQMjzzyKFmeIYVkZnqaXr9PFEUMu32KomJlZZWyKGi0auiy5MTZs5NupNdzdXt96vWUomhSr9dZWV17RdeAloaN0SZbAm5euo6WSqhGAz8K0xXCQmkqiGvYbARag5TUpuYIggAh6wTKO5LimbmJPiHA6MrnGgmBMD6xW9gKbSqcrjw0TQZI57DCIRRURe6dFkGIMCWhdRRVgZyEEjrnMFWFdl4DIIXEVQ6QvlA2GmssTjhE6EdEThv0tbRyIbxGpaygGIFLcViUdAQqRsb4Il0qhFKgFEU2RpclKpA4J0hVjJF+TEmRYfIctISsRCowwhHW65AN/LqKUlylsVmOEpaq1UCZgkCPMaqNDSXB9ipV4AjLAotBVBlBqHBSQCOB1YuIUfcVWwNC+CLDVgapYva/7k0cvOPVbB9/ijNfeIRMj3w4XTWks36a7s4ySkmqqiLEHxSU8s40Y40vCh1EcYQ2BmcrD0wrHWloadYjup0CXMhfevB1HDt+gamFOQalY3jhOLTuZBA5gnrMsecvked1VKhY3zZ86kMf4vlTa1j1TcShRGiNM/5nef/BG9jcuEiKBQFGhFghfahlEFPqkkKXVCMPEIxTz9Wxf0qGmVSSer2Onegz46QGkzTkOIqIkxiTa9KoQS1tM4xTojQlTBpsbCxjjUOairLIqSpDILyWr9KaqdYUzVqDK8unWFo6yPrWJR8MiNf1GVMSx3Vefec7OHnhJDtbl7+m+/kNXZw4a3cJnUEQ0GjUqdXrPv1RgJ5oTK5N4JWUjEYjpBSEYcxwOGQwHHHzLTdRFr74kDIgH41Ikxq3v+oO1tbWqCrDeDRkYXGBV91zN5cuXybPMrQ1XLp8hY21L9Dp7KC1Zmd7i5WVFbSuJpkrGb3uDkHoWRFFPmZ7YwOpFK9/4xupN5vkRcH21hZlqdHaEEyw28Yayqr0Y4Jxxmc/+3l0pTn2zLPMzs5Ra3yJdeylLg0co9GIfr/P9Ows1lm2tnb85igkWvsTr1L+VCBkwPZWh9WVFc9daTZptdusriz7wYHznBRttHcLTXQ8KlAs7dnL8uoqlyedKzCsLK+QFyV79+3l8KHD/O4HP/iKrIFrvaPJitgVtV5TZjjrXrJp40Powogg8LZP6xyLS3toZWOM9VoCKX2b9NpIyOupHaNxRq3uAW9Gl5OZa8E1dHuSprz23tcQxwnvfNc7mWq1eMub34KuSqamp7nnnjuIgoTSWr741FMESrG0Zw9nz57xGGgV8l3f/d3811/7L6ysrrC0tER7aprLly/zE//kn/LHH/s4Sb3uT9Tuy+Wwu6OtSeEtEJw8eYosy1hc2kuWFyzt3YOUkqPX38ixZ4/xG//9t/ie7/ke9u1bYm35CvsOHCCMAv7hj/7IrstNyoBKT8BUWtPpdLh06QIb65ucOP48AEVRTCLmfRtaCkG7NUWRV6ysrLC+uvKK3P9r1/23vprN1WW6wx7FeEQZJl7gqjU6y7DZiKDehAm1NVAKosQfACYHGOscyllEnKKCwHNKVIAtMqoynwh+fdFhhfDatUqD9pTMa266qqgQCmBCd61KP4oJA6zR2KpABBFSBYSBotQOGcVU2npHjgqRQejdPIDQBh1IpFRU+ZiiyKCqsCqk1prybqGJBsCWBVZY4mYbXWkUAmcNcS0lrDcwQhHogjIJ0aKGciV2QyMm/mYb+CJJ6IJia5kgiEFKXBAiA4WrpUTWYWVAENWoIocwFWpgcBJEUVLVFKkWOCWpRIiRAXLzCkIFmJmFV2wNWOPZMEpJKm0gs4RJg8XXv5PRuGRr9RxBEBIYTbVziWKwBTIkiAIsEmHBIbF4sWdVaY++DwIG4wxFTlL33cFms86ac1SjPsrWWd8Y8Ko7r+fq6pD1rmWudR07/QZFLlG1lF5vhHZ1MisI4zZXVy/QbLXQHUdmKlCOPDOcPfkcew4eIUhn6Wyfo16ve1G1cH5vCBOcFYyzjDj2adRFmZGmMXqSnv6VRPJCSJwUdLojyqIiCCNkGGGdoNLaa1vKAm0shSlQQu12jWr1GkkUUVUaF/jn4jWFXxLXCcKQy1dOMje3n8P7b2E43GZntMP5cycQkUSgWFo6gguaGBdj7NcG5fyGLk6iOJq0xSXGGqI4IowiKl3thtOBz+BRAlQQUIzHHppV5ZN2asAXn3qaffv2MxqOGIxGhEoRxhF3vOoOPvHxj/uNJ0lYX1/nypUrZNmY0WiEA2+V7fX9PNha8qLkyccf58EH30G312fY75ONM6rKd3HG4zH1eo2Vy5f44hcSnn7qaTrdDkWRE0cJU1OeI3Gtu9HvD9jZ3kFKwfKVKxw5cpipmekXI7O/okPH/zoej3j0kUd5y1vf4sm5SUIYheSFx3bX6x4+ZrTmoU9+iuuOXod1cPerX82H/ucH2dpcn7A96l7lbQ1lXkycL74LFccxb3n7W/nYH3+MtfV10iTl8OGD3HDDUW69/Q6OXHeE7Z3tV3wtiGsqMCFIkxqnTp9jMPD5DdfWgZh0yq7ZMYMgpN8bUOQFzVaLeqNJmkSkE4G1MYaqrBgMBiAExhjyvODgwRaj4YDxeMR47HUM1lqWr17mX/zv/xwhQx5/7Ane/rY3c/bcBdbW1/i7f/tv8IHf/SDWwWtfcydvfvNbJjWELwDaU1PsPXCAkydfoN1qs7y8jHWWq1eXWVleodvtMuj3qTUaE83UNa3Ji0vg2q+e6+jXwRefegoJCCe4dOEC09Mtto1jenaejY1N9u3dwzu/+V188Pd/j5mFBbqDIWfPnuU//+dfYntnh0azwQ983/fx6//3f6M/GHDzjTewuLDI7/3e71NVFYcPH0SogCNHr+fihUsEQTixPTvyskSFAVcvX6H5ioY/gqvVueHO1+L6PYpOBzsaeDaIrfyymARURgKEClFSIcMIEcU4obwdX/uvNc55x4x16CIHrdGmRFuHdQaEd9RZXeGKsf+zQYQRnvcSSAWVRagQIT2PCSF8cFsUUzmLzseESlE6f2IfFzkibRHFNZw1fiO3BiUkoZgcBpRE1FuQZejxgDiKCGo1r3OpCpwQBCrEWsi2NonaU4RJgplki/nWoaGSjjODTbaLIVWvD04RZCVICGVKMe6jghgZhwjtEA6KehsXRFhAiZBgZw0ROgIVQgAiSLEBKA1OjzBUNIWgZw1CWlQ5wDamkXH6Ve/ln/eKQokSjlI7kMLrdoqKyglsHBFGTZqtKTY3L1DpgHHeoSwyiiKnXq+TG0dV5dRdghOQ5TlRFKLLiihKqMUBBo21Hto32OkTNlts9zOywrDVHTM/Nw3S8PizO1RBk7ETGKExofRCYVuRF0OeP3MVJRR69i7SuI5wAZXxMQNbm2uEYYJ1AmscSjpU6DsVFtB4Z44IJOOyIK15snFl4U8a6wghECjMxK0jpEAGftQlpUI7gVAhxlTsbK5y5fILLO1dRIiQ9c0Ntno7lNYR4nx32mqEUFQ6Z339MuNhj7Q+xXZ3nVJX9MfbTM/sYc/+g2xtrjAc9VDbV7h6/uMTafhXv76hi5OV5VXmF/awtbnB+XMX0FVFnhdYY9CTEQ6wi7d3zmG18TZCIYijkPbUFPfdfz9F6cOtBGO0MfQHAx579DEG/T5S+i7GM8eO0e8PKIrC16YCRsPhrjBVTEYBQgiyLOO5Y8/Q6/Uoy4IvPvUFNje36PYGjKOSOIqI4ph2u8Vzzz2LA6anpxmORjQaDXRVEcU+lDBNvBI+iuH0mdMcveEGoijk5doS+NJqWVfat/DihLm5RaQMdrNd8lwzHmeUK6u+2LCOz3/+Efr9AVtbWxRFSbulJova4SauEhkoLyg1E/FYVfLB3/s9FhYWuetVd/L6Bx7ghptupNPpcO78eR7+zGdY39h4xdbAyzbmiVJdKIijkEAFpHFMqSuMsbtaEoCiLDxDQPnioNft0Ot1WVpa4sYbb6Szs8Xa6jph6PVJ11goVVmytrrKcNCn2WpSFCWNep3heMzNN93ET/zEP2djY53Nv/ztTE9Ns7q2Rlnk3HH7HYRhjDOO6fkZrrnby9KfIrLxmDROOHr0KHmes7K6QrfTpdftEqiAsizZ3Fxnce/eL3kDXnTovPTq9bs88egjPPPUF0jjmHte+xoksLiwQK/fxzlLq9mk0ajxh3/4YT7+xx/j27/j2zh96hRveMMD3Pfa19Cop0jpGS7f/Z3fQVnkE2ccvOudb6ff67G2vkGapGQOz27xohOMsQz6A4qyQEWhj5J4Ba/1tauY/SG1NKU51SY0FkYDxp0ddFkh0hQVh8RpHRnFvqDUGmesz+QSAhUl2KpEColwBi0DnACRxCQiYVxU5GVFqDOcLRDOjzSRAU5K0CVxEGKch1jpIkOEARKJ0SVCKcbZGBGEflMXoGRApUsfPmk6Hj8fRj5gTQhEFGCcQQQR6AqpM+JGiyCOyPtdYgcqTqmsQ2G9w0dXqEngYjm0hHGKcD491zhY10PWtq8gyhyM9aMeJbGhgDAlDmL0eITLC3RaR8kApStkUENGidesRXVqKiJQIUUxRruSyIBxgtAILIISTUQ0WRshoRSgIr565Nuf79JWkwYKqRxl9aKzDuk7xUUxosY09do0AgiDENmaoupsYownngbE/gEiIIpSzGQTTqIEUw2hskRSUhqBqMcwDiAwXDx/lYGpOHp4HzML+0jm9yDHNWRfUw5K8kxjVEJYb3Lb/pt57A8+yyjLiPfF5I0ZjB5SVhpNSNnfwuiA/nBAGAXePQeIMESXBaasMEZTaUOIxFQaR4h5iS3gS0sUIaTXRVnfUTVFiRBuAp0WlEUJTiBRNJrT1Gst0loTYxzTrRaxClChwgiHjAPCpE4qvCvy6HU3EgjL2fOnyUZDhLLMtOZp12cIoxAhBVvby+T5iFY6havPkm19dbzEN3RxUmQjzrxwnDiJWVhYII4THn7o0wSBzwO5xlywExKo1mb3IS6lP1vGse+IDPp9hsMBDkcaJ2ysb9Dv9cnzgrwssM6xsb7OYDCgrCrfWp+I//Jx5mFpcURRlfS6XbY2t9jY2CQIFHluOXv6LEpF9HoDLlx4FoD+YMDU1BRVVWGdoz01TRwnlHnO6uoKZVmiKy+vL6uCp5/6IlNTbZ588gne8MAb+NNiFAQ+GLHf6yOEYGtriwMHDzEaDSmLgjRJfD6M9G3LpFZj2B+wubHB9tY2WOvpkUA1KURarTb9Xpeq8KTVhYUFtKkw1jK7ME8cJRw/cYKHPvUpuv3+rrj4SzfOr+f1Yp9IgHAIKXe1MvU0ZWX1MkVVIgSecTHpiFwL+4tjvwloXYG1FHnO2bPnEFJx4NAhrNHoicPhWtaONYYwjmk0mgipCFXIKMtRgWJ59SrbOx3OnDnHjTcc9VHnxiCUZGnfEqGKaE612NraQhtLqSscMBwOeOzJx3j8C0/Q3ekQhiFHrz+KKSvSWo1AKVZWlrn9zru/8hux28n1vxkNB4yyAdb67J5nnv4Cf+lbvpVxXuCsLy6npqa5fGWZPXv38xe/9Vs4c/osd951B1Gc8Ecf/WOOXncIFYSEccLzx08wHo9YXFxAIDl95hy9ng9Ky8ZjPv/IoxPiqF+U/udDMhqMqDfrExHhK3cFQUyZZxjh2O5lzLfmaDanqLfa2CKH4RAhFFo7TGWRQmCcwGZjnylkLSYf++5EmHoSWpUhcYiyJM9HIANC4ZHdSkyyvSrtOSe6Io4inIRynPnE7jT1Xd2qIgwjj/kPokmXN8YisI4J9h9UFPmAbKO9QLNW8zjzymCHO7ggREmJnAT2RcJRDLtgLUEYoYXvBspaA4GlHAwIIjBVD5xDxAldXbAx2kFZhxpm2FoNYyts6oso3en4jg8C4hiRpBBEWKFQCnQ+xjmBjEJcq4EgZCYK2AljjJ0A+JyjJirccIdUasLQ0W01cSqhMf/KjXU+9rHf4Ya7Xs9dN92FVA7hBNpCOTmrK6VIGzWiUOJsQNkbo7UhDFIfZjpx7hiH15SpyEMbhcLXj4YwDAmjECMcWX9AJGsMbM76sMuevfu4sjHkqedPMp6eRxNAmuL0Fs4qChdQZQUPfe43ybodBnnB4miA1i3GLkAGAYqIXrdLpOoY7XBSYp0gDELqtRZhXEM7iXMSRADC5y1pbbDG/YnPWifwuhUEpfbuvyLPcUZMCjlHqQ0aiTGaOEnR2uP86802aaNBPUkoXERvVFEVOaNhjyCMKYscFUQg4OgNt3Hm/NPgJJUu0dZQmRxZDNl36DYas4d44bn/+TXdz2/o4uSdDz5IVG+xvb2J0ZaHHvk03W4HNSHHGq0Jg2DXjWGtX1w4NwHIeL1FNhqxs71DnCSE1tLv99FWs7K6QlVVFHnubYJSsGfvHvq9zqQr43bpoeAoJtk7ZVGwvHyV8+fOMc4ygiBgfWONozfcQLfTYTgYEEURZ86cJVCKovB/bpyNkUKRFQV79+3n0sULbG1u0u/3uXDuHALH9vYOz3zxaT74+7/Pt37bt3mBK3xJnoKj1xuwubXF1tYW//OD/5NzZ89y6eIlut2uD4mSktbUFI1ag1OnTlMUJZ1ul25nhzhJkRLK0usI6rU6ncn3PTc3N9Fq+DyVrdUtZpXk7KkzDEcjrDXcffc91JtNwiiiLEtmpmdesTXwZU1MB9ub27TqTbY7XcbjnGtniWsMAGc90dZOLG1GG66l+VaVpt/rs762Qq3R5NDhw8RIoiggz716vtIVo9GQqakW1hiKSfF24MABTp54geMnT/HwZx7m7W99MydeOMPy8hX+1l//Af7Lf/0NTKW59767+dZv+06y8YjtzU3fhXKOxflZAhnijKFWq00yNSTOWdIkobPTmbBOXvJ6X/ow2lUGe5t8ktSJkwQVBpw6dZparcaHPvxh3vymN3nBmhCkacqD7/pmPvQHf8CFC+f54ff+bWr1Ou9659sYjzKEkIQTHo7AkMaxp4SGIfVazWeNKMHMzAzdjpuQeF88wc3NzYEQTE+/smMdrZTfHE0FxnD2ylnmZxeYbc8CFhuHtKIaDAZoXeEm+TQKO7FBRxgxGZFMeGYShzMGM6FmKl1MnF6OIEpxKiKQAlsVOBWiJ2NFpRRYSzkeI5QkDD07InABpTFEMqJ0HmuANcRJ7LHhYYJs1L0uJRtCUZJ3tghrLVSj5d/bMMQ6COMYV4aIqkLoiiIb+WeekNi8jxEOFae4SBGGdagKxsbS1SWiN2TGFJj+kHKUo4MA40CpkKLMsG6Mq7TP6gkjb00PQkw28r3aIMHNHWLkLHU7QouYBasZhzGakGGVozTIuI4edIiqbRqqTq5CdP7KOfdWTj+Hq7W45fpbOH/pInv3H6Rdn0JYgZUwzgdIiT+suJyZqXlaC29DqRbLlz+P7Z5lZnovUob0hisEKqLRnGF99Tzt1hTTUym1tE6eVRiXECU1hFVMNadBwOXzV5jbvwjX3832mQrHBmqqonQWG3nSrAwtrqpwUlJLmwTpFK47IhtIhoMxWrhJ1INGIylGBfWkhZuMDPN8okkSwaRrqlAyQATK66GuXV+hfaItEx1ZQKmLSUd4gjNQEjvBLFRlQZaPEEJSFJpzFy9ww+oNDEaZpyPHlkr7GAVjNGcvnGZj4yoLi/s4dOQmtjurXL14gatrZ+mX21hjmV26jrmlG7h4YQVf+X/1689UnLz//e/n93//9zl58iRpmvL617+en/mZn+Gmm27a/Zo8z/nxH/9xfuu3fouiKHjnO9/Jf/yP/5HFxcXdr7l8+TLvfe97+fSnP02j0eAHfuAHeP/73z/Ji/nar9fdey8zS4tIKYmilOeffw5rjRfuANWkZa6Uh+kIIZCBRCmfZpzWGzhgfnGRvCg4ffoUaVqjqnyk9XPPPEM+gYgJIej3e7jJg8pvZo59+/ZSliWXLl3cHR+NRyOeO/YcmxsbfuMBtja2ePbYMXZ2tncdFXmWIYTAGE0YRawur9Bo+lHB6soKOEu/32N1dY3NrW3yLPMUVKX4Xx/+MFmec9uttzE7O8ORo0df9t5UVcXG+hanTp3m8cceZ8/evRhdsb21RZaN6ff7tKemeO199/HbH/gtojCi2+2wf99+71wR0O116XV7VEXhE1Gt5eyF86ysrvr35NRpD4xLE7S2TM/OECjF1ZUVXjh5kouXLlFVFfffd9+X3buv1xp48QfQ78zt9hSzcwucPPECxSSJGOE1GM558JwKIvKywFjrR4Da7G74xhqqqkQIMekkrXP4uqNMz87S63R3IVim8vby0WhEq9VCa82Fixf54R/+O7xtOODv/O2/Sb1Wn2TOOKampnnrW94MTlCYinMXLjI3t0C9Vtt1BS0s7aWqSo7WGhx79hhKBWyub2Kd4zv/8nfRbLb40tHdS63Su+g14amNG2urlGVFrz+iKCqiOOKeu+6mVq+jgoCyyGm12nzxqS/y+GOP8fa3vYV6o83W1gYqjIlS//cXlabebOKkIK8qBJKLly9z+fIViqLg7W97kJtvvol3Pvggux7pyR05efoUFy5dQk+cBBsbG7Reoj/5eq0DOx5jnD9woEtiGdEddFBhTCtJubJ2AYRgqt6iGdeopTWyrQ2qPEdJibPgoogoSvyIxVYYQIgAlSqCtEY1HECVex5JpRFGI63FSX8QipKEKhsSCDBh5HH01rffhfFrLK61qKzBCYdzAlEVu6NoJSQyniRBxwnSWUwQIaIAncSEQoJxBM5rnIIg9i4SpQjixKcfl7k/qFQFKoZxt0NXV1hgYCovzh8NGQx6qEhRpgkjqz1hVo+Rzh/lZC1FoBChwFgv4EVFREFMJRRKGIozJ9i5+Dxm2EeogHp7mulbX0PabGNlwKjKaEc1Nk4eY7y9gXOOZH7fl927r9caiNoLbG+s8tsf+K8URUE6PcVd97+VWw7dDM4RhhF5qen3ekhhSaKM1qEF2kt30xlcZGfnOFE8zfz8zZz+zC9QVjl33vMWWq0pRuOSZjP1aIpI0ZzaS3WhSxQrtIY3vuF17HSHnL+4wsgOkEvXU5kGmG3OXcqpRgKLoSDm+pvuZtw/jyPBtuukrZggGYH0JbE2ljANCMLQw9iiCHkNvih8rk9lCkTpC42iEoRSoqTiK/dN/LPBGIfVGmM04AsRJsJuIfH8GiwuTBAqpjAObR179x5icc9BeqtDCmKKSiODiEAYimLEvj370FVBlg15+gsPs7F1hf5olT17b+P6m1/D1toKoQrIsozh8CxlNf6a7uef6e5/5jOf4X3vex+vfe1r0Vrzz/7ZP+PBBx/kxIkT1Ot1AH70R3+Uj3zkI/zO7/wO7Xabv/f3/h7f/u3fzuc//3nAt8be8573sLS0xCOPPMLq6irf//3fTxiG/PRP//Sf5duh2Wxw+NAhn32gFO9+9zdz7Okn2d7pTDzrxs8cAZz1fnxtkMJitGZjY4Pt7S22trcIlCfsZW4Ezre9jTHoSaEicD7zZOhzWq7pELq97kQEeO2J7FXVly5d9At5ciIvy4LVFd+JsUZT5AajNWm9ThzHpPU6aVrzDxZR+HGP1rSnZxgOvPjSGksSJwz6fZDw0EMP8fBDD/PAA6/nyHVHJsJgi0AgleTC+QtIIZienmY0HLC9vc1wNJwIOA2XL1/m4x//2G4nJ8sy/AipRClJHCcIKTBWo4IQJwSdbpe5mRlazSaj0ZCtnQ7HT57ijltu5sK584Dj6uoaxlq+97v/CidPvsD29ssFsV/PNQA+Sn7f3r3UajWEEl7sbKrdLKVrl7jW9pbePnhNR2LsZFordhsPk6/3v148f4HxaEirPYWciFjDKMJo71ySKsBh6Q8G/NKv/BJ5lvH0M89x372vZXnFi1m/5S++h8efeBKc4NDh/Rw4eIi0Vptoh3zBc/jIYdbX1rlw4SL1ep329BRL+/YxHA45eOQIYmJrvrbOeMmaA+Gtp86/CGutb/Vay+GDBzCm4sKFCxw4uI/+YMj29hb1Wp3hcMgXnnicW26+ibIq2d7c5I477+LJx7/A5cve8veud72DTz/0WTrdLkcOHWBubp4rl68gheDodYf5yZ/8KX7u5/8DP/fzP8/c1NSuEurxJ5+g2+tx6MAB0iTm2PPH+b7v+z4ee+yxr/s6CDWYPMeYkkHZowoU7cY0o37P519NzSEKn7+1yjozrWkWF+ZJjMMUFZgKk2XYsiQKA2SgME5QuAJXZOiiRAoHahKXUeYIAVZKVBAicRTDnj9sBCFChTgMUiU47R1dQZzipCCut8nzDEoP9XLWIYIQqxR25PlMKIVQAUmzTTkektQaVHkGQmGjgEBElKZCNqaQ1pDoClNk2CLHYklrDd/5DELCWp0hmu3NqxSjDm6cYZTXG2TFGOcMfmtSqLk5bFX5WB8ZEIYpLh+iTIVr78Hj4QCp0BtXqN10D81Gg9JpRsefZvXxT3DodW9lC4UJQ9bOPoftdbju7nsBx9XTJ192376ea0D3eyitKTRYIehvbXLq+ae57cgttKbniOot0lpKRyQMRh36haZdaJyEPBuTZTkyCCldRas9Q1mOEcIRxBF1FdBo1RDKoQ1UpsKGISpNyLXl6afPQaK44c5baI4jBquGvlao9jS33nSIzxx7jk5xgbAcMRIhZ55/ltbsQVp7u/SHmsFiTBjXKDJNpTWy8C6cMHA4BEm9DlajQp9fJWVIGMZIBFKFnrzrxMvPai+5BKDwjJ5QKn9os444SSbYAo/3F07Q62wyHnmWVT4uWF+7yObaCvk4Y2wqkmYTqyvKYoiQIYiQepJy4eJxjPFj8+b0Pvbedh85CoFkNOwgV0+zsfoUIgjga2Ay/pmKk49+9KMv+/9f//VfZ2Fhgaeeeoo3velN9Ho9fvVXf5Xf/M3f5K1vfSsAv/Zrv8Ytt9zCY489xn333cfHPvYxTpw4wSc+8QkWFxe56667+Ff/6l/xj//xP+Zf/st/ucsp+VquM+fPszMYYp1l79597Nu/j4XFPXQ6XX8SUWqSoeMx9kEQ+DydIKQoSm+Nc45et7fbjjbG7FafzVaLLBv7U1EUk6YpvW6XXZ6IszQbTdI05cqlS7ubmXUOYyzjUfayzbEsCqRUvoAQoCtHPh7j8D+ko+HQuzeAPMu8v177ropSAUp5K6wwhqrU7OzsUJUVzz77HONx5hXnWUa/P0AoyWDQZ2dnh7IqqaU1lFRYY6h0hRCSYb/PudOnQQiv5neO7Z0dWs0GFhhn3tVjKkhaMVUV89ZvejNzc7NI4cmgd9xxJ//y//gpgijGDYdobegPh7zrHW/nO77z2/nIhz/Cnffcw9/+oR/iySef5G1ve9vXdQ0c2L+fNEkZjIZcuXqVqXaTOEy8pdPolzhY/BVOiKxZNsbZCeTI302E8HRYKb0lFuFnz9Z44fN4NGbf/n3Mzy+QjceAd3FFYYgUkre8+a3YMidUIY1aSprESOe5F2WWs3Z1FZylloYcvf4Glq9epdfvTeyPio/+4Ue58647KfKcXq9LfSdhPBoihKCzs0Oz/lKnwzW31ks8O5PCRE4+PzU1RRJHrG1sMjs/x8LCIqdOn2VpcZGNtXXa0zMEgeI7/8p3c+bMGc6fPsmtt91Gv9/jW7/1PeAExtpJTtRByqpAV4adzg7/6id/gk6nw/nzFxkMB7ztLd/EY489RjrJfLLOsbWxyR2330ZVliSxv6ePP/74K/IsKIZ9VCDZHm7QM2PS1jS60myXOYuz+1CNNkljij3NKbJsiMnGrHbXkGnC/tYCDIZEdTFhipSYqiLL+sggpMoLLBA1mmAstiowxhBMEoPLSiOiBMKJfmTihjDaIqxBWIvAUXa3UWFEledePu8cxCkq9OJNoTXGVBBN5v1hACqAZkiZZeAcKvLiaF0MMVVB2GgRJAnaWQgUlD4/ZjzsgZKoqE5RVWxVQ/Kkht17AIoR7spVlIOgNLjAzwCCOEKUOVJXOAsqSKEocGWOTesel0/ohcNa0H7LdyKlQ1UZ7WJI7e4HuPzHH6DqbjM3u0Rp4fLKJebuvI9kfolia5O9N97C+ScfeUWeBSIb44TCtRNvu95aZsOe4AMf/i3s+jpVe5G9Uwv0wy3ySBKqiCJqUIQNsmxMlg3Q1nrh8nhEVY0ojGFzaxUBHDwwRSin0S6lkA2gBjLGyIAjR/YxLAuOP3OWkja19gHC2iLDbMzckT08cJ/j8rMhrjXH1rOPUhlH3FwknL2JbPV5fu2//Q7jccVUewql6xhtEEKSJg00gqQ5S60V4EREEMYo4a3vBhhnGaV25BMX5e6O85LRjnV4GGHq16wAoigkCmOMA6kEWnuLRaO1SFX0UTIkqSfUmtPUWzOE9Yx6mFIhCNM6xpRIFTDKR6x2Okzd8jqaR26H8YB+1uNkKkmChOD21zPaWKPsrtOe2Ue9uYdTJ//oq97P/0eak16vB8DMjNcUPPXUU1RVxdvf/vbdr7n55ps5ePAgjz76KPfddx+PPvood9xxx8vGPO985zt573vfy/Hjx7n77i8X/H1pPku/3wfgkUceI6n5LJI773oVs3NzxHHsUdITt4vVmtJorBP+ZGQtYaAIlKKcbNJqQmn0p2Cv1E6ShPFohDE+vfjQ4cNMT8/w/HPPevGkcwgktXqdQ4cPce7cWc8CqSpqtRr1ep0jh49w8uQL3t1jPRPkhutv4Nlnj/k2t/RjMPCFixCCtF7HauPn4s7S7/XYqW9jrR8XNdttgiAkjmKyLKMsCk68cIIP/cGHuPOuO6nV6tQbDTrdDleuXmE8HvlCTAif2DzpHrhJV+HIkeuIk5grly9NqLdb6FrKzvYORen5DGmjRbfbo8gzarWUNE3Zf/Ag2hqSWgLgCwQZUDhfEn/Tm9/KuQsXmJ6d3QXyPPHEE7ztbW/7uq6B7/jO7+IXfuHnsdbrRgKlvObCWMxkXPOiy9i/dsB/baA4dOQo3W6X0XBAGPpY9CiKdjcYmNjwJsr0fr/vo9aloD09g9neQBuNkIoXTr7A3/qbf4NABbzxgQdotppk4xFVVXHwwAHe/JY3EQYx3WGf06fPMBoVk9GjIIwipqenOHfuDCurqwSBopbWadabxHHMDTfdjK1y35V42fHoJTMUXnyxRmtUGO6KLZ2Doshp1muEUcTC4hLHnztOrV5nNBzymU99mtfffy+ra+v0+n0+/JE/5tSpU5RVxbvf88088vlH2draplFPOLj/AD/6j/5f/OJ//kVec8/dtNut3X/Hj888E8c6SxyFpElKLfWbzIEDB16RZ0HpCmpR2wufx32kAJcabFXR6e4wHA6JGilTM0ukaZO00aLKRzx/+RjVnoqF1gKBjYi1QRQF5Wjks2KCgGB6zoejOUcgHZWAOPAaFymlD+IzxluKpcDhxfdS+hwdKSXOGFQ0SUsPIrT1dGpjJrb8IMKkdYxQuLjmNwrlkDikrqDMCYLQp74GES6ISUSTst+jzEZY6zwuX5eoICKYnkfqirLSVGWFqUpyCWSZzwNq1EBr0iAhVgGF1WCczw7ShiCKEEmKM4ZgZh7CGGEzYuX1BsI5ECGu0khrUGWBnWSmdFzAXqPJx1vgLOHsHsbGkAkFunzFngXCaMKZJWQyix33kRUEMqBz+jnCfEg2HnGimKe4+y70uPL28INNavtjRG0alc6iraDSzgctihQlI7rbO+hyTG//Hn7zsfP8/ql1Pt75PKPemNbsHIGMiU5eZKkVc/jAPP32nZz+/DrqwEHSMGWcweLeBZoXR2AHtG67jYW9e4kae1hZv0JQDli+eola0kDXapSFF1TjIM8zAuHIx0NGYUJWlmhncUGIRRGGNaQEFSegvsQh8SXdk/F4jAglMla02zOIKCKMY4wxZHmBEgFJrUFUn8ZsBAS1JqKy5Hmf4aCDsRX9fk5Sr2N04Z8zzrKWJvSWDlLmQ3aWT/mIhv4Wbu0cPaTXS03XmZ3fS7C2w9b6c192T7/S9ecuTqy1/MN/+A95wxvewO233w7A2toaURQxNTX1sq9dXFxkbW1t92teuhCvff7a577S9f73v5+f/Mmf/LKPb2xusHf/ARyecnfd4UPs3bOHUydfoCxLyrIkjr0Fz1n/4LDGkI3HzM7NMx6PKLVGV5ok9afSfOzDzLJxxnice2aEFKysLLO9tYWzBhwUZQnOsb62ilKKOEroD/rMzc1z9933cHX5KvVGgyiOGY3GPlAtiWk0m7v0QSUD6mlKvdZge2cbJxx6YhPzAk5Lv9uhWa9x6NAhlAzY3tnm0KFDRFHMM888jRSSIi/40B98iM5Oh8U9S+zbv59nnn6G5avLKBXQaPgOzPz8AtvbW1hrueW2W7l65Sr3veF+iiznzOlTaK2J45Rev09SS0mSBDUR7NZqNYzRuyTcjfV1VpeX+cOPfpTFxUWqquSGm27k4sVLCGB9fY0nHrvI+uYG3/WX/zIA6+vrX/c18Mu//J934UsIr2oXwnmnkZ2MPl4iGr22IchJa7Pb8yGKs3NzVFWF0SVKeZGxMRZr3a4mxTmv5dnc2KAqS7I8p1ZrTgBkinNnz/F//uzPEMQ1Pv/oY7zzHW/huedPsrq6ynt/6K/zux/8EEZb7rnnDt75ze8iy8YkSQITEfWR666js7PN+pq3Nm53OozLgk63y+lTL7Bn6aXv2VfmGeDfBrTW9LodEJIsz1GBZDwcMjc7S2k8dGxpzx4GgyG/+4HfZn5uho2NdU6dPMnC4gIPPvh2HnjDfWRZzvTMDM1ajTzPCYII4zQf+K3/Qb1W58Mf+Qj/9J/8Ez704Y9w9LrrsMZTNLX1bI7D193A2tUrjMa+CJ+fn39FngXGVDit6WVdXBxRCm+XlGHMMBtQDxSRsnQ7a2S1KaQMWd6+QHdnk3zco7/vBuq1JoExtOKUmWiWYmeHSMboMkcohXKOqsggCHEEKCXQ1meRhHE6ObA4tBCEKvBJrzifRGwdIvCUaqP1ZHNXSGXRRYnLxkgb4+I6LhsShzEqH/tgwLSBa08jhIM8pxj2MUVGFMfINEUYjZjkAykByjl0NkSEnktSSctYWAqncYFAINEiRu4UBMMCMTdL0p7x0EcByBBlLUUUE6mIZHY/Yy0JhSXXOaF0RFkF5FTGMFKKPEwZnvksSXuGYHEfawLCzVWQklYMW6WjDBOE8lvOK/EscEVGdfUstp0j23sRDnSvj+muIGb3kDZaMB7hdraIDlxPOS44eeJjXBiexV6/QHT999HNLQcPvYb7j95JORzizFX2hJKs22HdRHzwjx5m68QJNqoRav8RNp5+GqKUIzfeyPfed4QwgA8+t41sLRI2YuL2QY6feIz/8TsPc2nbUp85QDc7S5y0aIdt4rggFDXe8uB3curZp3wychKirD8QxZFn5AirfTaSNRjrqKoSi8PlfYy11OWsP5j5B+GXvTdhGGCqkkcefoQiG4K0xEmdQX+MNhpnBVVVMM6GbF49xaC/wtWLZ6mlbcIwJR9VjIcZ41IhQ0VVOQrtqN9+L5euXsAVA0xng7A5jas3QSmUDJHZkOLM0wgV0r/l9TT2L+I6p77iff3S689dnLzvfe/j+eef53Of+9yf96/4mq9/+k//KT/2Yz+2+//9fp8DBw7Q3emyuLjkk4eVZH5hgWajThRGFNKLONOatzGaSeKVcz6NeNDvT+iePvRJ65JrN9VaS73eIElSer2e164EEW9529t56onH2d7eIk1iojjmlltv4d1/6Vv58Af/gIsXznHjzTfT6exw6dIFrl69wuLCEvNzC9x556vI8pwnHn8cKQXOSQ4fOUIYhhzYf5Dnn3uWwWhIrVZnZ3vTWzHxm6FSiryouOXmoxhnOXPmNI16k6NHjxIGAb3+gNtuv41DRw6DgI2NTc6ePcfePXuYmZlleXmZnZ1tiqIkSVL6gz6j0RgpJaurq1y5eJkszxHA9PSMH+VoQxRFzM3Ncv7cBUajEWma0Ol0GY3GTOc5n3/sUfqDIfuX9jAaDhn0+3R6PZhwXu67734e+synUV8HJ/GftAbG49FLTu0QTkZ3TJDwL/6s+m8iDALKsvCtcW1ZX1lhc32NJE1pNFtMTyIR+r0uo+EQJRXamUnUuKXdbjMajTDSB+qlac0LKp2jXq/x3vf9CJ//3OeYm075C+/5Vm67+QX6gx6vuuMOhqMxQigWFudRKpyI9HwnJ05izpw5xd333EOcpHz24c9Rb9TIx2PKsiLPSx5++DMs7Vnidfc/MJkvu92GCS++xN3f+jRub5ttt6cwznDx8mVmZ2cRUhAnMUpK/uK3fgsvnDjO2VMnGQ4G7Duwny8+/TSDfhdtvMugLH3RMR6P6XW6rKysUGnD3Ow0P/fzv8DVq8v8+I//GL/8i7/IxHcN+I5gd9Cns/31yVT5k9aB0dqLBJ2DwRBtxzgRooQjSxJskmCdoR4HYKHQFcKGKBGTr29zdfg8JAFBHDM1u8DRPTcyWz9EPhqjkpjKGAygVYAqS2wokc6h89wLV/FjYW1KgriOUgHW+Q1TCAcy8GJVodCAkt51U1mLDEI/gi9LZBwTlznCFJ5gm6Q4IbD5GGONF8RLgajVsDLAlBUBPj9LhAkirfk3piwpxiNGZcGqzSiGPZJyhK6lMB4hRwUmjCmbLcK8xLoBJkpwtRpSOvKqRMU1XBRTZANEMovNu0R4dYoJAjAlgfBo/cHxJykGXW65/20U1Yhx2mBHheCgygqUUQR5BbX6K7YGsAY77BC09xKomFIL6A9QWlNeOUVhDMHsIgwHkGWIvQegKNFnnsWlKSjJZpHxwkybg3vuIJMDrpy5yrg5hWzOM9QlrgJ53Y2IMsOORzjtCETFxfVtPngs5lvuu4VRLUS6AraX6Wg49J5v4W3BEX77f52gPruHo9YxN7fE+ihhXafMXneIVx11XDl3AqsrhBZo491kVoCQiihtEAjjO4JOECc1ZBBTS1Pf7VeKKIz/ZGqD8NqV+tQsIBn2u1hr6fV3CMIUXRbkWYGSnqQeqIipmb04ZxmudUEKSitJ44RxoQnrUwxHXbrHnyIfrSCjGKVC8rUe0cJ+nNE4IbHG0TxwO4OLz1CuXiQ/cANc04F+levPVZz8vb/39/jwhz/Mww8/zP79+3c/vrS0RFmWdLvdl3VP1tfXWVpa2v2aJ5544mV/37Uq+trXfOkVxzHxZJb90mt2dpYbb7yJMAyZm53b7YRccy1YZyb24QhrCw9XmnyuKAqUkKAktTRFINnp7OwqxOv1GjfeeDNPPPH45DnrMEZz7+vu5eSp05RlwV/9nr9Kv98nz3PCKGRqZoZGo8mD73wXl/4/lxgOB5S6JKklnDx5kltvu5WlxUUGvS6dXpcwCLwrZDSg3miQFQVlUWK0IQgUYei5KXGSUAtCijwnjmKmp2eYnpllenqaWprw4LtfxezsLHEUcenSJeI45jWveTXbW9ssL1+lPTXF3Nwsa2trxHGIGMDVK5ep1+ucP3OWy1euUFUapSTNZhPnoNfrsG//fu66605qaZ0nn3ySJPZ21kqXPPnUFxgMRxzct58oDCkrv4EymaUPhkN6/R6tVhttfev62ono67kGhHj5OcEjvwVFkaFeloDqNSVRGDIaeqx/WfrgOxCTmbPXoWhtaE9P02y1iNOEne2O/xucI0pSBoNrjJSItbVV5ubmkUIw6A/Y6feZmZvjmWNPsb6xRdpoEsQJUZpy+IjvfgVxhLXOB3VNxmuj4Zhz5y6gjWF1eZ3haMTNt95MvVFHVxWPPvI5lq9eYW52hvte/yYcZiKKfRHF59OIBVWlef74cfYfOAjO6z/yMvfsgsqQpgnjwZD11TXSNGV9fZ1jzxxjcW6WQ4ePcOONN3H90etZW12hKDVKBeR55m3hM3MszM17Fo6s6HT7rG99kff/9E/vkoNB+Ewi59jcXGc8HhFG/t5tbm6+Is+CMu8zFBkmjQnyjHI0xAmJUAppK/JehzLcxlaaaKlBmrbZE08h4hl2ohHZeIAYWGQQoHVFHNcJZ4/SaLbQpqLobGGGQ5JmGxfFuKpEa42q1bGFd7lY65BSMUl0woUhQhegS1xZYo1GBRHSGsqqj2xMYZ2jVD77i8whBl2iZtuD3HSJK31MhgxjjDVIGRGkCXrYx8oCaRzGVMg0QU8iC5yQWKUQ7WmKKmd7o0PUbBDmkkI5RKsBtQYgYTikiiWmFiAtqEpjxiOUkIgQbKCQgcCNd8AUyCBGVmACMUHlw+j4UxSrV5l94EGGCFwYYwpNHNfInGWYF+TNGWxUIxxvAq/MsyCo70WlCURNLCGyfYBmJCgHm7B5mrLcQa+eR8Y12FzBdTdw80uwtUmwsIeyt+kPd6Mha898Ctvv4kyFmFkgUAm2t41oNTFaIxtNrLCEszPoS+dxQnCpXmO1MyRX85iqi+1ehPnXsmLnaB+8nunDhlLVedO97+K6Q/v43DNrPPupS3TMmAthRKmt71jlI+K45p2EpSYKAqoipz01Q7M9w8133c07br6NJEr4o9/+EOub66T1JlbIL2uoetdqQb/T54lHjzEaZSRp02MrVIRzBus0SS3EGJAyotnex3C0hYoSAqWYnllk6fARttZztvtjhmWPMh/uRiwEMsBWhbfUG40ddhAqwmIpBz3CtEUyuxc73aYq+thmE1a/4q19+f386l/ykhfqHD/yIz/CBz/4QR566CGOHDnyss+/+tWvJgxDPvnJT/Id3/EdAJw6dYrLly9z//33A3D//ffzr//1v2ZjY4OFBQ/k+fjHP06r1eLWW2/9s3w7LO1Z5IE3PUCr3SYMFPVmk6IsGQ76mLLCKsGg52mYaepBO53O9kQD4RNq5+fm2bt/H81mi09+8hM+PEkIup0uX3zqKaampsmyMa9/wxtIksRn7ZQVUkjGoxGLi4v8wf/8A1ZWVhgOhxw9ej2zc3Ps27+X/fsPsP/gfjqdDro0fPN73k2/32NnZ4tevz9x04AK/Gy7KAoajQbX33gTYRBy0y03YbTh+huuZ+++/UxNT2OMJk1TahOnR61Wm4Qa+tdz8623kGcFZVVSVSVFnjMaZ/Q6Xa5e8RqUs2fOsLmxiTaaPM9pNOrMz8/R2dnxp/QsIwxCHnjjAwRhyJ59e4mPRaRpQr3Z5MLli2x3Otz7mleTJCn7Dxzm+HPP4Kyj0ahzefkq/V6f6ekpDh86xKc//RkA7r333q/7GgBeZrEx1lshs8xHBuxC2qTk6NHrqNXrFHnOoN/32SgOdmN9BbzpzW8mDBN+5wO/RRRFHDl6hPmFeQb9LsPBkPXVVcKJbsUau8vTMcY/RD74W/+dpNbi9Olz/Pbv/i6raxtsbm3yvX/1u/i93/8QWhvuuvsOvud7vwdrLHqiOYjiiG9665tpN5oM+4+RFTnra+t0djqkacL83DwXzl/wdnjAfoUTkq+hHb/9O7/D7/zW/+B7vue72Nne8sXPYMzOzg5hENLtdTlw8DB79u0lzzI++5mHUEpxy+13cPjIdTz/3PMUZUmUpqjQC8uNrXzwrnPkmYca9jtDiqLgJ//lv0AI7/IKAsUDb3wD+/cf4Od+/j9w9tw5hHiRhHvlypVX5FlQT5t+E6oyZBITJzMe+Z7nmGGBCBStqTmatSlsniMJkZVmNmpiarN0S0m1vQFjRxEItqOrzESzqPY8SdKgvpT47kV/SDnsI4UnJQcToB0TJ5UQEldpTFEQxglChVhjKYUlqtUpBn2sqXxmz2DHawusDwAMlPCjo3yMQ6JMhVESpUKc9idRU4yxgaeeqiTFVv61CKmQKvCOJeEohCB3jivjHg7IR0MCa5DaokY5YWGoggAjLVQVjA2EIWZc4rKKaGYvRBG2MlRFnyhtYGVKaSuEHpGUlqjS7LzwLMXaKlP3vwkZRxjnGImYKo6pByEISe4MNWfI0ZjMc05eiWeBnD6IkBIR1DA7yyTzh+mefAgV1UiW7sJdfgxd9qEqsWYHpIJihJA19OoKYX2eYP4QunsR3bngYy7KEr2zDs1pfw82LwGC8OAN2JUraBkQ7D9Etb5JrzsgqTeJt71gtApSwj1HOadneO7SDuNMEM5MsXXlWWZjxYVTF6jvuZ52M2aqPSJO5xh01wnjFk4IGo0p6mlKu1En0yXWGYyxnDr+PE89v8y9978OGXruUF5orLP4/sgukRFnDU999mEuX1ljbXWTsiyZntlLSyu2t64SqIhQRQRRilQGazSjUQ9TjhmNxzSabYbDLutXL1E4i6vPkOsCOX0LwUyAmj5EsPw4w5UnwRmixhwimkOUI0yVETdm0b0OVo9w/R2qQKKm57+m+/lnKk7e97738Zu/+Zv8wR/8Ac1mc3cm2G63SdOUdrvN3/ybf5Mf+7EfY2ZmhlarxY/8yI9w//33c9+EdfHggw9y66238tf+2l/jZ3/2Z1lbW+Of//N/zvve976vWA3/adeZM2f49f/yq7TabQ4dPsRNN93M6vIKTCBhzviHqbXXbME+WE+EkjBQ/qEA9Pp9n6xbb/g8C6Uoy8Kf+OKIOI44efwEUila7RZ3330neZ5jHNSaDYIgYGtzi7m5WW9Btr5j8+ijj7JwfhGtNVEU8fM/93PgBONxzsGDh0iTlEazQas9xZ59e5ienmbP3r3Mzc0RxwlxGhMGIXESe0eIfNFNgvD7sZogw4XwzgqjDUEYIKXwospajYWFAHfoEK+6845di6kxBq01VVVSFgV5UZCNMwbDITs7O4zHI1pTU6yvrRMlCd//N/46Ukp+6wMf4NKly3zP9/xV0iSl2+0ileDo9TegAgUOuoM+n3ro08zNz1HkBZ/53GcBeO1rX/t1XwPuS34NwhClJJ3tDpcungVe7KysrW3Qbk9RlIWnKX7J3yOA1lSbRnMKKQTj0YjOToep6RkWlpZoNMeURUEcpz5bAt9y9Q8EwQ033chP/LOf4OTJE7zxgddx9ux5Wu2LhIHgjltv5bqj1xFGKUGo0Magjdkl6FZVyRef/AILC4vs27+H9Y11FvcssrRniTCKuOmWm7hw4TyNWnO3U+JVvi8KZK8B5p584gnm52ZI03QXz18UOfVanUsXL+Kc5qabbqOzvUUYKN7w9rdz5vRpTp48waOPfpb5uXke+tRDvHDyBDh47Wtfw9lz59ne3qbVrHPkyHVsbG0xGo15+1veQrPZZmN9jVqtwd/54R/mlttuYWp6jv/7v/0Gm1tbTE8OD+A3pVfiWVBPGhRVTjXyRWfQbOKSGFdoGtO+GxgGCQKFKwvyqkIJSeRgvjaNCAO2O11slaHGFTrL2e6uU+icueklGmmdaGYO1WxSDuoUm1vYSlNZPy4WE6BfGAQIFeCspXTOR184i6lKxtmQMK0jrQ8ODKXyUDblra9iMnIOJ646nEUEsbcbO4erSo8xKMbIKEYXI88nsSCqEpTnYkgEvVGfZWcY93YIcUCEGPcJMTAqoVbD1RNclUFVoqylqgoCge8wBwpbGUT7MBKDFAWpDFGjnclaswxOPc9o5Sqt+99MEbdAe/5P6Tq4+gyjKCI5eAPDY48jb7sHU1WMz50AXplngRht4eIGsjZDUAvRhSaozaJkiDYK4ySIBKfB2REy8nRslzRRQYjJh5Tnv4geruOKrmdaOYuQEp0NvBbQGqL6FOWVMz700Vqs249MEsx4SCc3NBop2uaoxjRWwY37A9Z2ltg5M8fOlXNc9+5vYu9iSut0Rb6s6AwHPPvsCcaySRFAEguq8SbaOkpgYANmZqaoitJ32sqQUREzzgVShEAATqDkl59YnHNsrG/zwvMXSGo1ojDGyoj2zALDwSZ5EdKYWqLZXmDt6hpBICnLbMK9Kel3d0BGTC8dYaMoGdop7GyCbA+JbruZetUh+9gpVHWE7toZdFUQyJh4eoEwUmA0zpboSlN2rlBur2C7X1vW2p+pOPlP/+k/AfDmN7/5ZR//tV/7NX7wB38QgH/37/4dUkq+4zu+42UQtmuXUooPf/jDvPe97+X++++nXq/zAz/wA/zUT/3Un+VbAWD56lXWV1Y5cPgQZ0+d4fd/+3fZ3NjwXQQpCSYP5kAFCClQShJF0QS65KFsg16P8XhMt9Oj3mwyGo2IogiBoCr6DAZ99h84SJzWWFtbY21jjY3NTbrdHuGnHiJOEhYXFzlw4AD7D+zHWsvzzz7H0aM3cnD/IVrtFo1mk7ReZ3pqilq9set4ieKYIAx8gSGvWVi9S8TbWv33vEvdFMI7SMQkzFB6Z1GlNWbCXVFS+tRI6zNDiqJAIKjVU5+y6ya0SyWRMiSKIhqNJlJJgtCf8qqy9MF31tMzfS5FSZ7n/Ng/+nEA/suv/drL7sWP/diP8a53vYsiL/j27/xOfvVXf4Xf+d3fpaoqbjh6lF6v/4qsAXh5JzOOEyptaLWniCe5OgDOOoaDwS6AL0oiX8gELzomALa2t0jSxkscOmY3S6dWb9ButWhNTeOsP8VEYYCU3qbe7fb42f/vv6XdanP8+RMcPnyQJK4hlWJzZ4fnnn8eKRWzc7PcetttkwBGnzAsleLo9ddTq9U4/vwJgkCxtrrG+voaWhs+/rGPcfnyVTqd7m6jyPEihM3LagRGGzbX12jUE7ypeOI4kt51JK3DKe9OazRb1Oo1dnZ2uHjxImkSMx6PcTjuvfc13HzTjWhjqDfq7Nm7l7IocM4yznL6k1DFj33yk3zsk5/cff/e93f/DjfcdAOj4YCFhXmqqmKn2939/G/8xm+8IutACJhqzZN3t8iGXiTYiBZpTO8hcAKnNVIG6EGXohjRjJu4MJmkS5fUg4CyNYu0INKUstFgfbTJ2PlgP1EtUkUFzUaTaGqeqDlFMRpS5Rmu1yMwlrLw2AFhNEVZIaqSqFZHOIcMQ0SgJrwlr3vR1nqNTJxCGCLKAhUEWKshjDFCIIsCNUHIy8DgdAkiRkhFEESoMMQhkGVOVebEYUhZFrRrNa72tqHewBmDHI5IVIwwhjwJMM0GNkmRtgXRAGcrpMlx4xwVBVQyByRqvE7UmEfZEOMsSiWIwLfxdy6cA6D78McBuMZ+rd9xL0pEBEENbr4LgaF37HEwhmB2DjN8ZZ4FVecKcnofyhnMcEQw06R2x7tozC6y88znSeYfQBiLcwV2fAFZS9DjHfT6CSpTYk2BwxGm08QzBymGPYKkhikHfpNFENamUOkUyIAq20SXQ8Tli9hKk0UJv/WHD7P46m8DWyKrHFMaLnYsmQ6ZOnwA2z3PCbWPyyNJ1t6LurBCIC0nH/0M6b63IBduYTDoUFcVYbBOqz6F0iUKRSkUQigsdURYQ8YxQZxM6MaCsjIc+8LT3HrXq15W2JWlxhqJMw4pQ9KkjikKz+CxgLUIIYkbLQwT96oT2KCFCKaxLHNl1XBOLLAh61QE6HYbF7QZPPso5fol37V04MoMN1xnPNjCuZIorqOzDqo+Q9zeiylHBCokLztf9X7+mcc6X+1KkoRf+IVf4Bd+4Rf+xK85dOgQf/iHf/hn+ae/4lWWJVYpBoMBfTdg0O/5NrkQREHgOyjWEsYhUThhhky6CroyyCCgltbYd/gge+YXSJstEIJ6mjIcDimrwuPM+32SJOHGm24iSWKiKCKOE5I0ZXp6mkaz6RHVQhBHMXESc+sdt2OMJY79OCQIJkWIUhME9osMrWudD1+gTIqQa8omwW6Y4C6RwzlMVTHMBxRlRRT9/9j77yjb8qu+F/38wgo7V66Tz+mcg7qlllBESCCMMBhjG3DANr728xj4BfMufo8xri3Gc8DXvsPm2oDNfXfYZGRkWzYgAUItEAqtViepczixTqpcO674C++P36pqycaWkPuAmnemxtap3lV716q15l6/+ZvzG6LArJGBwmhMTVVWVHUVChVryfKMw4cPB1+ZLMOY+mAUJITA5KZx623O674SbhNSCjrtNo899lizE6+YTiZMJhPqqqKuay5dXAvMFuf409/1XXzf93wvURLjnOMv/MW/eE1yQMCXVSdCNPN+vkTmfX90Qyg4hAj/raRAK/kqnVMIttc3aCftL2Pn7OOA9nZ38d4FqmYU0+t22d7ZJkliJtMpOopJdMT2xhbnz50FZzHWUdeGM6fP8OQTX8AYw+2338pdd92F2m9/CajKimefeZ5+t4NtNHq6nQ7LS8skScLJUzewt7uH+LJS7NVxFA2aKjgn5xw9soqpDd4Hc/OqDL5Cy0cOc3HtbNjJFDnD0Yid7e1QGAPT8QRT17z0ymleeuklvPc8+MAb2Nnd4/y5c3TaLU4cP8aNJ0/yrd/6rQxHY971rrczPzfAWMu5s2cZj8c88dQX8d6xvLTIgp0DPGuXrvxXzIzXKg9MXWO9otddwWUltfPUVUGNJhIBrFeZ8JnQ1qM82CLDVDOsr4nSLi2hEf0Bbr5PYabgRLinFAVVNmOps0xZVbSjlFarRdru0ev2cYN5Zns7pDMFRUFlDGm6rwsi8VRo3QJvkd5jTQ3W4ZVCdbrUtUWYGq0URiVIAa4KVFkvBUU2w7spRJooaWPrCi11KHikRolgyDl0JXv5hJkzjIRjlsbo8QSZZUQOVHtAnnYosY0tQQflBTJaQEx2qcqdALKlQtQFSvfRSYKtpgihEdaQ1VUQ+7OCpfd+CzSGgkYrnI4RpcJUGXiHqTKcFnDnGzl02z20ophRPmLnE1+ul/Va5YAtRpjNDDpH8ckCTivyeMbMjZn7hm9l/OnHqHfOkqR9jGzjp5u4YgjOIKVEixSLJ+4sopIlVOXRrTlcVSAjTbxwIjg8FxNk3CZZugmGF4nmV6i2N0jbS8yuXGHxnZor5x5h9c3fhRcxmREUJrA+52++je5Kn0leMZxaXJUxK+HQnd+MvO39HL79OKONIZu//rPE6WXitMXSyhx5maF6/SDOJ1v4WuCKkihJSJOY4WjE1vaQ/+0f/jR/7x/+ELfdcwdBOjR46Rig3enR7oa/tXQOi+euN3wj2XDM1vo2dWOWWBmDjgfUvoPywTus7h/lynSVysagNbWb4R7+NfTl30GqFKUiWgvHKaZ7mGwHHaVUxQTrHULGKD2H9X1UNKAur0Hn5OstvPPU3jDaGxLFQQNANYs/UiCVJo0T0nZKq91iMJij1+/TarXCPBqIVMTc/BxJ2kJp3ciX18wtzB90IZSSDasnuPpqHQBsSRKRNu9ljEUpGYCDdUWcxMRR3KjJOmww20apcIy6UbXVKij+ee/wzgUZbRoH5cakbl/6G8KoYTyZoJVmbn4usIqS5MBwTTSLsGuUak3TVclmYVd3Q8MQyrKM0WhEURQHCG8lFc57ZtPpwZq334XaB7r6BtMRGD0mFF9piifMzcu8pCwKsixja2uLvCgOdAiuSQ4AX1qFhE6saLxz3MHP7Jd2W9u7QUG4cVwK5oZ1c+4E80tLJGnroMNUlRVVY/yIDzTQ3Z0tijwnieOG1ZU2QPA9fvzH/zmnX36JP/En3keSxoEVVpRsbW1S5GOWl1ZZXD2EtR4hPGkSdGLiOOZb/8T76HW6/Op//lWqqrFg8J6iLLly+TJFUTQjJJriNYx1DshITTEOgk63E3aBUYL3noX5ObwPWBxTWyKtgi+Uhz/x7d/OF556issXL3Hbbbdz73338cJzL9LvdLEuuBcLIJIhT+vakLZS5ubnePbZZ4B3gJQ889QXsMYx3BvxyGceCdpBjUGm+Cr9NL7WEFGPOFIk3R5OOobTbeqioqhzRCwobQFa0Ek6dLs9XJERpR288NhiTJlPSLt9/Pw80zrDXrqM76bododsMmamO3i/g8v2WG4vMS4TUhWTxppER+j5edLBHGRT6jzHSU02m+LyHOFBeBfchaMYJyVJHGOFxtY1Upgg9lYbsDm1cwhjQGucD9b2tq7wSKxU+CSlwEFZUptp6HxKybar2PQFs/EwiMS155A6xneCeVzhBFMJkZf4MiPJDfOteQwpdXeJbnsekcTMZjtk4y2gwKcladIFBApFoSS6nCGdwpcGfIVIUhBgTYlSLZTS0JnHSkVSziiEZio9XaGI3bXLA6EVSf8QvnsUNXcMUeeY009RxRGjo28EbxC6g1XtANysCtL+cUyVoxRUs22oc2yZgx9isi1MthXEGqXGsoOKO8Rxlzof4tCopEM93A008s5xFhYXOXTTDbzQmqc2jnqaMc6ByhJ125x75AV+L6oZ9PuMtyfEcQdrKo7f/05eurjN6Vdipps7UBbMpW2E1HjRRiaWJOmgWwMMCnQSRvidHk5GlOM9vvj4E0Q+ophl7O/YBB5rgqWLiiTd/oA0TTFlQZGNodVHlZa93VFQHJY6KKlXimI6Ie0IpBrw6FqLY3edpHc8pT2nWNsY8vKzDk2XuNMm2zmDKSZB8FRIqmIUrB/iPkQDRHIMrxdxky2c/+rWg9d1cXLo0CFa7Tb9fjCZ2x/fSCEb6mewJFdRWLi99xS1Ja9npGnoZswvDIjbbTyC2gagX9pqH+xIv1TESmsdxiFKIUSYD+dZhosTdBSFC6sjVMP4MdairENrQZqmRFH4XmjL7xce9QG9ua4qsiwPvj/tFK00syxna2uLbJbRbrdpt9t0e1263S7tdjuIzmkdpLSdwyIa6flAE62b97XGsLG5ycLiIoPBgG6vS9pKGQ1H7OzsUJZF2HXnweRQKUV/MICmWMmLkjiO0Vo33YTwcx6QUhFpHQox5/ACWp02cRqUbfPsWpmkc8BWEftqiI3WxGw2a0Zdr8qcaK0p8pzTL7/C7bffRjbLglljoyJsneN3P/G79Lvdg4Kn3W5TV1VoxyvF4mKjj1MWbG1tYIxlaXmZtNXi0sU1/vYP/d9ppx0+9enP8MAb7mV9fZPtrS2OHTvE2tollhYWOHnjKb7xm74pFHneN10aH9D6UcqNt9zCSy++CN5z8dwFZtMpS4vzoQC37oA99mqI5n+82imbZVy5fJE0jXnwDQ9wePUQWxsbJHFMEqdEccLc/AKdTofPfubTXLl8hTvvvJullWUeeeQzXLx0ic3NDYwxwfLAO/JG/MrWhmyW8Qu/8ItUZclP//S/5sYbb+T48WNsb+3Q6/eoyjIoMiNw1vyBlD6/ptAtkl4fW46IWz3a3mDLmnbapywmJGlMbUpKn7G0cJRCSpyUOGKqWlAWBd14AZGk5FfOYoop6Bq8odtbYJoP8UmCNp4r2xfodudoRx1GyoOzzM8vUgtJ1Okik4RsMmGiHMl8D12HQiISKd47YkzwxBEClMSpGKUSVAS+MWRLuinWezBl432iEFKS1yVjHFJ5tIjxsWQnHyNqgysLyske5CVp2kdZjTBVYFEIhfMiAFk78+i4T2ocvXRAXhYUjSnq/MJhuu0+xcIRvE4pq5LKCYgiaiGJRfDtceUEicBLGf6OqkYY8PUwjD6EJxfgFo8gixmYCmsr4rh9zVKgffgt1EWOUvP4wuJ1ArlEtY/idh3Rys04G6FbXZy5G1GfwDiD6jlsMUamCWlqg36IixBygHcjhIrQSRffuNx7HaHTHt5b7HSHqL+CFQrhIk695S0sLLTxOqHykE4z9rYLJrtjmIxRzjKaxVzqHiZvdUnmW4jZmKef+Dy7Lz2JGhzGWkm/GlIrR7fbRkWCyHiccTgUUiZIr/BIRts7nH32KbQs2F6f0O8uoKNXl3WPwFpHVdQor0kSgUoikB6Ep99rs53PsJNdnKkA32h5eeITN9C9/y289NkvMjMt/tQ7EqK259LUMI0j3GABvxlRjs+QtBax1QRTj6ERYkx6R2kfeweGFOtSZPsIsfUo2SUvrnzF6/m6Lk7ufcODDAZ9Ot0ORVGwsbFBUZRhwVQaBURRHAClSUwcB2BpkiToONB4pRDBcRiBsZZqFkzfnA/6DvsKsoiwuMVxQpomRFFC1CRBWVXBLA9Bu92i2+0yNz8XCiClkEoddD+8b5xbCSODoijJ8xxng65I0krJs4yN9U2m0yn44H8wNx8wFK1WKE467Q5xHJRKvXd4LxqsyT7QNYwjyqrC1DVVVZNnOWsXLnDX3XeFNqbSLCwu0O122draYmsrmMzVtaEoy6Cq2RR9k/EkiN0lYaw1Go2ZzYJgndIqyPKb4Auxr9/RShMQNZPxtXMi7fX6TbEXChSpFNZ7ppMR1n2JnLP3GGvRSnLk6NEGu9Pg2oWAxlw6m2UcP3qM22++hc88+jluvPFGXnzhBeq6otvvcv+Db+Jzn/4krVar8UQR1HWNqWvuuet23v7mb+DZ518giTRlXhApSbfb5sSJU+R5gZah84YPv3efZu2c4eHf/hiHVpbZ2x0xm2V4BMvLywgh6Ha67O2NqJsR1EGB4mlM5EB4fyCUV5Y1F86vcdvtt/Kd3/mneeRzn2lUkQ1lXQbKvQwCbbPJBCUlly6t8Xu/8wmWVpYps4znn30OYwx33H4bo/GES5cuArC6HEDes1ko8i9euIgzhtXVVVQckbZTkiR8vpx1GOPQ2nEtQ8VpAJ5ah7U1g94ilcqRTpAVJVHawosYIQV5NcPr0NGcmgl15LGFx7dirJZEi4vULXBFRjXaYZxPiNs9hJQcWzlFLjJEbSjrCZM6QynFbjZisT/HUn8RWxta/XlknLK3t4VA0VtYQFugyvFZhqsrvKtQrTYmy3GyhE4PIyTWG86Or3JksEqkooYCXuFVhC0LTDFilE/xSlE5gykLulGXyXBES7SgOxdEu4ZbmHyG7s1h2hGoKAA4TYWPg0Cc9QalBfOqhdCa0hQ46SnyAmcMpQdrKqTuYeMUdBvlalAW34rR+ZjSlVjjiZzEd7q4tBMcmpXGmgqhI6SOMeWYbqS+4rX8WiO58X0kFirVx118hNXDbUadFkWeYW+8lWPvuhexO8Vs73DpV6+geifozi0gkzZVMcXa4HuW71wCEaGQqOkXEGRYAzbfCsVeXoJIieZP0G4dRqQDTLqK1wnxlZeRV1bw2S5yfJVsZ43Rg3dQoKhqKMqM8swL7J19CXn8AcQdt+PPXGW0sYnNdjHFCGcyxu15TJ1TriimmUfIGEyGr0uIErQJvazZeEJRbjLf69Ht9BHCv9pVbcLUhrIy1Kgg8knBeLiJjntU6maSQ/cym/4uXm0goxTd6lOfuouthUXWzp9jtnUOl+X8n//ZE88fIb84ojZT9N423kdUmSNurSJVD2sLhLdEcYfOybfg5m4GG8GsQqd9WLqNZO4ww+2Pf8Xr+bouTvpzfaRUjCcTEILllRWUCvLjYbwTuhcu8EWpqoq8LJjMpgeMFbwPRktIpJIH4NQ4jmh32vT7ffr9PkkSUPPOOcoyeJ8AtFtt0lZKmiZIGbxWIq1xNjiH+kZO3XteBV42W/naWJTWdHtdhntDzp49y3A0QitFq9UmTsJYaN8XqJW2aHfaxA2+JYApRdi5CPDOvVqYVBVlWWKMCXLPjcja+vo6hw8fZnFpsdlrC5Ik4cjRI/T7Ay5fusT2zg6mCHofs9mQqizJ8hwpFSurwQW6yHN2dnaCbLdSKCkb/5/AdKrKsjE1c0Hu/xrFocNH2NnZpShy6rJCRhpjK+bm5slms3De94sU50iSlNF4SpZl1HXYKQgpDphd3hmOHTvC/ffez1NPP81wNKLV7hBHEePJmM986vcoi5yF+XnqKrCc9q0PFhbnedNbHmJ+cZ577r6DNE24cnWjAdVe5qGH3kQSJVix3zFxFHnRpITkpptv4vChIzzz9DNsbm8xm81QsSaJdWO7EP79L5FfoTsUWkSj0YjpNHSN8ixjNp3y2GOP8LGPfYxv+eb38OwzL9BtpZiqotPrsbgwzzvf9Q4+/clPsbe70xTKjvnFRe66+y6sqUnTVmCtpWF02m13GY1HCAHvec97OHfmNIeOHOb0K6/QnZvn5ZdeYnNr5wBUHIoUy7WMUkrStEOsFMl0SFVkoVCzln5vQBIlpK0epa8oZ2M67XkK6jA+mWaU4wl5MaXllkhUTJaXKB0TxD4E7fYgKDhLOH7oFLPpmDLL6Kcdau+wZcnucJtJmbPamad2NUmUsnToOGU2C5pHcUKvO0fa6qDHI+p8iisz0lhjdQBvO2vZmm3x3PoLeO7ihv4RfF0Hywmt6SUDBv0eL62fY1RVGOsw0ymjQYIY9JBe4vKMui4gjYnm5jAywuCIdUI/6VJWBXWVo4xhag29dsAyzExOke/ipCKJEkb5EGuDV48uJsgyxwsdFkAXYauSMq/wpkS0ulgpIW2H79saGXeodYJKOvhiwtRaInHtitTZsx9HRB1U2iOxOd/x1nv59V/8bXaLCGUy9tZ+B91LiPuHiXt9ovlV3v1n3slyv40ta/ZmJVev5kyGu+xu7zEZjql2B7jRGnF7FTPdwpdTXLWFbC2SLs5RzMbo1gA33kEN5nnm9z7OK5//DVyp2fzs46hkwBp7wUKgNKS2wuVj2LuEuXKVutRMPvvvqa8+AVEbYXJ8to5vDbCDu3mpnKO+8zs5ctNRRo89ihqcYvHGPfLdUEyVVcl8v8fRpXk6rQglBZJXz3Hoplpq57HC4zxoZ6mLAuva7Ea3cOjWm7l0eZtovEPSXsAYx2wyQn/+ExQ7Z4KFQdwj236W7MZvJFI95KXniE1NfMO7yfRhaufQUU0crRKJnHzveUwNIj1EtHiKZDLBFZtY48g3r7FC7NdDjMfjBvMRNCfyBp+xT5fdV8fcN9NzNKBeT2N+FNx7kyRm0O+xuLBIp9shTVt4PHmeM5lMWN9YxzmQStJqxjNRFKOVQjcKn0II4igOxnJShDklwTguLNpBRdR533RNKjY3tzh/7nxgkWhFu92h3e4Qad2MkBRCCKKm2xMlMVHzPCJ0BCT7i2pg1uzLre8rehZFQZbnZLOMyWRMVdU89tjjvP3tb6Pb7QbwLYE+2Ot1ufmWmxnMzXH58uVmcQ86DqJRfT139mxwLRaCWZYxNxjQbrfIsjwo57ZarK6uMp1O2d3ZYTyZkudfnUX21xI33XwLve4G586fpSwKOt0O1hj+1Hd9N7/0iz9PlgW+fpB2dqyuLHPHrbdhrKUsa5IkYnlpkZ2dHfIiGDXOsoykwWzsbG/T7nQ4cvI4j37+84xHeyiluHRpDaUUadqi1xuQFwVbWzv8vb/3dzG15fTZc9x37z08/9xLTGcBI+Sa8dEdd93GLbfeSl3VwROIUGBcuniZqiyZTkf0+11Ge0Oeffppoiiirms63Q6VMQd5vM/Y2Q/nPR/60IcASFstjKlRWtMfzHPk8FFuv/0uptMCKTxpmmKdJysKHnvsMXb3dpFSkuUF2SxD4un3uwe4kboGHWluvvkW7n/Dg/zWRz/CE48/iYokR44fQamICxcuULx8GmNq6tqwuDiPtQ7vLcZc286JS1OINCrq0D90kr1LpwMUtSxpd3rEcQeRtCn21gMrzVu00rRafcppRr+/wPDiRSbTKSpNkLMZpsjxcx18t8PedJMkabOzfQVTOVYGK/S68xTTKVZIZDtgrnxVsj3cIWql9GJLtz8g6c8j4xbZdMyoyInimF5/QL/dppiOKQGtEyKhyPIJeZHR9oq2BV8UGGdpLR2iko6N6QaF90xsxSib4Y2lrRLq2uK1pPIlUacFiW7GQZokSukIT681D0JTFSUt40hUTKo0Bk/lLNlkF1MXqLSNbHfp0KeYTHBFhesmoCNmHkxlEF7ifUraWYFsD530qD34qBWEuWYldeoC3mY6wboak/bJymuHP2v3T1COLhFJixERpbdoZxDZHu7yIxQXLbFOGMk2tZqjvmL58OmP4zpHkLqF8wZZDZG+QkUS3enirSHqRMjUgekg+ouUOxVRqvCRwhRDfLWHt4a68DjZY7a5xtzhm5kO10jSDtnzH6PI9yiyksN3fBvWQ3HlJVR0Ed8/DMNzuPFZZNzHOIlO+zgTRP6K9YtsjfcYbR5ir7yBF+whJnsT7HiTPZ+QaM2Nt9yHMiPAglQMh6MvOy91VWOMJem10JFHKsFg8QaGOmVruANXDOVsA5+XVDbCC09re50s38KOt4jbh3HTCZ2FJXyV4WdXqXfPIA6/BdqL9O9/L7oTE5sR05fmkGabKruKGV8huvpF6qvPQVXj3BQ33cTnF7+q6/m6Lk4uXbyIbkzYAKI4asYwjfZEg0dwLpj3Ka1J45huP9B5FxYW6XQ6OO8YjUaMp1MuXb1MWZQ46w46FuEREUWaaB9wSzCOi+OYNE0RIuBKBoM+3U6ncRIOgFpPcCkejUZcOH+BK1euUJUlURQ1c3moq4rdLG/E4mJ0FEZI4W8SKBUUY33aCh0TY/BSBFVA9sGz7gC7Yo3BNp2UoO8SxOWkDOJxn/3sZ3nrW7+BTjeA3fYZQlorDh1aZW5uwNWr61y+fImqqg48acqywHvPeDbFWc9ICKJIc/LEcZSUDMcj1i5caLpVBDzQf2lI9RrGC889xw033BB0XZTCVBUIQX8wx9Gjx7iwdp5ZntHutBmORiwsLrF6+Ahb28Fj6J577uPOu+7mc498lkuXLyKl5JZbbuP5Z58hz/IDEOynT5/B49FRRBSFXaMgjEXSIsM5y/lz57nn3rtZv7qBs5a5wRwPvOE+tne22NjYCsWkgJtuuAFrHUVRNQVvCyFhaXkJrRT3v+E+ev05lJC8cvo03guyLDt47GNk9h+iKcDXLpzn3//7/0Cv1cJay+7OHhcvXea3H/4dThw7FiTUfcAzXbx4nsXlQwhPo1/SYzgc8dGPfJRv+ZZv5tvf/+1cXb/K1vYmo9GY6XTGeDyi0+ny8d/6GMPRkG96z7u547Y7+NCHPhgwFMBNt97M0SNH+cKTT1EUeTNyBOuvbXFirMEgqLwHFdFaPka1u0FbpwglodXGyyjIfgNppIl7A2pTs3roBD5KOP/ik0x8jtIC+j2sM9RljhiOkUIyTcZUeYHNaybjPZaXjrPQHtBRGmdq6sriZExHDihNznh3j+3RHoPOHGm7i9cxaRShjCVzDicUqjsI7rKmAieJdEJbafpRm7m4RUsLfOWptjZYlyVnplcpq9DV0dLhvaESinxUgqyIY4Ord+gPlkmWjmOVAq9JbI2KU2rjaSFIWj0SHdHu9tksMgrpkK02vcEcvt/FWU9qPHo+YFK8VKgkpSgLqCZo60BFYbGKVcMLAVdMIe7ikxhZZIjaBtPEVkKr26aQ1y4P8rwkSrrUrkBoibGKCRG1iLD1jLKeUes2LgJJgjE5rfw8+dZjWF9RmarRkYrw2PCvd4ioQxT3MFWJ84Ko3ac2bfz0MjbfDJ1QWyP9BLdwDKHb+JveRGv5LojbmK3T6P6NdJNFxG3vxG9exJjP4IWj2jqN7i8h0m+ke+QG8u1tyu2LSAF2dA4Rz3PpF38SOgPi3kn+zXMdZDbl9hOHcL6k1R2w0j/E2vlnuXzlPAuDOSqvqasaLwR1VbO7N6HKZoiow6WNHWZZSVlJRrM97OXn2dYJSlRIM4Z6DxV1WD51P8W5Kf3VuzCdWxHZOkqBLreZrL9C78S9DO5/E5Q1o2cfJ1t/iaWjR1DZOWa753DOoLJ1zOwjVNUEJROE6qKjFqq9BLtf+Xq+rosT5xzeO5zxzZy9bBbxiHarRafTYW5uEMYzgz7OecqyYnd3l82tbTY2goeNscEZVgRawYGuiBbiYBSzv+udTKd0O10GaZ9Ou8Og32dhYZ5ut0sUxwfASmMt4/GY9fUNLl26xM7OLr6R0t8fO03GE/IiP2D1tBq8yf68cJ/am8QJzjqKIsdac0BLDowj32iRhPFNXdcHD2vtAdukKEpmsxnOBx+Ond1dnPe87W1vpd1uB+ElKQ4oy2macOLEcVqtFuf1+QMsCk1Hqa5qTENL3tnZ4aWXXg7aKvvMGSFRQjTsJ/NfXbvXKr7jO7+TZ595FtEAgZUMQnCbG1c5fuIkV69eCSO2pmNlraGqcvIsSNDXdcV0Nj3QPxEC1tev8sTnH6MoK5aWlzh69AhxHGOdCywrKZEiFJRVHdSCQy56ur0uaitQ5faGQ0Z7e8F+vSrodDrcdNMt3H7nPeAhLwqWl5d4//vfzy//8r/j8tpFOu0Wk/GYre3Huffe++j3eqydP4/wXbqdTiML3wBk4GBsIgT8xm/8Brs7Oxy5607qqg7MHFMHMK9WzIqSsqrRsSZupwgZOj9pmuKtZXVliVmes7K8wsW1C3zidz/Jk089xWAwQErJZDLhhhtv4JabbmZ1dZEvfvEZnnv+efLZlKKsOXr8GH/m+76Xufl5rly+woVzZ0NOOEcrTa9ZDgDk1QxtW4EpJwQ6bpO2OrjpCCMkUdJGRC0iFSNsgZeePJuEnGl1EVFKNL+IGl3FZlMEkPQ61Hs7SC3AeGSD6SrqgtF0l6KYst4ZsNhf5FB/mTjSzGYFRinipMfh1gLjcszu3hblaIMjC0cprEB7R6fdweUZWmpKIVE6wZRFAD06sFVFHLfw7TnaA03qPZPZDv7qBBcphHM4Z9CRQqgYVdTIegxFRtzus7xylKizzMxWUBlasoWparAVHaXp9wa0Ol2s1IhqgvQlyVyfUliKYky3cGjr6CJQ1jOLFMIL6ukoMF3KGh953HATYQxqsIBLUrQQmLqkjlKENfgowjtD1GojTUb83/J+eU3C4VQHVxe4ckppEuRtf43k4rP4yRmKrS8gogEyOYESNdJMyYod6gZrolSMlB2kTHAidK1dPUaYCmP2wubCx/gaOt05BoMOV85cxpoK5zLMdAOGF2H+GJONy4ioTTVaw81qWsceQKokiKUtniQ6+W60EqSDFjiLljAcj6iNRy6fIJ1fobr4Eqq7DDuncXsXEbWh2rI4PeDiiQcZ9LssRzNmxTbEa3Q7A5LOISon2RsOyfKc9aubnHllh7WL21SXI0p3K7O9ZyjrC7hsiFIxIj1Kb+kI5VQzHV4mamv2ttboLJ0gbaUU2VUm5RiZRUg7xO+8TJ0q8idzytGINFlkuvMUW8NHKaabCCzt7jI4T5lvBiNVZzHVFOl7+GLyVV3N13Vxsm/cF2lNu9Mh0hGrqyucOnkSj2c6mzEejbl46TJ+7RJVY6IXxzFSqrCjEp6Ehm3TLNBKhRGL0po0TWm1UtqtNkkc02olzM3PB3qlFM3Yw1HVNdY78qzg0qVLrK1dYHd3DyEkaZIEfry1TCYzIIxKomi/yAAElGUFSdBjkVJQViVJkuB9wG3EZXwg1iYEB+MioBnn7BclYXdijEFpRUxCbfa9WDxlVVPVNefPnsday7ve+Q5arRayMS+DRrBLCpZXluj1urTSFi+9/DJ1HdxIO51OGPs4R1kFy3jXCNuFX+MOFuzwmmsTs2lGUQTcxr5WRxTpQHk9wBsFOp2zgWabZTOElLz7G9+NjiJeeP6loK5rA4anKC39+Tl2hrtoJfi2b/tW7rn7AX7sx/4RL73yEssrSxyeO0xRFIyGQ6RUOOfJ84KXXnyR4TBQ6rSOOHb8OM55zpx+BYREas10OuP8hbOcO3+O93/b+5iMRqysrPDyKy+RJJKdnRnOWra3tkBIWu0Wcwvz3H3v3WxtbbG5sc7SykoDXQpdvKo2fOr3PsnC/DzeOXSkqOs66LJIxdbWZgDuGs8v/sK/49998D/Q6/V4w333oZXgwtoFZnlOked89Dc+ShrHbGztMJvNGk0cibOW5559lm//9m9n7dw5NtbXGY6nHFpdwjrHZDzmIx/+MGmrzdUrV5prb5ifG3DzTTdw9sLaNcsDY0pm+ZhW2qU0FhG3cUpT4YnTFK+C0Z6TMWnaJhaW2XAD78BY8GWNjFKkUNiigHaCUIqk06PKZ2Fn7CTOVBQ+R2vFdLqNkhUZGTNTcGz+KK1Wh+F4RFkZTLuNSHocWu2RlROy2QipIwatLjujEb0oIsaTttrMsooqEkQyJknmmG/llKVhWGyT9Aek3T6dhaMcqwq2I0s9nlDX4+BKLAWtYkSVZUTdDp3OAF97qskQLSWdtIWpCopsRK87oDM/T7fVZVhMGJVjZtWEVreDUZJ8Zws73KVq9/B5Trszj0/nmAmJz2aQzdCVQXlBXU6QrTZxr4uLWqjSBCNE7fG1xesYbA2xwtmK2lp8g7G6FuFUih4sYa9eQsYtLs8sdXIT/ZPzzNYqWvUUL5dpH3oHxWQTmVwgjh1RrIh0QlVruis3MBPHAQXjM0x2z4O3uHIXbzOi1jxvef/3Mc1KTt0wz813nuTxp89CtgX1mMIKpE4oLz2PdQ6pYrSIkNmE3o23orOKzFnsZAvnCw4dvYsHHnqQvIJnX3yFerBIct/d1N0FVh/9OC081e4yhfVEQrM7m+Irwej0b7HnIs6lx0ikpmfnIL+M7t7By2d2SNqWsjT86od/h6dOj7l8cTOI9rXbWCZEveO0F+8hjQdYW3L46ALW9BmtHGHr4gXGm1tItYuMOvhqlyofUo9iqu4hpN3FrH0WozXC97DFHj7boHQTkvYch296E9YUFMOCbHIhdHobeQxTQpJ+dcy913Vx0ml3AlC1GV9YYzlz5ixnz54NGhZSNVoWYQFXUuGdC54qBCO4KNJEUQw+YEr29S28c0Ra0e206XV7LCzM0xv0SZOEvCi5dOUq/X6PVpqysbHJ1tYWly9fZjgcksTxwXuWZUGezb5MNj50PhpzNDgojPbF1ISUCCnpdQJVuNOMiXQzHtmXS5eNkqxqTNZkA0rdLxKklE13oAYPrVabyXSCc5aqLBFCcPrlV4h0xDve8TbiJEYQsDEH4mbek6QJt91+K71+jy9+8WnquiKzpsHbBCGxWVUF8LGzaB0d0JGNMRh77TonVZEzmYzJsoCP2d7e4vHHP09d1bzrG9/Nk48/GphEDU18PJpw9sw5jhw9wnu/5T3cesc9/PP/7Z+ws1vgvaOqDY8/+lk8YBucRKfT4abbb+PUjSd55ezLTCYT7rjzdt76znfzq//+PzAajhAyYHB63T5lYVhcmGc03KNst4m1ZjqbMb+wyO7eLp/61O+yu7PF1fUtNtav8MY3vhG8Y3lliaNHjiAQVHWN1kmD3dllMp7w8ksvMRxPuXjxYihOeBVzcu7sGS6cv0CrlXLDDTc06sGhUOwP+iwsLHDuwhpIyXB3L/gxASeOHyeJE5597nkmkylxHBGpmKvrmxw/dpxXzrzSaNv4gxHlR37t13n55RfxzpMkMVLqkJXes7O5SV4EmfXDhw8zN1/w9//+P+D2O+/kI/+FF9drGjplVmTUgFAxNorR7S7CleQ4ytleALg6S5QMKDwMVm9kvLcVOq+RpJsO6B26ldqUVK5gPN0GX1JlQ0QnwuUlIq+xUYxodwMTaTLEeMtERpzd89y8cIqlQ4fJZxlVVYEDmbaJOwukcZtiNmaU5cRRhLGOaVVyJRuHHHWB2VRHmtXDNxB3O1ROkZclhZsS9VI6c4eYjDewSuO6XcAiygItBHp+jiTts9Q9QhQlyLiF8zW7u1epTc3i/GEGg0WsqdmZTrg63WSa7aGcISsE1XSKK4IfVTbdJclqyrllSh1DPsNWY5Qy6EhgSo+OFLo3h/ciSOJ7hSwtUZ3hO/OYbh/daUGkUEUWPIN+H4n11yokM5LFW7HlzUSiYOv0o9jNmLGN8GUPFd2Dl0tQOVyucH6VqLWA7mje9fZDxMJy6fI2O/3b2Dl3llYvYa53F1Zpdi49R51t0uosUE4siYq4dO4KUTrP/I13s/PMp+jMLdK//Z2sDrqUO+sMFpe45YGbef6lMeNRTB4vMNlaZ3b+Jdz2OVA5R2/5Lo7fdiP5tOapzz9Knc0ovaaXDZnbeZ7FQ6tUMiMrJygk84kHVzHqT8nGu8QDgz/2TfS6byAd34GSFU89f5bzFxxZXpIVEbe94RvorDzEeKo4dsxiqiWi9C4q22d5/iqt+kUuvfwJdiYZSdzlltsfZH2vj5vVyDjB+QitY+oqw9UFk/oi3gpEfB+iHFHOdkAsg1qmLiMuvLADOFaO3EeUWLRUB7hF8BhngC9+5Y/0NcuUP4QYDockSajC9mfv+18rpRo5eP+qKmuzgCdJ0jwng5pqVeFc+0BHZG4w4NDhQ8w16q/GWmbTGdvbu6RpSpxEpEnM+tWrnDt3jgvn14giTafdIU0SyrJkNB6HRaYsQQQFSyFCx0OkLYRWFGVJHMVUVUUSJ1jnKMqSNEkaga9O0DPpdGi10jD+UTJQWA9GMKIB4HrKqsTUAfxkjUFJRZZnlI3seFGFsU9ZVlhryPOCSGs+//nHiJOYNz/0JqI4OhAe3Qfw7p/bQ4dW6fXeyjNPP8sLzz9PlmfUpsYTnEJFXVMWJjB1XOiYiIYxda1i8dAhWqdfCdfQOza3Njl3/gJSK6bTCa1Oi2PHj3Lu3HkiraiqggtrF2j3Okgt2dndRmvN3GCOrXYXpRRJkrAwv8DTz3wREPzyL3+QD3/41zhz5gySYH2QZzk729sMhyMOHVpl44ub1Kbi7W9/J0VV8corL/DgAw/ysd/8TV566UX2hmMm08mBmuu+59P6+haf+fRnWVpeIs9L3vSmh1hYniefZZx+5RxbW3tcuXwJJQXTaY6pKs6dO8MbHngAj+f5555ja3OTn/mZn2V1ZZlDh1ZxzlDXjiLL6Ha7pGnCubPneOlf/DjeQ7fXDayvOKasKuqqZnlpmdks4+SJ43zf9/1FRqM95ufn+MxnPsfV9ausXTwfXFKNYXNjM4AipURrRavV4i1vfjN/+s98Nx4YjcZs7+6CgE6rw5ve/GamRX7NcgBAtAakSlCXGThHmQpEb4VW0iOqppBPSZIOSkAatZCuRknPoDcgajqRS71VkjRBRRFFOWM02mC0O2U42GZv5zJ1z+Okx1aWykzBmYDjqfbIrcSRcH7vCid6K3R7A7oEVltZFtSxRDkQSYsYgbUlLhK0pGZAxE425srkMraomI97oCMyX5DrmHarh5aa3WzKsBxTFlPsbEIkBZRFYFMM5pBxhC4s7e4AGbfIixmT2RiRtFhePkbc7pJ7T2ZKirrE+BqpLN4L6ipHKImKPMpZYiSyk5JjKKXDYfBmirElonIIJdFpOyjWmhrV7lEDyvdJRMDa1ZGkxqHLGmNL0I6qvHaYEzlZw05OYJN5xM4znL7wabzQRNEiQrRxlGg9R7lp0D5HSIMrDdqv8sgnXiaKEmbTkkLvUk9HjKVDRikiSnAmYAR7i8epyjqIc64cZmvmuPypf00+usDc7W/m/qNd3v3OG4k6b2CWlTjvuGFpwOXNEZcuXSZLBHvdQ9S3fCfKQavbYWO3osxrTp06xXw7AQ3bW5uUdQEqZjjd4tKFV9jcOMepkzdz5pVnedOb38Hdb/gmpIgw5jLOXsAkFicc9cxwZTcIYQ76AzriPLccj6jqlFHeoXY30pt7iL1txysf+98ZtK4y343oJjFOGXSxyQNv+H68XyBKNYO+5NaTknYbJns1/+l3YGeUYEpJlo2xBehB8PnRiUJECqEEpZR0TnqEt9jaY03wfRJiAqPjX/F6vq6LE2cNZekPFuh9ACxwoBartSZqRNGkko0yazDTC/iPiH6/x+rKIVZWVxgMBhhnmc0ytnd2mWYZvW6XSCvq2nLx4gXOnT3H7s4ONHL1rVZKVdVsbwdFVK1C4dHv9ahrE8TXmi5JK20dABitsZSuwJggbBZHMe1OG+/9weIRNDhCgVAbQyxfpRHv40NMZaiqmiwLu7W6qrDWMhyNqcqSqqrYG+6FoqRRjM3zILpmbTBD/L3f/SRxFHHf/fc2om7igBHiGksAgCRNuPf+ezly9AiPPvI51tYukBf5l4CSE/I8ACFNM+oJlN1rEz/+z/4pkY4C+0qIAGb2DuUls2nA/AgZrMTnF+e59777+Xe/8iucO3uWi5cuE8cR9913HzpSRJEmTVtMJ2Ou5DlSCOYXFpmbX2Q6zYLgnvcUheXC2TW67R5FXpBPZuAsvXaL3e0tWknCW9/8Vu5/8AEefNObePaZ5/nFn/8F1i5eIM9Dh+ZAR00I9oYj9oYj2u0Ov/fJT/KOt72dlWOHeeChN9DrLLOxcZXRcLdR//WcPv0KEEZnuzs7TMZTzp05TX8wQEhJluVsbm8jI8X/7W//bTY2t/hHf/8fHBTos9mMPC84tLrC009/ESkVf/1v/A1+86O/zvz8Iq1Oh4/+5kfweNIopiwLYh2hkiTQiuOYxcVgcjnLM06ePMFbvuGtXL58CSkcX3ziaS5cuoTSmjvvuotPfOJhPv7bH7tmOQBwPAqFULeV0BeOtB0RxxFd3aWjFohMSYRHeo+SHuEC0y2KeiHXZVCcBoEXBtuO8AvHkTcpCmsoqgrjLEWZMypysrJgls2IW22msxkVEHXbpO02Le0RFKi4xXJnwN54j2mREXcHTDNDWUwpJrsknR4ubjFFImuDnNaIsiCO55BSMM5zNlVB6gxaBCbVbHcTT+gSS6WQSRvRX8CJFhpHEnum1mLGQ7zwpIuH6HYHGG+YmpJ6ljOe7VHlQ4S0aB9jpAMvwdVgSqSpsZVH9geYSJNoTy0BK0jSefwgpa6yUGe3BkEfpaxx2RhZ5ri0TRq1cUqh0w7ZZA9V1cymNf4aMsqdq6mzDJ/V1NmUSHfxPsKLDkK18FbgSVC6A24OgUFGhtLEVPmMqggO3ogaIRMqZ5FaIGVJlRlUNEBERxkOLVIayr0XyacbLB69nfjEbfT6KUmk+I+//FGEh7nVm+je/CDrk5hzzyqkPYn0Ee3OnRw6ljLXjvCxROwq+r5m9dQiKi+xumQS1+xlZ6jOnubM6UdxzhFHEZtbV1k+cgqiPnu7s7DZdQ6hFEVdIUXI62w2xVR1ADMj8C4DRszHEW2zxuZzTzDclkyHz5Hlmit7UOd7OFezcOxNtG4asLTUJ+nEqA6orkG1DfVexUpcouMWdZxSt1vUJaQxtNuedt8TtT0qleg47MXKmSAbC0Z7sLERfm79zFe+nq/r4mTfQVjKQAkOI44w5mi122gdugBJmjRzL08cx7RbLZaWllg9dJjl5SV0A1AtyopJlpOmCaury3jnuHzlCp975ousXbhIlgVKrAciHTVH4b+sUAgqtAEsOhqPUVKRF3lTIAmsMaRJSul9M9YJXZ40STGNwqrznu3tnaDmmQbhNR2FIitJU9jvaDTy7EVRNJgJ25j2+TB6mc2w1pHnOVI04xohg6OuCOBQa/aNAw2//bHfJklibrvttgM5fN9I5frGTFAQxlGLiwt84ze9mxeff4HPPfoos2yGEJKyzBsQZCgSQwF0bZkanW6H8WgE+KCqCczND7jtttvZ2NgE77npxht480NvpioznDXce9+9XL58mTjSPPLI50iSCEFgxXjvGPQH4C1IySzPGI5GvOvd38hcf55HP/cI7X6P2+68l6TVYTadkOUzvu3bvg0dJXzTe97N0tISzz77NHffcy/33vcAFy6c58Ybv5/zZ87zsz/3s9Qm+PVoranqgDE6cuQQf+Evfj+T0YRf+qUPsbA4zy0338JNN93C01988gCcnc1mZNMJURyzs7tNrCL+0l/6i0ymM/7jhz/M9tZWwBgBP/r3fpRWqwXe0+m1OXL4GC+/9DKeQDl/7vkXsdYwnoy4/577uPGWW3jyqccxdc23feu3UlRhEY5UxL333gNC8twLzx/I2Cul+c2PfISnvvAU0+mQhbkec/NdvuGd38OHPvTv6fa7fOB/+V/Y29m+pjnw3i4cXklZ6nXAVpiqwpriwALCETyfCGr6RDoKMutNwec8eELemn0ZAKVRztEWQKIBBWkE/T7GGrqdFu/6E9/B2TNn+MKjnyXU8AIvShCGyFcoq6DjoZ1gKaEd48UiddXFOlBJwm3OM+5IZvNtpFTIJMUUObtFwbzQQZhNSmY6JYojyjwj6QwgiimrnKq2ONHBqBjf7ZBPd4mkw7UH5P15tLWMty9TuBKVDJBKU1czPDWicxTnFbKc4cwMmc8weJI4JV1cRXfmUU5i4hKxchLroWxYhqIsguPvbATlDFHOaOmYjtJEvYWwYBYz6vEmBo1wBt1OuGaoE7FINNZIkyCTB2h17yNKl9E6xknwIkb5CCsivFIIH0b+wsoDfFSNxyORaJxTWOtx1hPNe6ytWN/MEdaQakXaOcb83JtYPrZKrftMZzmf/UJCbe5FtgckWz3apk83Udx3q2I1gYU5mOs7ul1otwReC2rp8RnMCsuFtSlnXlnn0sUWbdtGSsuRoyfpdAe02/3gaq5jkGEtUTo4XJfZ7ADQvy/IKQgebAHxEbSUPKDbmpWjFfNLOUdW78RbRyESyjLDWUmabLP59D9m3c1T2gV8a4VPdeaJeku0egt0Bj16i4ayKBjuafJCBiB3LdjZUJQzialAKJAahG4cwWx4rqj/S6Wm3z9e18UJiIDf0DoY732JgJqUYZQTtEFCd2RpeZmFhQU63Q7OOvZGI06fOUMcRRw+eoQkjsmKGWvnTnP16joXL10KyqjeB8aMDzN2vCevKnQjioUPS7hsKMxJsi9n/6q6rJLqSzAuoZOilKbdamGsYW5ujsHcHLoB4QYgbos4DpL3vV4X4IAmHQTkOGDr7I8J6romzwuqMtB/hRdfZja4u7sDiKYIctRVHejM3jMej/nIr32EJEk4depUOMP7jKBGNGyftbRPO77l9lvpDwZ89rOfZW1t7aDjIgRB26L5+lqFUoqFhUXGo2GYfTeUxulkysULFxqwsaA2NX/lB36A//jhD/Md3/mdlGWBVIoTJ06w+8WnmZ9fZTIeM51OeMtbvoG9nV0uWcelCxeo66AgvHHlEn/1B36AO++8g0cfe4yr61f4rd/4KEcPH2J+YZ7aGi5dvczaxVP81sc+wiOffTT4NRnLSy++zL333kMUK973re/h5ptu56f+1U+xuLiAc5694R4Cwa9+5Nc4dHgFU5dcOHeBS2tXWFleYm5hkThJueHUqSCCV+SYuqbf69FpdxjPpvzqr/06Fy9eCsV6052bTqZMxmOiSPPQQw/R781x5vSZRpsmw1nLe977HlZXVrjxplt4+BO/zRe+8AXquubIkaP8yod+BW8NDz74IJ9//HF+/dd+jd3dETfeeIK6rpjNMu67915MXXP//fczHk9w1mIdeGs5tLzKD/zAX2NvuMc/+sf/6zXLg7c/EATjhtvb1GUJhE6jdRZvA2Ym4LriV0e+rsFW4RE+FGu1NXgvGpuJRnm3+R37/kr73VmlFJ3BAsduhKcf+zxZNgsyA0IghMdVRWAPStWMXoOXUaQ13ThGao0UgkUElUqpqoARk8KRLHSJ4nmMdVTOURtLaT2F61I4T6liMqnZRHHVekaVBS9ptbvY7gBvK0ohKL0P/lFRTHX1IrLlse156J3EDM8TqxRcgrc5aTqHag3QAuIkRbf72KSNRJHoFrPZkNI5ZNpCRG2sV9T5BGUMoi5p9eZoJR103KaUnirbw+Zj4tkInfYxqcZfQxG2/tL3oWUHYywCgxMFeZFjzTRobLgSYw2uDmMmZ21A78kcQYmQGqlaSN0jSudQqoOMU1ScIKM23XSJuDVHFPcRyQBj2lgRMbSSOILBPBzpeObnPP0utLqCTkfQjz2ttiVVDh8JCgRXZ47h1ZIrV0asrW0xvHiefPcFlLtEJ65ZardIWx26nZjF5UWsCUzPKE1J253QxctyPFCWJVUVvN2ssehIB7yRjDFO4F3jWo+jlbRwriKNE5Roo5ePYIsCu7POaHSV+fnDLC2Cjku8W8f7q1j7DFlWkm8b7LpgJPoYt4hTN+Gj25lLT1CWgsmmQWpPHCe0221U2iKKNDoCGQUZBSXAC8HZz3/l6/m6Lk4C/iMhjpPGXAyElMRxSrvVotfvsbqyQq8fpKerqmY0HrO3t8fC4gJaSlr9HnmR8+Tjj3H2zFl2dvcatoNGStUUEQoILrbGWOJIs+/m6/fvXj4493q/b8oWhOGqsmxwLimdTlB4lUKitCKJE3r9HkmjlZK2WiwszDcLf0S32wm7XqDVaqG0OhCZg+AeHCAMobNhbQChOusOtEnyLHQyahvYKqa2jMcjykYLZT+89+hIs72zwy/90gf5S9//Fzl8+DDh7fdHPL6R4RcHxyCAhaUF3vHOd/DCCy8GtsreLnb/GL1D+muncxJpTavVeVUllUBKUkpx3333cn7tAgLY3Nzkf/qf/hoLC0t8/1/5K3z6k588oGCD4Kabb+byxUtMz5/j+IkTrK4c4fkXnuf97/+TtFstzq9d4GMf+xhPPP44RZFz9coGH/yFX6AoC06dOE5VGZ54/EnWLl7g8c8/Trfb4cF772dxZZkbb7mJ3/zIRxudGcHcXJf+oMPK8jK33HILb3vnO9m4eoWzZ85y5coVttY36LRaHDp0GKkilIBXXn6Bt73tbfzpP/vnWFu7yAc/+EEWl5eQQnD65Zf52Md+myOHD3P+3Hn6gx7f/ae/myPHjqJ1xJnTr1BVJVtbW7z4/PMsLy9y5513cuTIMT7x8Mf5tvd/G+1Om995+BOkScJb3vJmTGnY2t7mx//Fv2D10CEuX1zj//lD/zN5XtLttFi/uoGxjqIoeOc738l3f8/3ooTgueeeR0lFK0m48e/8v+n1ByyvrrC7t3tNi5NLZ8+EzUJjoFnXFdaGAlwCSmuSJH3VK8uFjgmNgvD+Z8Q6H9SOm3HqfmXiofE18s3nDXZ3hzz8a7+GVxprHK4Rm9sf4YJFWQtaE8cRWgpqaygqQ20q4iRBN15cSaTRWlI2mLDhdIIC0iSmlSZ0W3FQg22A/8aVOFtwi4cZkmmiyaMWe8qxoxRXqihIIVQ1tYhQ/SP0ZJsi6qB0H1EJVO84utUBB2ruMMIFI0+pAgMyiiOm413Kxl22tAUiHSBkiphlMBris12EKYk7XboLR0g7HQpbUY53wU3xvkSkKb3+HEJq+mmbvWuUA+tn/g3IFEiRqge6RxR10GkXnXRJ9UJYtFWMihL6aR+XdHGyTSRbWDoIodFp6FJHhHGf0A3GT0rSFNrakiSeKFKkHUGaeuIYei1PJ/W02h4ZCQyeWS5Y2/NcPV1x5eIO00vnmey9RDm7iqyHDAYpS4sxN8553Jwhr9sBI2hqprMpplBESUy71ebIjbdQW8P2+hVGW1tga3yzyZRSUuHBgdEa22hbSakwrkZLFRSO8xnWOVppBxDUZYV1liTpc+zYACk0VekRUtLpdlFaBQiAl0ht0CoiUhoVZSj1ImX9AlnhmU1G5MMJtgrecKaOMXYexw0IdQQV9YhbS6TdBdL0q9utvs6LkxZRHBHFEWmSMjc3YHFxgbm5+SBAUxtms4zR5Epg0MRB/ySJ2wx3dzh95gyXLl5iNgveL0IElkwUx03HIzBRnHUH+iLWVngXBVO/ZgyzX5wEkS1BkefN1/JVEyYBWZ5R1TVpmtDvhll3XdWh69MgmYuiDKydJGmM60K3xnlHmQXzvX3HYmcdUgpswwKy1jKZTJjNZqGDkuWMJ5MgMDcaN2aIjROuAJL4QKNjls0OxlLj0Yj//OH/xPd83/cyNzcHcKBXYY05cDz2zblxDQPphhtO0e/3eOH551lfX0c3hdKXFkGvdSgd0e50/6vnvfdIrYN2jQ/HP55MuO+++/jExz9GXVucdwwGg/A+ioDZAK5evUK71UUIwdX1y7RbbS6urVHkJU88+SS33XoLOlLMzQ2wNvzuJE148aWX2NnZoapqbrjhJKfPn+PZl17g4pVLtNptVo8c5vDhQ2RlTr+/wF333s273vUuBt0uL73wHO94x9tYWFqiKiuefv4F4jRha2OThfkFFhYXeOODD+I9XDx/AeMMn/q9T7GyssLNt9zMn/mz38PKygoPPPAAdV1z2x230+/3UUpy9OiRYAJZlWHhGw5JWy36cwPue8P9/PRP/STDvV22dvb48X/xL3jgwQfBwyd/95NcuXKJ559/lqqs+Of/+z8niUPO7Lt3X726zt7uFrM8Z7i9g8dz/sI5tNYkSUJelaxvrPP8889csxwAqE19YFcRctSG1rYQjahhFDpKB30PwHusC1IAtTMY6xqm3D6dHmgMRG0zFm5qk/ByNHmW4ffHukLisOHzoGS4dzhPbUHYsOBrpTG+xjobTCebjqRWoYvS0hGxkhRakhdhzDzJctI4IklikjghisL9xxhDbS0da0itQbiSU1JhZMRQK3ZFwtm6YtsbSuHpLq7SR5B7i+63ieQRpPdYKVF+QOSgLWE3nxLFCd5W9JIOo2yCMxVx1AGV4rMSN9mFbEQC9BcO4ZOUVtrC2Joyn+4PEtBRQq89z9LCERY6XVRV8uQ1yoGV23+UpLWA12nwAUoiFAqnBUiBtr5R1A736tz5xgBPYaxAIoiEp9v3COXxQhBFEAlIlaCtIG050o5HRyIwj5RASDAeLo9hcs4zvFqws7HFzsYFstE5hD1NLK+Q6BlpqpnvD+if7NFKE1pJwnQyZXt7D28KvLE4U9Nup8TC0+t1WTl2kvZgwN72NlcunMNVNTLSKBUTtZKQqzLIFHhjEBIwlqquAuvQGpTUYWxpa6JYBosBGiJD40bvjG1kIDxlXjCbTLHOEcUxkY6JVYAyGNM4tTsQQtHvd1lcPoypV8mmOdPpFG8Mpiyp6i9i3RPBS8xJXKUpZ18d8Oj1XZy0Ug4fCj4xaZpirWNvOGJnOAYv0LHm0Ooqve4y4/Eely9e5tKli+zu7lLXBqkkUqiGgqsORhY0uAVT181IxL9aEDQzbGsMTuyLpcmmS5F9iQ5JaA3HaYKpa7wPUvai6a4Eaqalqkra7RaTyaQZG6VIEVPXQXo8z/MDNo6QoWOxT4cOrw+qrcZa6qpmNpsxHA7BeyaTKdksazRILHlRUDUuvEIGXZVQIFVNgSQpyzCnv3L5Ch/6lQ/x577nz9HpdA46J/uqs74pUKyzFMWrHj5xknDHnXcCgqtXLiO1Qrnov30R/wcjLCDNdTvY5obWomuwLvuWBdvbu0GmPit4+eVXcM5yyy0389hjj/PMF5/G2oD/+fyjj9Fpd1haWub86bPccccdnDp5iuPHj9NqpczPz/OWt76Dqiw5f+Esf+q7vpt2u8PDH/9tfubf/gy1MWxt7XDLLbfgC8eli5e5enWdt779bfT6PX7+Z3+R0WjMyZMnqIqSPIr5hm94K5EKztaDQZsH7rmL0d6Ilf4ArTX9m29GR5psOOTeu27n4tpFvvEdb2d5eRlPoI3jHPfddz95njOdTNla32Q2nTEcBTnrkI8xnVYbkFi7R1mVXFnfCMw163jhxRfZWL/KhfPnef+f/JMcOXqMX/ngv2Ptwjl+/Cd+ks2dLRCKJImJI83iyiKPPf4ITml++ed+jsl0GsQFy4KVlRW+4a3fwMrSPPfefec1ywEIKr614EBvx/vQAYnjqKHqN7khaADmhGLdOSpTY/bp90KErgmN1YQH02CoRDMahdA1nVtZ4l3vez/OOx7+T/+ePJ8h9kem4adw3gXQugn3CCUVUmlw4bNTGV79vVIGxoxXtOIYLSVVJSnKiqIqqeqaOjHESRJ29lFCbINEQVnXAXdmKpSoWBGSw2LGrVowRjKUkqum5LLz1EIifYmXMVbI0L0R4Xd7JVnpt3FIRrWjJsKkMV55dB2DdZgiaH60e20GKmVx6RCtNKXwhp3ZECUEQiiStEcrarEyWGTQ7hAJSXYNmXuidRLb6iM0RNIjtEQrj9CAsGgP3oXra0WzoKuAIE0iSNsQxQIVAVISeUiUJ1Jh04mEKYqtXFHsQDYzZKMp09EG2cYa+dZ56tkLYE6j5R6trmJhocfi8hE63VXanRZCKap8zHRvi+2tGUpIVBRTFQXSBvKE9waJ4ciNt9LqzRO1ely9tMb6udPgPVJpfB3WKSGDt5rwkOiIushx3uCNw9hGMgMwFGFZ857cWRaXFmjFKcPtXYx1BPfiZpPrHF54IqWR3lFOC3LnEFqhdSMd4F+9r86GJWI0bEQde3RXVkEoJuMx+WwaPOKEb8arUFcFp89/5ev5ui5O7r3nXoqyYHNri9ksQyBod4Jbr1Qw2t3m3MsvMRqPgg5GA9LUOoxsREOZcNZTV0EoLE7iA+VZ74MKqG524EHsK+A9DrRElDxwHN5n0ex3QqqyBDjACBQFJHFMrSu0ksF+3lqyLGdpaZE8ywIGpa5JWynOObQOUsQ6jrDGEMUReRaUP2ezjCRJqKua2gQvnTzLyLKcqqqYTiehYm30LsqyRCtNXhVYaxqGUHQwKvLeo5VGKEFtDFcvX+E/f/g/8V1/+ruIkwRTm3BeXDgHRVFQFEXz+vDa/f8+deoUSZJw5vQrlMW1E17aFwfzzocWLGGXa50lz3P29TesdfR6XQb9PnVZk6Yxh1aXibXmW9/3LURxQitN6fV6DBr8z4WLl3jy85/j0OHD9OYGxDroeUxmMyazgOtxxiKcQ0nJfffej9YRtTFMJiPe+ta3cPzkSVZXDvPzP/dzOOfptPt853d8Z9DP6feDIKBSaKVI05SqrBjt7pJlGaYOLI00jr9ktx68f4qiZDKZUFU1cRLT7fSoyord3W3m5+bpdFqkSUSv26HdCfiSIi8ophm7m9ucba75dDrl6NHjRFpz9z338NM//f8l0kHE7uUzZ/ie7/3zyEjT7nT5pV/4OT7ykY+yu7eHkpIojjh65CjHjh3jF3/xg1y8ePHLPhveO248dQN33XXHgdrxtQrnLNYKrDUIQCtFnARHbdngvoSQTZejkdP3jtoG8UQhwgKkGxFG3D5Q1gcMTVPsNA6bCAExFg2IVkraTgNb0HuMD9gSJSTgcO7VG79sRns0lHRnHTV1uLJao5pFU0hJHEWNGrEIlO86eGXVpiaNAzg2ioIQo9bhPlTVpsHOVBhCwbMgJEtKcJMUZB72vGLDVZzNpmzmJblSyE4HhSJJ2/TSHnhH7iy1BNnuwDQ4jdvpEBlLev1DtDsDtNTkOqL2nrwoyYuMKEpIvWap02VlYRUnNZnx4Bzyq8NCfk0RFFwlwnmCzI9Ha0vSfI0P2AedgFYep8AZgVCKtAtRDEoJnBB4AU5A7gTDylNNSoq9EeONi4zXX2a29wImOw1mHa2nKBVGKN0oJu6ndLrLLB85zvziPN4UmDJjtL6OKwo8jrJupPKjCGdq0jjBlh6lJDfdfQ/eKbyHve0tLp1/BOkcaZqioqRh+omDFp63YYxp6oK6LEjbHcqqRmrdSEiHc99udzBVia9zhlvbJEeOsLiyxJVLl4iihChOKYqSuihC3srgHdftdiiLHN04rRdljlKaOG4FpqwAvMVUFZOyQAqBtR7rBd56sjJDCOi0U/q9Fns7X9168LouTp54/LGgoeGh1+9y+MgRvHPsbm1w5eoVJuMgkxsu5r4HiQiz6IZqbJ1pRMzCXidgNfSr32/mvFopqrpucC32wGsmEtGBgmYoTiye8EFu1EIOxjMCEfAmSjMejZBKYWpDNptRVQGbsre3x8L8PEJKrDV0OgHg1W63Do5ba8X29s6BoJsAyip0QSaTCcaawNJp8CbGWqpGJC3Pi7CYe0eR540uSmDvtNsdnLNked50khyPP/44rXab973vW4IHSHODDU7D4W8ajyfEUfQqe0pInLMsrywjpeSlF1+8ZjkgRegYLC8vsTA/z+LiIp955HOY2nLPPfdw9OhRpBJ0O93gP7O2xgNvOMFDb3xj6DgoybHjJxqRO30w0quKiitXLnPHnffQShK2N67yxje+hThNOX32LOcvXOLOO+7kyuWLeGi8ZTx33nk7iwsLDAYD6tJw5qWzPPPkM8x1+7TSlPULF9GRxllLPsuQCJKWwpiarfURe3t74XmlaLdbpO02WiuMNWR5TlVWrK+vc+nyZcbjMe1WsGYY9PvML8zjrWM8HNEfDFAN4HJubo7BYECZF2xv7yDFq4DoTrtNr9djPB6zsbkV8jHLueOOu3js80/wmc98Ducc73nPe/g//o9/y+5w7wBcDZ6NjS2OHDnGK6+cRgjfeJPsj0Y8Tzz5BLWtufvuu69ZDkBQQ5YitOaVCsDXSEdIJZp+WriJOiEwDYjdNkWtaMCyWkkiFXxivAgjn/3Ps+DVnaogFDLKepyDlo6DAem+eKHzOBxCgvDBEBAvv6SjE8YMeIFtKPc0KtGi6dzsA2vBk8RRUIQWgqo2OGOoKPDe4lwUWEVKohpjUGNtU8zUGFvjmiJFS0VPSjpYjivH/bFm1Es4n5eczSesO8WsLoOSK6LpzFaU3qHSFjqKkRKiuQVE1KKwngJIVUSRj8nyGalM6MUdDq8s0mkleC8ZVZZJbfC1IZ9Mr1kO1IXAmoATUkKAgiJWxKlAaoGWIGPQIvzLfrPVQB7IfvjaYvKCarxHObpKPnyFbPgc5exFfH0J/BglTdOV0yTtNu1On97CInODJVrdPt4ZTDEmG17h0sZpwBE3liNx3KhXN122WqrQ5dcRJ2+5kU6/x3g0pT2YZ7I7ZOvyebR0QfDSW0yVNRgp3zxcw9400DiWm7qiropm3XHQYBizyTDkiVZgPZfXLrCyvMr88hIXzrxCr93FIajKPBQVZkar3aJUgQXrTTDLTFsJ0+GE8XSMVBFRlAJh1Ouboh8ngaZgLkvwUM9SbL5Ar7v0VV3P13VxsrGxwfHjxzi0ukpZV1w4e5ad3R2KoggXrlF7lQ2WZF/8Sut9yXe3f09Aat0ARsNijff4KGoSwAYDrUZPBWjUVw1FU1EqFRaQfUpxXdcHTrRxHDWFhSUvsiCZHyeYRva91UrQWjHcG2KModvr4ZtdbVnVjIZDFhcXKasKU9foSDOdTPDOU5uawWDA1tY2/X6fyWTSiKdBnmWUdYUQkslkTF0bOp0uxoTxzpd2TDrdzkEnJ0kSJpMxs+kUqSSPfu5RFhbmeeCBB/DOUVlLbQx5lh9gaKoynLdQMKkDL5s4ibjhxmunDPoXvvd7uPHmG0nTlEhHXLm6zqcf+RxVVdNpt5jvn6Q2hnang1aazY1N8jzDOxGOUQqiKKauLa00qPEOBn2kUqyvr3Py5ClkFPHI5x/jxKmb6HTabKxfxVnD5vpVbr7pJkZ7Q0bDEbs7O3zLN38zt9x6C1vrm6xfvcrezi7OWrq9LpEMuIOkQbNLKZhNp2xtbFLXFUVRMJlMqaoapRWtxlDSNmM5mqJibzhkNB4xm04RIpgreu+YTidEOmCSRqMxcRyYZePxJNg8RJq0lTKYm6OuKkbjEVVVI9U+Q6zF8vISZ8+dY2llla3Nq9jxCOcczzz9RbJ8hmio857wwTl05DBnzpw5EOyLW1HTDQodrae/8DQ/8zM/x6kbTl6zHIAAcJVSHIxyIq0REiQemo1DY+eM+JLCBO9RQobXKtlIEgTAa9g9N4VJ+C0HzDznweFC8aNV05WxCB9cmJ0XAc4gw87VN5TlUMDt7zbBNngoawVSOqRygWEn5AFtXzZ1yj6M0DStd9ngv4g8QoR7UBRrNOHf4LFl8DbQqIMGRiiOvBBILMvOspgK7klj9mrHWpVzeVKwbmEiNYU11EUJQuLiFlGcIKXGCo+Og8fPtMyprUN35znZn6cbaSpnGVqBrWtcbfCmxlclWX7txPhsIdBdiVCgNKg4dENkTLgGQFnCbOgxhaPOa0wxxWbbmPICtnwZV72Ar8/h7SaCDESFlIFlomSMkBFpZ57l5UPMLy8HXypnqLIJ+fASk62gY6SkRMhQJDljKOoigFarQKZQMnRGdBRx7OQplg6vcvniBdqdDiuHjnHx3BmG65fBG6zweBuMW2m6aoEOXuJMjfU2FLzQAGFLsA5HGNdoHQwMtZaBuVOGAhchuHr5AkuHjnPqptt54fkv0E5itJKNvIRlNjEIHDoN5rdKKVQVPl/eWYypyKocaDCaQgShyn08ovOARSCpixnb2YSrV7463avXZXHiG0zIYNBnZ3uLC+fPfYl/y5cwSfYvmBBoGTQNhBCUpWNfol1ISV3XodhoLsg+ZiTY2Ydbk290SawFayrqujoY49SmppXSzO1N03XROOEom9GOEOFG47yjLIrQRZGSTqcdKJ/TKUtLS3S6HYo8J45jOt1uACAuzAdAl5J4J6nKMrhOek9RlTAeN7oTFZHWTPOMwWAu7O7ynNoY5ufmGI6GVGXBbDZt6MxhTKG1aqhq+2Jm0O10mM1meIIWwG9+9DeZm5tjaWmRsqwOsDfGWCbT6cF1MXVNls0o85yyrhq7bvNl1+21zIGyKNnc3GKpEQXb3NzA1KG1X5U5h1ZPoqNQ/PUH81zZWOfY4SMkccLVK1cojWF5ZYV2O+XZp59jczMUClIKluf6YEoqV/H2t7yFvc0NdoSnFWlOHTkSBO5mBZfX1lBaU5Yl49GIC2fOHFwfJSVJnBBHEXEUkaYJ1tRsXLlKZSqqKigUj8YTJpMJdVkhpEBHUcAnSEEUhfa9bxSEJ9Mpuzs7FGXJbDpjPBzSarXD9VlcpN/v453F1iVVVTOZTBkORwRNHU2SxCwtLwUfGWPZ292lrmuquiSOE+69+y5kpDj2Le/Fekddluzu7pK2YtbXN8jyIngVOceZV15pOikBCzWbzpj5GVEcceLwYa5cvkxZVrz84suveQ586ftVVUmkAK0wwmObbmAAmr+qQeScD92Khs3gA3IdJcMub98lfB9jZk3NvhihZ58mLNBCMjSGpz79MK2FRa6urVHXRXNTD2MdKwRShc+50xpXW1zjm9Vg7THGYV1A2daVJKqDhogU8sB3a/9Y6rqkruxBl86I8N6mrogiHVRbhQLZFDfeo4TACB/ywVscQDNi887hEAcbub6HOwXcpgVDDFerjPNFybqP2bI+jM2yvPEkE5goDcfhHLEQLOqU6WRMJQVOSRyOea2pTU2VzchmBXk2/bLr9lrmwGBhQtIKLBlrwVaCIvO42lFNM2y+iZldwhYXMPU5rD2P82vAXhDNQwENDlEElqaQKQiHVBEIxZ333MnC0iq7GxtUw4tkZUltCpwzB90uKRVea7wneK45i9gHCCsdumje0Z+b54773sDVK1e4dPo0t955H5vrVzj7/O8xme41yF3XvKfEN2Mc8SXXLwCPPb4hZ5hmXfINLgpP0+WGWjUMNA/B50sRK8XaK89w7NTtHDtykrOnXyBKgr0K3mGa8abNFOWBXUrIzwOK7P6o3wdZCyHCRt7bQDqw1jRj0qZbaL+69UD41/pu8YcQZ8+e5aabbvqjPozr8QeMixcvcuzYsdfkva7nwOszXsscgOt58HqN6/eC6/GVcuB12TlZWFgAYG1t7YAKej2+9hiPxxw/fpyLFy/S7/df8/f33jOZTDhy5Mhr9p7Xc+C1j2uZB9ciB+B6HrzWcf1ecD2+XnLgdVmc7AspDQaDa3Ly/v81+v3+NTufr/VN43oOXLu4VnlwLRaO63lwbeL6veB6/FHngLwmv/l6XI/rcT2ux/W4Htfja4zrxcn1uB7X43pcj+txPb6u4nVZnCRJwgc+8AGSJPmjPpQ/FvF6PJ+vx2P+eo/X4zl9PR7z13O8Hs/n6/GYv57j6+V8vi7ZOtfjelyP63E9rsf1+OMbr8vOyfW4HtfjelyP63E9/vjG9eLkelyP63E9rsf1uB5fV3G9OLke1+N6XI/rcT2ux9dVXC9Orsf1uB7X43pcj+vxdRWvy+LkJ3/yJzl16hRpmvLmN7+Zz3/+83/Uh/R1Fz/6oz964MK8/7j99tsPvl8UBT/4gz/I4uIi3W6X7/7u72ZjY+PL3mNtbY33v//9tNttVlZW+OEf/uEDn5w/6rieA19d/HHOg+s58NXFH+ccgOt58NXE6zIH/B9R/MRP/IQ/efKkT5LEP/TQQ/7RRx/9ql73wQ9+0Mdx7P/Nv/k3/rnnnvN//a//dT83N+c3Njau8RG/vuIDH/iAv+uuu/zVq1cPHltbWwff/5t/82/648eP+4cfftg//vjj/i1veYt/61vfevB9Y4y/++67/Xvf+17/1FNP+Y9+9KN+aWnJ/8iP/MhrepxfSx5cz4GvPl4PeXA9B65tvB5ywPvreXAt4/WSA18afyTFyf9IQj300EP+B3/wBw/+21rrjxw54n/sx37sWh7y6y4+8IEP+Pvuu+/3/d5wOPRRFPkPfehDB8+98MILHvCPPPKI9977j370o15K6dfX1w9+5l/9q3/l+/2+L8vyNTnGrzUPrufAVx9f73lwPQeufXy954D31/PgWsfrIQf+y/gjKU6+1oQqy9IrpfyHP/zhL3v++7//+/13fMd3XItDfd3GBz7wAd9ut/3hw4f9DTfc4P/8n//z/sKFC9577x9++GEP+L29vS97zYkTJ/w/+2f/zHvv/d/9u3/3v0rms2fPesA/+eSTr8kxfi15cD0H/mDx9Z4H13Pg2sfXew54fz0PrnW8HnLgv4w/dOO/qqp44okn+JEf+ZGD56SUvPe97+WRRx75fV9TliVlWXL16lWstbTbbc6ePcvi4iJCCObm5njuuecYj8d/WH/G133cc889/NRP/RS33HIL6+vr/ON//I9529vexuc+9znOnj1LFEVIKb/snC0tLXHhwgXG4zFra2ssLi5+2fdbrRbwB7co91/iQrlv0vUHzYPrOfC1xddLHrwWOQAhD86fP4+1lm63y3A4ZHd3l8XFxes58N+Ir5ccgOv3gj+q+HrPgf/WD/6hxuXLlz3gP/vZz37Z8z/8wz/sH3rood/3NR/4wAc8cP3xOn9cvHjxa86D6znwx+PxP5ID1/Pgj8/j+r3g+uNLc+D3iz/0zsnXEj/yIz/CD/3QD1FVFaurq/zrf/2v+Rt/42+w9F0/zKgydAWU4z2cyemtHqEtLLcemufBUwv8pfc8QCttI3WEUAqERADeOYypkUISJSkCj6krBIIoaTW/WaCTGOUFUmvA44XAWoutS4p8Rj7ZYzbaozY1SkpMVVEVE2xtcN7grcU6A9binEd4QAiEFEipEVIilUIoiVYRMkqRSgEeFSdIoRFIhPQIGTXH5fDOInVE2u3R6s2Tpl2QEmct1hhMXVLOMqy3xFFClKboKEZFGlvXWFuDEOA8pioQiOa4JAjBc2fOcdeNx/jQJ7/Ir3z6JS6u71DmJUfmY/7l/+N7ObU8oK4rjK1xxuJshbMW4T3eO9YuXuG3Pvk5Xjp/mZ3C8cXPfIJer/ea58DxN74LKRxaCqrpDDo9XNzCImkNlhkkMdV4L/yNziO8RWiFiBToBGFqkAKDxHpPLBVKKEBA5Im1xBkHUgCSejLBTCZY6xBC0+n2cFohBcgooapLSunwpkDJFGNq0tqQxG2y2RiRJOGhFc5Zag+J98z3BlTWk2cZXilsXRPVJdiafDJG9xfAOaypKXrLKGOwXoIXJEIjbM5kvIWxkMytYuM2WijcdIT1BpKYejJEKUU13kLgQUiUTvHC46oChAQPdrrN4tFjiKTNXHeAx2Ctw5oK66C2BuHBI3G2xBQlPm5hyymmyInmFulhaHd71FVFXRmy2rH29Cf/h3JgPw/+1t/6W6yurvLzP//zvOMd7+DEiRO8e1HSixWzwiC0ZGWlzfxdtzP483+do7c+xMav/WfS226gc+89XH7yi7zwY/+Exfwc1cwwKgS6G1NvT8mk4tTb3sBsa4+N3SmDw0sIUxDXNRLLlbUh/RSUkiyvdvjBn/o/WT51Pw///E9gtWNxbom5Xock7iE6it/+4K/w5H/8TUgiBJ6/8CN/m6NxgXcKXxdUkeae7/ghlG4jmntO88XXFv6/963wzdlsj1/6+9+PSxb50L/9DR5862089Ge/i85gHucjJrtbfPI//jZ+NCYbj7nzL/95Dn/zd1O88hyP/fMfpd7dYaEdsXTzSUbdRZa++ds5fvud7Dz1GE/8+E8yuboBiSbLLVjHm99xlKRrufDCLpe3Kn7vqrsm94J/+f/6MwyOvQevWvhigp1cgNkZVPlFanMVEfXBlkiliVrvQtBB2i2ElNj6DEX1Cs5bIFwCJcL53Ge3SCmQ6IbjWqPVHEIKECnOHQbRQUZtdO8EzL8J31nBI3DWgACVxGgdhffav9rC4ydXEJf/E9q+gI3fBdFJ6B/DJj28Bwc4D957illJnmcIKYjbKbmt+eQjj/F7n32c7Z0ptYlBrODFIlIqvC9xYgFcGyErPBmCHEENfoi3Z/FuiPACoQSICCES8AKo8AgECd6PgQrUMaTogNgCn+JRoE7h5EmE2UP4F4Bd8BXe5iC6CDlA6sNYexXYQ3gww8tfMQf+0IuTpaUllFL/FU1pY2ODQ4cO/b6vSZLkwITojW98I48//jgAeVkhixrXivELq8giZ7YzJGu1Gb58kROr8wjnoM6wtQcvEEoiVYzSmkgA3hJrSRQneJdgyhKlQEoFSqKUJopjcA7vPVHawguBs5b+YI56bo5Jp81kuI2rK0pfoUyEweOtw3iLtWBxKAlK6nAMUiGFBAEOhwSUcEhqhPBorYliTdLuI6RCCImSGmsNRTHFGYcUFm1qlC2RRuGlJFIRURJhlSCJFAKBUqEIElIQpSmkKc7WSKVQOqHMJpRFBkKitUZIxVRrrNCMjUZ4TVFAtbfHNFni1558hf/lz7wbrTWlMVhbY+oSV5V4b0EIzp5b4/TFK7x0YZ3+fEhCIV696/5B8+C/lQMyWSJtx5QbZ6nKmnSQUKWdUIzaCuEUUgiiKEEiqMuCSCm8kCghQSuM8+gownnQUhJrHQpXQNQOoSO8EHgPot0hFhKlIuI4JpvM0EIgpURJ6LQ7KFMyqwu8rYlUhK8N3nvStIWMIlwUY4RHGEsiJUpJlI5oa4mva7z3eB1j6gqdtKCqUHGKMQYtwDmH8QopE7ypcVish1pAlEpKM8Fpg1AxVuVoqfH5CFUOIekT4RFxiq9L6tkQIRwohdAxst0jaUfEC6sIL3BCIFFo4YmiGOs9kY/wIkJEinwyAuepyxmgSNodjLXkVUG72wel6SwsMdnc/B/OgS/Ngze+8Y088sgjfPu3fzsAvUSx0JUoCxM8u3sF1ZPPMd37p0Q/8H/h0F/4PnZ/8xPkjz3JTd/4dgZL/4TJv/5fufqFp+gkYfOxuKxY2/ac+dRTHL//JF1bEm9cYLkn6SQCl8Rs2Jy5uT42r+m1E/pzfQb9Dj3tEJFncb5Pr9emFXUpE8fxUyd4TlpmhSWRgk5kWZYZlilZkXP5+SvkDzzGoTvfh9KN0dqXFSf71Yb473z9JT/7+z4tmqc93nuunP0c5fQSnbkTrBzrk7bbLN10F2mnjxSaqNfDO0fLw+Jb3sCJ930X3hie/9mfotjbJVUKUzm2yoQTf/JbOPaWb6R+5gku/MK/5aZFw4tDRZQqVOWpnEMpC9aTjS1Rqw1Mr8m9ICl+nWjzPKS34G2JN1PgOaxYp51aPAVojxCKVryNlBWu2sK5jCR1RNrjXHPqBAgEIuzZEICUHinD/VkIUHIPpEAKhzMboQBRS6TaU7mbyOsBxguk90itiIQgiSOiNEXpCCkk0jui1GNmXShWqdIVfHuReOkQImmHjbCxOO9w1uF6PZx1WByfeuIJPvirv8ralS1wHuFqJH1QR/HyMM61EVqDl6GgEiWCAuE3gTaIU8joVnz+6yBmYX0UHlyBEBFeaCTgKREIpJjDMcVTgzcIPwQcwgyR4hU8bYSsgR64XdALiGQVXw/x/iJSdXCuAzQFoPjvV+F/6MVJHMc8+OCDPPzww/ypP/WngHCzffjhh/lbf+tvfcXX/9AP/RDf//3fH95LOeL5BaJOG+k8uZXIeoiYrOGTlI2dXSaTEbIdg1DgPcbUaB0RpW2iuIXUmrrKcXUFCOoyoy7yUO3iUVFElLTD516AjlogJXiPs4a6KrB1gVQaZy1ax8iOIvIp3tTUVYU1Bu9t6Fg4FypxqRBShvdE4EXY2XhrAIdHQBw6PAiJkICSpK0+abcPdY31Fi0VQijqqsILgZQGFSVhltc0xoTWodjyFltVoQvgPTjH3mhIr9sjkRJTlThTMa0tnzm7zkKrSySgiDuUThHFEQurqxRGkSY9kjQmkoK6rnCmDufC1AihqaIOrV6fxf6Yy+sb/9V1/B/Jgy/NgSKfImyLIstJDsIdNrsAAQAASURBVJ3AKoHUEdbUVKYmcw7pLDhwzoL3hF6URAqBcR5hDXiP8h4iRRJHKDxVWWKUwuKRKkI4QaQTTAoWj+72aamUSAjKKgcpmp2GREuNyXKkrAGPsQVKKCQCUdfUVU7Uncd7SLQkyzJ0nOKjCJ/neO+RSuLriqoskIzppCkST13lGNXDa41TjqKYQZWhWgk+EqjpGC0r0sEKZW8FP5yR9NJwo0KHvydOKacj4tVj+KrCjfeQrkZ5R6xibDYDBJUURJ0uPu1i8xE4h3OeWDm0alMqRR1FCGeJohRXZJBNiXo9SmNR6YCpFRClr3kO/OW//Je56667AEixpAZkqkmcQ2pPYSvM1mWu/PxPMT7zPDd/7/+V7KnnuPTrv8HRb3kf7f/5/0P1E/+E3ScfJysLFvuSrIatqWPz2QvMnVjEOMewzMlROGNJY0XUSklTjVACLTURCTqW6HaPKEkQEiKpcYkmSlskSoECjMeWJeKO21C2pofj/jsqRhtPka7eweLqzfy32yb/nZbI7/fTzY8LXi1M9v9//dwXobQMtzJ2zg256e4UHyV4HSMAgcNXJd2FLke/969gooSn/uU/ZPfcC1SFpNMR9G6+mcVv+kZOvu1bEbtbfO6f/gPM5CpF5KgqixCWsnAgBNMZtJOIu997NzqNefgnHn1N82D/XoAqcOZx/OQJhBPNX2+Jkv1yzoeiQ1hM/WkEEocF4UMXUrmwMRX7AmBNf0N4pPBNtzv8q0WEloooPkFdn8eoAryk1boB0XoIoebBFAjbvN6BJEMZizI9ov4hpAA1PYNf/1UiW+Pm3kfSWkF0lpFxgpcC7zx4C6UFD5ES7GQjPvhbH+c/f/zj1GWB8PtFqQUxw3MOLzyoRRAWoU6ArUMuiC5exmAtwpZ4uYxuvQOb/074vncIESGkC78Xi/AG5DLe98HtIkWFR4OfQzICZfF2ByE28E6D6iN9FF7rRjghwBmkACFaOOqvKof/SMY6+zeWN77xjTz00EP8+I//OLPZjL/6V//qV3zt93zP97C2tsbf+Tt/B8qMQ/02566soedW8eM9dD1Bzc1z800n+K633cOhQ6tYY7H7C1CcoKREKIW19f+PvP+O0vS67zvBzw1PfEPlzgkZIAIRCEaRYBBFUhIlS1ayLVOWvR6H1djetVfr3fFo7GNpZm2vj2dsaXws2ZItjWSJihTFHMUMkgARG2gAnVNVV37Dk27aP+7bDUimTFhm7xwe33Oqq6u76q33eZ/73vu73/TDeYuUAi8VUiqEVCRFibcGZxpc1+KtxQdPEJIksSitUUmCEIo0LwlZHosX7zFdhZSCNOshlMI7g+s6rO0wbY1pKoxpY6UrZaR1hCJIIASCc4TgCDD7HRJJfMMkQqJkrOZBR2g9hEgZ4RFBELSOp2BUrPilxFuDUCHSR8RNWskEEHz5udO8/q47GOQlWmk60/LV509x+sIGD2eahy9us1kHRFbQbEzZ2Nri/JV5pl2HzjTOxdNGQKKSEpXGReHNDz2EEJovffUR/uNv/v43dR68dA6EwTy1zEmX9uMTTWca0q4jdC0ALjT4tkYmKYGAinwEdduSKYV3DuMcOkAuIXEC0zS4EE9YPgS8seCJNAkS4Ty+7RjXq+TlHCZIvAcnPH6GmKigMfN7aHc3Sa0hyVSk3ZQkSVMS0+C6jhAUQQqU1hjT4kO4VkQqAs60uDi5qJsGnWhUWqADOOVJioyWDkOK2reE3d2ip1J0CPgih6YjHQ4gzbGTHgSBHCxh2wZ2N5BVQzuZ0OsVBFVQJBkBS5alJEWPQMC4gALy3pBpNTs5EeimY0w1IXQdMs8JvQKJRxgDSRkLmqJPN+lAl9/0ObC+vs7P/MzPxH8IipCAaRylUtQm4HVgtN4w7c7RNH+At2Nu+6H/nuHGHi69/33sece7OPT3/ieaf/FPqD7zcYT19MsEg4TGsXthk83aM9CBgY70n/Tw9PE1hgoO3qKRWiKCRKgUXQ7RSQ9vG0wmCc5QG8fEBELikQI+97lHeP///vNoBYkWHFg0GJtx4/dIfvgn/ofZLnoVGfl6FI/4Y5//0//+en3mY5ESS+e2rXGAyhX9wyuR4sx6MFjAC4msG+RwiaN/7odQh2/gwh+8l40vfAqdJWA8ajDHyuteyw3v/hESlfDIL/5/SfQm5Z6SUFmCr9B5zi3fdgNCTVh65V7SxXmKxf3QPwJ/rDj5r50HV9eCREkSFV8AoUAQ4ulczF6Xl7wSQjgQLiIDQRDJE4ES8ewpmN1XEX9Kish6CiFIZZ/e8NuQyUGQK+juSbr6o4hg0fkQvXgjKl0gFQrTtISuRlTnUcGRVSdJd9YQo30oZQmTr+GbZ5DZraBuBLUfKZNYGNj4XpLGE6wBa7i0vsZP/ftf5uT58+AFQvdjQRE0cSGeApcAgxRP4f1lMPOEcPtM1jCPSBYj3eI7fNjC0UPIgwQ2QSb4EJA0QEsIHikXCGI/QQwQ4iDBXQFERMmRBLED0oJrQHjwE5BL8Xs8iKAQXhCoQYCUc/j/7F2N4/+U4uTqwvJTP/VTrK6ucu+99/LhD3+YvXv3vqyf/2t/7a/xkz/5k9jGcHF9FzVcQAXH/DDh1nteRSUUMlieuLDBW+8+SgieWdEci4wA3rQR/Qg+TmYh8d7hXIQgwYKzeG/xzselQkoaKVE6JckKtM5AKaTUKK0hgFI6IjSmBSfBB7x3+BAQUiPTnDzNEVKikwyhE7wxONtBCDjXxWLIW4L3MwRH4zqLbSuYiligSBnP/zoWGUiJEBIsdL4CIWaPryN8OFNFewLBB7xwTKuWT375KQ4vltx6YAWpC7Z2dvjDZ06xWXdIqfFJwdTVGOfRQpJ7w7Tu+MRjT/Odr70XJwTeO4L38fcHCMHx5JNP8Nvv+wM+/+VH2B2Nv+nz4OocSHbXScshshzish7ObmKqCUoniBCwpiGTgrTfxzcVWkhs8JBoggBT12itSAlIIh3nnY+vp3MoJXHWoqVEAbW1SO8BR9sahMpJswwkBGcRPiBVikXQJTkiKwjegdKEtCAkEhF8pNu0ppUZNhiUFCQkSO8ZO08QKQgwwpDNL1PvjjBCxBO5gaAFWaZw3iGGGXrvAKMkmRjg6hY5rbBbV0hEQhA1prXIIPGDFRgu4lfPEKRCyYgOpqmgX5Yzbj1FSUkrQXiHNlNyMiZthwWEc3QOhAooKegtLtN0LX6yi0oy8oOHEeUcrq7wuxvYfBEZ1Dd9DvzET/wE73nPe5ibm8NoxeVakElBnipcbQnG0VhQOw7bbDHd/RDNpYvc81d+klvf8nZOffgjzD30Ru76f/9Dnh4MsR9/L8p5skySKM/mlkfaQCLBOIEW4HwguPjWFt4xPf4pLp56mCvHj3P0TW9HJSmurulaR1oolFOU2kbqK2iSPKXZqREKjFDkImBCx+G2ecmVhT/2+ep4eWKUl6LlIbwUN4mP4ILCtR6MYTxpscYQZutDXMsKBoePkr/xbZz94O9x5n2/jZCKTKX0FxT7HnoNh971/WTDeb78v/5D6rNPUpYSJTxBlxz7tmX2PXCQYu4g+sBNDA7cSbbnFkS5xLRtgH/0nzznb8ZaoJVAKYEMAikEUgSCAKkVQSZ4n0IYxQJaxoolQKS9AggZXrJWaqTKkWI8o/RnyaoqkKb7Sfb/KCLfS/AWsdmQcYZQvIJ8+a3IPXfCbF1vx5v47XVC8wQqXELLVQSnCM0MSdABX4JQJ8AfoLO3gKtBOFSYIHyJEwnGVTx14jF+6QOf5uT5cyAyQj4EPLK8Bd9sQdcifA5yDkRKaJ+HMIYwRvhtwCIYIGSKzB/CtmOEavCijwoHEKYjMEYKAUEhggcygm8IvACUBH0AhI66FLUXhEG44wSxjVAK4eNB3gkQagkICN8QxJjgthHegmj+xHv50vF/miD2J37iJ14WjfOfGzYfRPrDWEw7wgzmeMr2SNsJ1lR8m95DojVBqRk8FnDO4J2N0OVM6xEIEa0IPv57VK0ikwy8QqYgUPi480YdqTN0M0RFIGOFHgI+OAQBKTQoiRCagGOGJ0Z6QXhkkDjnECE+lrMmCh595OOUztA6QSYJUiVIpZFKooRCKB0FUWkeqYAQq1jTtQQXf955iyDCzgQfT+DGxNOTEATv+dyTL/CV5y9wdE/JscUH0bpDhQ4ZPOP1bY6v7fLC2gRX16jpDlKAaTsO7Z3jpv2LWG9BKbROMF2Ld5bt7XW+9vCXeOHsJXYmu4zHI1Q+B+ON6zIPqp016q3LlAduQWfLeC8QaY5PC1Q7ITQWIyHREp2niCBwbUQgCB7XNaQqh6AxztJZkK5DShnnQ6IJzpF4hcAhvMcjyHoDaruDkwoh4xupbixWSlrnUc6SBoFramTRI6gETUBai5UBmaa0XQO9FGsCSevxQqKUIqiMpmkRSuCDxo3HEXo2UZAqhiXZ/DxBBxKhETrQeMtcZ7BOYIPAAkrlhKSEdIiSY0g0eEdYP4Na3kuSBlIcmRjhTYNwGp0kCAS+67BKkqcZiU4xzpP2BpiqIjRTWmexXUtS9rHOo3WKbysyHXnqydY6vZV9VF3LIIVqPP0T7+E3Yy3YbALz0hO0YH3ssBaKnqJqHRbophbTVfjPPcIj2z/FbX/5b3Lrd383L3zgwyzcfy+v/Ht/n9ML89j/+MuMgiUtE25cGOInO6z0YlGvhWQ0dQwbR09IXnvnPvLTX8LNS27sjWjWzyL37EckOUmSkic5lgDlAJ1ppLXkecLKSkqRBUzImCssVWNQX792+1OOF6sTIcJLkJQAQqC0pKk9wkJV1ZR5jyTro9MeWkQkT5ias7/yC5z7rV9FUdMZwYH9Syw+eC+Hvu9HSY/czJO/+W958jd+n8OHQS8LknGCveUW9t56G/te807S5dvQxRJCJHhp8XT4zZ0/8Vn/186DPNUUWZhhRCCkQCULLN/4l/DJIl4MmDz3r/C0CFYph7cgy5sZXfo4IRiQRG2fzlg4/APsu/ldbJz6FUaXvoTttiM9owJZfgjvJdYYpN+hkAJW/hx+6UEoF5BZEWl7PLmeEJp/jcxeiGLU8CISM9PYEwQI5SBMEWET13mkWUNwEcq34tM9nDp7mX/ya7/DxZ0KZEEwI1Ag05vQg9di7KMgKzAKvEeFdZyrwDuEdIRQg4Mgx2A1uAsI5sFsItQSnoPx+rhMkAZCS3AjhJAED1AhRBPpmWAJHCPICagoHxAUBJmBsAhXRU2KGxFEDiiESCBZIfgW8TIZym8Jt86fNOxohChLdJ4jmgkM5xlt7aC6Ka+9cZF7b9yHSlPqzkaOGEEyQ0uZ8WvMaBQhZq4ZqbFtizFNRC2Cx3t/jfKZ1SCRLjEG7w1ixlAKAsgoQNVJiUpzUCqiIM5G2N65iNDYSCkJF/UoBI/QCi00WiconaKUQqokogAyimi1TpEzDYlUkXbARzREKk2Y0USJECAiCuBdRF2cba/KvvHe8cWnnme7tbRtpK6stVTTCafWttnSQ46f26bTi7RzOb7qSFJFUiY8//wZzpxdYW/uQWp8AOcswVts13Fosc9nPn2Sz3/6s7RtS7l3z3WbA2FpP2q0SQhTXH2BMhXYINHBEEKHDy7qK2xHEuLpNyiJC6CFQISA8AGLxaYl1oJWMr6OtiYEUFrhupYgBCIIisGQIBOSJMcBtYVcahKl6KxBJgqPwE62Ec5hvCdPNU1TMxjOx3klHf0kZdK0WAGVMyRaY21LkALZ70fnk1S4agctA1pJmkSiC0WXeFIiTZcahybg6gZnDCLPCX2FbS0yeJp6kzRJsdUEkQ9xWYpIJEEm1CIjd+uItmJiG3qDAVoJhFDoekyRaIJUtNbQNFOE1Oj+HNZ0oBR5f4j34L1FDZdmupmcMi0YXTyP8gbTTCmvOeCuz3j1O97CUx/7LNJ7duoOrQQLRYqoGnpZwW49RSpwtWX3uRM8+7P/jOYvbHL7u/8s5z7+SYrJmJv+6t/g5HCBzV/8eS5vj7nz/jn2Lc6zX3i8V/TTPudXN+gyQZdnHHjolfzSBx5lvDXi2F3HqC98lqP3vhkhPFIGkiwhCEXtJBky0r7Gor1EGkORCV5xW8kTj42xvsHYiFbKWaUi4Bq78/JQk6/3PXEdiBBB/H8VApmXiKJg/5EDZPPzKJ3hhSIKNDR+d4PVj51gzozYURkByfJ9D7Dynd9NecMdnP/CJ3nsl/4P0jLDeEvqJN3iMsWDb+TYm3+MNFvGhi6ueeOLTC88z+TyBbauXP4m3O2vP7JcUJQqrucIhEwY3PhXmL/rv0MmJbbrKIeHaXeOk8hV5m7+AUhW4AuKbvQJEJAO7qK38Ar2vOJvsbDnGEs3vJWLT/0im0//NAGLUhLEIq4+jWw80nwYzyWc/+v4eox3LcJoVL4AXQ3tDloalJ5eZZeuAt3x7zJ+CA1SPkLBRSwLXFqf8slHCjbqi0y7OT7x8GOxMEGBmcQCwCiQ69jdT+IHhwlWIXwHIYVqhGgFAh3XLeHAW6AjOENILhLCIUT2dqQ5i0rO4MKEEOYgTCAYpJiLNLZSBG8IMoASODEHBHwqEe0JpN9AJLcQfEdQLUL1EHiQAVRFkIqg+oCBLoCtX9b9/JYuTnweC5PbVnJWy32sT1qCMiRaMLe4xKee2+BTT13g7OU13njHEd58zw2s70yZG5TYoKmN4TW330iudVRPSxVpkhDttaat6JomohJtEx0p3iJnN8zZDu8M1nRY00Z7rwCp9IxOSa45fqK5O0TEZMZvCgKu6yItEjzSqSisZTZxncCJFitiYSKUwKkUlWWkWQkiOjoIRHhfCKSIrhwp5KxQEnivUVLibIKzFu89O+MRJi2xIuHR5y5Qv7Wj0JpqWmOtp8hLdqcdpV2jbAS1FlgETgY2phOefu4E96wIXJDXnCxBwKXVDR49fppTa9tY5xBSYWdozvUYsuiRuo6y16f1jtBZZCqQwUNncV2DHJRgO6RO8c7ROUOeJATv6bqWrm1I+0MoNVoKdNajrcdkiUYXBYl3qK6i8wElZRQfq4DOcqyx+ODohMBZi5Ihom9KI/OSrpoSvCcogcwSqmqKVgqcBRK0TGhtiwVc0yGciagbBtu0tPWUtFzATdfBWrJ9B3G9OWzToAOY4Ei0JpnB0Y1vaas6nni6Fh0S8iSDukVPJ4Qkx+c91JVLiGoXZw1tMyItUxyKxhq0TGcWd01rfIS9vUOYDo/C5POkgwEqKfA+4NoKU41IhgtM2yluOkIlKVo6jLXkaUo1+vrI2TdrHPubf4vlN72Jk7/zPsZfeZzQGDovMUESlCBRklIrcNDuOOpijfUP/xLe7XDkre+heuJZpo89wU0/+OeRK4uc/9c/x7f/4/+FvStHkHiC9Kg049DoedrhIp2UVEFy/jf+O7ZOrNO77x6uPHmaK6uX2LfvIF2zjmssxrWkZoTZDSgBRakZHi3BWFTei64nP+XimSf5ub/1gwwO3cSf/7s/TZH3Z1f2XyaEvTbCS+qaPzaU8wxvOETIcuozFxHmLjxxQ7+GLsuAti1jC05K9t51Mwtveyvztz1ItXaej/3P/5xblnps9QYos0p+6EaKt7yD/a/7S5R6iLMd47Xz7Dz/BN2lZ9iZ28fG4degDtXAv/jTXdM3GFpJpB6iZEl/8VZE7zDl7e9BZhFhV0VKfvRBBsdehcpzpExwxrDnNf+Yydk3ImVDf/+b6O+7k0LriMConMVj343bPIkeLkVdh8qo1z6EqU4RkksgMkT1fnSTIGkIusFltyL0Mto8Q6qfR+pYkMDM/SPjR7RpgtQgtCHoC/zBJ9f4+d/WHD8X8O4FhCzxOo9Ujp2Cm0a0ngS6K4TeEqSLEXlJInrvxQHCdBVBB95ETaOYHa6dJ5gXUGINb+bwvQHed0i7GdeuoBGyJKglRJiAThFyjpBIQm8ZuXsK0Z5CNFsI0RGSFUI6xac90EnUpPkWQWQDhHfxIk2HFAk+mQfOfuP7eV1myf+fhhQeFVoy1aN2Akk8Jbt6woceP4voGpIZZfPExR1++wtPonXCwiDn9iP7+d7X3IXWCm87bFuj0oyUMpYN3iFnMLtz4doG7J3DdBVupkcJztKZFtu1MyeDiZvRNZHVVQgv0joihChe9YogPVJoVJqhkwKdRkeD1kmcwTLSRUrquNhnKVpl6CxHJglKpag0o6sqxKzAYUYxCalmgloBwdN5h/PRPlw1Fe9//CS/9+R52lGDOryHC5sTbl4ZslBmHEgVQed8eeKwVmCbirTaxrY1bSj5jgduoSwcSImSCQFJmFFa51Y3+O2Pfp5eoijnlqlai/sGlrH/miGsJev1AI8LEtkvcF2HqBt8PY35NEIRqhYrWpTSSGOwNCBAJwldXROkRBhDrlOa7VWE7QhlH9e0aGHxzpLIBGMNWue0VYNVGSDwdQVppEQkxEwQ4UkSjc5SvA9gLVpGfQ6o6ODyHV5qlA8EpQnB0Yx2UYAJoJIeUmua8RbKG9K5ZSyCkGb0REALwHla3+FMEwXX9RTR1iRZj6Ci9iqElKTfZzqtYe00yVVpYN6n276MqXYoF16B3bhCmBtAv6SyHcOsRykUoqsx3lPXU8hy2iunSHpDMp2Sq5QgFeVwSJplGNPRtBWCgFKarhuRzw0wXXrd5gBAsrSHw9/1/ey5+wEWf/O9PPKb72M0HWMCtK1FiATnPVkiaWvH9pmKdnwW3/4y3YU1jv7Q3yY/t8nOZz7DsTe+mcXgeO6jv8vkhoIzZ8dID3sKuPjCKrfcvgcpalZ9n2HiqL3j0hcfo608n3/fe/n2v/BX0HKC2KypdyuqoHE6kApFMbfE8uvfgEwThCipRMCd/SSp1Zz+2qPsmUxxxkB+tbR4qW34ZY4wo6qJjkIpNS+KawPCCV753d/P0186jZWSoBWpSkEKfAAfQnQBLi0Qdi7ByiK3fOd3sHj/m5jubPGJf/jTTF84iXrjKwi1Z3j0KPte9xDF/T+C0ANG4yuc/sR7EWefxW6ewV66gBnuZe/tz6Lq69fFtjz011k69nqyhSOkvRXq1kA6oO3iAS7Nc5K8nBkiJN5HbRm9Zebu+osRqU4SvFJ4BVbE+Ag1PMLeN/4TAiKizyGgGNFc+SIuBIJtEeoLCOFntHkguK8hnCDRHpkEtASpXixMpJoVJwpkIpCJ5NxlzT//1cAHPgc7k3goEOmAoPJolrC7YLtofEgLKBfjYyQ5mBEyrBDaXWSYwO55cDVXE8+iEElEvUiRE/B4P0HICZh50IcIsgM8Il2KYlmhEHIBmeQ4pRGJRNBCsUjIlyBdwqUtPtVAQzANwtSRDcATRBLDYnyLUH2CGuJVBq56WffzW7o40dLiO8Pp1U1oooXVEaAeI+oRwTuskkgpmATHZVsyEGO+/ZbbeO70SXqvvYVq4yLOmtlEFWidxTe1NTjTYW0MGbOmnX3dRf2GbWMRMrNWOm8IM8tw1N9G4a0gKrwF0U6okNc0LdHjIq5RSjJJkDpB6xSdFiRphlIpQifx70lGmhVoZ9A6JUmiIBfBjOMEqWIQW9vW0AiSNEMIgff2GqXz/MVVPv/sBTqRYHc2+czDV3jl0UWOPvRKRp3j2VpyfAq2dXD+OVRQuHoXXW+zs13xcLXGzW+7myA1V4O7hIy5ISuL8xxcXuDKqMboHK1zzPjKdZsDaT1B5JogPQtFj0lXo2SKlxJZlATANBVCxKkerIlvWJnQtDXOeYKMxZVqGtrQoERAKz37P4VpaoJpSItepNKkwKc5wUW6TxVlFCkriXQ+uoNEhECDkKR5itYSIT1eaTABKRTOtqgEMgLGGmwAlaRg2/g8VYqXCiEF1knU4Zuo53q0AUTISGyHsoHCp7hqhHYJLksxJqJ8WTqPdAblLJ3v0PMD9MgiuxaUhkSRDBdxSUF1cQO7ux65d9+R94bopsKkRdRlZSmFXmA6HTNYXKYdjZhurKL2HEALiZIKZw1GFATd4K1FqwQ9v8zEpzize93mAMDF9/4Wx37kB0hvu5W7/ub/lT2vvIunf/XXEU8dxwrDtLUgFR5F7TwyEWysOqp2kwPVx9k2llt/5CfYP3835z7xaY7ddx/17/0C86d2ufTwhIqEwz90M5e//CwHi/3oyYgNf4wDd95DSObZ3VkH1XH54jpf/PAHuPdtr2V36yLTumK3MqQaDIF6Z5dJa1DDlGS4gBAOkRXkvV6kYMVLN++XFij/5WMy2uD3f/NfcmBPycL8gFLOEYJjd/Mkr7j7Xk58reLYTSuoRCHaEda3iKTAuw6tE/asrHBmbZ4D73wXe9/xg3RVy6f+l3/G5Lmn0Ck0kxGHbzjMDfffSvbAD6D7S4wuv8ATP/uPMOeexI23sTsdwkMnVvGPPkN5YOWbcbu/7hjc8aPo/hxeJxihEWkaUWgRxedSqXgY9R7bti/mbITogQhBIK2PEQNaRZorBLwPKDnbKnVBMA3JwkPQXKCrPwN6Y2aychAKpNyH784hlUVpiVYBpQJSRxeRlFEPE7QAlXD5SuAzj8Iv/Z7ga8+Ja/pI8mF07fiOECxoCSKF4Agqwy/dStB9xO6jKDfGtQ5hQTTr+HZt9nxm5q/ZQVkEhyTHoxB2HIuWQhD23RBDQlXMy5Kungn5HVY4ggThA8gMQRapGunABqSr8KZFCAtCEJIUITO8UojxBowvQG8vYngAGQL4mpeDpX9LFydhdwfdzxnvNoSmwqJQMp7Q1HQHGwJ6cRmCRaWaw7lnvig4c/YCR5fnyLpdxutbhOCQQeDl1epSIAK0zThqNYyZpbz66LoJEkdMQsV7XPB4bxEeQvDxwwME8AInPMIFvAx4oaOqWcaixAuJFJ4QHN5Zgm5BZ+AdzjQolaCSBNdG/UmX5Oimh0piJoGboTQ6yUmynCwvYlKrCHTNBFPvRtFuiLbU4B1PX7zCE2fWCTZDzsS6H/vS07zp9iPM5wWv299n60rG+XFLUFmcpHP7cG2F8BXVeMJTZ67wjrqhyKJbSEgFQXJw/zJlnnL80WcxbQehjfkY12lkeYoUga41IFqsN+S9kmawSBhtkkqJdZZExSLKezujfBqSoodAYuoptjMEYaKuJ83iZymw9RitYlaidQYhPLau0Xk/wqc2OlZSAa6tsc7hrZm90SVpPkv89QFnZm9eE6JGh5i04J1DIyI1l6RoKemaBluN0IN5sr3HaHc3CNOGMJxDKph4w5AOlSUwDSRC4qRGoMnmlnHj3ZnSTqPw+I11cpVA3qOrakQwoAxSSsrlvfi2Qy8P6C/0kUWBkhnGOzrTIX0UAmdZj0E/A28J/UG0PzcNpBleaJp6SrV7AWxDf3kfIrRIErKFedzSy3Pi/WnHwVc/yOX/8KsMX/0Ai695DXu/67sp77iNJ/+PX2PtC59neuYiUkhGraMygflCELrAZNdz+fFVss2PsDuuuOvH/h8cfNs7eOQ3f5lHnh1z67lNHjvn6eUNW7/yNS5fdnzt/GnmgueOd9/OO3/8b+AVfO5X/gOf/pX305hNjhZ9zl3Y5NAN+xHpGRbmUrz3+NZT7j2I6A+xUkGxiPdTalUwn/Zg3GIbXmK3eRHtuPb1NxozOicEz2i8xfakwS4us7bdUDAhC1OGC2Nksstk7RIXT1zklrvPUH3hP9LqnLI3ZOvU8+ggYGGe8vUPcdt3vwehcj77z34Gf+pJFhaWaDfHVJ3mxlceY/DWHyVbOszmmaf51P/0f6N54km08igTSPKErnOMm0CWOrrd89fj9gMg0x46j5Z1qdQsADtGNkitkULgQ4jZUbPXCuKZ7SrqLaVAkBDCLNcEZimwca2NadgBhveS9G5Drf8GYfLhmCZbHEEPXo8sH6C99Du43V9F6V2U9ijtkIkgEINUnnjB8+sfg9UNweMnHBc3wFqFsC4+MZ0AFqRG+CYWKcZFZEb2EOkQ7zcI01XC9hmC8IhsAPLwLBDOAT6KT8NMFC3Bz2h/ISJDJfOM0CsJZRWdXQKE9aA8yLi/iWBR1sQsLjvTrigBRIuwB0SSAhkhj67RoDLkZJOwdQ4RHDTryKVDOApU6F7W/fyWLk5yIRgIGDmPMQbtOkIu8Uv7cfOLZONNvu2WFUaVwQJvvO0A3/H6uzkwKOiqXWRo6NqW4DzgZ2tBJAZDiNWrEhHOkmRIEYWCkY9PrkXaK52Ah+AMxhqCdzOaw8b8hZl19EU1bXgx32S2OQmhkEmKTnOUSggzoWwgvJgk6w2+czgbo8YDM4u01Lgkw9YJk2AR3uNsg/Bu5iaa6QaCRyrFsf3zhLJP44aE7Q1y6VnYv5+d8ZQnXljn0+da1hpBqCrEwj5cUiDXLyC9J1vcS514Hj1xnhfOr/LKW2+AmT7e4xhXDaPxFDsZgXXXUJ1wnWQnVqYILDrLqespUkvapsEVCdlgEZekmHqK2d0k1RoRPGUak1VdNSUpewQlIShMNUI4D84irCe4jlQLrPNIIQne0bYdqlBkwdK2U4TSKGKujA6zgHARCD7ajOuqIk2TKI720XGj0gKPQMuMpmsQ3mKdBa0RPuC8Q6YzmN3HwCI9XMa3FnXqAl54RD/BNCOEknROMtcbMummBBPwrcE7gTESiSPToNMc29SYrkMNBrS7W5RZSVNPSAiorGD/gYOYaozXGZUFYSyyM2gBUkSdjEpKZAi09VrM8bEB03XIJEcNFhA7V+i6mkQndNUEnSiq9Yuo/1yDr2/CyPbOc/ff/tuc/eCHOfFv/i1Hvvs7mLv5dl71d3+Szdd+hq/88q8yPfEMzc6ErJ9RZAGpLHUVDxxbL+wyHn2aaqw49tZ3c/Ad3838576CPnmFfcLTD5Ktbc+kE6jOs1RYgk8QSUGe5Kys7MfrhM7DPe/6Mxz//GfIx110ZKBQiWbYT8nn9pEevZdssMi080hvqHpfRhY5TSJwIgb5xfEnqUa+8WjqER/8rZ9HC03dgisGtFKRupQ7jt2Knfs23ODpSBP25gmLB8mKkiQrybemTDafw2rNTX/975AtLPOln/0XrH38w+x/xSHsZsfi8hK3v/P1rLzxh8n23MrWiUf42D/4e/gXTiCDZzJ21AZuXFCMK4sNAgWk+vpRvNY5/AzFlVJhQ0DGG0DwPqIjsyiFuBR7nHNxSRZyRoPFTCHvVHRHSonSCsPsIOhcXJuFQKgCuecHEUvvijqydB4hUoI3JPvfg5Ig7JPxczrh4rnn+fWPtBy/2PKFpwIbW7OwzTAT5gcHwiNUHvOqQhSPOm9fsodoQrGMry8gLp8nGBOpoiwlSEOonwbtEF6C8QQZEC5enw9X428NwsXcK4oBYfFmCD2Et0hXgW8JRDOIcDbSMF13TVctdDlrc9JBVuCljN87i8vAtQg3IYwvgqkJCII3sHMSUe7Dd5OXdT+/pYuTw7ccoZfkLArFjtCsnTuPKPqEukLaDtfWnBnVbHaCNEh+98QVBnuv8Ibbj3J4+QCpguBc7EfjzIyCiXNCqhiA9sdPLlqlEfmYnW6EVHGzsQbT1tFtEWZnYjdLBzUGpXSs4uPDzH6vwdiYayKUIustkPUWkCLQjtZx3STanmc8sCDgvcV1cQO7mt8Sza2RXYwxw7HSlwiCBDVz9kilaazgqYu7hHqKsIqAIpR9tn3KU+e3+cQLU54/uYVLC6RK8ZMJottBbF9BtGMaM0JJyz2vewXDfv/a2imlwjnPucsbPH/uQrRJS4HqLSCModv6xgKoP80IQiKTObyryXWO7g1ppmNys4scztNIgRzOR39928Y3skronIPgcG2LlgorNaKcQyoBXRVpD50RfIv0NcwWvE4GVJogih5apaShQzk7E5ulyFm/puAsJniMVAQvkD6QyAQXDCARWU5XW7wBQhQze+txXYtOZtBqnpEESWhrbFfTW1wmDBaRwaOkJUFgRjsEb5imFqky8B0ISZr3Y3x/MEymBpX38SL2c5FaQ1PTWIdvakJWEBJNZzvqakK/1yOPR0W0ThFSYYKLlJZrabuWYm6ZaV0T7JRmskOaF+ikpGtbsnJAg8ALjRrME6rtGPp2Hcep9/0bmjd9B4fe+VYOjztOvP/3Wf3Klzn8jrdz6Dvexf4HXs2pD36Er/z6r+IuXUCrABI6B0onpHjYGnP59z/EpT/4KMXevTz0fd/BjW9e5l6f0fOKBs/UBlTomLeW4vANOG8QnWffrTdw19tfzdaZk5x85LPc867v5tITn0e4jjIrCNJgO09rPYPhIjJfIEk8pm0wXuOEokgVUnn+qMbk5aAm17B7rhY03lvq0S7J0hHych6Z9hBa0o08vkhiP6heQbF/gMwXUTc9OIP0U3QjGbUf4Z4feg9zx27h9Mc/xGO/9mvM9xRsb0My4BXvfjsrr38X/SN3U599hkf/8U9y6OIzLN2zTGMCTz2xjg2BtmrJM8l46rAEirkceHkn5//S8f4Pf4jFpWX2rqzQL3N6vQFlf8Di3ALWGLRW1G3LaDxhfm6ONEmwxrC5uUWWpcwvzNO2LUVRIKXEu9m6amb0SAjR6eJiBhYCvMyRMouRAkiCNYhgkDIh3fPDCP+dKKl49oVH+Et//x9waifQVTZ+76zP20vvXRAxaj6oBGFmiEnwszA4hUw0oWcQTYeoZ/k0/QJvDNQGTOwdJouCkAZcFWMIEAGhc4RKuWoXEst34JZuJygDdpcgDH5mb8Z20I6j68d0BKXweYnI+qASfKgJrkM0U2LiXUKQKdLGZHWRxr5eXN2XvAAT81vCYC/w5De8n9/SxUm6s8b8wcPce+wA7DvAHzw2x6RqyXa2mK5dJssz9pYFh/bMc+TIfg4vDrnr8CInt6Z0OueOG28gB4I3pGKWJjgTkjHTglytVl4aihaCm6WzzqpvGxvnqUSDllH06gMqROlhkjNji2JwWnxMCERbMc5FBB4QIYaxZUWPkKUz/cqM8vGzqt3Pvr4WYPDiYiYiORgRExGiNVHGZlXOw5NnN/iNjz+K2WmR8wO8Luj6C2yalMfWLR0JcjCHm1ZYY6O92XhckhBMTVYmzC/Ns7Zb0dpAmhborEDqhAuXV3nsmRc4uDLPxYuX8UHh690YSHedRtCSkCXINiJWIPBao6SmwxFEgp6MoiW3N48zHZNqB6EUZTnANDXSe4LvII1pv0WvJBMeoSQFfaRryMqEkBWM8TBYoTNzqN0WulVMvYPzoAl416IRUd8QQKT5tXRi5x1CJQQfcNZjPVhnwFt6vT7OB6yNkfkiQLu5iclL0l6KNYbxaBPXTgmLe2hag/Bgih4Kh3AGG3xcJG2L84YkL/HpPMI6rPUzyqnDyB6UA4LrUL0euuwTtMIITz4/hw8xhwelMdaShID1Hl9XpEqTek832Y1CX2KAoSOgtWTuxjsJbUwIHe47gPEWQoWR1+/EDHD5iccJomHnuedYfvW38cof/zGmz57kmd/+AIs3HWP44IPc+iN/ngOveTWP/+avcemTH8aPt1EilvV5IjBCkrcdAphPBfvuepBk/0GkyqJ2KEBqAAKN8vT9ZKZc7qhHNV/76MPcft8hvvq+3+bAsZtYufUBzn/lq2xXFco7SilQWY7I+5EiqCtsO43C6BAYbbfk9Qx/B/7zYtgXi5Yw+1q8VJ8SAjrRiHKIzEpU2kMkmp21K7T6IKUucCFj99KUza2YWyNltAw7YOGm21i+91VcefoxHv2Fn2NuUEI9pZ4EDrzhDvZ/xzuZv+ONNOef5w//8d/n/HPHWWxgXnjGWxVdE0glBANz/YRtFWMHpP9Tuo9exvjf/uU/pSj65HlEBIfDIcv79/H2h97GiePPAIJLly+xvrnO933fDzLo9Xnqicc4e/YMe/fu4eDBQzz7/AkOHTrMXXe9kptvuolnnn6KP/O9f4ZerxfvxiwqPsz4M0GkirHxUHDV+BAQOJHPWpQEvvjwc5y8YnEh6vT87B5di9T3EETUJQapXtSZEGKkQGRR8KmAdhppH+MQWkJVQ4j6uLhhaPysia1QMlI7SYnI56GrkekQn+8n5K8AewPSHY8oaJIT2m2wI7A1QmeElf1xv1OzAqeaElw9C2tUhFCC8wihCOkAJ0ukyGDncQT2xdM+gG2BCUy2X9b9/JYuTs6u73LjzTeyN5f87lefZe1KhdKSIBR+tI1eKOiQXF5dR5Y5G9OGqVbcf2CJjarjzOYOSkoanXDf8hypVtcm31UaJTg/KwrCTE/iCLNcET+jTfCOMHPD4OJNDGEGhcsZnXOtn46YFcpxMdEqidWsmE14z6wvgkKENFI33sffFQMlCDOYLwTi417jpoEgoivHxzC4SPvEdMOqMXzh4jaNh2HqWSzgNBLqiq1Rw1fbks2NCcYEQtZDNhNoJxxe6bOrKhbKw9x082E2tnZY2jvP515YRQzmeeUNA06cX+W97/sgv/Wbv0czrTGdgZnr6RrHex1GIjxds0WpCkRWYIOnV/TIhGBa1wjnSYuSqVR0O+uUWYrsrSA9dNU0IlNJim/r+PrmCbbss7IwYP7AIr1eSb8oOHpwH6bo8ZGnjrO13aLGYHbXsO0IJaPFOiSBRCXQdOiioDMeYQMqSemcJRECZ8HbGuuraG0OUVTbOY+Ukt7SMi7ApO1Qi8uQ5XStRacFPk3wdYWoJ6iyjw2OgCQFqCvcZIpQCS7E4083WMaMt1GmRcoEJSVhcYVGiNiEUqWEMsObGre9xagr6A379JMUG0zsvyGg6QxC69kch66pQGtQsV1A1ushVUJPhpgm3FXIPMPV0aZdbWxFavE6jjOffY7q3BUOPbjBePssW4eeYd+bvp37/ur/hc0vfZlzv/7r7HvtG5i/5Rbe/JP/gHMPvZmH//X/SvPUccAhM0kiJP08NupMXM2XP/ZFXOdxJuBsg69qZGdRuSJ4z+33HOChH/x+vJMgAr7ukIVCjyt2zj/H0uFjBN/iukCSCIyWOB/wCKTS6Exjg4waMyQhFfGxr9VxLwrnvxHFc02mEq79gchykt4QpfNIE6qU6aSFVGJlhtQJCtD9PknZQ6ksbm6J5MBtB9h+8st86qd/Bryhn/Wx3nHgdQ9yw9u/h8W738To1HN88V/+FCe++hR+6vANzF1yWD2g04alhYKVA/PMH1zmxgMHqccT2s7DM5+6HlOA0WiL8XgnCjcDrK9e5OTJZ3n0S1/ANO1L1l742X95mkSnVE0UfgoE1nSxp1WqmB8ucNNNt/DUU09y5vxp3vmu7+LAvgMsz89ju47gLUWWz9bsgDcV4GOAHUQac0bprV58nn/3G3+ADUCYCZ5jWFakR7wAXCxMwkyU2lUIFyLVW+aEtiOIQGhrRNNE6imLzhsxqRFJgpcCUTXQtqAiMsOs1o0oxyQ2Q5w7CukRSAKEh5FyAiIBOSFkBtEbEtIhqq3ANfhsFkhpBG5uCSFiwm7wATFuEKNNQuhALCCyPio4ZDeeJQ+LeGAGhJLgzEwP843Ht3RxgkoYh5TH1yqeXx0hVAHVmGY8Rvb7tAmcvnyFenuX3WnDKAjOXN7kY8MhjY8alB+6az93HtwL1Q5GJS/2u5E6unmFxItAkuaxOnVxQwnW4FxH8ALvBQQ5i+iecZzBca1HxqzKlFe7Awv9kmIivIiAxNL8GrJyDcXx/hqaE/81cqjxp148ZXlvYx8dYsEU0Z+rv8czl1l+7PWv5Eg54L1ffoYrbQMqblRGpexWEtHU6NEGdriElOCqXVarbZqNs/i+pHquoxmPqKfLFMrxTKnYPyz52f/4u3z+U59ltLkTEwoTHVXn/Mlnv2/GcHWNSKP9z1lHkkoSFzAioLISKwRVVtDh0b0+9WiHFBE7TWuNMFHUqQcDatvBdMSuDBRH9/PWNz7Eu2+9hYunTnJyMuEjFy8z8ZLgJoymayAqRBH76ohC473BGkOqY16OCB5UgcDO+jvFDqOdsbhmSj5cQMwtEJzD2Q7jDMFndHVNU0/prRyjamqSXOPrDrwimVtCLixSZwVmAul0Sp7mTOsGr1Js0PjBAkmaUycpyVCRVCO6pkboBBEEmdI4FTdBM52iFwakCwNCY/BWULeW4DzOdiidYQQ01TTaoUVMShbGILqO3nAeP+Phty6eBuciKgDQtTiVQJLOAqCu32hD4MrlXbrPPMrcofOYG9fYOHOcPfe9jiN3v56777yT0x/9GJvPPsOht76Vow99B71Dh3nm3/8CL3zqEyTtBCkFgzJhe9KQNNt0T3+KNu2xPJ9TbexS9hzTaUfYMYjawsF7ICh8iPovJTwqSJzQGFOTFT26Kjb+jIGIis4EhNYzrVJK4mOHdKXErIXBH3u3XLX8xS9mn/+og0f8saJFIPBBIPICmRWoPIO0h8XTtR02KLSQZGWOPrhA2YtC+kQXEARa5Zz5+Kc58ZEvIXZHpFmKA/a/9vUcedf3s//BN7F9+jiP//w/4oUvH2fh2EHWHj1BWghGScndb381+2vD0l33kPQW0OUcxisGWcrYOPjF61OcMCsUCGJW0nmwYHyL0IrgryIRkmk9BiR5OYeTJfbgA/h6CzG+gKvW2NhZZ/PLmwTv+cVf+bf8zgd/j8XFZR54/UNsXjiLa1re8tBDDHsD3viq+5nsbjI3HFJkmjyJKa0yyfBdxec//zCn1rZmKPhL7qGIh9xrB1qRIPMi9tFxsa1KUECREtoWWnvNEXxV44GdxP2jvbp9zK7feQgeqZLZ4dAQVIPsDfFyROhfxKsM4ePvJVtA5AHZrREGEnyDyzU0LcIaMB0iSFTXIZsp3jlIdUydbbYi5etzGG0RWoObtnEmzvZTMesAj3C44eBl3c1v6eLEbqyzurbO/lfcidQj/GRKaCfobkyeCFIFqmtZ2b9CbTxHiwQxHXFhY5cuwIc2rvBdR3LcUNAoMYucT5BJjlTptZyRiExIvOuiU8FHEWu4li0SURAlYpfhWF/M8qhfQr1ESiaA6BAyib12ZqmzQqiZwjzeSOdtRGRCRG6uQonX1ir1IiITOb8Xi6Jrv1KIWVR9BH+t7ZjurLG4vMRE9xitjVFOIRPJylzO6uVYoIUsR062CTpH5SUrhw9yYecy++YTHnzV3Yx2JpRFyhvvv4V7b7uR3cowntaYWeAYBJy1MUXXX78ANoBkfhGzvU1d75JmBaZpUElKgyfkCU4IXNNhygw3N09hLXZrHW8tSmmEiCJESSxIAxCEYGtnxOmz59kqc3LT0tsdo9c3MaN1um6KLBSkfZxpyfIc5y12bJFlhu0krYFOKVwvWv8kGa6xVHULaY7sD3F5iUeitMNlMQCurhta6ygOHCQERz4cglaYjQ3KLEUt7mGnqRCjCbmKDqm6anAWXDZEpD1SU+OmOySdhsZgptsk/Xlc3kdPNtACxNwijkAaHEmWoPMe2VDRYiKfPmkwMsHoHGs8oZ0gkhTnXNQw6YRmvEW30ZL3B8gkxQdHsTAfHRFK01YVKvHIVEeo9zqOVIG3gelWRxBreFvRn1xhfec828e/yOFXv5MD734XcnPM2Y9+nOzQPpbve4BX/f3/kZu+67s4/vM/x6XHn8QajwO0Cojt87RkaJeQmhphBGYK+/YPkNOGQdogZIqQDi8EXkQEBePZuHiWO2iRWqCFpCgcwgXSPEElsWnG1fgAtEZrhUPgcP8pQPKfgCZ/Urkvrjl1PvvpD/Kl93+IYw/ucPu7vpe6G2O8oHPgncUrg/KOjctbNO0UHwLGO5CCxnRU4wlOBnSmSfslfn6FI9/3A+y57/VUl05y4t/9U/bt2c+lGyZU045hnnLTu1/LwfvvheUD3HDHA6RL+2KvMTQKgfOWZGfrm33r/8jLEjfCNKaZOjfL3Lgq63jxcEcQBBFiXdDbA+VhQnkE9t4P1RbiypcQO2cQncDWHRvnL7K5tsbzly4g0hS2t/nMl/4QELzljW/gmaeOs3//fl55zx38+A/+OdbX1zDGcPvNt/P46TV0UiDq0axoEjNEHGI8bHxuQsdMpGCbiC4IGQXyu7sIE9uqyEFOmHazOSER6GhJFhKh05i+ak3MKNFZ7HKOgPl9hP4cvhxEpE4VyHYBfAKhIYyOw9YVRL8f6RuRQFMhlEY6R+hMzFhpLWHaILSCVhEGQ8LiYLY3tTF3BY8oU0RvgN/aRuqckGgoC7z3iOnoZR1Yv6WLE1WUdLLgucsVZjSC6QhR5FglWV7pobVg89Ia++fnyKqKK1OPtZa0npL6DhP6nD5/iVv2ztOTGaBia2mZRPsvwEs1Hr6L+ScuWkWvJsUqnSKlmoEYAqQgyUrEbLO72r/nKv2idILUKTrJEUpjuzoWMzObm/cu2l1nlJB4CQR41UUUQgyGA6KCm3Ctv4/znhepntkZIji+eOIUv/X4Ca6cWWVzbYdu7zHc+QtIIakbj9U57eQcjLdIspw2KUnynK3pmOBaNta2+cpXH2drUnP04F7q0Ta/9uu/jysynjnxPNOdqwKoq+KxWJgIpaOI7DqManUNmaSk5ZDp9jpz/SGtrbBS4ZOSoFOCDSRVhys0vlei5BxMG4I1kZYrNLpQqLRHVbWEVEOSsW093XAeaR2DZId3LM6z0FZMhytstIb1rmJqplgE0li0LmHgMI3EWUnSWaRwmKAhkcjhkESkyLnFGEzXGFShYDpGW4erpzih0XNziGTWFbnfxziDnt9Do3ox8bVziM5EOsYajNYEXcyWXjOzDGqE9fjRBqocYIPABUGa5zgE0jna3U2KXp+0KBDBM6kmiCSQOUktJKNej2Rri7CziR4MCErGwDnhY8Cb0tjphGk9oZhfQmiNFWC6Dt0a7GSCkQpdDAnpN7V5zH8yvIuHCEnAbFtG0x3GqxP6K6vMHb7EpZ11Jue/xsEHvpM7f+QvsPHUU1z8g/cz98q7WLz3AV7zD/8xJ37717j40Y+iR1cICyLy8J1j1MQAxnbkqSvP7m6gTBOsDSgdXwelFEp6pBVUTUC0Brt2ilwnJBnQLzFdpGe0jIdlpWNjQC8FJB6BQzk387ZeHS9qSL6RceclxyAuPH+c3WdPUx3YgxAtzaUznHr0MbrdDvPQMRAaKSDTIs5blaASRQjggkFlgrpuKTNFfmCZo9/zwyzf+1p2Lp7hq//0/8Vd9+7HhkWESukVcOOfeRU3vevPktz/LvziMkpIpA0EYXDViHb7Eu25U2w/9cg3/d6/+EoJRD5ErNwTkSM7ivoI7+MBThfXMj+EsyByTP8gQaXIaheZlOAVId+DPPJ9+OwzSHcR6R1hYysaFyYjyHLC/By2NcjphI9/7JNIqVjb2OBrjz/BF554ks2LazjruOueO7j3la/hv/+//w/8+3/zr7h0+WKcVyqN6LZzV8WLiOAQuoh5IVmGkBkEg2i24iFYaYIfIufmCDpHJrHZLL6JholkHhKJLwaQ9gjpHDCNBXPRQ9oJPivj72s3kGJCsDXOTdHTNUJo8LlC6iVEksHuFiJIQjVFpQIrQqR0QnR/yqwHicKbBEyLag3YSJEFAqIsELabiWUljEcxcmL3T+6z9dLxLV2c2JWjnNULJJOOYLroR88zpChY3dhhcXGO+YVF3njvjbzlFUd4+LnLXNnc5bbDKxxenGN9WtPPJfPz81RGsNV6nA0cKlKkEDjrUDolaJDO4DpPiOa7WR0yS4L1PlaYaYHOelGEJBQEsKbBdk2MNtc6FiRCR3TEGVxbXbOndc0Yb6NA0tkG72LfHiljS/Z8sIxKsihEFHEpNqZBKH/NKiaEQicp1kYLqtLRs+/qms9/6VEmW5vcf2iJZ7s+490WqTzDpRUGg4T1ja1IQaQZXdFHpBlhPKFZP43wHZ2xTNHcdtst3HxgmVPPPMVzL5xke3Nr1t356+gKhEClGfY6JUOqogQCXmlUUVJVVeT0e/0Z3dDgnI8+/DSj7c2TFj1svovSOrYgUArrQeY5vpej6gbGNScee4b/6OD77ruLO++7nyvnzyKmm+zu7pLML3FZLXAOyZa1TJqOqqvpmgZKi2gsWI/2DuvAYEh0htpT0EmBtp6sVFjVIJIOESxJnuLIEAv7SFwDpqOrDWJa4YOiHSbYyYRCaXRosKaLotekIGxtEqTAzy9AliGDx9Q19OdwRQl5j8Q2dCZH7m4hTKQdg/cEa0Ek6MEiXbdDMDP/l7Fx7kkBbYPvOnSWQtcR6immqUnSBNNFerC/sAevE6SYYKspxd4DBJVA1qdbv3Bd7v/VYYWmM5agFML4KHDf6Ggnlt31muH5MQvnrjC9fJk9dz/E8NXv4Ngdt7Hx6T/kygun2PPAA9z9l/4Gt771bXzt53+B3TNPcuLEmIl1lLPDrZIwt5Dy2GMbLPQkvl/zhkSSqAStExyC4BxWQKI0ZTFktxaM6oAa1TgXKUAlwdjYmNPPKFgdPF0QeGuwzhKznuGPUDnfoEC5Jp8NxCJzZR6nJVJ6Ri98jdPv+yRKWexf/E6U8+hcsHepIEuT2MH3arp0K6l2LD5YBjcc44YfeA8rr3oj7ZVzfOKn/i7rj3yNB+/5s1QhUPSGrCyl3PzudyHv/l5U3sd5R+cm7D5/HPO1z9I9/VWUm2LaMePixus2B1Sxgpi/Ba/2okTA5cuxK7FKCGKWWQJ4JWYHOxEdbrogtDa6SYxAJBB0H3n4e/B+h9A+C+VJxMb56Oq0BjmeRCvu3ELU6kzHgMeNppw4c4b+0hx5PuBM23FvmjG/d4H7XvcGdj/xEcajcdy0Z4Lya6WoMaDNLAIe8HW09YqA0Amqtx9RLhIQ+CLH6QSZ9/HFAr63ADKBsAq+jQpbRgjVEbxBji5AO0Hn0Vkk6yl0AVUuEdyEcGg/vt2GIscXAdltEhKH0CkyH+KS2BLFT2skCuZL3OYY2cugnxEmDpkV0LaE3UmkcHYmMbzOGoT3hFzHp6VfXqzAt3Rx0i7tx+7u0nYTgm8QqUI0U/x4B791gSujPm977T08dPsB5no93nT7UT748GNsXlnj5r1zzGeSIk25uDnh8dMXOLAwQPrASqkp8gIRLMF0BPyMrnAopWYV7exJzOLh62pML0QdipAJjogemLamq0aRowvRnSOFQmYFxXAp6lAIBNvhXReTQb2NnOW1t5MEPF0zQSHIiiEgsF0VhXU6JabaxufoTR2LnODx3RSlC8bjEaevrJHkOdvjMb6S0CnE7job63OM5vZi998I4zGqbQBLEI6iX+AqqOsxk2aH0dYVLh5XfMF2dLvbQORNQ/DoLMPbGVoiBOgU1Z8jueVV2C9/8LrMgW6yiyh72J11pAcbIAiPrcZIa6Jzp7eI7zqCCdReYtMhVkp8MCRJgWtrhAiouiaRRI1P19KYhCdPn4G24ntuu5E5BcduuIm2bTl/9jT5lVPcmGYsBsEkLZjmQ8ZpztRZmralaw1dZ1HOE5wiGEuSJIimRjmJFh7XuXjCbDuMTAnzw9iKwBhM2xAcdCRoKVDtFK0S1HgXuhplWoTOkGVOU/aQS3vwbUWQAZnkBOtRWQH9fhRfj8dYKSCLna59E8PpdJ7Tth22cgTpmbYVioy0muK8RxclIUnRaRfdLVoT6hoVPEpn5GUZnSFtjUYg0gQp+4gkp9neQOkJZrp7Xe7/1SHzlEntyAcZZtqAkkxqx3wQbNeGLbvFRlWxUFesr24zt77O/lvv5eBb3srC6hrn//CT5IeWWbj3bl7/0/8frnzwt9n+uV+kvTAiKzSh7SJFkwgSHdHMPM9IkiJqjJAYBF55nASRB/IspZ9KSuVjqFnwaBXI06v5RuBEPD3LLh6iq27MoydOct/tBYvDlzZLnIlcX6qRha9TrMyQSxvYOL9D/8gWVBcwbcOk6cjSqCWq7Q6mDaxvdTRVRUCQzRq+KB1p5UM3H+XGP/eXmH/gTYwvnOYj/+NPsvP4o+RKcu6pE6i9N7IwkBx5w1vJ7vkerExpbcXo7NNsvv/fMX3sYcLaLl3XkM3liIU+G+LAdZsDQi1HkabUeJGAtDGRNMw0e6ofo+O9IYiAl4KAwQeLyFJk3sM3VyPYDcK3yFxilm9E7t2DOHoT+XQDt72Damqca/HzS8g9hxh4z4ryHNh/kIXlg2grKZOMRCleOPkCH/yDD3Dp/Fmmk2m80daDllEwqlREmbUAV8/69yhCrweti4LSVOPULqLUhH234smQk/OEsgW1hWwddBY/l4MSCCdm9t2ZFtJbKBNAoYJBeYlUEtFL8GkfF2qCioGg1GNCNUV0BpGkhDxBGIewBp2kuL6KQW0uEKoWhgUUBUGqiPiXKbG9uwehwQuSvE+YJayL8uW1sviWLk5CPUGoF8WlYmcdISWu2olQXDPmttuOMfaCL3ztee48sILQiovTht/4w0epkYjOsj0e8ao7b+YNN+0l14JEOHBd5EtFiIJHAd7NGrgFFSm/WfLele0xv//Fx/ixd72RXAt2q5oyiy4cnfXQ2QAhNUrpGKM807LYmQVZao1tKqyRMx1UnJxCpTP7cbimL3GmoXYmOoOCjycDEXvxxAJq1m3ZOwSwunGFr7xwilccOkBPC1CzjbKuwPUR9Ri/vUqztYK2BtttEdKIgia+oV09hbnwLKKrcG0NaYqtanxbz2ibgMoyRJIilUIJiUgy9KFbEcfuRhy9B0cO16k48ZMR4HBJTmoCXiqCiKFpWkpM12LNlSjRUZ7EF/iFPolw6OCwSITMCPUEjUIrjcwKbJagsgyfKC5MG77w3CnuXewR2gmj7U3qesqwX7C7s00yrZgTgr1lD91fYD1IRklGNyxYrxvGYZ4uAEogA/jdmunGLm1rIUsQpUblA7osomJlM8UIj0gTQt3iegXGOQrrSJRGaUXoPK2zhDShSlPkYJGwPSIf9vGJwDuJdoKwtYkcb5H3SpTtyKWgThJ0sJQre0mLnE4IOmXQzYRUJXRB4bRA5iU6yQnWEeoJyWAJmhHSeGSvhDLHek8whjQXKCz1eIO87GG8IdiAwGHaKCC/rkMrJIG6brEuENqAdYHWBFol8M4zvVwzrs6zWDdMqh1G555la/0cR+5+PTf+uR9l4ytf4dIHPsb+h17LDT/+d/jexX187t/+Erc9eB/nn36CIu3TtLssz00QEobDAanWKJXgAmRaYaeWw7ceJhvOkyYZaZKwdPMBer2M6aShX/YRMpCmCmNcXA+SQEgMZRGYyx0Pf+T3OLrvCAvDWQbBbIiX/HlNiBLC161TvHc0tUGJBB8kic7w423KfXN0EmTSo0g0uQi0rUErjVKSTCgGcz1uuvMGbvz+HyO979sYn3mWr/zzn2bnqScQPqAkXL48Yn6x4oZ3vIviVe/CyYS63mbzk++l+oNfw++ssrna0I2m9BLN7qhhxRrk6T+8blPAq2W07RDNJUxxGE8CysX2FAK8aCHo2Fw1NNEFKYiulgRcatFzA4KpojsyGxFUB9IRpMCpAlcchaUjcOE0gzTl8ME7uOWmO1juDTBNSzUdY3YrKtsw7nbpupqvfe2z7I6v4Eax51TIk3ivEoUwLqI4eUooykjlty3kBeHYEWTVREfP3ADfGwALUEkwFwlDGQuAronUfyoRbR0LEykJrUAaCDpF7VnGjTZjZotpkYsLWC2BBrKCUMewNJxDGBsLZqUINoBp4wHUtFEUW+YEr/FaQmcQE4laWcFtrOLbNl6TlNB0BN+CC8iFEpmXyE2DmBtg2PyG9/NbujjxSsLlFxBzK4RuCu0UkSTIbgrOECrDL733A/zq8h4OLS5gJiP2LQ64/7ZD9FLNuItN2IZ5wq0H9rDQL2YyD0UIluCa2RIgZvojGTk4MWvkF8AHz4X1bR4/dYnNnQlZGfgPDz/JX37D/aSJJUtSRMy1v6YBcT6m75m2ija2qxoSfAx1UzP9gJCRo2MW3iZVnIRE2ynMrM8zx5jQybXmf95Ff/zTZ87xq5/4NH/ne9+BcB0hKSiFYHGlz/aGxOnovjjcl/jRlFPPfgm59ybCofl45UUPN78HuXUpBhMpASFBMEtZ7LoYUDa/hOgPyPccJdz6Gtyem3BJHyUk6XiX65V0Uu7ZjzEtargEVYeY7pKVJbZtcUqjRUBONiPVk+fIGpokEIoI/SutsWmG1wuoLiJknQyQCJIA0niauuVZZ+lVYwbEsD1nOpp6TPCGfplgrcWaCj82rMiEY/NLbE8m7AFWSdhNCyohsGiS5QJdFrTTltZGgbVGogIkkxFCxlwRK6JaXzVjRJrhtYqhSF2F9Q6dZlggSTLEtILdDWw9jmiJLjBdg1ICptsIYVH9PtJ60iTFeIcre1RS4o2NvTpMi61aVHAIFEnRx+U5xrfkWQ+lUqTuoUyCDAFrLcp7ssEQSUCFQK4k0nT4akJW9kh7GeiUtpCsnbxOkwCopi1eCIIF4QVBCkKpafoptrHINDY7a8aeK09cZnxhi8XbNrGjDTaPP8ncTfeydN9r6B25kY3PfYz26GVuXNjixh8ccr7LSBZu5/ylEWtnxnzn//PvcODgYdZWz8VGkkrF9ORUUpQlGxfXWdm/gJIGFzzd6jpt4WkryXi8w3Jw8dAhBQiHCgHlPHUVqFtFsnaC8XgX75c4efyz7D14K23XsrR8BK2SeMHixcLkKsf/4ggUwz63PHCUxb0DUjKEDuy5+wh6UqG0opcMSXLFYNBDpAWaQLCGqW8xieLA3Q/yyofezTPHv8rk4x9CVlN6wz5id0K5d8C+N9zD/Bu/F/2KNxHSgs0rpzn3H/4pS6c/y0LS0A5hvhKsTQTWB3Sh2B0ZXH19AtgAfO9GTG8Bqaazxq0xHySoDBKBpwU8MuTxFQs14BFJIGTRfmtlB6WPblehISlA69nBryFBcHRhD6+8/80sJH2SAMI5skyzZ3EZ4wxzgz5ZoklndNlbvv3tnDl3lgtrZ1i7fJ71zVV2J9vU1mNTTZibJ6Q55DnImah1hp743hxyuD+KlKZttARXVxCFidR+W8drkYLQNoiyRHQ1eJD9PYSlghA6TL0BvkEYj5rLqfM2Zp6oDJqAqOvZgVaAAzlqEG0HqkKUJWE8hTInBIvwBtdEt17QSTSJWEtoTSz8fBNF9Y2NfePyBNe0iDRB6Kh7ezmRjN/axcnuBrKdEtYnBGvjxQ/nEa4Fs0kQmnZ7h7puaKop2nX8lXe9Di8kg17JPcfm6OcZ4GPDv3A1nfGaJYYYmib/yKnljywE1jKdVEymNU1nWW1HPH3yLKu3H2V3OuJVt906+zmHN4Zgr55vBFJAULPgHGKqrJjBNGGm34j5ENE2FryZuXa4Zj8OBLBwNfgnunZinLB1lsefO8lzpy7yh48cZ3s8RUvF3pXlCOU6hXYWV424/NxxTN0h0Kh2itm8REhyRDtFLx6AZoxKM8JwEVeN8ZMdgt8C65G9OdQtryTc8zbccJng4uuWSB2r8Cy/fnPAGLTKcV5iiUF4IS8QKgFrSXpDchUpsCbE11Y2HV4FGixZWeK7EbJcxGUJmAaZOGThIbTYRlE7i/IpFxrLHjOmmewipWBhfoAMHePdbRIRUVljWjrfErxlfn4BtsdkxlM7T5P1qXvz7OY5sswZFCVV19I1LbazZJ2DLMPWFQFwXUuSD/BOkhV95M46/bJP5w06TUn37qEOUcjd1hUoiZDQbl0mSQtoR/T7mnzxACYpoxNraw1XzOMXFmmrDrWzhSz6eK3IVYb3LVJKdAClA43ucPUE5UB1HbQNzntc1xGUpnM2bmzB40O8foKnrSeEtkYlGU5quutqKIe5LIsix5l9PttXIEqNaSzOe7rdBlXE055pLNPLFZOdU4zOrtK/4RKrly8yd+o5ene8mn2vfANm9SKbWxk7D2/xzOgLrF7eoJ52dM7SvPeX6eUlvWyO+1/37ljgzvps+SSlFJZQC0zIsMFS20CJx+HRRUqm5bUeTIIQ3U3WUuqoRylTh2vHBNtx8isfYOP5R9na3uXbf/jvoXtzL3HvRH7n6np09W+ewLRqmDae3Z0xzrUEA/XGBr2kQHmBEB2q1BxaKQjesL1+CTMdE4Lk0gtP8vRHP8KbX/d6wtceoVwsyJSmX2SkwyGHf/g7yd/8btSx++jQXL5ymhd+5u8wvPwMbq5H219k1E7peg5XGA7Oe9abSLlu7l6/vJtQFKAVDoVIND5JELJFJgJ6Cm9qJAJvtgm5nOWbBCgVsujNRKWD+ERlQdDpbP1VzBUDmO5yWy/n0NwypUsp8oRemZElmoP7l7HOMZlMgEBWFuRpglKKoj9kce9h7rGvn4Vheoy31F3Lbj3h0miHM5trnLl4hs3JLq1UBB+QrYmmikkN9RQ5PyT0M0K1gKwmBC9icUDUp4m0gM4irScMlwmLQ1xwSCcRm1NwAZEX+K5BTQyhqQmJRucDXNMhVBR+y9bC9gRvLSwMIorazwnGooYlvjNRzKskwgWEsfh6gujl+K1dvO2QDpAClWfIMsVNGpx2SCHo/lsQxMrpDmG0hZ5fQmQFuigI3iNchJrVwhJORiNb6Byvved23nrPzQgERa5Rsx7WYtbH+lreSIBrxK7w12xbVwuIGYwRLWHB8ejJs1zaWGfcdjy7M+Xs7ojf+MIjNONdbj96lGGvnPXleQnwOhNkRevwzK5M4GoTmigwDbOPq787XKubPIFrOSrhasH0Es+hEDSd5fjZVSorOHXmMi9sT3nF8gK1aTFKo7whTHdI9yzDYBk/ELi2IzRTfFkilg8jdgrE5hquqWJvlbREZz1YPIS79BQMLNm3vZv2zocIIkc4j+wPwHnkTGQauH5ODVf0KeZXaIxHSZAyVvEEkMHRtS1J1sfrNEbUa00mJMZ4grY0zsJggC1KSDKUL5DeUQRBX6YkQYIPWA+bzrIkFYpA13WMx4E9+/aRFT3WL19ACE8iBYkAa2p2Vit0knLzLbfR6w94/rln2dk6y4JMsINFJlmfUaIRZUnlA7VxjKopqsljrH5ZoJOE3EWOV8330UWBX46Jro0XuEpidyeo4RLd9jpm/RwyzbB2StYrKQc9Gq2pVI6oauRgCEKhNrcRIaASjdSa1Fhsa3DWIxNFUfYxItBMxiQ+MMGjAVnXMeTKWYLyuLbCFz28FHQ+9iXytqVrO7xWKGTsdpsX3/Be/teMO9/57Zx65KvsrG3gumiJrXcaXOuwLTjn8criS41e0LiRwdlAu1HRbT3D8PYtdpwllAs89uUvo4ZD7nnbt3Pmo5/k0vlnaVuPGQm8Dpx+5iTSKm664TakymIEASJakFPFTW+8n+7ySaaXT2DaKV4nVC7B6RjSlyYKqYkuQB8RTuvaSPE68G3AdCNGzRY3v/Z1jC5folm/jPMdf/Q9DiKIa0WJuMr+IggusPr4WeYWSqy3CJXgxzW2HyMSLKAo2V7dwY92MUpw9vgXGS4dZHRlg+3tLf7dz/0rBvtXmN+/QChyiiPHOPzOtzL/7d+LXDrKxHnGJ77IlV/5N9izq2yKecbrkF0Ysb62g3MOGQw7XaCT0GrP5vT6RQsErUCDkH2wbcwMoQM6hAskcxI73kL0BKLswSzuQOYKlyUk6RA7gSBjDo20elb2GRaHQ24+eoxsaxVBIM00AkfdVEhyNjd3yIsMLTVVU7FrR1Sz/liJjs1Rq6bFWIPwgbLXY6k3z2I5x9HF/bzhprsIEnbrKRe3tji5scGJM8+yur1OYxsY5vjgYHuC9B4mHWLQh2wf7F5CoAjOIho36+9j8V0Td5W2RtYGmilMGmQuCHlGQBGEIkiPUgJpAq7poO2iqUOm0UmmBS5R6DrgjYXWIZ3DGxeLlGEBxkJV48cVUitEKkGJaI02DlkWqCSj29lBFP8NCGK965Cmxfs2Zk7UY4KOzgQGC/h6Qtkf8O63vJa3veZObjpykCLL0DJqM2IgyGxbD+4l8QEzHzrEYkDEYKm6i+e/PM3QKomdRkVASsXm5jZPP3+GKzrh7AsnOSgF3lY0XcP8YPBiGNpLFxf8i0mvAMFTTacURR+t1bXag2vfE73u4irR5K8WULwo+vpj1sNer898WbBncY7L05bFsh/fLJkm9D3J3a9F3HI7tmnwm+tImSCQKJ0h1i/izz2N374C0128d4TLLyB7i4i8JGRDkm/7Hrob7wedooVGpRJnOnyagc6w1sb+DtdppP15WqlplSObTKKrKgRUWhCAJEupdUGS9ElDhx7OYTqD6irkwgK2VDid4DGItiYAhcjpB0lBRK6kEGhnUUJFYamEIAUSwdb6OvsOHubA4WNcOHs6wp4I3KywdF3LyRNPsbSyl3vuvY/nn32GjStruJ2L5EGwkPRIF5YxRZ9xkTDO55iYEuMsk6Zmt50ipCBBYzuBkZIGT+M7xCwJVs31YwOzosRt1uADxk7JevsJZUY3aZC2I0lTvPHQNKgsIS1yXAgYa1FB4DoJgwWq4MkXlwnViMxanNY4YTHVFoWALM+jA6xr0Tql9RYrUtquI5cebw06zUiKEpGkJBALl+s4bv2LP8o9P/IDjI8f57EPfYjVc6fZmbY441E6HiikDbgm5gAFG3CFRGcp3dQwemETVT9Cdeksl5+5TDaXsfnlj5J0dZwzWzsU+zN2zrfQdWilsXQ475FS45zEuegIuftHfpxLn30/kxNfpKlHmLbDNxbnVWwDQEBJRZJIglVoLfG+QwVIdUCbCRfPPclgviZNC579wqe4eP5pXnjgi9z7wLvjBb8EiPIh8NTxL+Ok4K7bX4VEoNOU5YWUXClMSBBKYWROohUOTxcUQihaEVDCc/7pz/PVD36YncvrGC8Q047nvvY0e7f38djna/KlPTz4l3+c4Wveii8HtJuryEc+xcmf/d/ZvHQRtzFiamEhDQwTwdTGNh6pjs7GVRszXYpeCtXLa/z2XzrEfIFQA8ToAnr3LI4V5L4FguwQhcQpi5wvI52mFYoBoW2RWT+GDm6tI8J8XEelQDhHmE6RqWB97SRdu8m+JGOxs4yvVGjhSbTiwOISnenIKk2eF+RZQfCOuotktlE2Rr0TqXfXdVxe30BLwfz8HGVeYLoO7z2lTLhtZR/3HDiEeOB+xs5wbmeDJ06d5LmNLdabjq7dRczPI0wbqZzhSuxe3IxR2hNMgxAZNA56ywifINUEKaJ2hH4/Cud9h7QSJhVuNAEnQCpCv4yakVTH4sSCzAv8dCOm1iYJIc+gnfXyaS1hWs1ExMwM/QKpUoJt4+OnmtCLrtKvZ+r8euNbujgRMLM65gjX4acT9C23YS+chOmIY0f385N/8z0cWVng0L4lyiS6X4x7sfPni8DoSxAIEd0mgciXro5afufxixwcQp547jmwh5X5OUqtabqOoijAB6ROCK3jprl5XNOwMd5hXFUcWI6ZIy8yxFcvQF5z5AQRVeVaa5S6Coq8WHyE4FhdW+cDn/wCRb/Pg3fezLGD+2Jw2zW6KQrhAmCtY3tSc+bKDi7t8/TGhMttQr2paPsL7A6HqP1zuDxjMqmQF57En3oS4X1MBBztQm+I9aCGS7E/TtcgjEHf/jrcK15LUpbYfABJgvaeMJ0g0iwmIwpwzQTXtnh7/Xjmuu0IowmptfSGAzozQetkhtgIvEoISUarNLgOX4Ac9mESVf2Jiz2FpXSUQpMJxTAdkOs0vqqz/IHUw1yq6ImOyseCBUApxYWzp7nv1a9lMh6zsb4a+emZgFpID1Kydvkia6urHLvxJu67/wFOPP1EVPy3W5gLG8gkZWWwyL7+HG1SUEvFhihZlTBxHc52uNASgsa2NUm/pMsUpDl2xyIuX0D6gB6uQDsmyXqoLKUSHqshXViiCZDaSGU5b2m9p5lOUFJgE0lQM/F1ptgYr0PXouoWubCInUzQTtB1Job0yQSNwIYG4xqUVBRaYqoqpkZKaMdT8mEUWl7fKD7oegv0luY5euMt9G69gWc+9EGmn/wC29tT/KRGSIFpPUoIVKawqcc5j8wysqTEdobtsyPqU9sEI6jrip2Nr5EGIFG4usN2gdB40IL0oGa72+Qzf/i7vOXtfx6lcjofmI5HmPGUY699J3M7z1N8/jR5KqnqgLKeztQEb4jdxgNeBNIig2aClAGkxGGRtuL5r3yUvQePIaRDO8P5Fx7j3vvf/RLLzosU75kXjnP+/AluuPEueklOkktuf90hOhGvOThDIgWpkqi2ImyuUTVTiuU+/bxl7fRJVJpjtluMd6iQcMNth9jYHHPzqx/kxh/4iyzd8SraYBk98WU2fuuXuXjiNOdXGzAaB1QeSisg0xy+Yy9VnSBvOsa4t0je24McruAaC//bT1+fSdB+HlUO0NurkPUIZYnbt5dQbZPkA6QqSEOCbSqcAiFSRGdx29vItCTYHEIgxdCZMYEaXe+gZA/blKxPLOMiZylZZDF1zCvFxHoYTVhoDWWWUlqP8540TWeFiqaaNoQQsC72ZJNS0isK2q7lyuYmvTxnfm6ORCd4b2laS9WZWGQqyc39FR54/WGSTLPRTHlqbZUvn77Iyd0JlW1wriGMV2Eo8DYgxBK6XIF2gmiBvEMcPkq4dAaBxweFyvuYqkF0Ft91qCzHSYnMMkgz3ML8rAGgQ2zuQmNnDRAFQoEnhTRHqEAIAlFkhN125hwJiM4QjAUp44ePDWit8gj330B8fWLjZpwUc6hM0pjYyprRBow32E3v5KuXGk6Mdjnz1TX2LPZpVUk1mjCXKKqmixk43uG1wpkWoaNWIskKmq6lbRqOn7vChc0Je/fOcdPegt95+BxLvYRDe5dZKTUPn9ukto7PP/IE5coCI9vSqzVbG1tc2tzilsNHkEK+SN3MxKSRNr6K4oiYmSJASEUQkgAY59jY2eVLX32Czz32LC+srrO0/yCfO7nKG151N8vLCyghcd4xSDMWiwKCZ1pN2RqNaHTBuLOc7N2MueEw0z2HcbrAk2CtwTU1Is8R/QEimRV5xHApt3mBYt9h6iuXYofbsg8rhwk3343bdyja8kwHto25DDPvvZ9OYrO7piF0NS9ls77ZI/R6pGWOHe1iE00dHDKXJNqirMKHFp+oaJ914JoNnIE0y8lERk6BkgqdJiQyFiqpzvDeoWYZH9oFlvOMw30JG6vx5OW55qCSAi6eO8P9r3sjH/n938H6WIwJYlaOlDEgz3vPqeefpTl0lNe86a089/TjrK1epsgEsdfXDn57hEYzyAoO9Oe5s1+yE0p2nWOtrljvOvJ8nsqFSFn4gMAiBinpUg+3K0j1InqQk2QJ467FDwfsCNBKEXJNCDHS25sWnWp0kHSVQQWNDaCzPk21SdZ1IATV1g46SGRSokqFKubwTRWpsq4DqaCfIowkpyRITWU80jo670kV6OTl2Qf/tOPZ9/0+t77m1XQr+wghR6cD9h89hhOXaf0WLnisa2Hqscaj0pjboFOF7wTTEHuFpFLhMJg6Urahn9Ft1KBiaFpQIv7Mbsfu5ha/+wv/mrZpObZyA3OLJUWS8vyHf4/bX/9mVlYOkBYFe244Sp4X+KalPygQxHYFtrO4tiYIRaJyQtZDeVCyQycJSpfotKQ3l6BFoB3vcA15vWbaiQcrHRybJ5/GtR1eJTx7quXCyY7Fwy2Tp75CXe1QppI3vOevsrByhPH6RaqdhpOntunK5+iefIbJZoOrWpJ+Rg4InfLgX3gP+97+ZxGDZZq24uLHfofiheMcveV2aubI6pM0Vy4g1JiFzLOwf4XefffS3fcAa4u3cO7QHch9+/FlgegSmiu71604Eb1D+MRh730NPh+AEoSuRqlAogUhLfF1Q3AxEbqvNaMrVxD9AaGXEKwndDt0s35XaIPvS3wYR+S6gxCmnAuXEcMFtMhpdZ8z4xGHmowVkbK8tAcTAkMhMdZireLAniUuX9mG4HEuIvTWxij6Qid0bcvW1hZzwyF5lqNVoLOOzhk6A25q2NgKZFrTLwtet3KItxy7BYNgvet4ZHWLR048xZlLz9CGEV6BDdPYbTh1yP4A6wR0e5F4xHQCyytIL2F3FzHIcVoh+8NI1SQSJRV+cyvuS8MhXNlAZQUiLyHtI2sT3V1HjtLmCa5qEN0zyHQe343wzQ5SZ4SqjqLkpiPIFKUktn15h9Vv6eIkveM+/LkBen6Z9NAhmi99AkbbJPtuAK2p0gV+44vPkhY5K0du5Nkrm9i8I+iMYSGZ0xmXtmIzqhCikE9KFS1TsqaqJgTjGK2vQVOxah1XLjqW5uc4s9jj8Z0Wm7Q0+hjFXTkXBwmJ86zVU1RdY3bHPHlulcUjE4apJlOSfioRwWNMrKIroWlVinGBSduxMZ7SJJbGedrtEZcmNedXr7BbtYTDN9Pbf5SpiFqJDzx7ElxLtbNLU7fIuTlSFXCNwW3usL7TsnP0lXD7bTTLB2MYmfP4psWHKG5UbQNtTRhtARKMRUiFcx69uJ82K3BVQwj/P+r+O8rS6zzvBX87fOnESl1VnQNyZARJMEeQYlAgJUoeRS957r00pVmyPB6NPb5rrpx0rTszWmtGsmxfy6IlmaICKcuiEjNBggQBIhChATS60bG6ctWJX9xh/tinW+JyImVi1uj7g1yNOl11ur599vfu932e3yNQh29Cve37cUdvRVuPKwqEs4EAK2XIVBnvBYGvUKishU/TYNV7ka6mmVBngvhAG6szYtNgfRMgQFmMrQ2xK7F4iBSZEHgbRGOimRLFgki3iIRGq5iqqUPHpW5I44i21rQTxfFM0q322S1ynBBILWdEXgDJ/u4uaavFwspB1i5fwPvQXRHeY5sGrQN4zznH1csXGA72eeNb30G7c5YLL5zBOo8UAuk9UhpkM4VRhXCS+bjFXNJmKYrYVim7xjPwMIwFU5UwzTJY7NIIQWQWcPmQJpbk3lDbmFQmZKWnmU7xaUodaWSjA4lSxsGZ4CzpgZOUriTrZURKYAfbVPkUGWV4oRAWdLaEqQuiuUVcMUVFmqgV47WDvX1U1qFK2yjroCiRUYygxsUvbnHypf/Pv+TyZz7H6i03c+DgIhHQbXc58ZqjDC5cwdLgmpqt5y+SdFPyvX2cBOUFjWnAGFxpaIzAxyC1x1UeYQw6CsFnSaLJWglCQGM9pTCMxzn3//mf0H7H90BdU0rQZoqrBpgCmtoxHJeUHlxlgnxM+BAWaStsMUCYikoWeGNwWpKlMciMdnsZqQzS1tR18ZdE8rOJ9KxAkQLqqqIpHaPJgFa7R2exy4X1fZaWOzQXn0WJmFe87/t5z0/+LIPJDvtXvoH3nkg5RnsjmspS5gYVQ72XI9sZp973wxz7rg9ivWD9uSd45rd+lYW6pH/HnTRShE6cV0FwnCT0730Vxff+ME/ecC/TAwcYtVp4LcNpext+RtU83NN8+UVaA1IofKuLaLchHyMjjaBEjHbw4wKfJqROMx3u0jpynGI4QMhZ8ObeJn68i2wvgdcIa5CpxkoZuArlMIxFRBvvG87vXuRK1kMiqZuanc4B2gZuzWJuETogAdKUsq6Y67a44cgyz5y/inU+MItEAO5VJuD166bGGEOv26XdadOKIuq6pqxqhAgH51FRMRyNWd8SJHFCO8vodlp839FVfvS2k2zlb+GhFy7ywPnzPLexRd5O8KPLuHqAVzEcOBjCAa0B06BWT0BnhI+TkMjuQE32YLyHb8+hWgvBEZuPgo7TGuRKD+s00jT43OGMwpPgy2HgnkgDOHxlQqGDD90XrWhMhdIZIoq+pfv517o4MYdPwmAPfegoHDkJJ3fCbP3UrZhHv4yYW0bgaYRmLBKSdoaaTInnMqq8Ji/3OL60yoWJD1ZXY2kEiMSBhVhHmHwaIrGrHLan2N4i+7mnv7xAKRROakptiQ8d4AXpkXjmbptj//yjlOMN/sWnnubfnrF0qik6Tuj2I1pZgi4naDuB9hJN1sY3dZg7SokTMdpYxqefJVldRguPbnXIlEIOtljMEqqmIXKOtSsX2bx6BdFbQBqB8Y7KZlQLd1LcdQu+u4QtS8TeDtQNXkWzSG6Ln46Qw/2g+VUR9Bbw8yt4pRGRxkz3cPkIVg4Tn/hReMWbQysvz3FlgbcOpyKENVhngwBWSsR4F5H1guwlbmOqF8tIDEl/HqsrHA12MiIC0k4PIwxWuKB4byJa7Yy0lSGEx4sgTBQWEqGIkyR0q7wnUZpYSpJeD2ENPR1xoi3pl7tsXLlE40OonZQBYkRZ0dQNxjkuXrzEkWM3cvH8BTyg1Oz54aFpDForpFA47xkP9/nMH/8hN995N4ePnWR3e5N8Msa7kO2CF1hfAAIz3MdLTau3wA1zK6y0UrZrGBkYeRiJhF1nyAXY2pNJUJFAOktkHVpFWFHTdhB3+4yKEXG7j2w6+KLCmAaVaAozIq/H5Maj8wIpQM71Qrq2kyinod8D36KQoFONxxJ3M9zuFjiwaUqpJM4adL+DkwrtYq7FVL5YV6suaS48z+knnsRKSdKOQEe0b7uB3twS2+eep0HRnptj7oaDHLrtfVx59Am6kWFw7gKlqRFJgilLklaEsxbnoZ6YMLKNgdLgZBizZocXQFn29vcpnnmGswePQqwxZQV4pvv7TKSidjVb61to6dAIbF3hZyfoIIS3s/Y3iNpSGkHiS9bOnePshad4x0/+AKtzcwx7HarhRoA4qm/etp1tuP3u4xw7/kFMtcbw0qMsZ1Ne9T33cePiiG5qyfrHeO8P/jyq1WYy3cHaKVY2dI+tkmWOvY0BTeMxjUcS0PVPf+KjDKYTLjz4FbYee5zVnuZq1mZuaQ6nI8Y7k8AV0YLlH3of53/k73Hp0I2Y+C+yvsKs2ePnBP96y1NPX7x1IMyYyCfMxwmTUcjPKvNtJB6X7+P2Kpp0Dh0Lysk+XoGrJ4gyIUHRGPB7W6j5Q/hyhHcZwhe4Xg+kx9UF3tXoqIXREaYyQd8Yp1TtDrlO6Q62ORbPIZzFGUekJVfWt7jxxCpHJn3OX92mbizGzg4vENLQPZRlQVkWdKZtDh8+RNrpIMQUMxsjV6KirmuqqqYoSgbDMVor1tZ3yNKEdjfjdYeO8s5bbmGvmPLQ1i73Xz3FC2sXmZYVNEBegqsRosAlDTZOUFJA0sdNtvCxQ7U66LlV2FrHpglivB8E7caCShGdORwKyr0Zjn4b4Qxy7iC+GCHy6fUQXIcJlbS1CK1xpsH5b20NfFvFyS/8wi/wiU98gmeffZYsy3jta1/LP//n/5xbbrnl+mvKsuTv/t2/y8c+9jGqquKd73wn/+Jf/AtWVlauv+bSpUt86EMf4vOf/zydTocf//Ef5xd+4RfQ+turlZrhPjpJMUphyhJ56DhcvYQXOlS7dcV0aZXW4SO4pmK0tIruTbHG0E4zdvUSrcmU1IMZ7ZH0Vpg4ixrtgRAo46k2LwUtymQPX04RztLUBrfQQyyu4rwgThKsbYhijRARMr2BaOkE8aGXUGxeJL+8TV6HuffV6S7ZDTcStVskvcOoWhF1F1HSUtUDlAzgtTgTmLteTl3WqCTBZy1kr4U+diNbUlBXNQs6Yrh8E62XNcRlxfa555jKjPqWV2PmV2nqGrG3jS+rQAN0FkETHE1S4E2D9B6/t4HvLSD2NpDlEOIIL1rQaqPaXeSJu3D9xXBC+7PfwD71AH5nDXQMx24net33IBcOI63DJSkyTmn+/NcxTz8QsoqO3fmf3Lvv1BqQQgWkPxqx2EJMDZluMRYVSkuiuEOiUlppD6UihCC090VEkkRhg4hSIqlxOCKlaEUR2nvakeJkL2ap3uHcC8/TWBdU7CpECgTdiafb62G8xxrHqRtv5mtf/iJlkSO0uoajmP2PQ2uBFAJjPdPplIce+DInTt7Iuz/wg7zw3DM89rWvUJUBvKRnKn/vPMY1lIMtzO4WaX+BA9kC8615xpXhal6iJIySGNfu4H07RL83DUJasqxNUe3TKIfI2rgspVECihorp0RyEqx+1S7O1WgrEM6hl5cp0xSlY9gZYoTEthNkKZg+/XXKqxcwo32QEt3t0Vs+iugLXBKcZSZRjJ78BvXVy4HbAGxtbdHr9b7ze4GF0hqcBCk9+bAi7jRMHnmSbSPwxlG1E9pzXayXuMmUpdtv5e0f/BF2n3qMBz7+US6/cAmFpBlbnPeoThzSgrUmTjXlfo4WEPUzRms7FKUhakUgHWcunGUQNfSqkiMvexPPfPlPWHjZLdiiQNYNkfZ4rRAqCnJBLWlqT5Kk6Nln0knwZUNV1SxKwWiSUxUlMjL0MsfaM6cxdUGczVJdZ3v8cHCVcniJud5BmuELrJ/+Axajm5hsrjGNPJ0kord0kLn5A0yM4ZmvfoasK5AS9rcnzN08T9LWVLWFxhF3Isy4Yev0Nzj/yKOMC1CRpx60qOWUra2vM9dt8eTlTbYGA0pTwUc2sU8P4f/yT+HULTDjZbBfIn/xZ3Gf+TjTpoaXv+lF2ws0FRLLYPMKshGItr4uaPW6RZT1aba2EK0EP56iuz18q4cbD9DtRdpxi3q4gynLsOc7ie92wEyRSYaTCkkU4IK6FThYxRDZO4ioSuRkyN6kYdCaQBwMEz5SNIXlydPnecur72J9d0BR+eskba01rq6o6prGNEghyKcTnDMcOXyIbqeF85KmaZjmOVKGvaEqS+qqpq5hOgkC4yjWrCctur0+7U7Gq+eWeMexY+TilXxja4evnzvPs5fW2RpNaVQPnETUm1gzQdgJZCk+Pog9kAai+dIczlTIJEK221gh8BqQDt/OEE0/kNCjGBlnqF4Hs3UeUQxRQiCzNtVgK8gZPMHl5/zMnv2t3M9v4/riF7/Ihz/8Ye655x6MMfyDf/APuO+++zh9+jTtdhuAv/N3/g5//Md/zO/93u/R7/f5qZ/6Kd7//vfzwAMPAGCt5T3veQ+rq6t85StfYX19nR/7sR8jiiL+2T/7Z9/O28Ftb1BbaLYHMCzAFIikhZmM4MZb8d05fLvFdG+DWicwGuKaKbJuyHeu4laPMhCCdGGOKhVY0yBHU+TaWcx4HxW3sJfOoI7cRO0bmGyiI0W8tIrd3yKbX8IC02JMPRmSKU3aX0QisRKyo7eQnrwT72pGg23clbOYcsD0+aeQRY5upyAE2WveQH3DHYikTUKF020UBJvhpEDqiPqp+4mOH0cuHkSceZrxhRcYLx1kfzSmshZZG2zcw93xGiwRYjwBW4OxqFYXZ2dE2aZBJAmiLlBlDnhUNUGaNlZ5RBLjsw663UMcOoJPW9BbQHmLz8e4c4+jX/0uxI134vb2sJ/7GM3v/m/Ef/OfQ5ygbE3z5x/BvvA4ybs/hBMK8+Xf/ab79p1cA1pUWOtRSlLWBYkHZETa6xNFCiU0WkVoGaFQxDqmcRV4j5YRsdZooZAehHe0tSbynrlIcLynSKebPP/MaWprkEqhlUKoYDtXSpPESUiXdpayLFleXaXd6VLMWCXy+kjLBzur86jrhU0oVM6dfZb/8Nsf5cc/9FMcWDnEH3/id7GmwTQhOVnHGqykLAMTJZ9O8HKNpN1ndfUIc70ehYw4lzdseUklFEJodJLRWANCE7e7iG4PqSUtZ9gdDvB5Seo9rtWCdooxFbqx9Dpz1BqamTUfIUjTHlVe0JQTpKmot9fpHLsJ5ubxvmDy5BPsn32azktehVzsYm1D9cSjmO0tFl75WoSX7Dz4eX7kR36EBx988Du+Dnp9RYyjdOFzo4RAebDSE0UC7xXlqCI3lvqJJxlcvUTv0EHOP/MkL733rVw8/VRAiyNofChAq/GEaKFF3YBwksMvv4PB+jplWYY0aaVwxmNKw3NffQpnPG3fYlpberKiMg1VEzZ3lCXSEutrvPAkceBFGB0howjbjCmmltLCykKfxjusnRCXm4zKioXliHMbNcY1XBuQXYMHTPd3eeFrT9LqXUTICUcOHCA2S6w/8Cj9V62yvHIcvMHgePQzH+Nzv/7/5hXf/Q6GW9vs747Rz1c4YzGNRwhPvlPRymKmJqLdamGloXQxV6LjyCN3MXzFq+nsfInJ+lWOfP972XvLu9hfuQX+t38CP/5e+Pg3oN0G4xC/+LP4L/0pJ/7mz9PZ3eb5z/7GNwEZv5NrwBYVvtXgJhO0b4OZELU7NJN9pLO4iSObW6JucqK0jd3ehdEApCI+fitmOsVWY2SvgxlO0MUetruI73SQKkWYBi8kLuvgqiHgkFailaYpxoFQHcWMqpxYdBGiIVEKYyyXr2yQv/Rm7rjhKA89fQ4pJU1To6TkWjSss5YoCjlAe7t7DAcDet0uKwcPkrY6dLpd4jhhmkcoGQFTqqrEWIP3FmsayrxkNJkglCRJErrtLnPdLrfNd3jda+5Bvk6ytjfgqY0tHtne57mLjsE4xlVTxHRrljk0CM8JHJgG353D9HqhCIn6oDQCjZyz1OUQNxyilKLyHr+0gDJjorSNr3LEWM2csGG8LbVG6m8tofzbKk7+7M/+7Jv+/JGPfITl5WUeeeQR3vjGNzIcDvm1X/s1PvrRj/LWt74VgF//9V/ntttu48EHH+Q1r3kNn/rUpzh9+jSf+cxnWFlZ4aUvfSn/+B//Y37u536O/+V/+V+I/zOz6aqqqP7SaGA0GgHgDh1FpBnCzRTBowFuOkYlMVKlARmS10iZ4KwP4UxRhjE11iv83jBAYg5EHLz1bqyX7J6/gF1cxl08S72zhn7l65Bzy8hWCzPewTQ5en+T0vaQ0jOuc4rJHjLPmZqaqTW0+st4J5ikweanvKKuQS2fwu1cCVj6hTbpa98I/SWUq+lPhzSmJi5H6JWbsE1DWYcAMMoKeeqltLIMMywY7uUM64bBxQtYNLT6qCO34Q/dhCdkRoiqCpQ+7/GTfaQxeIKNEtnFa40WDp/GuCMnoCyQ/R5ifhHV7iI6i6ATfD5GFkNkK0VlCfr/+E+wWuLLBmti5Dt+jPpf/z3Yvog8cQduPMA8+UWSt/8EYukwKkrh3f8jza//HA8//DBve9vbvqNroJt1KWVNU5Vk44Y47aDTjMhqtAOdJUQ6RSqBFmG5t3WGEgLjXBBzWpAeWjpiPpL0I8+cKJhcvMDlzY0Q9a41UiukDuOfEKnkMdahCMRPT1CkC5i17QkjASW57p/zAbolRHBpKalw0rF+5RKf+M1/x0/+zP+Zuqz45Cd+nzgG60xQ+CtNu5UFQVljmU5zpvvbVJN90k6f5YNHaKc9zhcNAymYGEspNULMRL5RAOHVVYEW0CGCLAoQOg94Q+RrZJHTtDqURqBHE9KmJp2fo7AGm5fECHwU03vDu9HOU5gKke/Tuf2lDL78mfD5E0s456kvX6Jzz6tQK8shCBH42te+9qLsBVOfITuehY5FCUtTgS8teRNGto13yFShegkqldTr22zu7HF27tPY6QixdJjWwir7W/sI4TFNg0siiDpoW5IuzQXWx9wcqwtzXHzhHAhPuT+hKS2xkqR9jep41s4/SyMTJuMJVZNTFIbGe1wkqCtDXeTgmHXWPFJIfFPR7sXYomYyrIgXBXOHllhaWWb/zFl6kSKNXDhkXL9C66TVm6N3eBXhJN12Qn/xEpsPnabuRKhUs/3MGiaZ8OzpB/nkR36JyWSKNzXjwRbdeYWVHhlJlADfOJLFLmpxhe6hw7jdIerKGmWh8Z0TDN/0XRz70NvZvf8Ynb/zs5w/ciu1mN2n/9evwcsPwdmvI17yOtrPPs/kDz/C3P/0P6OPHmbu7Ne5ZW6eJ9Yvvih7gR/s4VsZGIctFUrEzC+tUqo24+1LSC9wsiJJexgvAvHOe3S7QzEcIO0UIoiEg7kV3PZ5ZD5G0MGajcCU6ab4skaSgatRWY8ekvEMeugMiFagUk2LnHiWwzSZ5Dzx3EXe8Io7efLMBfbKkkhFeNtgbfiMawl5PkUKEQT5SrGzXbC/v8/8/Dwrh46goohWloUDjhQkSUxdlZRFgfOefDrG5sGxWCrFeDhkN0mJ1mLanQ5pktDvdXjV6kHecdMN2Ne/nPPDPR65cJnHLp3n/NY2VVODl1glEKLCOYXQGllbpNTUO+eQuoeP+zhR4eUivqwRrgZX42+4E+Mi9GSA3BvjzB4iqOIRicbH/z/QnAyHQwAWFhYAeOSRR2iahre//e3XX3Prrbdy7NgxvvrVr/Ka17yGr371q9x1113fNOZ55zvfyYc+9CGefvppXvayl/0nP+cXfuEX+Pmf//n/9M13+xCnoaJLWojDRyGf4Pb2cFtrUExQB45gmwKxfBhkhCxqvFSYA4ewOkJby86zZ9i5dIk4i5FK0l46RHzqDqYY1MGT2LrBLx4kevMH8JeeCw6JuT7jvTVUbxmKAucMUgpku8W4FaGMxY128HWF1C1kXQdE/cHjNPkAbWqazV1ca4Va9CiFItYNca+PH08wtsIaaErwxqCzhEbENMZQ9E4gqhhZTfDzK8iDx3GdRYQK+HpRTsE1KGew1uHzEcIYfJJCmiEjhR/tofbW8YdOhpNm7PArJ0I3tixQpsE7jeouIqI4GFNscG+o2qFIcf0lbL5PDcgkwpUT3PoZcBZ1y6uwWQff7mHKeQAeeugh3va2t31H10AvapPUgNSkJ44xNg06ayF9EJ0pGZFEMdY5qrIk0hEiDl0UZw2Rl3R0RKYVHQVtO6FdjBhsXWGwuxPWmZIhN0gpnHMzk44KmgEhQhcl0vTn+lhTX4fneeuwwiPkNRGjDzkZhKJVyNDujOOYuq45d/Y5vvAnf8S7PvBBdjc3eOD+z5NmKVKGnxM2owSlGiLdoSoryrJiuLvFaG+bqNXl8IGjrM4dYpRmXKlrciQOj5QChMfHMVoq4riF957aGqgt0jiyTh8vYryBuDEo75HtFtPG4CpDFrURtkJ6SWFqvHUQpTincC60qZOjR5ELq5izZ8B7usdvpmlK4jRsSEePHn1R9gIjFhmMSnCGJvO0hKE7X6EqRbp0jPz8ebz3pEJit0rQAmktz/7pFzj7qa/QW+7RlAWqqFAH5jBZDKMJRjgaPNWVNQbrV/ETy26/SzXJ0alGCUVTNBjtiTNJks1x8bnzLHUFXrUoxtWsDW+QhLyrcjqknuYI76mraRBHupLFG9tM92t8NcJ4i44lSgdN2wFrsXVF3QTw98zzB3ica4hpqEY5JIb+8iJJMmW+16WdHmB5JeP8s09wde0F1p67QGupz/bZC5x/7gzOWioTNA3eQG95gXr+ILu1Iekt016+id3dmqa0+MWjuDe8gitFCzp3Ua0ewEiFcAIxdahnN2mAxQfO0//ck0we+BgTazjwO/+SJEsYNlOaGYzvxdgLhG6jxzUujvAMIJcML+aoaIGEZTBTaBQ+y4IuosnwuocwCXbzMnJ5FRGn2NE6ur1E3Y5xc12c0oi9BmIZuB6uDOO5LMXGjv3BZXyUop1HyDg4w+oKaStskxCrcKC5eGmDe+6+lTtvOcmXvv4U1lrKvKBpQoGiROihSGYHH1OFw6b3bG2sMxwNOXTkGFGSgg8jaKzG6YhOS9GYhlhJJtNJwBh4qKsQICqEYDzaI4oStpKULE2Jk5QsiVmY6/Kjd7+CD7/+9VwZDvjMk8/wxWcucL6uqV0BziArEE2NExUiW0W6ELki1By+t4xrjxFWIU2F6x9GljmmdQDXTGC/BaO9wGLRmqjT5Vvx6/yVixPnHD/zMz/D6173Ou68M2gKNjY2iOOYubm5b3rtysoKGxsb11/zlxfita9f+9p/7vr7f//v87M/+7PX/zwajTh69ChCxxDHUBUB316boBhud+Hw0YB8j1uIfAx5ifMTVNJG7G2jbINIMnxdBYfK5jaNLYINa3kL2eogu3O4qgKTI+e7mChFHzuB2N/BDdax62eQ4z2UTJArh7EqwscJvgltXzEe4vMRvhNCllRlUMU0nLIXjmBqj75yAdFJiaXinemQ/niTwoYHiUnaPD5/G+ermNJBMzW4vMQU+8jDx/CtPswt01iLNDWUBVQTaGqkqbBljjcitCNNiTBFWPxlgU8l6tY7cO0uqu7hvMWjEYPx7EOi8EmGV2mAjilwXiGLGiUkLh8gvSP//MfQx28nuuGlwVba1KA0dvlIyHvwDuUdBtjc3PyOrwHtHFF/ERXH1CqiH6eBfKp1wEF4R2MMUgiiKCbWEcKHh3WmI5TzRMG1T88V9PyY4dZlRvv7WOtQUhBFUcgVutYFgRlVWIXsCK3QOuLEqVPsbFylmE5DoarkXwQ9eh9w2X+pOFFKYq1FzU5ARVHyxU9/ipvuuIv3/ODfYHt9jTNnzhBnMVEsMTaclJWQID1xrIljTVVWFFVDORnSlFNaw20OHjxJP51nIDQ7xjGqDF4rFNAYi/ESKRVSaoglSitacUKeN1STgmguo9IGZ2siJNqHDB4pg808yRRMDaax2FZK/vRDqMUlpnNzaKWC5ksqROcA2WATl4eH6oEDB16UveDIS15J2j2MyPs005rp4DJ7xZPkTYXb7OKsQFuLdJ6ydvTm2mS9CO+g2SupdkdkVUOtobq8SdOKsLVHqAkmN0T9hGihS14PmAwGaCGZbpYcu+0wTVoyHo3weJpyyvrzL7A92ef5+x9hMtjl8PE56tKytZGjvQqJ48KHfcJYtFI0Ndx8+0mefXKTXtZGWU+cCXQUoz3EaZt2NrPo/wUpKTg9TMH+YA3dpEyNIrcVe6MROxt7TG5bpFk+wa33vZP1555Bfe5+6hp296dsXx0G8JabAfA9+FgzGe7jm5Sd5y+R91ZZuOkVDFpHkD/8NzBHlnllT3Hbfat8tPSwYYifWCN54gyjf/szyO5huvc/RrP9IKI4gwDa2Rx0lvAqJ20McOlF2Qu8SWFaIUuDNQ4rEoQfIiqB7CxgXYqpttBNjBcqRFXIOVA1YjTCdDJEO8NEEYgK151DKAeTHeh3EbNcICVThAyCazuZ4OMUITK8Mljv8N4HJ06ZkyiBjQMzaX8wZDCacOrwCk898wJ7w3FADFhDrGUYLSsVxjQisKq8dxRlhZSKsqoxjeXgwUOkrYxIKVQEzhqKusF5sNYTRQleO+qqItbhQGWNDZ2cuEJMp4ylJElTkrTF3v6Aza19ev0u870OP/DKV/E3X38vT15a5+PfOMvDTzzLeDrB9mbgz/4i1poAnKwEqAR0GD37JBzeTCvC1yPopwjXhm4GxRQnBZX71gwSf+Xi5MMf/jBPPfUUX/7yi2UM+4srSRKS5D+dUzlv8KMB7G8Rzy/jqgqXT5DtHqKc4rM2MhHYOMXjSdIeqAiHQaQJwmvcNMfVOSrW+IkP3RgrsNs72GaMlDFsnUOMd8lWT1DPLeFteNBE7S714Apq/hCynCCsRR48HNC+XiC7GVE7xbtQSWODHdA3FTbW2H4PraFrR7xiqcutxZTcVbSsQ2mFsJ47l+BTk4ivjy0VAjs/h8rSYO9VElFOUNUYWeeBaFjVONMAMZIWqpUFbkkUoecP4FyF1w4hwTYNeEmje8jxLvFgB9vu4forwU5rDLGyKBRmZw9vLTJKsK5BJDH5n/4advsSnZ/4x4jRAJUkmJnGQuQDEAYnE6T/73fr/JfWQNTpItIMay0tqcmHY5AK2e6CCvZm4QUISRzHKCHQgCKMdBQW7So6piatdtnYWAst/VkBkyQxHh9IoCpYgdUMfOcB6x3OQNaJWV1d5Yt/8knqupqNdwK++RrXhlmXRUgxYxXNAHsQCgWlGE3H/NHHf4ef/rl/yPf+jR/hV/8fv8C0DA/2a4WOlxKlZNjI6gqtNZkQqMZQG8t4b5NivE+rv8CtN93Jus44VzbsjUt8HCOiJDR3rv2bpEdFMc7Nkoh1hEwUTVkSu4BHT7RGL7YwZgydGLW5h6Qhi1M2vv4AdjSi+5Z3o9MetrE0M/Cec2BGOUp8Z1wa/6V1ML30VfSRUxw4dTOj3SmdVxzi4HiZzYFnc8swfW4N6YbIbp8+gmpUYQY5UoGa/XtlOyVz4PIaM6xpSkMSCVqpopyUtJdWyY4sMd27gJ+lh+/t7NHtdcBIlFH0+gu87Qd+EJqK8e6QgwsLNMWEr//x79Hu9RhtbpBdniNNu+AMzkxIRIOcX6D2FRMHJm3QEQiR4rzCNDH6UJdI73MtymIWZoH30J47xNG734HbWacs1ti5FFHlF4mMoyk9V569yO2vSsh6c0zHFmNz5rb2mayXeA9KADpoaPav7uOO3IB9+RupXIu9pWPY22/j8OtfymtOdPjtSnIisdzkPHpomWzUdL/wDJPf/bs0w/Msdw+RDv+Ug0cW2KtvYOuZJ5mmr2S0dZL59HdpxLeWq/JXWQOyFNgYtMgQfhfnpti8QEYxdipR7UM443CjkqgXI3VKYytsKqFKUKMcFysoKryWeN3B7Q+RWRuRdWG8jchSfKuDjwRCWZAa7zyimoBuo5yklbTIVEw9GVCUFc45kiimKArWd/Y4fmiF5aU5tgdDpPB0WxmTyQTnPaYxaC1nh6loNkI2aB2hdERZFGysr9Pp9ej0uigpSaIIay3Whm7KZDpCIsnSNBywtMbYEq0Vxlmkd2EkWUxB7NFud5mMR2zvRrSzFpfXOmRZwpGVRf6v3/U6pm96GU+fu8jnnnqaxy6vsbMTglRJRBjRCBsKXFcipcU1BZ4C6jFibh43N48wBlHsw2APUbyIxclP/dRP8clPfpL777+fI0eOXP/vq6ur1HXNYDD4pu7J5uYmq6ur11/z0EMPfdP3u1ZFX3vNt3r58Q7xwRvRvTmUbZhIjbcWbxqiKEG2e7isHZhF1mDLHOcdsfTIrQvUrSWMF8hOF9/v47s5RBHWeKLuPK7YwwkN3R6iycmLHNEYbD5FZCm059EC/GgLOdjCKYXZOw9ViV44hG8qFBKyDnphBbOwQHTiCFQlItLYOCOh4Q29jFeqnMsvrFM3DXEUhYdq0zB49uu8+8gp7llZ4cF9y9PDkqGxEAukK/BVjq/rQHZtGpyUqKQd2BQqQvoaunP47jJCCCI7xTUlbrSPEhFaQDeOSBYOEx04iRUCFcdU3pDXJa6sgnpdSKRziNqBrZj+8Udozj1O52/+E+h0aVSMFRLfXwBrwodAWqgHIENL/9qJ6Du5BoxxJMYjnSONJVmvx6Q2FOMpOonxOFQUgZBYH1qm1zgTFBM6vuKQLik2rrAxGdE0TXC6SEE865gIKbDO4vFEUYTSAWTmnEV6iY40L335S9FKcf7s81hnAyEWENfGN9dSZK2bkX9nCnYhsMbArPCQUvLC88/z4Bc/z1ve/V7e+q538x//wycwM3W/nzmOsD4E9MVJIJ16UMqTIKjqmqosqOsNmmLMoaMnOH74JJemkqd2c0oXEyMQHqyp0WmCQ2Csw3pHO0up6prYR3RaXbRsyJspNrL4dou8nhC3YqzsMXj4AdzOOvNvez8kMYlMKMwU3UrBWdxol7jVwsxqk+3t7RdlL+isLLB0w1EO/Pj3sXrpLFe3BaMnv0Dz4OfRlSWqDcZAXTu0SBCdCK/mkNkKamedxk6Y5g2u26NhEPguQuCsR3tHhqfeGyN1AYXBZQqdKiRgq4rDp1aZ5iV33vsGZNom7fVRc6vc9dJ7mI722HjiM0z3rqCSiM7SEnGUIYiQsmaQKF64sEF+ZYvxuGGjbHHquwWu1oynDmMiXGcBHa+Hk/a1woSwxi6ce46N82eoXniCuA+7z0mKusEKT20Ed/3QD+PbGZW1jCeWuKU49JI7OTmYcP7MVerKIhKFswKPQncWKV79VsY330l1agUOZSTW8cCZMd55Pr424hMbFWWZoHdL9r/wy7jRRV5699tYWUyYP5CimynTS5fx3tO95Z3sPxoRt5e56/ZFzl25/KLsBbZaI4lPQdTG6T1knECcIZsMIQpENMaUeyBG4JYQSuI6DfHJUxTnJqBaCC9Q8wfwkYR6CourqKQdMnmWlhCxImotU5sB1gwR/VMwneLNHlp2SOsa39RMiymtdor0nkjKAEl1lqtrm9i7buHU0YOcfu4FqqpGa00cx0zGI6x1gA5kasSMlySxxoSASO9o6pLBvqGpG3rdDiiFkgGcZp1job9AU9fUpmFaFDS1QauI2ljwdmZfJozfpaSYjhBSI4SgjBNGw310FLO3s0uv12Wu1+WOk8d58yvuZpxPuf+xZ/jzh77B6d0tptbh5mJocoT0UOagLNI6SDsh2LbJEV6GMMOsEzr+PPffvJ/fVnHiveenf/qn+YM/+AO+8IUvcPLkyW/6+ite8QqiKOKzn/0sH/jABwB47rnnuHTpEvfeey8A9957L//0n/5Ttra2WF5eBuDTn/40vV6P22+//dt5OzAdYpsCYw1SZ/hIILsKYSxxO6U2JqDTbY3UGm8bMDmmqEisxRZDNBpZ5zSLq6goRuxtEkcZdjYflpEM/A+3gOiHE4uIJJgGWzcgMoSaww538VrgZAqLy/i0g5zPMDolVhEoRRrHtGzB8cUOh7oRS9QcrCaIzUuc3VrHGoP1njjNqMswiyzykulwRJpl3LewzBvmFzjvEq7aiMuThp28pq4aJJ6m26WJEqTUeGORrS6u1cdZkF4gi33s9gvErQWitEer1SfRCUkWI67ZinUIu/JFhWhqqrIJJEsnQMcYaym/8Ns0Zx+j+2P/d/zCKkZrjHV4ZxCrJ4LI9MIT+KM3hg/l9hoAr3rVq77za6BqaOyETpahjEGnEYu9DmVUkaYJeW2Y1DMKrxAYQsjaYPMih+o9vJkyigRVXQU7p7MoIYl0FLpX8lroIkH7IUORIaSc+fUFK8vLvOJVr+Grn/0Ue3v7obAUIhB0Z90S7+0scTokXItZ8nT4GjRNgxRhg2mM5fOf/hQve8293Hvfu3n29DM8ffppjHPEGqRS4cFpQvs3TtPAyPEBmx8TIeqG2hgmozHnnnuG1uVLHDlxI28/doIzuebquGbS1MQ6ImSzCpyUREKEnB2p6fa6JMIhgdIrvAppuqIxWC0YPfoAxcXnWX7f38R0u8RNgbKOTpRSLh4EIan2t+Cmu2Bmd7x8+fKLshfsH3w7naUTFIMW6eJNLNgtxN2vZvzYafTlq/RaCXnlWDq1ytGbjzA4O0S//Z0MntumiReR5/cwW1tQ7hK1TkOSEzUO4z2m8DQCmG6iIwmpRBFha4dMBXe8/l7mVw9zyytfjq0dw901ZHceJzWjratM97YY5yOKGd/E6zSA+RRYoenMLZOXF1i7WHDjG26gOr/B7pV1zj79IPtXR6x0NM+VE0Y7DisU5YwTIQjahLNPPk5djekfu5VWW3N152m67Yy73/FyJI7e0ZsY7O2QJSlLiz0qGWHTNstHVhkOctbXBlRjizEel2So/AaK7g3Urz2OLj3R1Ybhly6w8JVHeNfNbU6fnzK6bNi77zVMH/ol3PpjvPx1/yOvfEnM5KHPIY/eRDlquPumE3z9kScwB7a45W3LlI9UrG1sv2h7gRQlTo6JWgJtM4gUKtP4PYczFbpbkYgO9WAL47aJWvPQzsjPP4vu9BE6IWr3cHYYfg/W4EYTqDaI0z42Ftiqwvs9UDHCtIExMrIQdZB1zkK0SEuF1ymZkKQJUaxRgJCCjY0tyqLk6KEDHFjocWEtD2ydKKLVajGeTDBNjZQqBCdKNdsrAGcwtUF4j2vCPmWMIYojWu0WQqjgAFKSyjQ462hnGYUoQiaYamOtoSoLnAsiftMYGmsCOkBHlNMxHk+WtiknGbs7O7Q7LTY2uyRpytLiHK+761be/6Z7WNva4dOPPMvnnrvExWqLKnK45WWsK0Jicj7GWxCyjbdXEe0+wjh8UXxL9/PbKk4+/OEP89GPfpQ//MM/pNvtXp8J9vt9siyj3+/zkz/5k/zsz/4sCwsL9Ho9fvqnf5p7772X17zmNQDcd9993H777fzoj/4ov/iLv8jGxgb/8B/+Qz784Q//Z1t1/9Vr+RDOGEQeVNaybPBNFfzVm1cRaQoGlBNQ5/jhJm68hTpwiippYyd7ocWd9hHVBCccst3DlwVRpGenPQtlgeguwWSE8KDSFBG3cXGJ6/SRXmJueBkmjsGAMA1pU7Akc472E46mgkOxo+1GqNEOYjCiujwiL6asVzXOWrwPcdJCacqm4fChI1x44SzGOaqqYjIds7e7g1aShTjlYHuOe9o97GKfKmoxSjtccDFnh1O2awtJh7qu8OU2UkUz18+AqNWjM7+MqA2qqTFNjc0tqVIYKRFpC2MtsY6ocdTOh4N+PZt//vn/TnP6K3R/9H/GLRzAmgqfjyDSkMTITgv50jdg/vTfot/7o8F29+cfA+Cee+75jq+BLE5h1hnBemxZ0tKaNI2Z5CXjPAQBRklEXZV4W6O3z7FU7LDU0TjZMM1nDgjvwoc41ugoAgHGhK9FUUixFj4kRksLWgdr8evf/CZMU/PIg1+hqurwABcBkS2VmB1TPN45oiiI49zMoosjJFPjw4YhBU541jeu8sRDX+NN734f7/3gD3HuF/4pVVOG3BNCoSSlvF4oqTjBC4kwzey9Czw1znmcMeR5zrNPP0H34gscu/F2kmyeM/mYyicYq2lFCZGQIARlWeKVChoVIWgah9YdGixagkgVm3/+CfIzpzn4rg9S6ghZTiFRyKyLNRYhY9o338Xk6w8gdDeM0QgPpRdjL7j4wNOML5/isS+cJ1ru0/ETDpzqkN18F62lFoKMjfUdbn3X66A25Hd/F+6HPkj/iQsMDy6RnytotKcY7KM/8glE9xnE7mnmmgl5NUWbGts46hKUD+4uKTTHX3Ind33Xe1Ay4eDxUxR7e5x56H72Wn288MhRQauVcum5AZP9iv3tTarJANlawHhLXRXIKGL56CLLJxfJUUyv7PDgAw9wbrDHCzuP8bK5Fq1LO4iFJYz3NC6k6ZZ1xXC8z9bGBh1dIOKE0TDnycdeYP7kYV5935s499UHyAcTqr0B6cIBXvaBd5M3lmI6wag2xSBkuDjhQStcdIBRfhx34iDiT/dJvrAFT3+FeOs02Rtfxx03HqR/SPLo7zzC6Df/Aer058he/X+jt2wYrJ9lf3/MTR6KMmd4fo+VA0d59nd/nhOLq7jxgJ1R9qLtBVJIhB1jCoHSKbYuMPU+oqqJ5ldwxQS8QPUWaVrQxDFUJXHcxwx2kVkPNzXI1TmctxjvUIsHqcc7EKeoOEEIDd6hZIrBg21QicT6iFikJErQbbcxSiKQaAVNXeMFQRdX15RVRb/bYvXAIpube1gczlsa68jSDAQURT7rqjYIIbHWYIzDmoYsTSnKikaHTklZ5NSNodXOcA7KMidLM4xskCi67YiimITuqwclNcZYjGmoqgAFxDmsD9topCPKskAIgZKSqiwYDYdEccrm1hbnz6/R67ZZWVniPa99GX/ru9/Mhc09vvjk8zxweYMzV64y0inezeOdxPkG3++D3ceZCnT+Ld3Pb6s4+dVf/VUA3vzmN3/Tf//1X/91fuInfgKAX/qlX0JKyQc+8IFvgrBdu5RSfPKTn+RDH/oQ9957L+12mx//8R/nH/2jf/TtvBUALBIpPKrdxRgPaYKMQhhasDdV+OkEF6WIpAXzq7hWQpUtBN1AFCOjBOUFVAXSGaI0w/S7iKZEefBaIxzYyV4Qk0rwvkG3e8S1hNGQVAvmpGIlthxdSllxJQfcmLQaUw73mGzskec5e1UgqQbEKNR1TW1MCHiKFFESbHNNWTAcjfjLwjehAga6bhxFNcINBiGOO4pJ4pTFToeTcwe4b26JUdxl1zvWGrgwqdjKh0yNJY1i0vY8oiop8yKo0KUnUhqXxDQOmI7JJZRJROMttp5AXQfaq46oH/sMAKN/8/e/6V5E7//biJfei7UV4rt+EPUZhfmD/x2MRd70EjznXpQ1IJUi67ZJIoVtLLYJnSThLc56lueyEEjXlBR72yTTHebUGJFCU1dYY7HGoGYz9yiKZrPeEAynlERrjdY6WD7xYW4tPFoIbrnlZm687Q4++8k/YGtjc1aYhDl+CPlSM1ugvB4weY08Hpw/gZkCgTrrfbAjO+d48CsP8Oq3vI0jN9zEW99xH//hE79PnIKKJc76GUdFXEt/Q0hJFCVYa4kSj5aSuqypm/BgFTpiOp1y5tGvotMWd99wK88bw4iMWEiE1xgngu3ZhvRcG0UYJF5IWklG4y3OpUyefASAtT/8jW+6Hwfe+QMs3vlK2lLSfdv72bv/jxl+8Q/xMzfPb/3Wb70o64DI07sh4+mP/hu8eikquZVh+2bc3jli79l/6AE6/T5/9vuniSYLsHyZ+JHfJV3pYe97OWZY4V5xmMHhY9jjxxnvTmhd2eAlTz9O9NhnmD75ZYbSsHD0JLYcgvFMpxPWn7vM+W88zcLyQQ6tHmJnc5cv/fbnyFLBwo0n2Ly4yYHFjHJ/Sr5fsfHFL7E6XqNz/DZ6N92G0xKTT4n7HXQ34/wXHmXj3Db7maAxjqvNhCyVHI4U/brBWEckFRJBlLToxFngC7VXaC3Ms33pBc48+gIvO3kK03hGO1PynasUgwHn7/8kshjh5ruoCPq9mBvvuYNvPPQM9c4ILy2M1xCT30b+jCKSxxDbl0nrr6PcDlP1ci5u75Lj8dML7D/0HwBoPvtzfOEv3YrnhiPmuofJbc1cJKm04uzVF/DW0j15L1y58KKsAe8N0s8+Q5EAEtxwF6kSTLGDJ0L4iqjTQzYC35UwzDES1KGTkESYwTZxohBlIEkjCfC8JMEKidMKESVQO7zLQwZZ00F32mghSSx4YwOETPpwmFUqjDSEmo1oHLWxpFlK7exMKB/GyHU9SxsXCilBS0VZlTORedCq1XUoTr2z1I3FMevIAUmaYa1je2+XJI6IVYRxDm/97HAlIFboKMJ6jy5yvPNY21AWOUoqRvkQKSTD/T3m5hYpqgIdxdTGsri4wEhN2N1POHtpjbl+n8WFPscOL/Mjb3s1P5lo1nYGfO7JZ/jqE8/y1PkN9ssC61LoHgEG33LV8W2Pdf5bV5qm/Mqv/Aq/8iu/8l98zfHjx/mTP/mTb+dH/2cvMRzgkxrf6iEahxcaO9zFRZ3A9FAeFQmcnIJtQuSzNygZIduL+HYvJA9Xe9CNkboT8OI6QrkIrA0Vr3NEUUpioedqjrYlN65GHOl2OaAXaJkcNx5QDa4wvLjJYG+fK0VJbRuuFRjOWwKl2CO8wHqHdbMHmQyhgKYxSBV4GTs7of2phMDjcNeG9kIgtEZJT20aqjxnPJ4g9ndRa2vESUISJ2Rpxku6PV7bn8cf6NJEbXzSxumUqZNcnmr2p4ZRXTFqSurc0xhDnaWUxtCMd0Msdj0J9uF2CyMU7f/19/G2CbyFugqivihGxinWVOHDKhzq3T+MesePIKzC7q7hTn/zXPk7tQakJHQjpELEmkhH2KIA51hMFD1ZEJkCNx0wnVzF1cV1sqs1DfhZV0RHeB9msNba67oTKcKstGkC6+SafdgYy8LiAm9617sYDff46v1fDKMtrkHWZsWIszPSq0PMvrcQ8npBgbhWroQZs5ACJYMu5cqlCzz/zFPc/YpX86Z3v5tHvvYgFy9dwvtAlvTGEicRIeFWYJ3HzDJ9pFAQycAlEYAxWNNgpSWSCl/l7J15ivmsR3vxIJtFizrqoJM2ZV0G9kkcQ6RJIkXtHFqEboFxjpf8/V9FSUleVZi6xhQFMhJ0FvtYCa4OY6qVN72X1u334EzD+if+9X/izPiOrYMTB5GvuRX/23cgmj5C34Ijxcgu7u0/hH/4QdKb7kH9q/8V8asjNn7vWd73fQkvpHM8/f9cp9kc0PkeSXQ4IVvfZelo+HzY+97DK9/5Dp79N7/B+qf+HZk6iTp6hMNHVpB+giqu0BjJaH/MdDrBn7qL3e/5R+inP8XOY59nfm0TedsJjt733Szt7dPKN6j8lPL8U9Q6o5aS9pWrWAuqKBlv7lLmjmriQ+ZX5DlXD1lXklednMNEgWosETgP2/sbXHr+Ge644xYmaxepi5LGOkztEE2JmZYMtjdZPHYzd76nS13nNJXFWYspDIduzamV5IE/+iqiexTTuZG4mYeLD1Pe3KV8yc3oS0PitbPs/d4v82cfT0i7K5BPufmev01raYG9xx5jcanF3t556CxSphm77T79hR5q9wrHWzFLC0ukGxcxP/a3OP0/PPDirIH2Ei4f4ABXT4lWjyJbbcxwH3SMUh7hFCYfIVs9zGiAjDN8kuASjxntoxNBbUq0MQgETTEKORQqCgdZKbDjMVYE0aprcqRysD2h1TmItDVVmaMEtNKEum4geDcJTVRHY0Mntd/roIRHxjFlnqPiCDkbP8daU1UlHkESRWF3cH52gBVgDU0TAkUj4cmnJVWRk3X7xElCpIKLz0iLwJKmKZFUwfIuFaau8aah0+kihKCuqwCGqyuiKMbMxkOj4T5eQJqkKO2ZjkakaQtTVygds1UUjEcj1q9u8eTTz7O6ssBLbj7BT77lXv72fa/j8Rcu82dfeZwvPHueC5sb1L0VbBJ/S4zYv9bZOsKHtrhrcoSIAtQoESBznCjATjEmQI5E1EInKbKskXWO1xHaxnglYHgF1e3jsl4oGHyKQtCvSo6mLU4ttFlNEk4szHPL4UXa0rB99Qprl55mZ3OLyXhAWeZM85LGBEtXHEVorYDgB/fO47ybAa8ILd/Zg8Ndiz93oQpGCJTUQUwpFM47ZoHFSBG4FV6ESjtSGmMtpmmo64qiCvH1QknUzhZaSqTSRFKh45hWq0N/bp7jS8u0jywRtfv4pMX2pGG38pzeGbKX50wjTx1ZTK+F9ZaNwXoQdGZdrJsRCZVEaIs1+zCeZX7IBF9MMF5CXiHKAty3lkL5V7nSdhu8wjSOSEc0ZYGuCxYyzWo/pqMsg6ub7G5tBE0NPghQg/Ij3KMZQwQfioYwjxUIERw0CBFON7PNRWtNlMW89bvezYGVQ/zpx/8921u7QZ/iLEoFlb3WGpzDOTMDsgX2gBBBZyJmDxlPmCn7AEPB2QBgMsZw/6f+jFvvfAmd/gLf9b3fy7/55V/GNM3s/YV0U61mBYqSeDMLr0TQNDVCKyKRIpsGY8MpzRO0L842mNEObrRPu7VI1Vul6blAA64aIuHw44q02yWJFEIJKi/JbYNwHtMAzpPFMUpL/CxHo5wWaARRloa8ICw+/+93afzXrubKWUbnN7HiOCpawbVO4efAXRnjTz9HYmoWvu/diNVF9pZqZG+e5PAy5W4Djz1NPHyY9hsOYj7+VY7NFczdd4AzX3sKcfgHeMvtR3lGzXHjG3+Mt/z0/8STU8HkU5+j50akC12c2KAsG/KixN90iOFbX8LSYoJ5+vPETY7sdphWnuzICSbrhv2FZfzegOFjT7PypnsY9HvEnWWUHhCngjiGtpYM9h0yC6PB0sCVQYVvGqQP+4bxlm88dj/FYAvUrVSJpMjbVMJjyoK6qlFJi9HlNUYXdhhv7BL1WgEnHmkikQENS70lDt58jEmRsjW6SPvoQY79yP+B569UEDmyQUF9paKVrULaxiU1reICdA6yv3yM+uAq29IyfdMP0q+2iQ+/BHXma7Qf/j30gUWSK/voaYG546Ws/sYvcfpFWgPSS3ycQvcAqi9xLYeki8rHGCfRS0eJO20ml54l1REGA9JBK0NYhXYW1VrEGwGtGN3vhtTofAzO4FWCFQ5iiSwn+KJEyRSVClTVkKiKXtaiLgsiKXFxTCvNKMscKSEvpqTJPM6aEKHSStBKzx7UnmmeYxuDngnopVShiHQ+PJcQuMbgpSdL08BHMQ0+ikiTFKRCR4HImmhNlrQxpiGJUow1NKbBz6jUcZyg44jpZBz2GzELMpUKqQSRCIGGkRYIIcmLHD2j3Qo3ex4JiYpivDWUUrK3XbO1vs6F85eZ689x8NACt544zP/pB97NT3vL6Reu8OknzvOFJ8/w9LdwP/9aFyeYMcQOrxKEr5F2jMgqRKuFGJf4pgQRIRuHqieBudFdQO5thUVWF+i5VeKFo/SEYQHHQhYzj+NIp82J+SWOrSxy8ECf/c11Ni+f47Gnv8BwZ5dpkVM1DcYE1bT1ocRQWhNHgX9hXRgNhICvgC83zgWnB4JYiRnefPawktfEkuH/oyzlwNIyu9vbTKYTdBTSfyXhIWkaOwsCk0RxQpR4nHUY6zDGYJqGCoGQKgiriinD0YiNzXX8M0/hgDhK6M/N01tcZGV5ldsOrbJw4BQ6yZg2lkFeMsgLtgct1vb22KwtV/OC/TKnso7C1dTFGJl2MFrSeJCmDGFmZSAfWvfihX1NdvfI4ogkUqRasJppev2MhU5MOdjkyvnnyYsSoRR1U4Nzs7jyIEiNdBysvTAToQVkvIqCI8cDzgZxtHX+OuH11M0385JX3MPm2gW+8rnP/yW7sQqkWCXDOEfK2Yxa0VwToRlLFEc467DO/YUGhTD01VpRlEHFf+bZZzl/5hluvfvlvOTV93L75z7HE089hdKOOI7xzlG7OripRLjXzodCWCkZYEwIhFJI72mcnY2TQqcmVgrfNMTDDVqTEaY4BElGO4ox5RQdp0SVQCcZlbEkOsMkCWVeksUaazzGNGSRRqiY0kMmNLaq8VGCKwzKKXR/4UVbAwDsXCF7/AyaTmBY1A4VC0pnWDnzBYSvUBendO+/wvl/u0m7XuPRB1PWihrTtEmZR9kCub9Lc2OH7uaTHHz2d+h/dYX0pu9lf2uLxdtv56ZbVjj7jX12XcakGCGcpBVHGGPJpwWDYUTVSDrtNhMpaS/MsXj0KA/+m99FJYpm9VZaT++i4wH3vPnN+M4KCzd1mBSKTvcgS6unKbdL5g7GTNdGjPYtYuSJMslkuM8zTz3M8dWTwcbuLE3jWDi0TNzt0104zM72GSoraYylJKN3480MRpZOy9A5dZDO3AJRlDLZKTl46jh5XqKWdnjLsRt47rFnqB67QJIU3HZTTP2lP6KcP44st/CvfAeNjKHfpb5wmvbOFvXJU+zd8FLm1j3ZcsTw+95D9bHfYvryV5JuPIYa7yMOrVK1O7hpwZyNcDT/zVv5V72806hOG09Nmh2BLKJcGyGiZXQyxemSxmtU0sJMR/QPHWO0v4VY30AfPIVL21CV+CSh9hZXDkJOW6dHJFOayTA46nQbU0+QIkY4jRqXSJWQSEkrbdFUJUWZU1clnW4bnJ9hAEJREZx+0Gm1iCLFcDxBax0cN0mGsQ11Y2efX4vSmkjG5NNpsBY7x8ypT6QV1oQxjxRg6xo963QqE3LftNaBQqvDSMk2DUKHQ5HSCaae4JVAqoiIMJMuyxyFINIxjbUU05ntXioKZ/AeqjynuzAXBLxKhQOLNYynEza3djnzwlm+/GXB8vIBbr3xBDceO8jf+cBb+Im3v5x7fvnv/Tfv51/r4kSaMb7IifQ8MpvH+xohI7wXaBVBNodzCnwFUqC0pCVhbq7PSpaxoLu0tWS11+bEXJtepOjNdUK7zVmGuztcfeZhHvv0FQajAU1dB2FS3VDbBu/+oiUvpURH0UxDEE7fbhawhwfj7HULaWi7h+5HKBxkwFjLEBQnCC9VOuL7f/jHOHfmDH/0B79PXTco5ZFKIBCoSCOswBiDd+GkHkUxKvJE9proyWCsnVnRQCCROpzYhRAUxlKUU9bWLgdqqRfoOKbT77O8ssqJ46e48dgx7jl2A+hbmZQ1G3t7TPKCaVmwm0/Zm1ZsV55zuxvsjvYY7WxidAJO4k1N8e0Knb+NSxQ5WRSzEqcszLeJlCARlvUzT7B99QpRHFqIpq5C0qw1oVchVLg31wRAHowNG4LUepb86kGIGW4+iEiEhzhr8bbvejdKSr7wx3/IYDAOrw3tkOs0Vq001lq0VFhnQ/Hyl8ZC11w71l77/mG8h5BoFQq7uqz4+le+zE23303S6vKeD3yQ5848H4BMxpJlaWCvSK4nwXrvkFIEMZozBO6bRMbR9Yead0Hs66xFImhFktSXjDbPYIRk8dBR5PwB6iyiaCmaGCKVEjtFXoRVb6saqSO0lMRu9vOFJxZhHJQLgfMRabJAPdl90dYAgJSO6tIW1pwAYUBegWYJZ2qSNEdjsd2EK92MynfpLWmWV9sMN0om+QRnG3xZY6eGrBmS2TF3LBccOqrpdtvUW1fxt99MOxGcuHmOnSeWKJ9aQ3hLK5tD2F1sWUOq8W2FsQneO1w+5pE/vx83dweRHkH3lRT5ZeKm4dHPPsKNm2NWXnEL/aVl1u+4l7vUAe5615jLu89x5fc/RmQaJsMKZQRuZHjygc/z1rd+H0pFKKVZOnqMqNPj6W88RjpaYzp1vPYNp2gnCac/+yWGW0PWh4b1jS3aRw5z4zu+F73+IEsvfT2TrTFXH/oi+1cuYiZTpqKHcJbVm2/hVS+9meff+SbWRm2ilSMk3Yr91gqulZKsn6GlNTLK0EmCSTWjeAmvMnzSxrQ8st/DC09jHdqDVp5pHdGb67x4ayCViNoRNRC5mqJokG2N2dtC4PGjCUZWtJZWaSYjalMh+ovo3V3sZIQtdsBb/NwidmEOsT8GKVEHDmKFxSsZtCpKkvUPIasG21QIL0h1i1aUUpcldTmlk2Y45xnv7ZFmGU0N3V4fTzh8CO9pJxHHjhzkyWeeD/Zw55HKURQl1jmSJCVKUsr8L3K6hBZMxyMi3SOO9GwvaQCJaRriOMI0DhXFSCkpi+DUkVqT5zk4i7UgEk9jPdZ5Wp0+ZTFFSxnCACNB7BK81jRNOPi0WinGGJIkoa5qoiiiUZLh3h5pkuKVxjlHFEXoKIZM0xQFUkiuXFnn3PlLdLs9+t2Mu24++d+6lcBf8+IEaZFpGlru011EXSOtQwhLKiNSAUu9OZZ6HeZjxUIU040iFmLJ8ZVFUq0pjGVxsUccCUxVs7G2xrknvsbu5gZ5XlBfc7RYg3UOZ2yItfehFSa1Cg80GeydHoG7FolO0BZes/w5bwmW1rDQ5Oz07vwsX8P/xclcCEldFDz9xOO86e33ceXyZb721S9R1xVRpNFSXY+hV0rhROjK1MaAD619pSRKxsTe01hLXQVMclPYGfRLBvqpCGNV6QI0rK4LtjembG1c5anHHyOKItqtLiurKxw7eZLjx09y49FVRBQzLQrKqmQwLhhXhxiNp+zlE9Y3ttje22M0ydl05ltwtf8VL1PTiVMUNb32PLuXz3PuwvPYuiFOU8ysSLRNc/3hLaRC6ZhIhQ6VsTaMwZQMxFTAXpOteh9m2M4hG4d3nne+6z6OnzjFuWce48nHvoEjFBfOBd6IJKQlXyPT2uvdisAxuQbRctaClEgVOAZa6xk5dpZmbB21d3zjkUd5y3dd4vDxGzh15528/g1v5LOf/TReeIwNQlPnHFKE7o+WEjOzM2ulQngfYbSorgHckNQSmibELljnwRnm4qCVqdfP06tG3H77HQyV4ULlyBNP3tTgYuayCFE1IYdGyQAaNBakQPjQCvZ1xXK/h0Ig5tpcerHWANDpRBw93uHs83vIeJV73p+zKaYIUWOGG8RYivUziH9Z4v0b6B02vPflMf/x4YJtt481AllUjAuJbhqEbyisYUFZLuyNoNjETKdo59FFhZ84XANNZ5XNomY58eAVC0Ijpo7uyhKi10J6yy133g79O9l99stU5ovUckR565vZMQnm2afQAgb9EfkDj1AfXeWWu15Kr7nMra++GxW3OfvlJ9h5dhPtItaef4b9fMhiZwm8Zzre5eJjj3PuodMcXJL0l7qcvOvl1Ci26xZXBOQ33005/CPMYIeL567Ac8+g45S18Yj9Z56iET1s0qJ11w+Rbf8myifE3Q6tlmZhVFJUnqRtSc0UZyqifJdWIpjIAlV6OtMRozSie/o00eYV5q9uovanNF6TGoVNupjYEcnoWhzQi3KZpkCpkCtWDsY0dojQDiU8TVlC1IQQ1FhiXYm9tI47cACTRahYoLrHaQZbqLSLTboIJOgEW4wQXqJQzLd77Ex3KfMCFbVJ232Y5CRxGzV7QLfSFOs8OorwzhDHKeCoG4PzjqpukFLQNJYo0iRpSjEt6LQylBTsDceUZcm0yJnvz6O0RuuIqqxo6pJWux2ck1VNXdc0Tc38/AJlVTKe5jPdW0mSZsSRZjweh0ww58iSlMoYhqMx1lniOEFKRRTFyCTGmZrKGDo6ZjQeoZRCeR8osLORs/OGxkiiJEN5g7dhVB6eiw7TNAE+Z2p0FJFkLVppRlXk7DYlX35o8C3dz7/WxYk0DYz20Coi0zEHs4yji32W04yD3Tm6WYs00rTSFv0sI0010/GAhYU+kYTRcEC+v8mlZx5hPBiQFxOqssI6E4oSY/A2sC/s7CEwO5tez1qRMqRSulnWgPNhPuhmOpPQV/EIETFtEloyJAFb52ealGALvXZznTPhVC0EcRzxwOc/yy2338F7v+/97A/2eO6ppzCzuaPnGi8jPNC8DzwO2ziaOohTlVKhAeAFOorQOpysr3VVvHch80DGCFehlEILjZIOO5trWGcYjvYYjnZ57rnTaKXpd/scOnaMY8dv4NDxYxw5sIjUEWUVwD+Tw4fIZ7jlnd09/uFv/asXZQ3cfKTDoQN9bDVh7bkn2N9cx9lAPm2airKcaXBmv6ckjnAItJYoGR6qycwlpWRQsXvvsbPfJc6inSFSYf57xz338NrXv5mqzPnin/4Jk0kQ2F4b3828weHvCxE2LNPMsFmhI+acn4lyZzkaPqwSNyO2Br6BvA5gGg6HPPbwQxw+fgqlY97+vvfx9YcfZmdvF+c9cRyhpJppm4LLRsx+vhfQOHedqRJOWgalxfV/qxQKY0oipbA2FDwSwf72Nl/74heZXz1E+8BhmqRFN+uRtVqMygovBa00pcgLamsCNRVPJDXGe7QUCGuJlbheSL9Y18pCi5tu7HH/518AJDt7Y6KVVxGR05FNSAlfSCmPHqP9tZqFdskN8wk3zqc80ymYDLfpl/vsC4MUBaouqcYWKSyTSxdxkw3GGxs8tpaz1JIcPdzjiTOS1/zoG9k/c57ioTVsM+WwBmksqycOIm45yvDZb/DMA59FJl9heG4TqyULWYvxkRh98zvwd78DM3iYrWSRvY//JkfvuZMHnnySF77xJNPxHnP3HKW3Mo+8OuDASo+VpTmsCGPIYjriiS/8EeOzl2hJQSkUyy1FPLfE5VHE8NY3M42XmBSW7OwjIRV54VW0X3UrZ9sn6aVX4GLK/J1v5sqznyXK93Fxim3GVArUF3+Ll8aKK+eukKVwx/wCt7/hHr6y8zBxW0OzTVLnVJ2MbDDGf+0F9NYOK48/BOtn6b76XkRrgUlpGM+vkIxfQF14/EVbA7Ie4hDI2OKlgsk+qMBtEtOKaPUwTTmmvHIWoVKEAjWd4mKNLQTUBbLdIrnhDpqixKgI1RR4A5gCRMS+3cObmqh2xF4S2ZwsmqNlHN12iihzpIrQcQzConWXOMsYD/bJVERZzgoIP4dWAi0Fk/GIpqrZ390m0nE4v3qHjnTgKc1G+FKCjmKMNaSRxDSOtNVGVuFgJJSkmE7IkgQUjPb2mFuYxzuHR9LtdmiqCmchSVM8YJqG6XgYvrcK+kZnDUQJ7SwlioOotypyfJLNGCngbImc6VKECwfjOIqomgqhFCpKiHQoL4rphKaucA6sDXyfb+X6a12cHM163HT4MMc6GUfm5lhMk6APUIr5bo/FhT5z/Q7CNuxvbXL18vOcP3uWosgppzlFmVNVBcJBbRocNlTLs+5GsP1eU7DO8lpmQkQhRPgzs2LEhRl+KE7cdcEjhOwE7xsiDN57irKkKAqCYyQ8iKoip6rq0LqbEUlBUJQNn/rkJ/nRn/xbvP+Df4PfmP4aV86fC+AcISDou/G4WTicgii8f1OH7BOECDNBIYLLwwfnyDVnkHeepg7zTOr6+oNcyGCjDQ6SUHmH8YRlb7jL7hO7PPXEY+g4Zq7X58ix4xw/dQurR44zv7pKY30g3sYv3jJb7SrseJcLzz+La2qaWZEXikoT4Hs4BOp6Mcg1wJG4Rmi1JGly3f/PtWHdbCznraVqDEdPneS7v/+HyNKUr3zqj3jmiadnXZMQ7icJXSw762JoHeFmZEdjwn1QYlbM2tkamZUtM2bs9U4bIjzQtQrR6o8+/Bhvftd76XS6HDh6jDe9/R38xz/4+PXvYZpZp6huQmdOCph1MAKvQOFEcB3FcQhCdC4QbwWC2OnwfWYBZA5PGiusg521S7grl0kWFumcuJV9Y5kWBpzEOWiMoZyOEVJhnSBJu+hYgoKUCD8tQwL0i3j1IsgSgZIWHe3ARJGkMbKYIJ2j8I655Xm2b13F/st10Dl5UyOakqPJb5F3JV13C0INie0uotljkFsKmzM4+wS2uMr4zMN8/hd/DR1VTCdjqrUtHnv2dvzzGxyyhkh4etoxlxnu6gser0oOHVphNMzxkWLgFSJq06zcjc49SamoF+eh7mFacyzeeg9nn3iU7t3fTdxrmOzez+7pK8iBo9XJ6B9eoDM3z6Urz3LVJzRlzu6zz9Fazjj88lM8+uWnYK1m/8AWZ64mFK3LuOd+n9byLZSDK2S+ZPNP/hkHbnob+l33Mjr9ZdprX0O/+h24akJr7Q+IS0f1/Fe58MnfoW+3ODF/nMpewhUQtSzVdA3pKqrcUH7qYxy44RLjN/0PVF/4LGL1EEwvUf3BnzHfklSFRS/MYccjKBoWV9q48Ys33nNCIzTIDHzSR0YlzWQLkcWkKwfwaZtotI8tS+SCxre7KJ3hd7aJGgkHetjVFSbFDn5iEL7ElSO8dSiZIaTFlhYlHTJLcFELG2XMiZS+h1hKKuewTuBshTU1tqmZTqfgLVVd0Z8LB+OyCiTwXreDs45Wp4czJohRozR0LLSmqWui2XhF65i6KfHe05hAnh4NB7TbLYqyCnZ972gag7COOIoZjcZBoO8KnGuud1PsTNg/bmr6/R7j0ZC6LomihDTJglVZKawJ77Mug3mgFoK53hzTYhokFEKEwPU6x5omcFGKKQICcRkC66lStNs9pHdMR5Nv6X7+tS5OfuS2W5ibmyONIqRW9NspSwt92ommLiasX3iWrzz7FDtXN8jznLKqyKuKSEkkwc7rZqdU68xMUBhAVNfQwX42IvmLk6263p6/1hK/brH2Imz6s4e/cw7BtcA4QTTTOrTaLdqtbObKkbMuy+xkK1UoIJzDNDVxmnHmuef4+sNf497Xvp7v+4EP8u8/8hG2rq4BDqXDw+fa97hmdZVah5OwsYECWIVEXmdD+FzIfpm9bS1mSmxzfQSBCFAw04QuTxRF1x1HevY7cDNlV1OVbO9UbO3s8MjDDzLX6zO/uEC71+f4yRvpLyy+aGvg0jNPY0yD1go5A6d552hoECiMtaRJEoqBa6Ah36CisPSFCAF91+6xFB5rbUjynZ0MtBRYa3nnd38vywdW2dvd5Muf/SyVcbMCRgaxqxQzOJcPmhU/Kzh8KHeUULPEUQfCBTGbsxh73a8V3oMMOOpyhqzXOuLKhXM8+vAjvPEtb0JKxRve/nYe/9pXubIVQIjWGOqiuK7wFzMBnvOeJI6pmwovgm06FLES5RyNaWYdnjBKilE4IxA6BI1ppdEClBKUu1uMtzZZOnqC3uFTTFTKqBzg84rUWHSUEPUWqK2lpSMMoSVsIkVT/ffnK/3XLqEkTiak8SvpdT+LjldIOhGprFlc7tPe3EMJxcrVS5xTOXayxuMPfhnqmNKtIb0jri7R7z4NRY5qEspaUJVDhpfOE7kGNzxD+eg+OutSlCVOtlj/xGdJpxNWjymwHmVLOspwSJeMjvYZXtwlakfIdA7ZHSLThPjkvYxNQVM1dPemKDtifvc8lyYjKl9T+yPkVz9OR4J18zizT+0lu+uaN9z8Ep64/wGeffB+bnndPRTTnNZCn97JVV59w20MiyGXHjtL/ewWvdVL5PvniA520O2Mg1lJcXlI0uzQdKArChbsPqMnf5tkeJ7544ep1s/h117g0m+epcwL7LFTaJngZEVxdY2rD0woJoZxU9LWNa31p1hs1nhaZ+y/+52snv5D1FKX9LX3YS6cRTz7WewUpCmI9wryF/GJkx4/grE1lGOqvUu0unOgl3DOYLMOqtPBTXtIHZGsHKceD7CTKfGpG0hWjtNKYtZH6/j9AbK2IGqcUkjrSRaXqKabRCrCFwYXabSCRZEixiPSuUXy0T40NcZohJLEOqKaTlDeEscxZVliypx2p0XVWMrGUdc1CIgiSdzKKPOCtKXBGPJiikSGz2UUMc1zjKnxxmOkQCpNK2vNHKkenaQYKQP8UQqct0hvcY0la7VpqhIVxSSRDB1V05BlrUAljyOESPHWYGYHqizLEN6RtLr4mW5S6QCzzLIWRVHg/QwImWaYpsbpDC0EjTFUtkEh8F7ivGXqR2Hc+y0Zif+aFyc3H1vl0JHDtLNgId1cW+PRBx7jyvnzXLl8ETHLQ7nmhHHOhTRFo2DWaXC2Qcw2ZudlCJi/loMyS50FYIYW9zNhY+2DdVM6OWuNi9lrw3jHNmZ2gp218K+RVmdhbxBO0RBSZp3kOpBLADqKUCqErtVVyRc++3luuukWTp44ybve9z383kd/i8lgP9g3CSf2ECgXxgFCKbw1s9GTwLsQUGWsxTVNUIfPAuzwHqEUkQDpwkMaCA9p57GmoqkCw8N5j20kQolZkSbwswe6lxnSGwbDffaH+wipeOLxxymbF89KPBkPieOExju8C5ZqEGE0ISGWMwT9rPOlZh0kcU33c03zMRvbSSWxTTP7HRKymoTmbe/+Lu68+2Ug4JEvfYHNjW2sC4Wt88Gd4/0s3kDI6wyToB/iOvdEzopApeSseAm9Ouc9nvA+YiGxPpxsjAnFpMTw1S99ide8/rXEUczC6iqvfM1rOPex36FWdSjAnEdpSTRzCkmpUUpjbIPWUUDk/yWOi1KKOAqRBH7GXmPm9PHGgw0akkiHdZpGilh5qs0r6MEON5y8kYFIEN0uYxcH7kE+JIlT8kmNFILK1ERRTGRe3M6JsB5RXiJLH+dI9wVKdyetzCN9jbEegyEuCuxXPoOytzF+5gH268/RecuPo5UjTmoW6q+w2ZxFTHq4+hQgMeWI4fYljK9x1TbTrV10d47ptCRKMszXniNbWGA0fzPOzVOXU5bHA1742tdJ4h54z433vJbu3BKvfu+7+ewn/hTqTZKqoMUVFqqG/XqfeO8cdRNiDuLn/gOR34aox4GsxYFXrtBbPooQLUYbG1x+9gK7ZwdcTJ7kxImXcXHzKrvnY0q3hO5NEGNHb2GeNOugTIl88ov40lHflLCgDK31h9nfOU05GbBeO1qnH8I0MHg+Jy8LfC0oin1sHsZz09Kw0GrQB1bwmcMogagdd7/sJAcWVojvvY3zj51FPnE/80xQt9zLxYOvYeX2t9AZXoLBHs4IGutJIgWzPes7fZlWTNpapVm/gDcDZG+eVusY5WgXoTSmmKCWD9BM9mki8P151MpqyESzjq21c7C4QuicT/CRRBoP1ZRmMgVTI9MEl0XBZZlXRB3BXLcPgNIxcZpRjgdoFFZA2umgxaxDah2Vsayvb3PzqWMkSczJY4c4uLzE7mBCEiWQGIZ7e4iZuSE86BvGo1EQnysNMuAIyqokibvYpiavC1opoWsvPULECGfp9Pvk02mwEjc1zf4Ooj+PlCIkrictTF2jk5SiyGm1WmgdU1UlUZxhdYL3AqkjfGWCVs9Z0rRFu9tjOh4hhKZuCkxTYeucLElDR7mWgemFwDYlVVmCd1jzIqcS///DFfuSi6cf4/kzZ7h66TI7uztUVU0rjUNEvQ/WpmvaDKljvNcYV18/PSLl9Y4FhIeEmzlrLKFokRHXdQWFgNpbsiYIGMOoB5oZshxCIeKuWURF2JSVDC4MTyCBupkOAGbZK7OTtZChRY/zWGuQWuEQbK6t8aUvfp73fu/7ufPuu9jZfTef/uP/SDUNkDTTGHQU0dhQCPiqDpoKH9pqQki8BC0EXkqsaairCqkkSl07TYchg5w5iBwemfRIdElTTYN2ZuZEahpzHSR2zTqr5GT2EA6dHOk9pfVUTvxn7t535orSNNw32/wFKVUpYhkFhb4H4T2RVkRaBcfS9Xyc0DUJGoygzanKOvwORBhZCCFZXFrmvvd9LzpOGA/3eeSBr1DOaJ1qVpA4bwP90YUYAjXrZjlrQ0HMdT1uWBc2FHSRkqhZQelmf/eaiFfMCl01Y7BcPv8829s7HD50CCEUr37zW7j/c59jY2cX48LvwFqLjjRJpGnqJnQUrL3OTTAzYbcQIL0PU0shiJTGS4/1YLChOxb50OkBZjMwvIKmCd2yrYtniZKUudVDJK05ps6zUI1pbAttLdPxBJ20cF6QtrMXbQ0ANEXJ5ac/xZK4RC/xuPwsSeRIXE1kPBu1o797EXvlSebtGaL8ApGN8cUOFAW9JKLY3yYqp1jfIh+WgGQ6GDAdjji02uHS2gRvPEqUJHVJbT2yzkn8FHM1whSnyHcusfpHv8xas49sdtnZqskvbmCfOkOr38JPBvT11xhdHbBYPM3cfIesI9i8uMt4cphOVNKLdjhyy0luefPb6a4eYXTmNL0DN9JMS1Q3ZvWuHgs330JL13ScoHPsBMP1XS4+/ggvuesEtx15C9gBly4OePw5jc9ietpT7Bt0r0s3Sul88V8xpwVndMT8QkQ6qFH7FS2ZULqGJOpglxfQQtI4TSkiWu2UzctbFPslpiXJFrp0expXbHHq4h9SPvSvkDH4cp2D579K/cYfJXYWdIQTngJP+i2APP+qly8jiuGloLcajyk5T3t+ESctPl3EZf0QQpdk1N4QH7kNk++CCMGXXimElag6RwiweQVFA6LGD64QZRnelTjr0BJ6/VVEU4NuIZyl320xmkyJoxhwFEUeUAJaY30ALEZK0J/vYxD4qmZSNYynOVWeh4c7AlxDohMa6yjrmjiJmJ9foGkapvmENElDt1XAeDrGG4NzloWFQwxHw1AQ2HAoyKcFVV1T1xO67Q5SCkaDPTyCOIpRcUUcxYE47R2D/R2iKAEEo9EApeOwr3lBVeYkcUIaxTRVjYojhFCU5RRc2P+iSFJXOU6EcXSkYqq6IE1SqqqAWcfnW7n+Whcnv/ubvxEYIy7oDBoTTrxFEeb5Sgfv9zUXjGkaEOo6u8ITxjDGSzp65pwJu3VgosgmQLgIRYVzlgEWZx39JL0e6mZnn7fQLRHXT7s4G5whMthFgwWYsMnP3peYPdyBAGCzoRAyPvhFmI2EwPPow49yx90v4cQNN/G617+WyXjElz//OeoiBx9ahOFEHr5jcHIIPHL2gAtWVq9CN0FoizMmZD84j06iAPDywV4rkXiT43HESXxdJ+FQSDNzLzmHawyNdVQ4YqVnmGUBzpEIiNSLV5zURR7aigTHicMhrZ1xPgJdUUqF0xrrfRB7oYJYayYn0jo8yHWkUSKk82otqKtQxH7PB3+A3ozT8fSjD7G1sRlC9vAY6647bJhpOwL6PtiKQ1skjO8gdKMQYcwjZ50oqcLf+QvGzcy2jKSydUCWRxH1aMjXvvJl3v/9HwQEi4cO8873vIt/9+/+feASyBBY2DTmOisn/C5mmimlQ+F9rSBXCtvU14tp4T0yUrR0RtM0iGsK/yzBeyjLKrSgtUQDRVEyneZMhkNWjh1nsb/EobmEncagsg47q3OMiQFFPRq+aGsAoKkNG5u7pLYCozBV0HgJX2GaktHEsfSZj3Dp3IRV5VBJRN0cQAzXkM5jnaGcTqkrT2QFF598impa8tgnP0XUSohwtLRkcblN0k5oZxnDsaWqFIkQJPWQ7dNPUm3toDeeZ+IbFg+tIsQeW6efC7/7ao7Vm05w4PhBDlWOlcVF9vcH7I+ntA/NcYMTnLj11XR0n1aWceDEUdTCHJ327TjlUHoRj2E1mafXXWJ35zKf/4+fxlqFlJ673vcO8smA8WTIUtyn3N9g4cgR2gfnkFKSVJZhUXBgYYHW3BzTrU1e9+qbWdvd5y0vv4HL585w56138tjnvkxnpcXOC/tsnX+ebkuga8f65S3s/hQfSXztuXJpAxZK2ueeIDJjJjH0lKXcvEg1uIS6eo4og4VWhIkVWDMLy3yRrv11hArxElF3CZ8PqaMoJLWLKWY6RFiPWlxFSI3dOAdlieh0aNp9mpYkShR+exsvItpJi+5Sn91mhDQNSsWYytCJ5hC2wTiH8qCVIJWKqizJIs10NKDT6YNzKAF7+8FOHClFK4kRQhIrFZAGHpIoIheexnncrMt5DQ4piHF4jDMkWYL3lsk0pypC9k0raxFnbRpTsb27R7/XY29vG4kKcgICtgIXWCUqUtfdoF5FFNMxst2dRXho0rRFXRXBMNE0+NjT1DWNm+nfKkfc7dKUY4yr0XFEKlo4Z0CFqA6ZZhRlRTLTuDlTM65LIp3QNCXefmuds7/Wxcl48v9l77+jLbuu8070t8JOJ99Yt3IVqgAUAgEiECTACJKSKFOJpmRZkkVZVsuSLXl4PHlIbo3uZ/oft7p7jG673daTrH7PbVuBcktWoEmKIgnmBBBMyKGAQuV76+aTdljp/bFOFShZgaZQEmHXxLgAbjj3nrP3PGvN9c3v++aINInyNGNdhJ+EROCjx4Q1WOKJLxptuRdP0wisbdBKoWe+IUImIFxEG5htEoE4XFAIvLcsAUIopA/YK7C+n510YdYfiqzk2eIeRJyV8uLbcqak4EU+wuXHxcIkEKyJs1KEpG4apJKMR0Me+NCH+YF37SXLC974pjcyHA75wmc+HdU+eEJQqBnycUVp5B2Wmf8GoNUM8XFEUzcV7aybusb7QJpGrxQp1Yx7EzfWEEKchOkApZEySqaVfHE+TDSBc9EZddaiCuHqFSe2MbQ6rYgA4NAogpDIEF+nnKmVnHGkiSJN45BAMVM8SCFASoQwcaLnjItjraduLG9+65u57a5XgxBU5YTPfezjlLWJ6hReVN0YY0iS6PYY23KRN4RnRpb2KK2uKLoE4opayM3agmGGtFyGWKKJm8A0Bj8rkp/66lcx3/09UfonNXe9/n7e994Pcml99QpRWwpB8D7e4+CvDAgkXHaojRwTa2JRH10qozLLWouSMpJ5g4+zh/xs2nGicM7jZnkrg8d6ixeBc8+dRCVnOHL9Dcx3+ozG2yAErfaACo1WV1etc/H50yRS0koVTggcDRWQhABC4wNc2IxTUr0UpEIhaku9eTFyi7xH1BahBchA1s5ReY4sFO1Om53tKWm/y53v+GvMLe7BTLcZbpynNdcDb8EGhHFUmxfpL/fItkvGGzvMHT7M3sGA7uIK+2+9iaW9y3SWF5hfXGKuN0eRtHAiOoZaZ6mnQ7Y21jCjXabjHabnL2CbGoTByx66O0dr/jCN0uQLe3jTd95Dp92nKkdkvf3k/Tm0zsnSlBunDZubu2xe2GF9fZPx+hZiaxVfj6jMlCbTqCRn38ox2nuWaAvLzvYuaZJw5K7X0xlskHYSDh7o8NAHHqR//QrHX3cvJ7/0BKefPAkyIeiE4Zc/Q6fTotVPEbXDb09pkgzR6TO32OLW/Ud4cvIA450N/FVs78k0wQuDWBiQtebIZM7wuSdJWwWmaCGDRIaK9p4DTLcvItIUkzmUVpjRJZRK8WUVifRzA3RvmbqeIEUCeQ6ThrQRtFttQpKiqxKVZKRKY5spiSRyOtLIfctbbepywtz8Alon2Lqk1SqQIjCcViilmFbNTMFn0FnOoMiieqep8Ug63Q7ldEq302UyGaO0JktTcNFIUWuNsVVc66RkPByS6pSynOKDZtCfZzzeQSfRGt+YGqmSyNNLLK28zXQyQUhFaBqSLCNJCxCWLG8RQqDV7rK1uY5SgiRL2NreYNCfj6aWzBy1Z3tl5D9GMYlWKU1jyfMuVTPFS4FMUuzXWaC+rIsTU9dRpZAk0TwnBARx5HxIPUonEVIPHhHU7AQZHQqFVNGnRM5se69sDv5FZ0+ikkWpSJJVM88ISRzad9lF1M+IqJeREKQguKhiiEKfKBu+7Ep6ZWrtjKOCmBnwXG4FzCSlUimMi9OAddA46Thz5gzPPP0MJ265hTTLeP0b38jW5ibPPvZILKTiAB+ci5tS4LLyhitEX+9dHL09a0NFmE2QFxpvHXVdU5ZxWmqapJHtrRQqK/B1OdsE5ddMxmVGLFZYYWYs0GgKJBDUzdUjQ3ocTdNE0q5WV1APZjySdHbd21oT5ItcE0HkITUuDgvz3scNAkuW5UyrhoWFBe7/1m9Hz3wKXnjmKc688AIuRP5Nq2hRVnH8d57lGGsRYnYfrcNzeW7SjFNi3axgiO2zQCRylnVNohMIIXZPgCAiOz46AEfekPee0889w9kzp7nu2PWAoLewyBve8mbe//u/x7SKpG+dJqQ6gZnNtDUNSTqbySJjAemsnxWVsXAJkZiFwM2uZfRCUTMPFuc8qPieqcqSNEkISqD9rBCKGnaeffwxFhcXOXL9jeg6eg5tWM+l8ura1yepJlEa11jSkESOw3gTMx5z/txpLHD2UqDdVuh2SpblTMiZk3D45iOQZuStDkdfkbDv0EGSPPb7m6pme3OXC6sPs7IyIJcSWW6zu3aW8eYY6gYpc9AJKmnTPrBC+1BCuz1gcN0xlg4eoOgMyDoJWieopIg8KBHlnUMsTVUz2Vln58IL2N11zM4a0nomVY0NApm2EcU8Ip/nwJEbsWkrTrd1GVM3wKxeJE0kG7tn6DSe1uJeyDMGS/N0F5c4fAOIIKGBcdmwvj5ifW2bS+sbDC+cZffSKrunzyG8Juk4jrzmZnKt2XvdCkEq1CijnnjyVpelo9ezubrO7sYFjt19J4OVfUxHQzrLbUxV4urAkmkwtaN2Je0kUF46RWu+xb5bXsH2mU3YPX9VcsDLgDpwCDcd4soKed1RROYwdY0wNaqVoitBaUpcSyOUwtoa0OjaERKBFRqZafxwm2lSIGQG401k0cdgydMUIyCZ7nBg8QDKGpSKKkhnaobTbQa9HqPxiLzVIdEamaTREjYENja3aBqHTmfD//KMg/tWqCYTzp4+Rf+66wnBY5qSxgVsU5NkOcPhNsFHXyKEoN3tUJcVdV1Ge4QQMFUNUqN0RK6zRFHVJVJqTF2SttpIFfkhWZox2d3BdwM6zXB1hZBEpU3RQRA9kZy31E3D3GAOT2BnZ4terw8C6rpGy0Cn02E6HjM3GLA7GqKkom4a6qYiywrKasZfcRapE7D/DSAnxkZZpLGRBClUSvAGqQTOGFyIBMfL3g46TRFEN1YhLrd8YrvDI+IJCIDICQgikKdp9CG5bKoWwmxzEjNy4YtFBSEqMYL3M0QlzGaZRLKhD9HsK/g4IlvrZNZyms1DERGVESJKjK2LbRg1k7421hJGYz74/g8glObQ4cN0Om3e+q3fSlNXvPDM0xGKm73udCYTZaYo8n52ehbMJGDRVEzIOJH3shV+3irigCpjKSeT2J9M02jBrCQIiVQB/GWah0debhkIMethWoKLp26dplctB7TUM4dUGacIa4H1giBzOqmJChUVjfHivZdXzMqCkFR1Ta6TKJtWEo+gquIQrLd829s4dOx6IGCM4XMfe4CyrkHEIqJu6is5gYgFqFaKIKLBWuykxZk8UREW72e8AcSFQ6loMZ9EAz8hFQGPMYa828W4CB1HC3pBORrxxc9/nqPXHZ8pjTR33HMP7//9987eA3EOUNNUsZUzU2b5WZEc3ZMV1ocrbaiqqUi1JoRAmsVCzLrYspJ40kTTMPPfURF9uuzro1Q0XXPWoVOJx7O5uc54NOTYkaMMuhntAI0pr1oOQCwC+60WvtdH5pKFZsLyp/83WvOO1bFmcSHh6M3H2Ht4P1mrIGvltLvRg2L56EGET0E0qCBIlGQyGpGKhLosmW6us7TUpSwrTj78KPncAJWnZIsHUPOLLB86RH95mYV9+8l7vVmhFC0JInIXFQq2cdT1iLGK8vbxpTV2N84x2R4iRAPWUI12I3neVLHoK5YRg2WCyji0coD23B7WS0uaJZTGUCddSruBGm5T9OcYXbqAQYFOIEmiu6KAIByNqMl7mqP9OY4dXaBujlBOb2d3VLK1vs3FU+fYPHOOC6dP8sInzqCSCQu9hIWO5Ob7jtA/2MdPN8ilpNfOabUy2r0uebuP1nvjoFTnsM00Ksa8JAiDbRqKkznLhw/yfP0kPHF1ipO0KBDDHexwhLGWrdxih2NSJ1F79oOUNJN1/GQLXxRQxVaDtRbR6qCSArO7ShDRX0S5BCcdKEVR9Kh0gkwLvEqRMiKtnc4A5QzMfIS0COyMdkmkROIwzmCcAxf5XePhDhu7u+zLEjp5wWhaMxjM48zT9LodVs+dwRoTW/zBE6xFEshbHYSE6aREK0FjHNPJmCLPqcsq+gopSbCGpo5jORprkT4qZQZzA+q6wQZPU9conaG0xDUVSgQ6nTY6Sbm4egEB5FlEo60xGOdxIh6Q0jxnZ2ebomiBN0wrw+5wlyTJqY1BaU1TN3HvLApA0U3SOKTW1Hjv6fb6X9f9fFkXJ1wuOi57S6CjS8mVBTlcgdujn4W5/LDIDSD23aUQ+KaGEAsCZtIt8DPDGQcimpUppWbKDjGbOHnZZC22d2RS4KoJwbkrTqTBWcxsvoy3Filiu6Nx0TVUzDwpIgpjvoazEXCzNpQUAmEdJjScP3uGT33843znO95Br9PmwN4Vvv3t38l7reXccyexM3KosTZeh9lz8bO5McE5jHUztU6UoUo1m+0gJWGmXEnThCRJKMuKaVnifSDPs4gmJfHnr6BOcMVfwweQSpPlEb1ozNVh50OcUaRk5AQJKfDOk6SSRLsZyhXRI6Hk7PQi8FpSVxXGe6RQVE2DmiEWbia1Xtm3jzd967dEIihw7vQpHn/ssVicOTDBI2YEVq0iqqFV9ITx3s04S+prkLDIcwmz9l6ciq5n91ZeyanYJhMkSlHXTeRBOY93Ef1KUs3nPv0Jvu3tb6c3mAcE+687xu133MkXHvocBCjLkkTH/E6TFCMEucyuyIbjP/G1KiXJ03SGtCmsNUgBo3HJqHYUiWTPXDeq2JyNxDdmQwdFINEpzlnSGddFEnkvjbE8+8LzdDfWWdyzh2N576rlAEB3rs2r33grQuS0Wil4g3GCvYPrmGxu4p1leWWOA9cdJdEFMtUUSYqTgXo6YWdrm421VUxVoVTC5u6YaupolKa7tMKB+9/AwnWH6Aw6dHsdpE4QKiCFJk1aBC1j205K4hWKLs6OgAgSFyR1VTLa2mBn4xJNNSEEgUgTVN6mGk6pt9eoNy4CjvbcIqq9iOyv4FXGQr/H4etO8NzuJHLYAsgsQ6VtymQOnUoSpaEu2bnwPM4bGreXdneeNM8gRJvz7dGErFUgQhzwlvYz9s8VHLpujle/+nqM8WyNJ1y4sMPqmQtcOn2OcxfOsCPb2Ce3yZ94GC0bfJqxdfosqdIUg0WczEmSFJFpVN7DWYOQcdBpKiV7VUp/cQ/n0lNXMQscIeuTLLZozr0AuxPU1ONdRWItzXSKaLdJlw4ijcX3cupmgggWNxkTpCVZWSRsTRGhRlDS1V1sZwVfliTWkXpP1kyotzephKSRks7cEj44EglN8AhrSNIcayzDnR3a3Xnc7H2ldUKvFf2IxkGyszuknOzy9rfdjxMChWDaGLw1NMZw8cIlzp+/yM5whBIQfINFoxQkWcp4tMPc/BKhKUmUQqct6npCVU1JkpQQGsbjMVmqkVKxd2mRnS1FWdZ0BwOC9WxvbaCTjElZsWfPCvV0SllPCVNHq9NFSIttovv4TMLBaHczWh7oOHzWVBMQ8XDXarXJRQ4iri11Y0nShKxJ2B1uMm2qr+tuvqyLE+c9Ras18yIJqDSJ/XnrYaZAuTx7JAgiSXLmvAnEU6sPGOLGIAgInRGkwgZPkrWxzZTg4iZkTB2HrYlo8y5E7NHHdkl0Bq2rEkIsfhDiCpqA97gg0DqBYK5ITn0IYB0ykTjrrnASlFKztk/s6YWZWkjo+Nyfeuwx9h08yBte91q01uxZWuIN97+VD46nrF04G1tHDpyMvBgNkRRsTZRFKxnl1Zftz2dzZ7zSkStjbZQRe0+aZjPDOXA2Tk6u6yqiOlrHNkkgkjiFRAlQSuNcLO7UVeQbeO+QSKxztLJopIYIyGBRMzKssxY9ux/Iy3d6NhXaWeTM7j24MOvFJnznO95JuzcAItfoS5/9DLs7u7jgowRX64jYidh+u6z2mvnKXkHbomQvSnvF7J7KWWtPzeTFflbQCF5slUkhqKuKJE2wIiqOLrcINy5c4LlnnuaOe+4FBEma8rZ3fDdPPP4oq5fW0FrSSopYLAoJ+DhHJ0RFWPTdkbOxBRovPJ7ZfKYkwTY1nSIlz2YFC2BnnjrGmIg+JSqSAJsGnaaxJRYCShFt9b3FO8F0OuXM88+RtttXLQcAbrrpABsXtrnl7tuROqOpSkQ5oR5ts7w8T7+XEnzDxsULCBEIGKRJWNvcYmNjwtgKVNai0Zr2oMvRe1/DkVtupjdYImiJCI5ExOIQoeJBQgaE1NgkQSBxIiCcR0iHlRqZ5IBke2OdSxdOU21fQkhJ2umQ9RZxIWAmW5Q7l2h2z+Knu6S5JmktodtzuKSLryqCmzJOFF994Xlkp0eRpTO30ASdFqT9veRzfXKzxWg8od1vMbpwMrZg91nC3CJKp2RpTiIltalx1mNsQMqEEDxVXTHf7ZNnmryjuenmfRw/sYJxt1NVDaOdITtbY3ZWN9jZOc94/QK7585x8eEnKSdDcq1Z2bvMYHmR/sICSZEj8jS+N4ebiLpkunqO6ioiaH5a4m0NWQeQ+OEImWZgPW5aE4xDZxq/M6YRnqSqKbodSmNwocRtXUK15+kW81gxxtWGcuss6dwiRdolSEfYGZEu7kEWHdJWm6xoY31O8LuYsqSppmRZi+3NderpmFarjdYSgkTphH5/DlvVmABNY0gTiRSaxnj27FmMqEVVkSaafrdDt9MhK1o8+ujjmLpCqgTTxAGmzlqyNMPahnbRYjqtmFbbtFst2p0u48kEKSBNIzok8Vy8sEqapVhrKcdTsqKgyAp2ty7FtdMZUAnWNBA8F154jv7CAjppMR0P0YlGak13MIcSAmMdIqTxcKUSbF3NkGLFcLjLjotDArMsRasEhUB+nRaxL+viJLrhmZkfAyCaK4zweIINOB95HUrOiJGXJb64uNHIuGHYWWEgZEOYyS6baorwkZthnZu5o8aiRAn5R3gqUR2kIqlVShA68j2wcdicEAjh8SEODBRCRKUEkdPSmGhxLmcGccEHGtfMbOn9zENFgLUkWYI3hoc/+1kOHdjPdUePkiSKY0cP823f8Z18+APvY+3c2SvcEq0Vzka303gyjm8UZ8xsE40clzg5OcKV0cp4RtBEzHxfIEkTjInwZQCssSSJjlXzjKTliW2j6KKr4tDDq5YDDp10kakkkW5G+vQooWcGaToqa2bGeAhmCAJoCZULEQEBmqam3enw9r/+17nz3nthVhyeP/0Cn3jgI5SmIVGSpraks2GGIXich2RGQnYuzjYSM3TBmBlnKEmAmEc60WAdxhpMXVMUBda6GQIzc6gVkjRNkDOkTicJInjqukHphLOnnucVd951Rb687/BhXvf61/HBD7wPoQRSRLVWZRvyLEUEQaoVxrjZe2Om3JpxseOspjggEqL9vpQxL6umJskikThVOd5YfBDoJErfGxM5KbE16uPI9+CRwRO8xVjLeOPqtnWee/oFDrZSJs8lZIM+xhiClbjpiEQaVldrxhcn+GJMq7+A6HXpzM3RPXGC6/Ys0enPkRcZWue0e120SDDBUHsPtUCnGqESAioOR5MBbwwOj7KWIu/SanWiSZWt2RluMz19nq1L55C2BpmStLqoJEor7eZFqvElmtEama8QroagEO0F6Czhk4RoUN1ww3UnKB1Mmoo2LXyQBCERWpJ3Wwilme42jHYbzGibfq45srLCxXPPMql3CZMDDJYPILMWQWkSIZnYEusczWgTV5ckWYbTgspnpHmOEVHll0lB0lK08y57lrvI6/dSuZsQDmrbUJuKyWjC9tol1s+e48Kpszz95afYXr1IZixLSwM67YSlpR6tdoHw06uWA2FhDt1Y7KRG5wVuOoQ8A6kIWFQq8baCxSWUTGgnHTa3zgAWt7FKIgsSIbD5FNXu4iZbpJ0uSdpG5ZJyWtGfW0AFR5HkSBEYT0bIZor2FUWrjRIe46HV7VPkGa1Ol8Y0SBXJ6XNzHaxzlKMh83NzWAdVWRG8Yzqd0ipyep2Cy8aarVaLfq/Dnj3LnHruJCDodHsoJUnKKVIIJtOKEDy1aaJ6kkBVNfRmf7uxntrE9QXv8HZG3veOpirRaUJVV7GotoYiTeksLDIZjTHFFOE8WSdFzA3I84LtzUsEUtxsCnErSdFJymgUTda2t7fozy/TahfUdcN4PIzItHKkaTJzP//z42VdnEgZVTBZntEYx7Bu0EJhhaSQmhTPZDJFp3FasNKXDbDUFZ4ERERFKIHwsXceT8eaF53sZZxqLOIm7wETIvx/efS80iqeonXkGwTbzNQ5IpJPZ0xHLS+fqu2s3SLwLiDVzIGPyFth5sdx2S8F/Mzoy+Nd9CDZWr/Epz7yURb+xvfS7fYospzrjx2jvv+tvP/3f4ed9XV8cPgmFiZ+pgrxeBxmtrFFtECiwXsuCzv8zIKfEK6Ylnlz2cVWkMgk2uxbR2McBDvzb4logfVxg44DDa+eWocArqloFzl4i3GRQCpCoHaQBIOWAqWT2FsWgnJG6BRAouKARGsdUkuKToe5+Tke+swnKadTxuMxZ06epKlL2kVGVVYz/kict6Rnf8u5WBh5P/MlIRbCSkVekpuRoC8PCHSzWRTxnkY5czxxJJi6Js8j4mfd5ZkVJraQkgRnLR/8/d/hqUe/QpZkTMspjTFsra8jZSRDBx3RO2NKpIREa5TKEOJFBMbPEBl3mW3v43O0s8LFh0CeZhgzm14sohrJzlpV6cyALssLEmfQxhK8o6wNprFoIXEz9dBVzAAAjp5YRIoOT2xaphc2qFVKK2+jO0dp37rC3pUVdK9L3mmTJAo/3sbu7uBMRTLewhlH3S6QnQGl0qQ6uiyL2aBGUxm8DDO2cpR5SwFJq4UXGt0uqJoJm2cvcOnceepyRKpSklaGaA3iMaWpaHa3qMbr1KNLiKbGuylBJchigCh6yLyHVzlOKEJoOLhykPte9QY+8cRjZFojZdxshYy8tzgUTqDyASrdQRYDRsMdlgYJ7XoI61PwOzgmqMESdFeQOqHT7aB1hdUeWzqa8S5VuYsqEnwxj+sUiLSgSJKZ0iuAcxhv0S5gfY0yhtyOkbKmtdRm395bufMNryOIhHE5Ze3CBbbPr3Hmq1/h2UdPIsdjqunoquVAmE7xeUKQDSFJEGMIwxKxvILP2khvwDqsELjdSwx1jXQWWSzguwa3u41yu4jQJvgU1V4GMyZUYIZD/HiTOp2D3jyNtySJpJ9Kcmlpt7usnj9H0cppJ4rt7U3men3KaYVpKlSWEZo4STzPUw7v2c942qCtp6onVE3NSj6PkpJsNvOqagzldEqqZeRWzh5f5BkgqeuGcjJEZzmZarE4N4hoTFZQ1hW74yHzc4t0lGJre4Nev4cUMnJgcDR1Q5rljHd3SdKU6XiXWtW0212cddTlGCk1W9ub7IyH9Do9tJQM5haoqgoXPHiLKgZoYxj050kyxXhaM9zdJE9SEqWY6w2YjkekRcF0UpHNvKn+vHhZFycgZs6v0bAiU9H8KlMRFnchkOYpzFoibsaYFiJunM7N2jtyNh9ACHSmwRrCTIorZJQMq7RPcFO88BgzGwLofLRNl4IgFVJpbDOb7zIjuQpAJrElImbP2RgTzWiSqIiIfhnRCt+72Kf13oG9jMJclkPHtoqZDZnTOuGpp5/ikS9/hXtf91qYzW258cQJxuNv5YEPvn9muBMVGh5ASaxxNGVFnmVXPGCCM0CIsurLm4mQiBBmqM7MD2Q2lDAIhW7NY+pLETUJcbP21s5M2WZDDRFXFTmRUiKDwTsZTdFmG74UgkIneGuQSEzT4H0sTBOtIupmIxoWZhwZDwy3N/nVX/mVCJr42GdVs4LCOEc6s72vjSVNIok0oiKz9hshcklily+212a8IYjcIe8i76Sua9I0oWniwEWhFK5pyLJ01nKMU0yNs+hE453Duvi18WTMM08+TpqmV8zVIBYv0s0QRYiyxhAxvKZpZgquQKKiRP0y+hef/0x2DFhnY/tLCpSSaKmZNoY0UZFbMZvyHCILPKJUM0O6PEtJE01ZNTRVFSWI6de3IH2jcdEeZf+N13Hk0BGKdgfdKUhJEUULoRVNXWPqKa4ucaNNzPYWZjyMawMapWqk7yKCRgWNSjVF3sICQWuCaTDTKULHNpmzNcIZprurhMYyupBTTnfRQXB4/16kPsj5jU2Ckphygttdw493sOUOZrpLwKPyjETmqKyNKAaIrINMuqAzvDXMdzt8y+u/jbWyZMsGikQTZsqybHZ48hJQliwFUoFr59STKU8/8yxFKEmkgEsjijAh93sRvsSkA0LWJkkT2sWAaRa9NPx4CyYVrpoSqhZZd56miBNrNbENbP1suKQzCF8TnEG7Ktr5IHFujJUFS0XK4Mh1mEOHufPue7BYqknFaGOTj/3wT1yVHBAC7PolhBOEnSkiydHtNqpYot64iJ6bJ2kvMpo6tA+QZQhfkMgxanEOVyjc7i52dYekNyXvdCIinmvktCRTKXJxGd9ucUBAz1sK6VFCUTWGwfwcpm4YDkcQAsPRkG5/ge6gQzWt6c/14/rdNFxaXQMhyLOcPYsLlOMheXok2tkHTaI1dWPZu7zApQ1BnmcM5hbYWDtP01QIqUnyjDRdYLS7TTUV5FlBOZ1QtHI6RUFjLePxDlKlaAmTyYhWZ4CzliTVFO0OVVUhhGcyHpFKQbfXo24q8qRNp12gkox2t8dwZ4uynqASFVVnEpqypt1qYes418f6wHhnHA9eWs8MKVVcM1sdJJ52nhPk13dUeVkWJ5cX02iaNrPHtbPhe0mCCBZEhMcvK2aklLP2SyCEmaxXRPKsMzPZiRDAbJqwmCEjPlrce78TF7IgXlzERTRxc95Tz0ifYqaCYUbA1TNzLhHCTKkzax95MTNvmxU6MxTocptIyLjwXy68EGDC5dcTNzdjHHVjeOihhzl09Dr6/T6I2AY4dvx61u98FQ9+6mNMy3KmIFI0bjZLRcTZQCHEYuhyS0mIuClePutetv0nhJm7qgIc3jYYv0WYWdyLGcSnlbps3kIIcRSAnV2bKzOIXsocIM5mrMoIaUpjyPIMtCIYy6RsaHdaOFujpGA8nqK1JJkRntM0papr6iqqI0g1tZ1GibmM99LJWPgE4lgCOUNDmhmK5MpyRsKOsJMNBk8coud9RE0uk0gvT3pm5h0yrhuUir3by3kSFVTmylRrKSVNbaJSbMZxkghK52b+NtHDJklzvA/Uxs4I4BbvbVTdtFtRLRbZTpAmOBcLLimiY7BSisZGYyUhJU3VoEPAWDtDfmT0KAgB72PPPHiPF/E90FiDEArnDEppep0WUidxzsZVyIGv/X1H3/42dJIhdI5VEhcURggYD3He4qqKphwRphPq4TbBGpyPg8pEU5OEwNLSIkt79tFZmMdJyXBasr21iZlOsI2lqafYckRTTwl1g2kqvHXoJOfYDSc4dP3NbO5sc3E4xpiaye4mdjpFBIcttwnDNUIdp54rpVEIdNrG+Qxqj/INGhtVLuWY17z6TVgHZ3d2GPTnCNYxriYoI5gGDzJKuK0zWNvgZYoPkro2uNoy3NxES490huHGKotb63T3XkK3lzH5Hup8kYnSgASdEoo5TFNhmhK21jHjXdIso06LqIRUCin0DP1z2MbhywpZ7SKtia6gaReTDKhVAt7F1rWLxa4WgkG/eMnz4PLvapoJIslhvIuYTd0NyhHW1shSQbU9xCdT5NwAO9lBZQOMGeJrQ67aOKDdmyPr7ItS+rqmdiXK7iAGHXQNrQxoxuRSg3dUxoHzNHV5BckX3qAArSTDnQ2U1ljryYoMJTzT3W1c0SYAF86cwTiYlmMuXjxP0xgGgw7OB0zjGE+njKc1C/0WZxSkiUa4hrqcxINJktJqtwnekkhPngicbZhORhjr6LTaQENjGxpraJqKfm/AZDxiMp2ytDiHzDKYtXiCIs7VmozxTUUzGpFlOYlWZEWK1oJpOSZLMxIJpq5odboEn5Mnkq1RICFQW8+knCCdw7kE28SRKVmm2Vy9+HXlgAgv9WrxlxDPP/88x44d+6t+GtfivzDOnj3LgQMHXpLfdS0HXp7xUuYAXMuDl2tcWwuuxZ+XAy9L5GR+PlqJnzlzJqIF1+IvFMPhkIMHD3L27Fl6vZde8hlCYDQasW/fvpfsd17LgZc+rmYeXI0cgGt58FLHtbXgWnyz5MDLsji53Bfv9/tX5eL9txq9Xu+qXc+XetG4lgNXL65WHlyNjeNaHlyduLYWXIu/6hyQV+UvX4trcS2uxbW4FtfiWnyDca04uRbX4lpci2txLa7FN1W8LIuTLMt497vfTTYzwroWf7F4OV7Pl+Nz/maPl+M1fTk+52/meDlez5fjc/5mjm+W6/myVOtci2txLa7FtbgW1+K/3nhZIifX4lpci2txLa7FtfivN64VJ9fiWlyLa3EtrsW1+KaKa8XJtbgW1+JaXItrcS2+qeJacXItrsW1uBbX4lpci2+quFacXItrcS2uxbW4Ftfimyr+yoqTX/zFX+TIkSPkec6rX/1qHnroob+Ux/63Ev/0n/7TOF34az5OnDhx5ftVVfFTP/VTLCws0Ol0eOc738na2tof+R1nzpzh7W9/O61Wi+XlZX72Z38Wa+1L+jy/0Xt5LQe+vng55MG1HLi68XLIAbiWB1czXi458Eci/BXEb/7mb4Y0TcO/+Tf/Jjz++OPhx3/8x8NgMAhra2tX9bH/LcW73/3ucMstt4SLFy9e+VhfX7/y/Z/8yZ8MBw8eDA888EB4+OGHw2te85pw3333Xfm+tTbceuut4a1vfWv48pe/HD7wgQ+ExcXF8PM///Mv2XP8Ru/ltRz4+uObPQ+u5cDVj2/2HAjhWh5c7Xg55MAfj7+S4uSee+4JP/VTP3Xlc+dc2LdvX/iFX/iFq/rY/5bi3e9+d7j99tv/xO/t7OyEJEnCb/3Wb1352pNPPhmA8LnPfS6EEMIHPvCBIKUMq6urV37ml37pl0Kv1wt1Xb8kz/EbvZfXcuDrj2/2PLiWA1c/vtlzIIRreXC14+WQA388/tIH/zVNwxe/+EV+/ud//srXpJS89a1v5XOf+9yf+Ji6rqnrmqZpePjhh/kH/+Af8Pzzz7OwsIAQgje84Q188pOf5O///b//l/UyvumjrmueeeYZVlZWyPOce+65h3e/+90cPHiQT37ykxhjuOeeexgOhwDs27ePAwcO8LGPfYybb76Zj3/849x8880URXHlZ+677z6GwyEPPvggt99++9f9XMLXTKG8PKTrvzQPruXANxbfLHnwUuTA5dczGo14+OGH+Yf/8B+ys7PD1tYWCwsL13LgT4lvlhyAa2vBX1V8s+fAn/aDf6lx/vz5AITPfvazf+TrP/uzPxvuueeeP/Ex7373uwNw7eNl/nH27NlvOA+u5cB/HR9/kRy4lgf/9XxcWwuufXxtDvxJ8ZeOnHwj8fM///P8zM/8DBcvXuTEiRP87u/+Lu94xzt4y0/8E4qihVASHwKJlCgpMd7inUN4j3MOIQTBORCxSgsEBCL+n/coFEpJIICU2HqMVBKpEhrXIIJES08mBJkUWO9xLuC8R0lNwCNCfK4hzai8wBiHd4EgHInOcaYk1DVKa9I8R6UF481VghDkicIMVyl3LmGDodXr0ykWSNMCrTTB1jghUUmOkBoLoHMkAkmFbWpqWSDQaBqkDCilSIRAS0ndNGxtb2FMw7TcIThHmqXgPVmrS3tuD9ncfoTQ+OApigznDU01xUzG4Dy6lWPReONwzhCsIUkzvDPUkzEySdEqQQSPNRUygBCgEo0TCe/91/8z3W73Jc+B7/6ed3D6hTPccstNfN9f/x7+73//q2xubcU8MJbV1VW+53u+h7/x/d9HURSkacrjjz3OP/65/x6B4ODBQygtOXbsOrrdLh994KP86N/5EY4fP8783Dy9fh8fAu/59ffw+BNP8G3f9i38L//L/8oP//AP8dff+U68cxhjuXDxAu95z29yy003sbu7yzPPPMM//u//MRtbW6RJQl4UeO959NHHOXXqOb7/O76Lm266Eas0Xog/+UX/KV9+8dsv/kBdVzz5xOO0Wh0Wlxa5ePEi73/f+3n1a17Nvn17wcNnP/8g3/Vdb+ehBx/kTfe/mf/pf/oF/uAPPkgIHlPXvPvd72Y0HvPxj3+M733nO7l0aZ0777qTd/+Tf8oLL5zm7d/+7Uyrin/0s/+IvCggeOq64bFHH+XsmbP8zu/9PrfcfAKtFQcOHWJ+fo5f+sVf4p577uG1r7uPn/zJv/8XyoHLefADP/ADnDhxgg9/+MPceOONHDp0iMWFRXr9Hv/r//wL/J//8l+xub3ND/7A3+S3/8NvcXF9nR/7Oz/Gpz75CZ5+9lkOHDjAT/7Ej3Pb7bcxnUz5H/+H/zfnzl/g2779W7nn7lfxwEc/zgvPv8CZM6e5/sYbqaqKui4py4rb73wlB/bvx1nLvffeyzPPPMMzTz/NoUMHqaYNddMwmkx4+9veym233Qaz94CYrT1Ka4QQlJMxvX6fzc0t/oef/x/pdLucO3eOp556in6/T6/XZXNzi8Ggzz2vvod777uP8e6I4zed4Ctf/gqf/fxDrK+tcftttzHcHfLGN72Oqm749//23xJCIM8L8jyn1W5x4403sruzy8lnn2VuYZ49yysYZ5mMRjz//HNMxhP6/T7r65dI0wwhBK993WtJ8hb3v/VbcMaws73Ds88+S101TMspIcS1lRBY2bOHz3z6E5w7dxYBGGOQUiKlQEqJsw4fPCGAtZbVtYtXZS247nvfSbu3jNjeodndxI1HBAHd7oBO0SdNcnSiQWqyfIDUBdPd02ArWsox389ZnMvZ083p5Bo1OU+eSrS1SO/weAIakeRAQEuNk4HGO3YnDVKBxOJNhVIJAovAkeiMvNVHNGOCcTTpgCqbozSCalxhjUcKcMYQnMNbS8DjrAFn0EqgVVwOQgh4b0mSFCFBICm6bRINKhgy7cgzCTbgAoTgCU0FBIKr4r4oBImSBA8oSaIEUgSUVOg0RQjNlkn42FrCI03OWGtkDUEX2DzHNg2EQOLB7wwR1iPTjETOYScNiStw2jCZniSRHVSSYIMgTEaIpqYZrnPmkU/+uTnwl16cLC4uopT6z5jAa2trrKys/ImPybKMLMvI8xylFNPpFAAhFb6a4OohQmekg0XIc9IAOIc3BuEMEokTDcFaQvBx01SaEECmKUiNIGDLMd4ZnKnJ8hZe6wg7JSm4GqEkUji09WSJwNSG2oPQBVKDFgEtJcInOAUqBDAGnWYkaY5LpigBSioIHqUVUiekvUWKTp9Of4V6d43GTHHeorIOKtEo1UfgkAGCgMZ7gpYkWYoio5yOSYXC6xzrC4Q3yGARSuOcJc0L9u7dy2g8RU40VTmKhUmnTQD6C/uwMidVirylUTJQTwxaK1xvQFq0UEpjbY2rG2yANCtomppTTzzE7upZrr/1NWgpECohTzPSLCUIBUlG4328X1+zCf+X5sGflgNvvv9+zp4+Q6vdYu++fazsWUErxWg0QVBz6NBhTj7zLNZaut0uQkiSJEVpTaI0dV2zd36FLE0RQtDKW3z6k59hY32T7/+b30+310MIwdu/869x4eJFkjRBSEmn08NaQ7vdoSCwO2zjrGUwGOCdRyBpFS2k2KGuG5aX92CtZWlhgY31dZaXFun2u1iVEISIZwlmFe5/VpWEF78m/uiPXf40a1IGc3NkaUaWpXS7HZI0Jc9z2u02znra7Rb9/oD5+Xn6/T4gyNIUaw1OKZI0ZTKdopRibn6eaVmxZ89ekjRFKcn1N17P4088waOPPMr9b74fIQRFYcizDCkl1hhOnz7Nddcd5c477yRJEu6+6y70rDj7i+bA5Tw4evQoSinG4/HsdYBSiqqqOX3mDMZa0jSlPzfgTW++n9/67f/IgYMHaBqDNYZnnz3JH3zwQ7z2da+l1WqzuLjE9s4u84M5Tpy4kX/5f/4rXnX3q9ne3eXOu+/iEx//GCt7Vnjyqaf4/Gcf5J6772JufkC702bP0hIXzp9HSMlrX38fj3z1EabllGlVEwR45xjMz8e7JwRaJwgpUAJ6vT5ra5c4d+E8r73vtTz22GNIKUnTlDvvuAPrA4898gif+cznuP+tb+XwkaMkacZnP/t59h86SrfVomi1yPKCj3zko/gQeOf3voN+b8CZM2dRSvPUk0/xhQcfotPt0u32qKYVa5fW6PZ6TCYTptOSlb176ffn2NndZWVlhdfc+xoe/uKXeN0b38jevSuMxxPW1i7RarXxHjLnCMEDgbXVC5w4cQPbW1sIBMF7tNYIBM47IB7iINDpdDl05Cirf3jxqqwFTMb4GpJ+fB+EQQPOEYCSQF2OKEIHJQMqV6RKodMeja2ZUlCOBJcqzeMXpnQHfQad61nyNQN2aIWSXiejSAuksIhEYFxgWjVYnZJ1E1JfI4zDSwVSQpDoPCPxioQKXEPdXWaS7qEeV/jGo2UCoiZYj0aAVHjtEULhZYhfV8DsegsJUmkEDqU0EgdNBUkblSVI3+B9QGUJiXeIeggavLcgJEEFQgCtFQKPVAGNQGuNCg4jLCfrDp/YHXA661IKh9AZLktAt0E4UgyMJ4imIQtdspV9mK1t5GSeLFist1ArMjNHQEPaRwagqZE2IPTKf7YW/Enxly4lTtOUu+66iwceeODK17z3PPDAA9x7771f12M/8YlPABC8JbT6tBcPo3RGmI6xu9uYyXhWFWp02kZnLYROyQYL5P0Fsk4flbfIugNUkhB8RAKQCtVqk80vIls9nPcE75DeEoSi9DB2IJQkkQItBcEZfDOlMQGfdGh0i0RJUgJZlpK32hR5QZIqdJIgpELlLQIC29QgJDJLoeigOnPkg2V6i0fI2gPqesJktMvO9ha1k9RCYZKMTn9Av5XSThRSgsrSiAaZMYm05KkmVRBcjXEO0zQ46xh02uxd2svc3ApZ3iIoRVZ0EUlOUSR02gotHN42JElCluVkicLVU3xZghAkRQeVFUyqmuGli6xfOIUTYFyDTDOkTgk6o3EOY2q8K0n/hBz8RvPgj+dAr9fl+A3HeeUrb2cyLXns8SfixtTvkWcFZVly88238LnPf57HH3v8yulDIPDeMZ1OsM6SZhlVXSOlYG1tja2tTbz3jEZDjDEs79nDnXe8knIyJXjP4sICW1tbPPnkUwSg3W6zvbWFlAqdaKSSJElCmiazAsDS7/d45Z2v5O/8d3+H7uIiXuoIL8Vs/ppX+ccR0K/5Wgj/2c8LgBDiSRaQUs1OWB7vPCBw3pMkaXx+SuFDwHuHFMyuhYcQ2LuyQp4XrF1aw3vPYH6eNE3x3qPThH6/z5OPP8FnPvEJHn3kKzz5xOMkacrJkyepq5I9y0uEEAjB05iGze1tTp16nuFw9JLnwNc+zloLPhCcp5yWaK3Z3d7mK1/5CjrRdDodXnHrKziw7wACyLKc9/yH38b7QL/fQypJlmUkSYoxhkuX1jh8+BBLiwsc3H8ApTRHjhzGO4MQggce+CiPfPURpFR4F+i0O4xGI3Z3hzjn+PSnPsXP/L/+Eb/+a78+Q21fvM+XcxBgc2MT21iEVOzs7AICqRRBCFZXL2KsYWVlL2dPn0EIwRe/+CXm5+eZnxtw4OAhsrzgkUe+QrfT4ejBvRzat492kbN3eQmC5+ChA/T6fUIIpHkWOQM7u5x67tTsuVoO7D9Av9/j4P79vOn+N/GVRx5FKcVgMBeLDGtRSuOcx1pLu91iOhnyyY99mBdOncQagzENwKwgATdDVowxpEnKK267g3d83/dz8ytue8nz4PJakPqcUFU0Fy/EN4WUiKwFQuDqiqaesrN1gbKcMt0+z2RrjZD0SdIBzhnq2lPVJdZrdjZ3OHvuEo9dbHjojOBTZzQfPZ3y0EbGC3aOS67FRu0xnQVM3gIRIHgcgSAzXG0RpcVNDb5qMKRsLdzERbHIaGuMKx3eBqyxNHVN8A7vPdY2hBCwzgIeHyw+OLx38T0dBD4EgojX2nhHXddUVUldGUobqJpAU9WYpqaxHmvr+Bgp8VLjg8D5WDQ6C42zjBvDY02Xf7e1l98YH+aZ5AAT0UKoJQhdpMtIrEZsT/A726ShTZEv4+fmaYxA+C6KhLrcpRyfxpTbIApsaz/WJ4jRFOkblBRIof7Ue/q18VfS1vmZn/kZfuRHfoS7776be+65h3/xL/4Fk8mEH/3RH/26Hvuud70LgGq4gTA1dbAkOkPoBF81qFBhkoqk1UEmGcZWCC0I3kZExdsIO4aAynOSNKMhIhlCBJrxhKBSpIwnn+ACWmlMPcZKwVTleEAnkAfPtCpBZdSjKSpVFKmgwNBY8EJirSUg0EmCKUuacowQGuED3hisNeRFGxU8psniSSPEza0uxwQR8E1JYyqCUvi8jU4zWi1NnhcoLQk6QsrG1gSdIaVCegcSnAs0VhCCIdOClYVFtrOU9a1LIAxCQq49trHIECjLCc4ZkqRAZgVJLgGNNfFv+LrGe4f1gZX9x1nccxClUxKt0VqTZpI065OlOU2AJvzJyfiN5sHX5sDq2hq3veIVOGvQiea+e1/DH37owxw/dpSilbO+0VC0ch776mN87CMf5Sd/8idIk4SbT5zg3PlzlGXFqVOnuP3229jY2OC6Y8c49fxzeO8QUvCvf/lXWFqY52/8wN/kDfe/if/0+7+Pcx6hJEopTF3hnafVKiiKnBACxhqUVMjZz6RJymQyYW5+gDENFy5c5IZjx/FC/tGa5OuO8OJ/ZnuekgolJQGQSuG9J8xOrJe/32638cGzsztECkGR5wTEi4XMrGCxznLo0BFeOHWK06eexzQNIKiqiizLeNu3v43nTj7HzfsPXkGSPvKRB0CAlPprih3BcGeHnd0h58+ff8lz4Ed+5Ee45ZZb4qWYXYui1YrQPbCwuERVVbOTouZVr76Hw0cP8973vhcI/Kf/9D5MXbOydy/JY4/HVmiSoIRiMplw/Y03UOQpb3jj6zn57EmeevpZjh45QtM0dNodLq2tcfDAQUbjWHjVdUOSplRVxfLB/Qx3diEqIuN/IRYpAqQQEAKbm5sMBgOc86RJgnMWbx0f+sMPc+DgAba2d7j3vtfx1BNP8YY3vpGt7SEre1ZYXFhAaUWe53zlS1/guuPXce7MWR566Eu8+t5X02q3KYYjxuMJ+/bujdc/QKfbRWrN+fPn6Xe7tFttBnMDlpaWOXBoP1/+6qMMBnNMxmOqskQpiRCCxjQkacLc3BwPP/RZHvnKl3DOceddd7GxsUFVNxA8UsZ1y5qI3B46coTXvfF+ur0euztDmrp5yfPg8lrQWTyOqbahHOMmE0S7gwuONC8ISkKaIqqaphpj6h2U3kRPLtIeHEIkPRIzW9ucQBRtvPe48QgrNWnexkxwu3MFAAEAAElEQVQ84+EOp895Wq2MbrfFHAW9LCEJY4RQBBfwzRhBICiJEIFpexnb28t0VFLvjEnTFt41sSCxBq0TbFMhZghzQIB3eFsjgsMLhRQCH3wsbOWsQDEOEcEWmmlN8IG0yAg20hq0DChVxAO2Mxil8VoigsFb0NLRBMMopDzkD/Oo2EMTMmxZIu0uOu8SvME1I4QFC4TK082OIusWfrpGLhZI0yVMtYktN5GmS641hjEuLxDVJmo6RjQVrt6FJMf7b+Li5Pu///tZX1/nn/yTf8Lq6iqvfOUr+eAHP8iePXu+rseeOXOGn/u5n6PcWQdrkUrSNFsEW1J0FghSULQHEZkwFlUUBOvABZTS5FkrLt7BEowjSBU3ExM3ZiEUQcSTmC8rpEoJGKQAL2HajLGqRSYlOk3paY11gomzSBdojEAGh2pM5HE4g9AZxlt03oYQT+1eSIR3uKrGIJBphuj2SEJAGostR+i8iMiFdaB0hCKVBC+oqwqHQ8qEVHqyXFA3lspWeClJk4TgHUJJjPMYF2gqi5xOmGv3kMsHMYBKUmzT4Ge9YaEUSZKS5x2MczRlg/U1TTmlrkvaeU6apszv3UPr2CGMB52kpEWbIASNi6eCYV3jhGJaTl7SPPjaHPg//vn/wVu/5a18//d/72yxvIMbT9zIr/67X0NpxeHDh5FSsrRnia989Sv88//9n/NDP/y3+L7v/16efvpp3v++DzAtp7GF5RwnTz7HzSduYNAfgBDcd9+9/Otf/hX6vR5v+47voNOJp1ClFEWrhUpSHnzoC9xxx+0kSYKxFmc9Qs4QGiFRWlKVFdZYvA/sbG3DscCL3Zw/WqH8afXKnwmCitjyi4VE3PyEiNCplIKgBHNzA5qmZnt7lwAz3kj8i8F7QghsbW1hmiYiStaxb/8BOp0OSkna7RY7O7tcd/wYg7kBX3zoIW6/6w6yLCfRGgKkiaauK5q6YXNzEykkg8GA3p/SX/6L5MD6+jr/7J/9s/jyZ8iEcQbvPUoKjDEcOHiQtUvrSKW47vgxev0ub37T/Zy7cJ40SZhOplxcXaXb7SCFREqJkALvLU889hjXHz9K0Wrzylfezv4DB/jSF79IXddopbh0aZ3DRw9z8803cWn9EsePH6fbabN37wqtdpu7X3U3Tzz5OE3TUCTx+sSnKRBSgoCtrS2Wlpdx3vO6172Wj33sY+w/eJBEa+bmBpim5rrjx9i3d4WHv/glyvGIPXtX8MHjakte5Nx732upa0O70+X5555j64N/yM033UTZ1Oxsb4MQ7N27l63tbRpjOX36BfIsY2l5iclkzNHrjjIpS5594jn27t2HMYbd3R2m0ynWOaZlSVXVs9M7vHDq+VhE+cChQ4c5f/483jmcc6RpCgj27N3H7XfexcLiEnlRMB6NmUxGPPzQ51/yPLi8FqS1J50/wNjuko5HmNEEmWc03QxR5MjGoFoW4SSiHMG0RKaK6egSrfYeGgwyBHw9RgaHTzLqaoRNEyqfoYhFik5SvPMMz29z4fwWebfN0soKe3JLIS6SSEuSCoxu0fT3gsxoNoY470lbLWxZgTHYxuKdRSKRPqKNXghCACEFAUdwHiUlLnik0jA7gIAHFYkofrYyNI2JaFGeghPgLARQuoP1DUELpNS4JAe7w47IeEYe5Snb5owL+OmUFMjFPGm7x2hnFTveJm0KVN5Hpl2StE+oHXW1QyI6WFfjp1t4PLLVJlTrNNN1pGyjKoc0guA1sj0g6bdQrZxyd+vPvKeX46+MEPvTP/3T/PRP//Q39Nif+Imf4Od+7ufYPPccidYkOsV7Q/AOxHN0ewtM2z10Z0DeniN1PbKiE/ukUlIT0HkboQTKOmSiEIhIMMoLtJB442iqCbqlITiUiBVr6UoQCh8s06pCBU+30yPNJKppmFY1VQNFr02e5jgHPlisDWgLIliCkPhgkDKQ6Iwka+GDpa6nOBMRgFAkiKSDracgUozQ+KbG2UAzbVDKkbXb4GTk+XqP9g0ZgYCjcZ6SEJEMEZA4StsgtULLnKoxJApSlSCmOxgfSJREKY2SCd4FbDkkCIESCikFKtf0OwPyLKUc7nLu1CmWrzvBeDyiqSvSdhdXlbGURyBVjmsqxjvrL3keXM4BAXzxCw/zHW//dhbnF1leWsYtOP7xz/8cv/6rv84zz57kDa9/PcPxkDzLqE3D//Ur/xff9d3fxU0338yjjzzGV7/61Sstkd3tHR5/8inufe1rcc7yyjvv4Af/1g/y2//Pb7G0ssLe/fsiIiIlCwsLPPXkUzz2yGMcP37dixukMayuXeKRRx9j7969kQwpBHVd44Nn796V+LOz0/OLZcefDaNc/skXH/E1/zc7nc96Blz+1PswO82m7N+/DxD0+l0EgrzI8cHHNpCPxdLy8jJSSrI0Yzwds72zxXgSi8uyrHDWYkxD3io4dOQoLzz/Aq+88w7anTZJmpBmGWvnNnjq6Wfo97pIrXDGsr2985LnwE//9E/zrne9i36/H0+QUvIH7/8gu7tDFpcWSZKEL3/5K7jgEcHz5JOPc+LECe7/lrfwhQcf4pV33EFdljz00EPs7u7SH/RRSqN1QgDuuPMOVlb28ru/915e+9p7ef3rXsupkyc5+fwpJpMJj3zlq/zS/+eXuffVr+bzDz7IW97yFg4fPcrG5iZZlrN6aZ2z5y5gGkOrLUDEYlUIEYtHBE1Vc/3113Pu/EVuPHEDH//EJxiPxywtLXHs+DEaY8iyDOsCzzz9LLe+4lYuXVrHhcizuXD+AjdcfxxnPZUx7D90mFMnT/KpT32aTrczKzSGFEXBzs4O02lJu91Ca0W/3+Pbvv1tXFrfYHNziwMHDhIClFWJFArvA8YY8rxgeXmZF54/xXC4Q1lO8T4ghGB+YZHHHnsc7z1ZnnHTTbdwx113k+U51jqMtUzGIx763Gd59pmn/swc/4uuBQqHOX+edFDA3DJSbBGqKXJ7C5ODaM0Rao8sHSHtI5zDVFPyVp/p6BJCd3BSIp2F6Yi0gKJ3iGm5hRQaLwWBSAJPkoxs4RCu3MbsbDLc3eVMp09r+XqWugnzekQrF9imwo92ESoFndNMxiRSE5RAaAghCgyQAadinkZOYkA4STAGZwxSa4KQBB+ieEPlBGK7UEqFMzU4jxlPQQh8ogne4uuKRMcDimg8QjqEh0t6ic+aZc6HAZXxaKtppwewUiFDjh2O0OOMljiKz3NkkoLXlPVFnGnQMqdsdtHJMlYLsA1NtUWSKbJsD07kOEqcS0iyHqIw1FnA+BEi+/rI0C8Ltc6fFk09xZQOnAcZ8S0pBM1kgkoT0qJF0hmQ5y068wfp9BeQWQIqo6nHKJ2gdIKpI/wtUVhvCVIiVYrOCrSXmHoXKQNBKjKZI0VCCIagOkgRcDIlaEUiNRlTrHE0oykuD+StNlakpFphTEoIUeEjVZtSbhOQJGlsEzkzjfyREDCmBCmRrQ5KGWTwOC3x1hMAKy2YCic8UuSEpIVpBAJDSBJSIaidp7EmFiRZm0QmSJVGZVGaIhFoHTcoLx1WaExjMLYhzXNIWzhV0ASHMhWubDj5xYcjfD63QHt+ka3tTVw5od2bw+xuRoRKp9STMVmni1aKTnb10uzggQMMBnOkac60KsnyDGcsaSr4uz/x43z8Yx9Hq1h8KqWoq5pur8dv/T+/zZvufyMHDh7g4upFrDV455lfnOfS+gZnTp/mzjtfiSjavObe+zh9+iz//t//Gm9965uvnLB1oun1uuzbu8LmxiY6SZFS4p2j024zPz+Pc448SzFK09Q1zjvSLMfNeswRqo3Khsuc2K9FSP68rs/l8iRJUoSQV1gqlzkkl39CKcUDD3yU02fOsG9lBe8d4/EYYwxaSTyRs1LXFcYYdna2SbTGO0fTxJ71ZDLGWotzHmMa9u7fi1KSLz/8JbqdLlmWU1U108mYS2tr1NUU7xw33XQTx48fuxq3/8XrMEOzXjh9mp3dXfpzA6RSIMSV6/Mrv/L/5fDhw7zjHd/DXa+6m/Pnz9M9cIDbb7+dL335y/R7fYbjEUcOHeLipVWOXX+cufl5Njcu8alPfZpv+Za3IqXgwuoFEp2glOarX/4yP/iDP8Btl25lPJ5w6vnnOHfuHItLiywszLNneRnr7IxAKl70dZihZWVdoZRiZ3uLLzz4EMYYpuMJ55uGm2+5Ca0Tzp07B1Jx/YkbUYnmueefZ3FxiSxNecWtJ7j77jv5gw89wNkz52kVBb1Bn7mFBZ55+hlarYLJZML5C+cJPtDtdmm1WrTbLe68+y6++sijtFodlpaXmU6nyBnSJmachrIsKfKMbqdDkiaMR2OapkEIQZZltDsdjLXcdMut3PbKO1jaswdB5ADJAC88+zQPP/h5ynJCmqZoffXWApW3AKhPv0Cyso92ew5XRf6FMDVm9zyJbkFe4GqLT/okomFqPXmSYV2J9YFUtQk+0Ix26WRtitYyTbVFUw+xSYLM2jgfmI53yVptVG8v2tbUkwmTUyfZztpkgzlaeU5bGPZ2+2Q0uOkUJSTBWZqqJLhIMwjOEJwHTVwHgiH4gG+ayGXxIdIRZDzkSCHx1uDSBOEdetZmj7wXQZiMEe02XikSoaCp0RKkElghOJVezxeaHpcmU9Jkjp5aRKd9rHHo6ZQwdIg6J5X7sBiYtUld7UjUQRIdMHaHVLYRwtGELYq0h+r2GdfnMbKhkyyQ2BzZgOy3mMhLYBuY1rjw561qMV7WxUnW6eCaBldOCdYiZcAriVMCV1VxAahrGmC8doaiv8zivuPk/UVUlmDKEWIwj9IFxlQ4H1nSpilJi4TaTMC72HeVEp3kJAGshFT2aMoJLlicFCgEzlvSVo52YtbLVxjrCFJibY0WCmMtZAlKKkLw5FlGlhRUtiYv5rC+xOMRjcG6GmobuSl4pEpwZoQVoFQe2zEhSsgqB1nawtRTfAARJCJLSDoJ9WTEueefopyWqCShaLUYLB1C5QW1GdOUU7xvyNIMqWNhZuuSZjIhLzoQPNPJLnne4tCJ26nLEaapGbRa9PrzGGMIgFpegiAwdYVtDFLHU2Jt+lctB4RQpFlK3dQ89dRTvPe97+Mn/u5/x/4DB5BK8S3f+lY67Q6//973sn//PjbWN1BKceDgQT7x8U/ylrfcz/zcHM469u3bS11X3HD9cRKtCQg+/rGP8ap77uE7vvM7ePbpk3zxwS+gVCyCrbH0+n3SPEVIybQs8d5T1TVaKxbm57lw8SLtdos8j4qWyWRCYyzrG+vUdUW70yHRCVmWzV7Q7IWFP/rpH3nNX/tJCJw5e4a5uXkmk2kkrzpHY5oZqS5uiMPRmA9/OCo6Dh04EOWxZRV5KWomsQ+B8XhMmqb0+n1W19ZQStFqxUX/wQcf4uD+A5imxjQNVVVhrKFpGkbDEQcPHGBjYxNnA5fW1jFNQ57nZFn6p7b2XqoYDAZYY9nc3CKEQJbm/Mff/l1MYwgEatPgrOXTn/40zjnuf9MbWV29xKGD+9l/YB9lOWVjc4OP/PJHufUVt/DlX/syH/jAB/ixH/1Rzp49hxCS973vfew/dIhet8f29i779i5greWZZ59lfn6OJEmYjKdMxhPW19fZs7SM94HGRBJtCLxYnIhYjG5v7/D0088yGPQ5dvQoTz35BFJJgndxPZKCVqtF0SrwLjDc2SFNUoL33Hzzjdx55yv5V7/4y5y7sMp1R6/DWMtod0SSptHkSkk2t7ZZmF9Aych/O37sKDfedBOPP/k0S8t7KPKCra0ttNY45yjyHABrDGVZ0e10KVo5aZbhnI0ordbceOJmpmXDa+57HWma0ev3GAxi63BzY4PPfPKTnHruWUIIFEURW2bi6mkwKjNTIXaXqDfXCeMxyWCeVAnMdAfpPTgTW+RFgUw61Eahi4LaO7RQZI3FNBVS52Adk401RLZB1h5E9KN2NPUQpXN01sYagVcJti5BpiRpDxFgcv4MEyEYdXsMdzWDjmCxVSDH20hXEbxBIKibCikCMtUEZzG1RRUpzjRRStxOkTZElYu1oFTkMAaQjSN4hxUxn4QQeOEART2JxaCzFV4HJrrHKd9jLdvPZvtGttyU9nwPbzS+8kyHF3G7FlkHlOzglWEqS5KkS+I64GuUTKmnl8A4hA844RG1INV9Kr9LxTqN2EYoQSkcrfwwpp7gLpxH6g6JXsBsB2T19c3jeXkXJ4M5lBc00zF2tAPGxKoseEgTTAg4G3vwvgmU5Wm2L56i6PZZ2HOE/p7D1JsWqQROpcg0QcgUoSSVrbA+SpEr79A+HmlVEDhr8L05RJKSiBxsiTdTJCBqg1IpKk2pg8LXDcJ5kiQjCIGUCQgP0lO0OtTG4na2SYsWIctJVIFKU5w3VM0u0tnYUmpKXDUhSbsE7zHGMa12SVsdElHgAwSlqYNCax35DaZha2ebUFYEmbHvhhtJioJUx+3NjnbQUqDSyNrW0tNp9bBAOR7TylI6RYILjsX+XhKtyLIsIi9SATJ6rNgoU7PW4oxBpRqlohLFeYfyVy8HijwnSRLGoxEPfPijPPfMSf7ZP/sFvvO7voPv/u7vhizKmi+trdMYw+EjR9je3sYYS6fT5vHHn+Bb3/atzA/63HHnXTz55JPgPcXMl+RDH/wQZ06f4Yfe9bf4ez/1E7znV38dKcTs5KzotDusrKwQAld4F1VV4UNAJRpjDOPxhPn5OdI0ZTQacfb0GZRUdDodCDDc3WVpeTlKMYEr8MmfecAQBGKuP/vMsywtLtJqFQjifZBCRk6JiP3rCxfOo5UiSZMrUurlPXtQSl/xSwkhnqytiwoAYy1+xpsJIbB6cY3Dhw5RtFoIpfBBsH8wx/6DB2n3ujx/6hTGWHaHu5R1xf33vwnnA9s721y4cPHqJQEwmBswGUVkRycJ29tbDIe7GGvwIfDBD/5h5KIIwWQ8ZjgactsrbsEaw7HjxzFVTbfTYc/yEs88e5Kyqjh35ixCCP72u97Ff3rf+/jN9/wHXv+mN3LffffykQ8/EBUqIfCRP/wQd999B+1OB2sNhw8fptPpMJlOGY3HlFUZh63JyDUJwV9pv62trrKxscH+gwdZXFlGJwnLe/ZQVRUPff7zjIZjXv+GN3Dm1CnuvPsuEr2H9UsbHDh4gFtfcTO/9mu/yRcf/iI333ob3W6XJNEsLszT7hQ8+/QznDlzlhtuvJHgHZfW1jhx4kYOHjnK9mjC/Pw8eV7gnYuIn3d4F9sW1lqGoxFVVeKDZzyecPqF02xubrK8spebb72NXm/A7nAHrTVFK2fvyjJN0/C5T3+KLz38hRk5PsM7R6vVRkiBte6q5cB0d52iO0B2WnQGKzTDS/hpSb64TJqmjMshwjswFjfewcsSMT8geEewUDNCqRRaCb72oDOwAjfdwtdTVKeLTyVSZAQZFWy+mqDThHSwgN3dZLq7TdpZIFk4CpNtys11Sg3b63ChKOi3MxbzFoXdigWK1DhvYyHiG3xjY4HhHSiBNR4dBE1Tx66tUqgkQadZ/PszW4pEZwTvEZ4o5W0afDUhk4HN/h4e6bySs6FHp30UP/F0/By+cqSVpB7t4kYObRU+kdRqgk0UUgl0CMgEaiPxzSa+aUhChnc1nilJ0seHEiUTWski2uT4sIUTgtpuY6jJnELWCltdIHGKtP9W4F/+uffzZV2c0F9AO4cuWoQ8w+xuRnKpsZFYpHWEwpzDeYtHIr1nMhpSjb7K6tlnWNx3hIWlA5STHZx15Ievp3vwMDoEiiQhEQqdJzjj8ZMxX/zQ77J58TTtuWWO3/c2XJqjVY70HlcO8cKhjAFXIUJAZwUkCaKZYkcjnPOotIXPWlg7QYqMVtHC+4CfTnChxqU5KEEuAB8RGSFTsnZCNR0z3VhFJIo0L3DOMd3ZxnvLqK5pdfugJJlO2Lh4Dp3mtBf3cOiGE/S6HdrtgkTIaOozU3g01uF9Q6JiOsTPY//Tu4BnRqSylklZ4usK09QAUaoqorFdmhVopUBqnIvsPxEE3k+vWgroRNNtt9m3by9FUdCYmsl4wm//h//IeDjmta+/j5tvvoVve9u38gd/8EGeeuop3vZtb+MPPvhBsrxgZ2fI7/zH3+PH/s7f5onHn+DVr3k1w+GI0y+cwntPmiY88Xj09rjpppu56dab+cjHPgpSYF0kEN944wleOPUCAEmiSZMUa9wV/4XpZMLCwjxKK1QSTz5NU8+8dgLG/LGTxJ+LesbKRRARXyFgPJ5QtAuyr4HOtdYYG09o0RyrQeuZkicE1tc34gl+Rpz13lOWJdbaSIeZ/fLLiqM8ywnAgw89xML8PIN+n+nEI6WgnEyoqopWq8Whgwcpqymrq6s89dTTPPfc89x084k/4/X8xaPf7ZNnOQcPHOLHfvzHOPX8Kf7VL/4i0+mUTrdDojXD4RA/I/2ur2/Q7w84cugQq6ur3HzbrUx2hvR6PVb2LJPNVDcbmxscOnKEN7z2dXzyM5/m5DMn+aEf/EHOnj4DQbC+ucHb/tpfY/3SKsPhkCPXXcfW5jZpqthY36CpDZubWxw7duwK4hYJjFElVeQZS0uL3HTTTezuxKJ5c2OD7e1t7rrrDqyJ78VTp57je7/vnXz0o5/gFa+4haU9S/zrX/7/MZlMKIqChYV50iRhbn6O/Qf28dnPfI5PfOJTHDp0mH37D7C7vcm+fXuxzvHcqdMcPXpkxjXyCCFwzjGZTGPOZxmtomD1wsUrap2d7W0EgQMHD7Fv/4Er6Fwgtg/brYLPfeZTPPjgg4yGu7SKFkmSMJ2WJEkSPUm0ju3GqxTTeojUKXmhaOotyBRJyHHjIXl3nkyk7A7PYxWopI0pt2nObZLOzWNaHVIvsJNdXK7Rc/MkRiJHKaGC4Ev8uMYXCp86UIG6N4eqFLKaMq1LdBEPlt47yqZBzx0m6e/F75zBNkPGk5KmMmylkl7eo5VUtENJIX1sh3sbkXbvyVsdnPT42tBYFz2rcCQEfFODEpAmWBqwFuskUmoyLTGjitDUOJUwPHEfj4SDbGyPcVnK7nATPQJlCnxVMh2O0bKFki1s2mC1Q+kCIT1atPHKsD38AtJnKOtIwxIhVLhQorTCSYv1U0SeIEJACghO45tdgvTkYRlnLiGqHQKaonMrZrL9dd3Pl3Vx0srnodUh4JCTETor8NMxdneLxlo8HmcdQkhkniMCKCnAekxdYeyQtdPPMN6+hE4zeoNF/MYFnITekWMsHL6O9twcMk1IhGC6uor+eMp0tIszDdPN83TnFjHBR56KLghmghMeLxKyJCHxHleNcUIihUe5Cm09WnrqekwrN7TDNo2Hqolw3WhzmyBA6QRBwAVHIsA2hslwk+HuNraukWnGwsph5vcdQqqAQtHrdummCdOyQhCYW15mz979JGkaXQABayyBgA8e0zicd4gQqJoKF3xsSVlL3dR4BEqnGDONRZ5zOGcRUsaFRorZ6dtHYpdzNE2FVJokzVHBI2x51XIgTTRpllIUBXmRXSHvGWP58Icf4IknnuCf/4v/nYOHDvJ93/e9fPlLX2JhaYnzFy7QabUoWm2stbznN36T215xK0ePHmHvvn2sXoxtlriRex783Oc5f/4CrTwn+NlrDZ5Ea5TWdLqdWGD6QCAgpaDX6TJsD2e8jYa8yGMv2xgmkykfe+CjvPktb6bX70VC6xWC7J8W4o+0faqqYnd3l6eeeoZEa06cuJHWnlb03pgVIFJEaefZs2eBQF3XOBuh+/n5OSDM/qS4Qui1JipeOu0OnXYb09QsLi2yb99ezpw5T6I1R48eufKchBAoramqmsY26EQjasHGpUu8/a99O08+8QSf++yfrNJ4qaLdbnNx9SKdg13279/H9dcfw9QVv/v772V1bY0HHnhgxpWIChkhBOV0ylNPPc7cYI7d3V1e/7rXMnfuPJdW13jV3a/isScewznPr/3Gb/C3f/hdXFhbZXlpmd3xmNe98U0Md3f5vd/9HX7v936PVCueevqZqKgAVpaX4vtDCF544RT33POqKyRoEWbu1ASs90ymU86cfmFWFAqKLCP0e3zn93w3H/qDD/KZT32Spmn4xMc/Ra/f44Ybb+D//re/ymg8Zm5+nq3NTdrtNocOHWAwP+BjH/0EX/3Sl9mztMzc3BwHD+7nxInr+cM//BC9/iC+P2x0Np7O8sRaS5Ik0WlbKQJx5k3wHjdDoxaXFrlw7nzMKxm5KWmWcPz6G3j+mWf4wkMPRk+fvKAxDa1WiyS1aKXo9nogBOPRf+5381KF8FCNt1FCoXQbO9nFiiG94jBmOKZoFSzvuZ7x+lkqasgGmHoNu72NmI6gM0AHhxo1OB8QnXlU4tD0MKXHihJfVUhZ4JtdKEewtMQkSyhKR721jmp10FkfvIFmRJ0WJMvHSXY3aXYvUpkxofE0ZYIQNUmuWBjMcfC6AyRaUtQl6e4mdWOZbG0RkAQCOgSwBqc0XkAIFo0gNDOybB1oXIXIU4LW2PYBLt3wdp7vH2DzhQukZLCr0OMau1PiZImpJgQkMi9QSUrILKYaIqclMtV4McYbSE2XXHXwOqNhF+EjYbpmQidN6aR72aiex1cjWvoAOEtH9JBhL8Zs4asAoUKnx7CmIQTzdd3Pl3VxgkwgOEI1pt5eJWhF2uqSBIusyyiPJWC9AxPwQuDTApFphBLYqkSKwLgaoeox5WgHpRP0qScJX/g47e6A+b2H6ezbS94boHTK8qHjbJw7i3MNZ770Wa6/+RUM5gZA3CilCjhnUcYijCBN09kp1EKR4dLIgk8TqCV0soSs2mI6Gkeeg8pIpUcphXNm1nfWiCIjSVv00oK8u0iat8l6BTYEpHc4a2n351haWiRLMroBDhw7Ho2BrKGamkgalAI9c46tm5gkAXC2wRpD3TRkeU5wAeMFKMVwdxdfN5H1LSKHwToTpdYEVKrwjb9iDqSzPNokS4kIkM162FcjnPcz5YDEGsd4MmZtbY25uXla7XaErGfkvbm5ASduOkFjLHuWlzl//jxCgHWeG64/zub2Nr/xnt/kNa+5hxMnbsKaeM3qumY8HvHB93+AN7zxjTjvZk6fKkqFlSTPM/r9XiQ0TssrfhbGWYosY3tnm26vh3PRUMk0DY989Svc+opb2bOyJ8Lef7Zh4h+L2NbZ3t7mwc89yP4D+7jh+usxJqIeQsaTuZh5IkSzMB/bLjs7NKZhZ3sHwWXlSIxiJhMP3jEej3jkK1/BWo/3nqWlZd705jdSz9CVF8kvgo3NdeqmZnttkyOHony73+9z8rnnaHU7JEnykt73Px57VlZ45NFH2beyB+/jhnj46CFuvOE47XabW299BR/5yIfZ2t6mqiuMadh3YD87G+tszfL7wvlznD97lkOHD/PqV7+atbVVVpb3sLO1QdPUHDx8kBtvPMGkrNje3mJ5eYW5uQGnnnv+ilpoOjMr/LZv+RY63R4AVVljjWE0GrOUZtGPJoQoRx3ucml1lZ3tbYpWizRJ2H/wAEvLi6xtrDMtpxw8eIiN9U3Onj3LnXffxX/4rd9BztRiOklotVosLi6gE83v/e57qcqavfv2UZVTbr7lBIO5OT776c8wnUxZWFiMbcfNLRCCPM9ItCbLc5qmYToeUwZmsnhHVdVY52i3WiwtLbJ64SLWNgzmF67wpEbDIVJK8ixHSElRFCQ2iZ4xTeSjVVVFURTfmK3P1xkBh+72qUc7JLlHSEUdpmxP1+jlA3bOP8Xc8hHmFg5QNUNGo61oMG8NonGEyTqqM0DphGY0wRuP0ynOgBQZUCGCwE0maJEQXImozlPPt3G9Pq2iB9sjGuMhb2HHI5K2o6oEImmR772ZavU5qLbwKiEp5qnKXc6c3WVtq+HgsSPsXeiTVbvUkxKcmNn+B0zTIIOnrqZomaCdw0yr6DLeTrDBYStPQ5fy6GvY6d7AUC4yfGEdve3xjYCdhnpnglQZptnGokjbPUzqsOzQTIcUvoMMgWayhdL7QGUU+X4at4MXDWiJEAMUKblPCfUmIhX01AGaZIOmWiMRfZTuUNshQZTo9hK+mZD0jmImY3x95uu6ny/r4kT15pEi0IgAy3tx5YjSe0gkSbsF1RS9s42fjPFB4oxDIAmTMTJJyLt9gpDomeShHA4jv8MYpNJMLl1g89QzCK3I8hb5YIFiboVjd74RpQTe1mStnKzVIjRTejqQzjYshEQiSBId5c5JGu2svSPMTkiuldIpNFmW0WkVVChqkTBIC0LRwWvNdDShvbRCmmXUu1t4Z+h1O3TaXazSOAHSOabTEl9NmZQNk7Im0QmyjuhJoiK8H4C6KqMrqADnPM55vI9ytiwtMKahMeaKDLWeTpiORnR7PdJWH0LABoFKNYlW8bo6g1cBh0cLOduwE6RKEMIxGe1etRx4+uRJDhw8OGuVRAJmq9WaqVAUaZqitCI4H42pWi36Wc4P/8jf4stf+gpPPv4kJ58/yWg84i3338+//Xe/xtraGocPH6Xb7XDddUd45JFH8T6QpRm9bi8qf2boBAKC95RlRZbl5Hke1Q4z2H5zfZP9+/ays73N3pW90f3TB5IkxbpIiPazgkWJP+vt+EdRE2sj/J+kCUF4mqYhzZI4SyMEpBDRiyJEOeihwwdRUnD4yFGOXX8cJRXLe/bMTNskUkmcc6ytXcLOuCZSCgaDAYNej+uOHuHv/r2fIM8zXnj+FI899ji33HoLQgjOnTsbVV5NFUl43pHlOcvLezhx08285zffw/zcHJtbG1ctD1qtgl63y3d/z3dx/PhxVlcvMhoOGczaHD/wQ++i3W7xG7/xHhrTUJUV73/f+3n96+5jvihYW1tnMD9HnmVMxlPKusY4Q5anvOX++zl39iyPPfY4d95xBxfXLvHss8+ysbHFgYOHWN6zwpnTp6OqBmgVOZvbW9xy661sbGwggLW1S3zowx/hVfe8invuuWeGVsTDwdGjRzmwfx/Hjh3nkS9+GYDVi6ucPXeWM2fOcdfdd0dlzitv55FHHifNUrrdyD3z3rFv3z4mkzFfeOhhkjSj1ZJ02y2OXneE9c1N6rqh1WrTasX2cURooiNuUbRiW25aRp6UUuRZTl1VIOqZ+2gVvaSMpdNtMRkHtre2mV9YJEsT+r0+axdXGY8n9Po9jLXMz81R1TXdbhfTGPI8p2i1qKrqquWAk45GC3QrodxZIxssoX1KMCXjPIHBAjvr5xgs7kGlml53gBeGyXgr+oIA1jQY2+BdjQ4OoQusadCyiyQHLwneRIt5nRCsJd2qsFNDOdcnHWSInTFmOCFJO4SxwdRjVNrB9/YjFo/jx+v46SbBGFRnCVik3D7Pc488x8VOwXI/oSVSfNrGmgYpAiHrEIJAeE9tGkQiSNoFQgtq1Wa6uETZOsgkOczmsGF65jxpkZHaDFnnTKvzTMpV0tCibk4TFOi5GwhKQWVIZIqyyxACtd9F60MIlRCMxyeWEAS56iDFHDI0lGbENGyQJwllFQ/19XSDdudW6nJIcNFaX+fLWGfQyRymKRE6IPPO13U/X9bFiRM2uqGKHkIHPAaxtYmdGzDVGbI7h9p/FGkaQlqQBRVJSJsbyGqM1zLa6Q6HiNqi5yTOGMS0BD97A2uNTlNaRUavndPKod2TDAZz5LkmESAJJKodBw+qyOOIsq5A1TQM+oPIxRCCIAKKiCgUeYsw2MdQd2jIsF5SBcl8K8WphISGeWfIMYgAsrsf7wVGxMJBaYk0BmsdeaIJqo03FmstNngSkSIQ2CDwxHkPeScD61CJjFwWVDRfmxmCpa24mBhTYRpLmmdIHGmexWGHAoyHPCuIBsuBQOyVmqZkOJ3O2gOBajpFKWh3elcvBy7zI0LAzFjsxlrSTJFk6aztFNEqZqfbtdVIzrzttlcgheDSpTUGvT7D4QgpAo8/9gS/81u/zQ/8rR9ide0Sg36fLE8RIpDlKZcJq7ETI9jZ2cU5G8cdzE6dSskr1ujBe/IsZ2Njk9Fol431Dfbt38/9999Pluc477HOobSOTmp/nt9JCJx89hnqpibPcw4dOsx0MmF7e5v+3PzMPj5AAC0VzjsWFxdptdtsbW3hQ+SWvHDqeSAwmUxmnhZNbI/lGUoqNje3qGvDT/z9v8fTTz1Jkmim0wk33nSC1QsXeeapp0mzlAvnz3PHnXfy8Y99DCEkzcwIrqqn3Pvat/PgQ58jTRKefe7Zq5YHk8mU17/utdxx1520Wm2KIkdJweqFNW679Sa0Vtxzz6t45ulnuLC6yt6VPYyGYx579FGW9qxw3ZFDmKbhhTOnueUVt+Ol5Ktf/TLOOSrrOTA/x3g4xDQN3nnueMVtGOd4erTLDbPhgx/8gz/AWMP83Bwnnz3Jd33397C0vIiezehy1rC9tT2rMeO/Dxw8wNrqBv1Bj7zImZuf5/Of/zxNY2i1Cqxz9Ad97rzjDp549nnSPKPTadPrtFleXmY6mfKRD3+Y4XAUxxMIOHT4MN1el0cefZRer8fi4fhzQkoa09Dtden1+lE5NDukpFmKUgqtNGVZMZibi3PIgKZuGI9GV9q8S3v2kGYpWmqaZjbqIk1otdtordFKYW0k2SqlII3t0aqsKNrtq5YDVAZdNsgsI6QZ9WiL1v7rCOMR9XAHNbeAm1vAXjjD/OIe0k6LVj6Pl5pqe5NgDV74yBH0YMsxMnMgPdY1sV2UtJEGjJ2iswIhA3iPGDfYqibM99CpIpQlthY0TcDXE5JqghQalfWgu4xszdOMNlGTIU4EksXDhOkOtRCcWZvSHXRZOHEbmdLYF57FpxmtlYOouX3knQHpXJ8ka9FYmJSWC2tjRuvrTM6vobfbpGEvrlxHhB7Ge4TNEGmGzxRFciOy6BHqBleOUD7F2YDWLbyHRKsrgwil8viWRlmJtoq6Wsf6CYqckAXGekLSjHFbQ5S1mOk6Mushg8I5T9OsI70BEnQWr6uQXx8p+mVdnJTCkkhJ2hqgTULQCWb9EvL8RVSSExKJa/WRWUYyHZElGen8EunKdSgbHfR6KtCabJO4mpZWDPKEXisjz1LyokWr3ZrZss9cZJWIA5SQcViSFJHTIuVsc4q23WHmOOGtQyUJ5WSMt47SWtaCYk1kbE82GAaNkB7ld65Y6w+FJugETEmiA508RyvoFglFksTZPklCcI5SKypZIJ1DmAYtBXmaoKXCuij5s85jrAOn0D4WOt54qsaCb9Aa6sZHK3IisSoQnTJVkkVExVlKU8865QKDo2nKOEnTNhStLlqnpD1NUzc47+gM4iRQ+3Xq2r+RaBUt8iwnSZMrk6WtMaRJQl1FDwkpJVIpNjc3+OpXv8qzz5zkfe9/P9/7zr/Ovffdy9LSEsevO8L6+iZaaRYXF9jc3OT3f/+9KKlZ+v+T91/hkmXneSb4rrV9+Ijj/cmqdJVZ3gBVBUuYAkmQFEmIRiND9ci0IJAtirrQUKNuGbbEkbpHGpmHlKZFAoRAUCNKBEAAJOFtWVRWVmal9+54F3b7vdZcrJ0HQEtPC5SYF3y0byrznMhTcSJWrP2v//++95uYIkqisiBRCGm6DFKasd3tW3cYjoYlQbPAiB0VRWHm+JZt0Wy1iGMjImu1W+R5RiUIjIsDo/PwXA/KlfPtCc/dYsUwDMw3NNtbm2xubTM7N8udOysIrWk2m+WNwRRKd50RqlDs7XXp9Xv88A//CEopHNvk5GhlcoaMiFYgLZut7V0+9/kvMDM1w+z8HL1el2qtZoSxZc5Oo9Vkc3ODkydf4wff/35jo9Yaz7YYlW6h7Z1dtrZ2uHHjJocPH7xnawBMJ+nZp9/M+sYG3V6XNE2QUrK8OM973vMemo06XuDjBwGzM9McPHSIH/qhH+Kzv/tp/uWv/mt+7uf+KqNRyKA34OSrr3J7dc0InpUijUKGgyGTU5N4vkfFdxmOQvIiRyC4dvUqfhAgLYvB3h573S7VSpXhaESapFSqlTKN2GJvZ8cEj9om3yiOYq5cvszS0gK7u13WNzfodAyaPvA9PM+n0xnn3IVLZErTatRYWl6iu9fj1VdPMBqOKApFZ6yN59rMzc+w1+tz4fxFPNen1WxhWRZeYFxthtFjun6WZUYx7XaLKIzY6+7RbLWYng4Iw5BbN2+xsb6B5wfsdbusra1Tq1RMZ63UJMmSWFqpVPBcl2q1Rpqaz7/neTz00MN0e71S3yTZ3fvexJD/NVfFDRirT+NYdYZ6m97eGuHabeozC9BLSfo72I05rLEFdrZu4jGNJSVxFCJ9HxUrVJqDlSMDjyIaoZI+0rKR0jNUXhEhXY0ajUiHI1OAOV55phAUexnC85GBj1Y5fjCGKCok3R7FYAM7T8m766jaONLxEcLCdyyS0QDptChECJU6cbWGs7iE7Xu4U00a3Q223zhFtxMxmj2Kswd9JyftZgwHQ3aS63g7UE+XcLIqyo5A26X+zUbYATWxhOs1EDolzrqoeIQrGygdIi0XZcdIodCyQNtttMrJq4Ik2sEKd8mUwJZ1XKtDUgwQvgPFkDSK8KjieuNIr0WORVwMEI6LRQ3b9rEsj1xH5GmPwv7eNIh/rIsTZ6eLHfgUe3s4jkurXseZXkYO9mjUqsRRiNeoU3FdfNtCAq4VI9NtXK9KpWnTCnzqtfvMIvF9UzVKc8OwbIlV0j0FRt9QFAW6ZEcU0mGATcsyAkkpJMKy9wPXhJAUosBxXXa2IvpxytVKg26h6AmFk2VY0Q6p3WJHBzgaivQOo7WbRjSkLbRtUWnMIi1NvT3GTLuK5zr4ykJozahQFK6Hb1fItUWaRYgkoVAmu6HmB8YXXyi0juntrZJlGbg+eeEAOVXPx/d8bCHJshStc3zHIlYZWVZg+w7CAiEVeZKaDoVQBuzjSYTlgcrLD7FDYLtgGZqhbTns7m7e03Vgl9blfn+w30GZmJhgOBiaglJKhFBkWUbg+bSaTfr9Pp/81Kd55Vuv8sM/8iNMzUyxuLTE2XPnOHX6FK12C8eSnD13ngeOHmVrc4O19XX29roURcHu7h7dvT1cx+W+++/jc3/weUbhCNs2wXq2ZXKGKhWTbZHnKdVKhRs3bvDyy6/w8EMPkuU5R44eRUi5H5wG/zm2ybeL3bsjnSQ1JOE4jnFtyYMPPURSzvezNEVoSpKnKsF/komJCR574jFeP3nSsD+SpPy5JcRM2qyu3WRra5szZ84yOTEFWtNut2k2GySJIcQa7olmMBwyNjZuRorKOLukbzqH4+MdWq0OV69cYTQaMT8/f0/XAFoxvzjP53//c3zxy1/myJFDPPjgAxx7+DgHjx4hGg459eoJVldXGY1GvP76KX7w/T/Ie557L7dv32Fzc51//+9/m7mZOd75zrfCnVVOnz7F1tY2nu/RbrXodXs0m00qtS4z0zP0+z3u3LzFjcvXue/++6lWqrQPtrl+4zqtRgOVZzz00HGCiilCTUdKIDF0V1UogqDCwfvvZ2+vy6FDh6jXa0xUqly8eIHn3vcncSybl198menZWR546Biu43H18hVef/00QRBQCVxsy2Ks3aTVaXH+wkUsaVOtGjaNlJLA9+i02zTqDZBGI9VqNmg0zYgyiU3g5dzCAjvb22xubrK9ucXs7Cy1eg2EZnx8bD/V2bZNSOFwNMKxTcHaardwPRfP93AchyAIaLVa+JUKbhRiOy5FrvBc954tgbg/IOsM8GtNKrpDMhgQxkPCtRX89hSEPUa7NwlaRwimDhH2b4Fw8OwGg70VEGaspQtjN7YcB51qiiRGOGWarypQWEjHQ6URShfoNDWfM0fgVavGDjzqY1UDcqmwtYNX9UkHfZLBFp6Q6CKjcOtYQRVRqdBYmCZ1bYLpFotLEzSchNraVWpraxTCYd2eY/PJn2agNaPNHSytKYqEInQhVrR0E1+NI6VhVeXKwrZ8iqxAChfL9kCEFDoiT0MsIbDcBkUWUVgKnAht2UZV7ChSb4MiV8hhhJXoEt5pQG+pPUC2LLK9TdzIxrUXkY0qWjmk6QjpWrhBFaUDg9OXkrwYghWTu13ibP17ej//WBcnM/mAeqHwHIfA0+h4FxFY+PUpqlUHV4zhOjZe4FOvN6jW6jiOi22ZE6ICdKH2CZlKGSuUVarqtdJkOi9R4LoMUgPLtrGE5HJRo9UI8PSQcJQaHYpS6KLAKt0surTkVut1NnZuUYsyVFBHOzZ5ptj0HGK3gsxyot2bDC69TBJ1EWFkcPy2ZFjvYFWrbLc77LUbLMwuo6VFxW1SZBnFICeXFrZrI4sMqQWj0S4qSYmRFKrA9ypopdnYXGfY72JXKzjVGq7topQJD6zZgemYYGijnpS4gUToHKltbMfFqcpyZFCQpTFFmpOpDOE4oLSxF2pMMJ5t9AdB5XubMf7XXJaURoiLJooiPM8nSRK2tnewbJsgCACjsXFdh4XFBTa3trCkxLYsbt28xb/85/+Cv/O//C2OHT/Oz/1PH+LjH/stLl68SJ4X9Po9Tp8+vV8I3LxxEzRm1OP5xHFMq93iwQeP8eq3vmXsmYJyRGMEq9UgoFqtUq83aDabOI5DoRS7u7tlKCSEo5BWu8N+aaK/u39y9zIuKyO6TtOUMAo5/MARDh46iOcZ9oG0LG7fuV3Cw8y/cxyHd7/n3abb49j7sDiAI0cPc/XKVYSAZ599BlUUNJtN5mZnS3txSBD4+J5HYVukacprJ1/n6JEjNBoNrl2/Ztr5ts1wOKTX6zE7O83MzBRKwfve9759kNu9ujqdDq7nsrO3y2Aw4JWXX6XIC5I0ZXZ2jla9get72LbNWGeMPEnZ2txke3ubYThkEA5pt9tMTU/y2uunyhRlQRRHnD9/gcOHDvHud72TsbFxPvPZ3+O5930/O3s7WLbk2IMPMjM7w9lzZ83oQykKrXnhhRd505ufYsKaKIsEH0cKpNaUhAM8z2MwGqGl4NixY7z+2kl29gwifml5mdWV2yiVcez4MToT03zqP/xH+r09LCmRAoIg4PCRQwxHIWsXNqhV6wgp8D0PKQRzs9MMR0POnj1PpVbD8zxmZqbxXNdk4dgO09MTrK1v0t3do1qp0jjQQEoTt+B5Hq7jEBeJCfTLDdivWquysb5GEke88spL3HfggKEUYwimQgjixITR2bZjijLHdJrv1ZX2B+yuruBXG7jVOq2JRdTWOnG4h9papdKYQvfu0M/O05o8jl+bo7tzGaktau154siIQoVUCJSBtrkuOouN8UIphGehixyNokBhaY0SGiUMmkELC2yJHdQRlo/l1XCb4wivipOl1JptE6cQeKQVD+lX8FyLuq2YlTEHrR28Syco9tZQTo3z7jwX8mmGukXV1WTRCNefoqdGRMMVnFqArEpynRF2NhC5QEQFQR6gE420fWwhUHmMEjEo06kvdE6hU0RNoGSOdCRKD8hViihSktEA2w1I7R6u28HSFQJrgkxFOEqS9ftUiw5uvUoRCAbpEJc2slbHkR5ZtItAIoAk30M6GdoSOHh35T3/xeuPdXFyZLpjyJtCIC1BEDQIApdGrUm1XscPKghLopUy9lldgNJGBFooVNlAF1iI0hpX3C1A7iY/ltkktmObIqXMxMjznESC3NsiqzolU0lj2yYXoVCFSYINfITWtJsNHn/kITa3d1hb36K7t8Wd/g5YAsWINO6TxbtYrSauKsCrkKcxeRaTjnbQ/W3ylWsMZ1psbl5AelWmxhfwqx28oEpSeDjaRqo+e+keRSiwUgffraGSgvXtW2RxSDwYQJFhZQWb2xvUay3GWxOMdabY6fUYhDHC8anVG/hejTCKqdjCCH11Qa5yVJ6jVIF0fBxXYGlFkeXkaYzWOUWWo1PIZUiW5fuv6b24kiw1Xa08ZzgcmtONZYE2WpC7jolSgoHreftTEse20b5H4HncuHETp+yq/Ok/96e5feMWz7/4AgKFEJoojqnVaiXYzMC0LNtie2uTRrNBEAQEFX/fCixLYmO/18eWJoXT9X3yuwFpjuFoDPoDPN8nS4xQUOx3Sb6tPfnOoZi4a921bJI4odMZY3d3j9u3bzM1OY3j2DQaDarVCpOTE8iSyDkxOYFGl4Jd8zXPcZFCcuXKVRNMWBQorfnRH/tRBoPBvliyVq8ThSH9Xo83zpwhihIeeeRh6o06hVbMzMzw4vMvEMUx6+trzM6a4DutwfM9Dhw4YPDa9/Canp3B88xJ0bZsojTiypWrTE5O8v/5p/+Ct7/tbZx64zRxErO4tMjDjz1CXii+9a0T5IVZn4UqeO/7nmN3e5N//i9+1bjS8oKlpUW+8pWvMj45juf7TE1OcPvmDWZnZ7ly+TLTM3N89ctfIUlihsMhaM321hbdbpc8z1iYnaXf6zMYjghcE9a2tbVNENSo1+vs7e0RVEynoVqr8PRbnuXhRx5ie2eH1dU1ms0Wi8sH+OynP82DDxxmbW2DXr/HwuIijuvwlS9/mVZ7jInJKSPAtyxmZ2bQaM6dPc+nP/MZHn/8CRaXlrAsSa0SMD4+jtaKMIyIo5hDhw4SxzFhGLK9tUWWxczNzeF6ntnvsowiz0mTiEvXr3P75k02N9bJs5S8KHjowePYtk21WqXf7+O6LvVaDT/wCcMhruPQHwwZhfcOK+AEVYpcs7V6h+m5IwihcT0fISdIhluM9lbw6+OMuqsM5VWCiftxpw4Tr19mNNzGn1zCCVpEvVWU0GhLYxcFTlAhj4ZYGC2hU/eJRxGuFVBojV2t48ws4U3O4wUdFAXCqyJ8nyKPSXSEkgVSAl6TenWCmiOoZgNmsj06e7cIBmuo0QC0YuBIbgSzXLTvo581wWmgAKTD5Mwh1nobxNmARnsWR1A6MhUqzxgVAzI3JIw2sCsSCg25hUwFlrZRSuKJOr6SoAoKQlxsdCHRwmYkE7Sw8ESVOB/g5i7aDtG1Osp2yEYDiqiHq0GJHrriEDOgGtSxK9JoQCW4+QyDnRtkURcr8CEA16+Sh5razLHv6f38Y12cTI136IyP02y1qVVr2CXgKo5ikjQhGg2wpERYJpq+KGPhDeHTxSntlkoXiMLoOIQlDIE1zclVge/5+JWqCbDq943OxLLIi4yOn5NJrxSWGmiVQmPZFuSQ55kJ+pISqc0GON5uMjE+RjgKWRhvsbLbZzUcsIGiOzFGOjmOl8yQdHdQe12snW1E0IA8Q9qQURAWKUHQZjfaxU4HBFkL329h5T5ZuopVlaSqS7U6xs6dTVSYEva2yOKQSrVNEob4jTZWnGFVBP3+Htcvny/JsymNcRNWF8UxO6uXcUWO6wWE4YjAq1GkSXkDrKMxI6O7FNFqtY7KFVkWMxr2yZIErHu3zBq1GvVa3XAZkoQ0Nac92zGBkAaXrcvOlyk0s8y4JIrSLdPudFhcXmZtdYN/+S9+hQ9+8C9z9OhRfvwDH6Df63P54mWu377FzNQk4+NjSClKvVGJfS8Uo3CE5ThlZo5mbX2dtbU1JicnsaQ0I5GsKFvo5t9NThpyZaVSYaNveCh2KYrVQt+d4pg1+h0FnhSCarVqMjaUYm11HZTmmWeeMfqaUmOTplnpupEMBgOGwwHTU9MmasCySxu2Igojw7dRinA4orK0hOM42I6DEIKd7W1Ovv469VqNarXK4489RlCpllZxjet5jE9MsLuzy/j4GFEY02gYdkulUmE0Mn+/l9eB5QMcPXKU2dkZI8IUIISk0Wiy1+3heT6vvPQySZaxvrHO0vIS9x8+SK1R40DlPtI44eyZs2hltFjj42N0u3tEUcTb3/42rl25AlKyubHO7u4ub3vbO7h2/Sq7u3tMTk1RrVXIs5xjx46xtLhMpRLw4ksvsbqyQqPdBCFwXAfP86F830ajkCTNWFiYx3IcavU63b0uU1NT3FlZ4czp04yPj+M4NjevXePhB48zNz+HH1zmtZOvcePmdXzXxbFtatWq4fYEPkVRcOPGDW7evIVr29SqNaamJ3ng6GHa7VYZs6DpdNr4vk9/0Of2rdvcunmDCxcucPbMGQb9IT/1p/8MC8vLNBoNPNelt7fHa9962bwWmGR1o2cJ8IPAZAhB6fwye20URWRZTr/XZ3tnlzi5d26dSq1JFCcM+xtsCYdKZR6dgc4i/PYMcXeVpLdD0Jwm6+/Rl+cQ1RbB/HHi9cuEO3fwWtMEnfvI412SrLvPmrK16VroKMOZnmbyvqcQtg21cXRQQQmfQuZkg5ist4ETdPHabcbbC8hWnUrFopX2GQs3aPRfw+tuIHo7FHFInMckliTLLYZOwG1/ifPOMfJMY0LXhuRSoKVCDW2iNKXqtfCdClaRU+jchB5KSU07+NVFRFOjdUGehkRRF98KEFlOHIeQKBzlUWQWMtJIKigkBYqa5ZHkQ2rBIrmVkQUKZcVYhYtOR/gqQNiSzNvGb7bwqeHkPjkDhO6Tp5rcBhWneA0Pr90hU6nJhOv3cfwA7P8O3DoPPvIId8FS3e6uOc1bFlJa2JY0HYxCoXLD3LBtC6dUqKMURaGxLHMTo7Rc5nmB1grP8xgbGyfNMrp7e+RZZtJ/MUr0rFB0dMR2btFs+vS6MRojQrzr2NGWRZ6ZbBytVNn2M1Zi17FYXpzjwNICw1HEtdsr3N7epi8ttlyb7vQsxewCOksJ4xhbaKIbV2FzDbdaRWiHolIj10ZJPgg3qLg+ariN705h25J+tomdjXDxsVyXne4eqZVQqTURnoelayWBVjMY9MjSiKDWZDjqMQxDtlcvkA17SNsj8KokWcL45Cx+EBBU6zieD9qciIvcZOm4touywa1U8WsthFYMR8N7tgaSJDEn1sEQpbXpSEQR7U7HOGbudiFKB4sUwlgjpaTeqDE5OUmjUadS8dnbhSSKuXD+PMeOPUCn0+Gv/NUP8tqrJ/j1D3+E8Ylx8iLbF5BKaVGvN7Adh36vT56aUUuWZbiuAcPFvS4AnuvtOx+KvCCKQhM2qBVCYDbxNMO2jYhNlx2YoihK6JUstTOmc1KtVGi2W7Rabf7Un/ppBoMBL7z0EgeWlhkfN4RTWQp3lVL8/md/nweOHcUuBcJJmpgRhFZYtqRIC7QwMDPX8yhUwcb6Gqurq9SqNTqdNq+++ho3bt7k7/4vfxvLMt3GQikkEtd12d7eYmFhls2NTbIsp1opAxJty9yU7+E1NTWJH/g0Gw0j7A4Fy8tLHD9+DM/zGB8fx3ZMQZalKefPnuP1115H2pLx8XEeffRR3vcD38/c/DynT7+BZVlMTU0bDsnWNmEcc/yB4ybDJyn45te/zjve9U5GgyF73QF7u1083+eRRx6mV5Jojz9wlJ3dXVZX1pienDJdXsfah+195CMf3u/s7Wxvs7G5AULwwgsv8Du/8zvcf/AgKyur/MD7nuPw4fsZxTEvvvAyF8+d5/btW8wtzOO1bQLfx3MdZmZnuHnzFmdPn0EpxeTUOPPz8zzx1JMsLC4gLYs4SWi2WkhLsLaywtk3TCr3+vo6O1vbZhSjYWpqhoWFBdqtJmurq1y7eo1KEFCr1Q0/RwhsxzHpuWWbXgrTxndtx1jcVZmpIwxL5G6W2L26hFR4vsUoTBju3MZWPkL4FHlKEvcJWrMkvU3ivW0sL8ASDo5XRxbQnD3OaO82yaiLX2nQXDhOHPbxawHCdpCOj0ShLYfK+DxYFYrhiGwrIldDhNMnsCvUxyZwnzoGvoUnQhb1LtPd86jzF8l3d5HKjIT6WU4aZViOjXJc0voy4fSjJM0lNqOYLBGIkRntazRR0qUQGVJ7+PhkUZc8jYnzxHCwbI8oDwFFFqd4uORFhme5uLJKrnNymSMrPoVOGKk+lmNjexbZMEYqTa4tJC71YAIpXDy7SZwNKJSDrV0s7RmtjIpw3BpC2UhsHKnwgw5CSkbRJvFgE9tuYFkBcZZAGuOraUgy8lwj0v8OIGxrqyvf1hTIu44Dg+lOCuOqcF0Hz3LQJY/iLoXRcRwsKSm0Ik0MaEgVZiwzMzsDSHa2d0w2R5GT5xmu6xk2iCqQlo1HTjsbMAobBvcuDM3P2Otso4wXgqzIEEogpUF93+UJZJlCoKkFLo88cD9Hs2X6g5Cba2vsRjGRlOwFFTb8CoM0QRx7BHfxIOnuFnZtgkJH2NUWKhpS5DGxDYFVQw9ilLKQRYFXb9G7tkYQBLitNkWqqDXHGUUDosEQtMDxfMJRD891KNKY/s4GRRITxwOEFtgpdPe6ePUGO9vrHDr8INL1ENLZT3JO0ow0CtECfL+CFgLHthFa3NOwr/5wyBtnzjK3sMjBgwcRQnD50iXiKC45aOb92NnZ5S7NNElMK1oDs7MzSNvoAfI8M9qIMk/ma1/7BmmW8Owzz/A/ui6vnTixX9hobYYvBi4mSp5Iuo8od12XWq3G1vY2uSiwLYmwBMKS+wWJQLC7u7uf43OXL3K3MKHkqVDi5e9eRVEQJwmO45JlCUvLS5w+fZpmrbHfFboLvtJoVFFw/OgDBJUqaZqyvb0DmN9RfAdKXQiBomB9bY0rVy7TqNfRGj796c9y6/ZtsjRnYX4Wz/VMfEG53vMi5/z584yNj1Gr10nihGtXr/OmNz+FJSW+7/M9MPn/m64TJ04wOzuL7bo0GnXyLOOZZ5/lgQeOsri4iFYG56+UptNucfD++7h06Qrnz5/ntdFrXDh/gccee4zz588xOTXBgeUDrG+skcQJFy9cZGV1lafe9DRIwdNvfoy5+SWEgDsrq0xOTZNlKYcO3s/y8n385m9+DNsy2UVCCPb2DPDMtlyksE0OVVFw6+ZN3vzsW4iTBNf1uHjhIttbO7z40sskScKNazfIspSJqSlWVlb5xjeeZ3trG891qNWMXXp8fJLlA4e4cesOV69eZ2t9jYnxDocOH2F+YY6gEmA7LpbrILRic32N58+8wWsnTrC1uUUcxQyGQybGx5kYn2Bja5OiKJidX6DdbvHiN59nZXWV6elpJqcmabVa+/oix3EYjUZYlm34Qc0GnU6H0WhIpVLF9VyiKCRJUoQ2qdf3MpV4FA6xHAfPq+EiGXRvEFRnsLRPEXbJLElz/hA67DPs7qEziROB60ukU6UxexjhluOcVoOqHsOrt5G5A46kktbJU5dkkKLDgmIk8GtjVDuLVGoesuETthXdbMB0lPPY2vNYa5dY297G9xx812aU5KRpZtyWzQn6nWWipbeRVBcZqZw0yykcGztOiClIij5KK1y3RcUeJx/1cEixXEkuc3JLooB4tEmaRdi2iwNEhUEsDFRhRLuWNjgKpfGURgoL5QiKTEJLk2QFll1B5ApB3ehsCokvPNA1hLZBO2QiAs9GeC5F0kdJhVI5MpWgMmxrkkZ1jCTpEw52QPj41iQ6sZDCNnIK8d+BW8eyzKmsKApD81SUWgAb1/EQApQ2uHCgbMc72La5ucRxTFbkpU5BMjE5TrVWZ3dnhzA0YV2qMKI613b25/d5luOWuSgC2NrZxbMdbNvaz6tIk9RshuVNIM8ztDYOC9uyy1AU07JPsgydGnhWs+rxxAOHSLKclc1tbq9tMqcKqFbpIdlzq+z5NUKrSkZKlA5RhcJ1KhCO0FaVNNHYGjy3zjDICO6fJx+GICRBxaa+MMvw5jVc26azeIDhnRvUgzrDQReVZPTX15Ao3FYLlackowgvCKi0JwiqFdrjk7iOaXeOhkOSLEYUGiwLtwzEk+Xrk5TF3b26/sZf/5948aVX+N1P/i55lrK9t8v9ywfY3esyHIWkaQalQO+ujTJJjVCvu9s1xUqcIoRNGIa4nmNu2kJw3/IS//P//Hfo73WZmJrk/T/0Q3zuc58DAa5rToCyHCFkmXEyCCHQqP1Oh+XY5GlOVmT7UfNRGBLHMf2Sm2G0SnaplaEsGO7GEn+3ekxrTTgacfnSZeqNJq9+61WicMRYp82PfeADRHGM0qbQcT3T8tda4wZ+abWGA8vLxFFEEsemr1Qm5Cql2FhbZ3tjk52dXX73dz/D2uo67XaLtzzzNLV6je3NrbIgKchVChrOnjuLH/hEUWQgXkFAo17DdRwjSq4E+8Cxe3X9b//7/5vf+70/MOOScETgeywsLeL6Ln7g43kBtVqVMIx5/Mkn+Csf/CAf/ehH2djYIMtz0jjl9Oun+NYr36JSq3L48GHe/o53cP78BYSQ3Le8zMkTr7K4MMPGzi7jM3NMdGY4euQwZ86c46d/+qd473PvZWNriyzPGO90uHTxInu9Po8+/iiWNDf0PC/I8pxXXjlBmuX0ez3QgiRNTFp4q2m6UgLGxsZ45tlnOXX6DFeuXqcaBIyNj+G5NgcPHaRWb3L1xg2uXrtBtVpn8cABjj9wlFq9to+YDwKf9fV1Xjv5KufOnOPypStYlrH/Nmp1bMsmLTt9d7k9WmuyQrG1uUWSJNiWyYvq9fpYtkWn02Fnd/c7xNmFKeilwLIthqNwX89tWxb9KDLhgH7wn9N4/5Fd6SgkqDTISiBkkecQbVJrLGBlbaLdHTIt8VsT1NoV4nRAnsQUSuNqgWw5xG1F0a5gkeLhUORd7LiB3qoQFhnSsZCZhWO5VFo1WsttqEkymTLyR8Rpj6ZwOHzzRZyd86xv7uA4Nr5nM8gL4qKAmXmuthbIJo+Ti2kCb4oszgnTPpFKyVJVmisiVBphuRUymaM8GyIHv9ZiZO0xHGzi+m2yQpmYEddHqZyov4Nle1iOg5Q2NhI/d6k5DSzbJ5EjkmyIzjVSOAhpZA4oF9cOyJMULQQUCik8lDZuQ2n7SKGxy5w1y/LJGFGQEUgfWQiysEeKQjsWfjCPUuVe5iQUUhlxbpL+F99L+GNenCRRVAbPmRaj4zr783zDnDAbvLlZWuZDD8RxQlKCoiwpCapV7rvvPnZ2drhx/fr+z9dakyZp2cI2rhCVZ+R5hoeBZ1WrNWrVAFWokth51+ljqJ0l15pqtUav1zXkUtvGtp0yn0J+1w0ozzOTKisly9MTHFqcpzsccvXWLeK1Ne73K3QmJ5DtCW4nGZdHe2wnNXJlioDM8bC1ETaG9MByyZoNVG9AiqIyv8QwiklUTGVymtHeHsJ1qdUbCMcg4Dtzc8SjEX69zXBngzSNcKsGMjc5s0QqoL+3biiyucZIeszYKk5DdKRwLYfAL9Nr72Eq8Re//GV+4Ad+gCOHj+K6Nm+cOk2r08EPAl568SWkZUBQQSWg2+shgN2dXYQUpT02MQ4ErQlHIdVqlbwMPmx3Oni+x3A4JEkzXnn5VRqNuil0rDJbqNSDCCFIswzLshn2h2hlOiuDfh/fNWh7w4Iwf240mji2QY+7jkOWmkwaoCTJ/Gd28bIYjsKQ4WCA7Xr0+z3yPGcYhezHpqsCKSSVStXoYrTGtiyKvMD1PA4eOsS/+tV/xfraetlNLEw6cn9Aked84QtfYG+3y9zsLG9967NMTIxz6NAh4iQunWgWXsVHKcXt23e4fOkKx44/gOu6dLt94jiiVq+yvbONsCT1eoPd3dG9WwQY7L7v+ezu7bGxvkGr2eQb3/wmb37qKc6cOctjjz3G5MQkYRixvLzM2Pg4hw8f4dVXXwPgyafexJ07t03hd+UKezt7dHf32Nvb4+Dhg8zP34/jWLiex5XLVzh58jR/6S//RUbhiP5ggOt59Afm9ZubnWV8fIyn3/JWfv/3P8+lS5f50R9zjQ7KsymKgmuXrxCGkWHrOA7ZsE+r3eLRxx/lxs2b9C2Ln/ipn2BiYoJP/s4necf3vYNmq0OtXsP3K1y4eIlrN84SRyOeePJxpiYm9x02eZHR3ety8eJFXj/5GlcuXybPcwLfR2tFEFTJspw4SUz+jeMQBBVTJFs2WZpRFDlu4DNdJg3XaxXGxtpst1okSYKUJpG7UlFIaeHYFtVqjUpQoVGvU61WaXdaNOo1tjc3GSUJlmXRH/Tv2RpwK3Usv0ky6lLYAmyHTEF/sEarMUtgjxP291CZoDI5R3Oqbm76UkAV4nZCz4tx7YzA6qASG31dA3WsoIKuBAS2g+UIHEdieZLMg9HwDqJWUAxjvDxmdmeD+vY5BqM+aZ7TqQckeYY1u4w3fpBvDXbYrS9RkWNMinHyXo6WCo8aRT7CsV1yUiLLQbXmQSgctYMu1rHrHrnbJ01HVGpTCO2hdYh2AtJ8QJr0sLTAsWrIwiQoB25ApzJBoQVa5tixjbR8kDY6SRGWjSddUBYycZE6QMkRmQLLKhCWwA18kkGIyiMoD/5ZXuBaddA+aTrAFjZ5kaAqFqkVmXuwlDjSQWqw8VC5ANrf0/v5x7o40Qi8wCTh6tKBURS5oYFihFm25ewna2ZpUmZFmNGOab1OMzM3y9XLV+j3+vsnh7vjGYEw6Hl9F/eeU5SbOUobgI8osCyXJMtAmvm7BoMlLxRSQxhFWJaN0lmpbcn2iYwGd88+etycZo1eIElTPMviyWMP8JZHHman1+PU+Yus37hOpVbjPdMz6E6H61nBjdYE68OBORFnGa72kaEgGnXRgY0bVNGtFqN+H2tqCi8Ywx12qVbnCcMBtU4T13YZdPcQm1t4jQZKaypj4xSjAVE85NbaVSadA7jCReWxYQDorKTJVtCAZxlU/2DYN0Vdce+cGrfvrPKP/7d/wl/8C/936vUKDz/8MHPz8yitWVpeotftmWJCSipBQBKnbGxu4jouaZIyCkcGnqQK4jgiDEfG/VMoCqX2N+4f+8CPc/HCRX7t//i1/RGIxjg8siwrIwBybMem2WoyGPRBQ61WJ01iLNtGWkbrkecFu3u77OwYnLtlSZI0JYpiag2nDIYzK/yunwxMUKOxt8ZESUQ1Szl+7Djra6tESUwSxwwGQ8YnJvCDwFjjyxA3aVl0u6ZT1Gw2y8JZ7ottNZpOu82tm7cZa48xPTnF9737XVRrNTY31omiiMD3aTTq/Mt/+StcvXmDShBQ8QPe9wPvw/d83vqWtyAth9OnX8e2HeI4IcvSfSjcvbx8P2B8YhwEJEmMbVsMBwOuX7vGx3/zN/nYv/0YosxYyvOCnd1dJqenmZqaYmFxnj/5Ex/gP/yH/8jMzAy3b9/m6Te/mUuXLhLFMa+9eoLXTpzk/e9/jkIVuK5LlnYJRyNsy8b3fZ7/5gucPHmSn/ypn2R6ago/8MiKnMmJcS5evMRwYPJnDLjMYnF5kSTNaHU6ZHmG57k0mw26/SEHDx2iWq0wGPa4ePEirWaNo0ePMbMwz/lzF7h88SK2kDz3nncCmu3tHcJwxCgKOXvmLKdef50kiunudVlcWgSlqFWrdMbG2d7eMpbgrDDjbcvGkha+7yGE6UQLARurd8jThFarhSo09UaD+++/j7XVVYrCiKcHw6FxnnmGbTI21tkfQQoh9rN2HNdFSMVoOCL5Hk/N/zWXtmso4eEGkxTpAGVhkBFFxs7ebVqNSSrjM8SjEKEjKrNtlJWQqAIqAm1pqoWP23fwew1E2sL1WggLpKMI0OTRCGn5pHGO3akQJT1EnmCHIVrnsJfTWH8NZUXs9WKkI/EcSUyAPvzDrGYBTpAznrk4sYsWBZ70SfMUJPhWkziLkNLHqUwQ5Sl5tolK+qhsCwsL4TiMjR2lVplHZQlZPET4mjjcI9YulVoDKSt4bgUBOJbHIN0lFVHJmjEYjTyPcQLHOJPSAl86pHaO0hmFBGm5aGFhFTZxlpI2JEQ5WmVIHKSVYTsOYdYlpU+WZqhGjUQMyPMIK4mwhYWudFBVxYgI4UrS0fcmiv5jXZz4lYo5ERYFWukSkGbcDI5jwFwa9ouBLMvK70sc1+Hw0aNYljltJ3FiNvKiQKFJE8Mr8IMAyrm6wCR15kVeJvMai93WaGQ0AbrMrcC0N41OQBlRU6klsErQTVHk5JkhLRoOQDn/F3f1uopcpeb5SmnGE4DvurzzTU+gEdzc2OTUhcvsdLvMjI3x/fPzFHNz3IhCrg8qxiaoYlSeENtDLLdBrHLcRoOq16ZwJ/AaDWwJ9fFZwIiHxycWiaf2UIFLMBhQdHcZdLeRUqFExna8Q6VWoVarUsvr1OwqRaoIPJ+iUEThkEF/B6XMGO1etvSnp2awLZtmq83vfupT/NZv/TZTU5O86z3v5qmnnqTVaZn2s1JliKJgfn4Or3ROnD1zznRLMhMBPxqNTNhW+fNV2QGLoohjx4/x0MMPcu7CecO6kRKt4daNmwS+SQMuVE5e5Fi2TZbnOK5DOBzS7w+MvVaZ7sdoOKLf6zEY9MnygsGwz+raGofr9e8K1BN3q24N/V4fz/MYDgemMxIEdDptxsY79Pt7+EFAGMX7ay2KQlRhkPq2bRMOR/u/0+zcHBcuXKHQymQPYQqu5fsPoHVRkkcLBv0+E5MTBH7A+vo6m1tbrK6usbG6zvj4GMcfeIDpmWm01jz51JNcv36TTrvN5MSEKchte19jdS8v3/epVaskccKG3EAKyfLSEsPRkMnJCXZ2dukPBsRJzMrqCn/rF/+f9Po9Ws0WU9Mm/+PwkUMsLi3xzDPP8N7n3s2LL72I0pqHHzxOGIZUgiqWtBgfG+OpJ9/Eyuoa9XqN3RJcduz4MZI04U/+xE/y0ovPE1QqLC8v0u3ukGUZ9XqVbr9PURRYjsX9hw7SaDTo9fu0O23uP3CAQa/L0QeOcOrUaQqtOP36aX7oh99PrVHnzq1bHDmwxLNPPcbtlRW2trYoCsXrp09x4ew51tfWyYucNEk5cN99DIcDDh8+zPbWBo7r0em00aqg2WyxtrZmxMxlV1hrSveNbUaVGLJwFEYMB33jAiqBfoZ1AtVKlSRJMM4dTRjFtNvtMgLBWNY3NrbwfI+G6+N5/j70715cmSNwOi0quKRdlzgZUqBx6h0cqejvrVOfbOLfN4X2XHp0SZMYWwhkZuGKGhV7Gm9YQeR1pFdBIFEWFMIixkI7kjzukQcFebaJVju0pI8gQIYVat116nJAViiSvKBTq4CEzKqz3lNs6xH9Isa1ayVFOiPVEpkX7PbW8euzJEVK4bvEeY5XQDjok8UxmgILaDnjOKJCkWWoLMOxfBzPAwWW9MB2yeycXJjASSuNSdMRruPiywAtFLmbo32PME/ReUbu5ChZECkTQJsXhmfjWQ2ElggnI8p3sJ2CBi08y4zFtJVTDRoEuk6sE3B9Kgqka6HyzOA58oLR4Abx4CYqj9He91Z2/LEuTtI42XdhCDB2PdvBtu2yva1Js4Qsy8iyFCEtLNu0Zh997FH29rpcuXwerQ00TSvTEUmTiDTL8YMKdqmduNtNybLMjGK0RnKXJn73VGu6JblgnzJLOZPVWu/HpliWRGiJKsPqitycxsS+I4Mym8UA3bKiALISm54TxTFCCKaaDX7i3e9kEEWcvnCRU2dOk8UZczOT/Oh99+Mvt7m1vccbN69zqz8iq7dACkRziXDYx2vMUgzPERY5XrON1ilIRUGAmJ9BJF2CiQXU7hb5dpVo5w5FnhNuriIZI9MjRjGsamiJGh0xhSWNU2eiVt9nwvR7O/dsDezt7RIEPirPGB/r4LkOuzu7/Mav/wa/9fF/x7FjD/DTP/3T9HtdDh06SK4VC/PzvPrqCebn5wj8gO7eHmEUEkbxPn5bim93K5Ik5pd/+R/xkz/5E+YU+B3iatu2uHblCtdu3ERrhSw7Xnf/m6Um2Xhvb49amStiAhElWVpw8rWTzM7OospOzX8y0jEAHbIsZ2NjA8/32NzYNEVfkbO+vs7k1BRRHJLmOUmaMBqO2NvrkmdZqbMReK6HLB1svW6Xhx56iK98+WslAyijbDYShiHVWo2ZmTnGx8fZ2Njg61/7Gr7nk2Y5YRgSRgbdnqQJ84vzoOHkidcYDAZUqyaBuFqtEEYxUshSj3NvOSee71OpVhiORgZsV5KCd3f2KArTAatUKsYOXalx59Ydbl2/wQ00ushZXVkjL3I2N7f2c2WKvODg4UM88dSTNGoVojjl1s3bTExN8vZ3vI1Pf+azzM3MUGsYB0u/3+fWjVtMTE4yGA5Jc0WlUmFiYoK11VWuX7lKlKS8+13vYWvTMEyOHTvG1UtXOHL8AbZ2dkmzjE998ndZW1sjzVIW5+eZn5lhsLNJZ6xDo1Xn3IXzfOtbr3Ljxm1WV1dZW11hYX7BjGYFdLu7+J4Bzt0Nu5TSZqwzThTF+IGP47rIPMdzDWG2Ua+TZqVOKTaJwkoVpqOYJIRRWK5dq8yOsrBtmyiOcGyXSiXAdRxUrozmz3ON3d2yicIRGgOMq99DS7nruqi8h6q1qB+cwss6ZLJAz1QpRIaTjxFKgbJDpJuiihxhCbJCULFm8FjCGtaRskJi5wQVH60hSvaMSy+HPCvMIc1LkfYAO+uBN4GFIO8LppLr+LZkFJt4AM93UUoQZTFbd06xM7WICCr00x18YfatYjhA9AYU+YBwdBVp2xT1WXy3jiMrWLUFlFcwGO6RZSOEckm7A/JiF/IQYTnsDbZxpQdFCnWfvf4t/OoUuRQ0nEUkAa7TREnIixgU5HGMjiOkK7GDKmmW4lUbJPkQaXtYBOgCci2oOW2kloTskbsFUbFBnO1gW02kNpZnnVvUZZtED8mLFMe1SfKcIg0RqkK78TjpcIss2/2e3s8/1sVJnCYgBJY0oxfHcfZD4Io8J80yg1rHfKiEkLTbHY4dP8aVK1dZW1nFKsOpzCjIdD7iOMULfKMsL2f4hoqqybOUoGJuMqrE2XfGOmRxSn84KMc5isJS+2A2yqA+rTTSkvtamLtWzyzPyZXJwXFs2xQvJYxLSGGycAplQgmFKDHxkt5wSK/fJ/B9nn38Ud765ONcvH6DUxcu8vmvfBU/8Dh+5Ag/9sjDhEXB+dV1VrXLppCkysXfXMFWEt1eYIjAERLtuMTNJrEb4DXHcHVObgdkQtOenCDpbeMNd6hWa/Q31vFrbSquh5Q+e8M+7cYYeZFRRAkFGlkUFOreuXWiKGQ4VJw+ddqAwyoVarUausRy7+7scuniRf7ZP/vnLCws8uxbnuaJJx/jwIEldrZ38Xyf3/zNj/OlL36Rt7/9bXz1K19jamYayzKjIFUohIa11TW++Pkv0Gw2S3Gt0RWhYXp2mompKba3NvBcD891MakHgu3tLeIwpt6om3FAlpFnOY5lslOOHTtOq9UuxyCR6axY31GcmGVHnudcu3oVqxTOXr1yFdf30EoRBD6Dfo+NNRNNMAqHrK2tkqXpvuhaWibKXmvN9vY2CwsLJdoeHNclTRIjchMChMXJ118niSN293ZxHJtKpcLW9g7r65vcf98BfvInPsDY+DiXL1+mu9elu9elGphOpu957O7uUa1UcCwHLQWWc+/WAJjXx0QGGG2Z5xkI2PUo/LbIMzOFYpwk1Bp1xifGieOY+YU5bt+6s78nZFnOyZMnabVbLC8vMTk5iSoy/KBKu91md3cHhOD61Wusr64S+D4PP/QQRZHz0MMPs7GyxqULl3nwoeNsb2/jOi6d8XFcx+aTn/xdtra3cD2Xufl5xsfHWFicJ00SvvC5LzIchExNTdHpjFGr1XjPu97J408+wcuvvEpy+RpnzpxlNBqxsbVFEFQo8mJ/n4miiFazQbVSNTgDy8bzfCzLBPTleY4qCgb9AWmSIi2BU6Z21+o1kiTBklYJ+TOYe9d1GBtrY1sWcanxS9IUz3X3Oy2tdot6o4FlSar1KrVajVrNAOakZZHEEfVaHaW5p2MdcX8T7SkiPSK1IvIkxW00SfWm0QFaBTorsFObfCXHqdbRjTbV6hyBnCHPJFG4DWFItpuhrQydWji2jxB1E3RYdBFugajmeDHI1MKvj6PVgAohHX0HJERpjuvYOI6NVgVBZ4bJg8/SriwglCTTIdVanTzJ6O/1oTEiSWMq9TqFtEiGe1RqVRLbYphbDOKEeuDQDNqoNMWxBVpBtTJLbzjEtQUVq07W3yPs93DzFi05S3/rBrX5KpWJMXQckRY5o/4eTW8K7WkSb0hOhiVcsIIyrkUjChtHOegYXCFJwy2EdqnbHdIkRxY2fqVCWO0hiww/d0iiIb34Bm5TYAdNkiSiiFP86gR2e440zrEa0/jqv4OxjtAG/yzF3RuJKSKKoiDNDUTNYMpNJ2VxeZm5xUVOnzzJ7s5OCUczNxlV5BTajHNs29rvvuzDu4QwaHYAIcgLZazBQmAJwdjMNHsXuqYtakt0oUwirpRk33FqLLIcVeZbjE+Mo5Vic8tYlrM0RZeBXHZZgCAkouzKSCn202OFoNxIJKMoYrSygiUsZifGOXLfATa3djh18QJnL17i9VNnWVpa4Pjhw7yp3mBrb8DNaI/b7WX27AniFITKcGyXxHPp2hAELoW06ccaW1jUppaJRl2EyKnUA3KlkOGQOBkRba1BVtCemiIPFRW7TiqMn1/pnNHo3ongpBCkec63TpygVqvB7h5Ka2zHwfd9ZqansG2LpYU5bNfha1/9Ol/9yteZmZ3ine94O489/hiTUxN8/N9+nFvXb7C9vc3Vq9dxbMcUvrZVBjsKIxwtLcB3mxtSStbXNzh85AgTExOEYYjtOChjfdh37TiObRJgVUGaZyg0cZqUJ9O01DHkxEmM63rIEhC4/3taskxbNjH3tmUjNFy+fLXs1Oj9YrdSMTeIOI65dfM2rVYLIY3eYj/HR1OGF0oajfq+bd6yHa5fu8YLzz9vYu6rFXq9HijNxMQYz7z5Kd705jexubVFd28P3/V45NFH2FhbJxwOidMMBPT6A2rVGp7n0u33Dc7/Hl+2Y27GlUqFqclJlpeXeP3kSTNOA/K8YHpqhkajSZ5lrMoVWs0mjz36KIPegMXFRXzfpEevrK4yPjHGoN/j/Pnz+L7H0uIiUlr0BwNOnHiNAoMGOH78GGEYcvLUKerNFu9//w9y8dIF6q0WSkOWb7B6Z4X1tVWKPOfOyirz8wv8xoc/yq0bN0iznJbrc+xBw1H53Oc/R1qMCKpVpufnWd3Y4qUXX6IzNs7SgWVUXjA5PYPrurz04gtkeUYYhUThiAMHlgjDUdmtVfs0YcsqcF0T5+DYNnFsgIVRFJGmKWlqxLG+75VuNJf5+XmmJsbp9/pEcUylElCpGtCb45ji5G4CdRiGhnOioVGvU6kaSF+z0WQ0GOI4JvhwanLinr3/mRMhggArEQSiTTQYYI0cHB9yKyLKBgRBDcuq42mBYzdRSQc7c5GehL0uvmyi4hzHGUdbOdL1DabesZCywBZVdCvGdhRilDE5vYSKh9Qdmzor1KzEOJiUSTB3PZc4Sqi0GwSHDhHvxcTFkH68SlhM0KzPovOCXjHAalTRWpNnI6yGxUgW5EpSZIos26bWmCYXglRYpJaFziBVNtKrYeuURAto1XHyKjXLJsxT6vMHyPyQMBQQ51RkDdefIY12sbRDLCNSCTJLkUogPas8TBfkUlD4OYMoQzqAJbCVICky0rSHtAQNfxoPizzNsK2Y0WCNzPIZ9TeR2sbzffpqhXh7QM2ZQRbO9xwE+8e6OHE9DykNLl4VJnY+yzOKstMhhCxtcA4PPPQQQSXg5RdeIByNyrGLRpQs86IoynGJNHHrloW13zUxVi1D6fw2I+XuNRgMWFxaLu9XunQJaxO2d/dBWpUjKGVOx0IwHA45cOAAvu9z6/YKWW7splJaKEebFFEpS6FaCbwSGlGSbrO8DBssb4BKF2xsbbG5vU271eZ9b38bveGQK1dvcOXOLT7/1W9SqVU4dOA+njyyyMMIVqKI61nKsFojciTdcICodMiLmBwXbUO62yURFplbQYQuYzJlEO0ibAtX1GF3gI5TulGfWj1gq7tD4SuKrCAfRlRq9Xu2Bt79nnfhuS537qyaALetTSzLplar0et2qXg+a2urpFmK5ZiAMktI4ijhIx/5t3zsN3+LI0eP8Cd+/Ec5dOgQBw8f4vr1m0bIq8yYxljWbRzHwnEdlFb7IlitFVPTU1iOgZKNwtH+CVMKSbPVxrWH+7N5KQ37xrZsNre2Wblzh7GxcY4eO8bW5hZZlhu2iW0bFoo0G75AEI5GVCoBd1bukKucNElo1OvG2u65pjuQJFiW5NVXT9DrdQnDIcPhkFqthuVY+6Tkbr+3r2Pa2tqi025TrVSYmZ01idZZyuk3zjA9PYXr2ExOTJBmOQro9Xv0ej0eeeRhtra2sGybar3G+MQ4ly5eJkkSmoHJ0hFC4DkOfjnSupeX5zq4jkO70+GRRx9hYWFxP4LCWB8lnbE2i8uLVCsBt+/cYnZmhsNHjrC5uUOldputrS3CMj26Vq2RZhl3bt0mSlNuXb+FEhbhMGRlZZVwEPL4I4/h+T5f+OKXeOONMziOy6HDh1g8sMzu7h6D0RDf9+j1+gyGEXPz8zQaDWZmpnnnO9/Ou97zbk586zUqlQoCTbPZwHU8VDGg1WoTDiOEtHnqTW9ibGIcP6hw6cIFOkKAhu2tzfIQZXRFvucThiHD4ZAszZHSQgjN9MwsrudRqVWZnZqm2+vj+T62lNRrNYq8KF1bGqfMhapVK8zOzrC5scHGxiZZntPd2zNrv1BlsrEwepxKwIGlRSZKfY8qu9fD0ZDt7S3OnD1DluYMR4N79v5bWxmOmsDFxhJjjFXvQxYBOrcQ5ER6ExGmSNFECodiW1PEI+JilaKucCptbNsjczoolaMtQS4Tox0MBDYJRSNDOhmeclmcfwhkTiXtMbV7myS8ju9DlBiUgO3a+3oeb7DJ6MWPs11oMtsiKmL6tsu6cNBakuUpue9gN9tUgjaB9qAwtmBp1fFr82QC0ixF2g4qLcjzGC0j0+10NaiMokjQUhCrBNuxyVLDs7KdCp5qgNJIpVG2RuWavIgpbHN/s4VFnA/JkhDH9lGuTWGDjkdmPCtDpCUoVIzlKwK/A0qRSAunMoXwNWO1eQqdojEg0n5/jbyIaDSmEdolSQqKOPme3s8/VHHyy7/8y/zO7/wOFy5cIAgCnn32Wf7RP/pHHDlyZP8xcRzzN/7G3+Df/bt/R5IkvO997+NXfuVXmJqa2n/MrVu3+OAHP8hXvvIVarUaP/MzP8Mv//Iv/6EBPYbNYGyfRleSo/RdQquxt1UCnyff/GYGwyHf+NrXybNST6AMFMtUqhlJmqGUptGoYNnm3xcY18bdvJTirutEGFuxVX49jhPOn79AocwYw6jVMSdRKfeRFUoZ7cpd+3MYRVy6eJml5UUOH7qfK1evmdN0KbjNshzPc3Hs0otuGRtiVrp6BMJ4+cW3iaWU4s+d3R129nZoNVs88ejDPHj8KJeuXefijVu8/NqrfOXF5zm4vMzxow/wjsk2mcq5Mwq55Pus5jGhbRHFCSoMUVkGjkSkIVu//ynOvf4y4eY2tuPSmJtl/oknyCeb6MAl63bpD3bY/sJr7F24gi4K6gv/aSLtH9UaeOKJJxj0+9TrdY49+ABxGPPKK69g2zbtdosiV7zw/IvUqjU0MOz3SJKEaq1Os1FjFIa8duIkgevze5/9faRt8czTT7OxsUFQqTA+NsbW9g7Dfp8oMva4MAz5wue/yMMPPcjXv/kN5ubneKxeJ0lTY8EsOxRSCiqVAM+2SLMM3/fxXM9QiR1zIz106DC2ZdPb2ys5JN9ZlJa/ZOmAKPKcfr/PWGeMsU6H5QPLeL6HlJLbt29x6NBhQ2ItxbONeoNmo4nr2GitsCybbr/HsD+k0WyZEVNRsLS4yP/w53+Ger2GlJIjRw+zvLzE29++QpzEfOpTn2JpeZlvfvN5xifGOH78OF/96q/we7/3+6ytrVGpVDh06CD/tz/1p0yXBsHy0hK9Xo8Pf+Q3ePXEif3Pzubm5neh7P+o1oEQAs/1jd7BdWk1W/uukUbTQBJ7vT43btxASoswDImimDsrq7zwwou0O639z+vOzg6u7VCr1ciSlH5/QH84YvL4cXo7Ozzz7LMgBEWW4Vc8PC/AkhbNZotBf8iHf/3DFHmB4zj4lYDve+e7mJwc5+tf+zoDleN5Hru72xw8eJCxsTEzgmrUOfnaSRzHYWtrizc9/WYTxPiWp9nd3eP82fPYrselS1fY3txkbGyMwWCI63qkaVLqhkxSdBiGbG5sgJCkWUqSpFwvEQkXL11ge2uHKI5NAq/WJGlKt9cj39pmY2ODOElIs5QXXniR61evc+vWbaRlmdFjFBOVKdQ7u9uMRiOyLOX1kyfodDocOXKULMvJsoxmo8lEZ4xTb5zi8pXLKK04dPDQPdsLguwwQTgNaKR0KJQkzrrYMkBlBVmYQ54gRRehK2hp6OBaFAgroJCKSO2hbQvIsaSNEgI3qFNku+TFbXS9xrQ3z8Lc/WwP13CTDeywx8zcNL3NE9jSMWiBUpvj2BbSsfGLlKe65+kPhkQFxEh2ooJhoYmlJK8GJGMN0j1F4Vjo6iyprKIsHxUkqCRCZgI7KSgKgR1XcDOLop6R2CAKTaoKbKtCxaojHQMcRHrUVA1NispTMjvH0iClRZZlOLhQxMaxIwpEUeC6VbCEEc4mEUiN5TnYgCgKBBrL8onUiDhTOLJCmiW4XptMYtgxCITw8Ntz+NYEOvBwlMYahSTfo538D/Xuf+1rX+NDH/oQTz31FHme87f+1t/iueee49w543gA+Ot//a/z2c9+lt/+7d+m2Wzysz/7s/z4j/84zz//PGBu8O9///uZnp7mhRdeYG1tjT/35/4cjuPwD//hP/zDPB3SNMWSFlmWGt1GYTYE27KwpaDTaPDUM09z884dTp08TV6enu5aSyVGIGhQ3ime5yPKUcldeJvWCrscGd3NN9FaoZQmx4jusjwn3i1Fn/rbnRxLWqZjghkDaWWKikIViAywLBKVcfnyVebmZjn2wFHOX7hIkiRkRV623xXKVTiOa557ScJVqoQMCUMcTbMMQV7eiAxSWinN7t4uu909atUaDx4+xLFDh3jj/Hmu3VlhdX2d/9+/P0VQ8Xj0wUc5fPQBDtZchnnKuiq4HoWciwpiy8KJ9rCHe/SvXmbq2bfSGJ+m0Rjj1Md/nbOf/jRLH/wf8AOf4e4ea19/mdHtOyz8iR/Grja5/elPftf79ke5BsLBgGq1wvjkBL7v41g29913H1/+8pdpNOoEfoDveaR5xvUbN3BtB9/zyJKY4Whk5uYCPM8lDENu3blDp9niwrkL3Lx1i4XFeSYnJ4mThKRMWXVsm2efeRppW1w4f5EvfvFLoEDlpqM1HBk7spRifwTnei7StigKEyRoOQ6Nep3RaEir3abX7ZLmpU2du0RYYyS+6zYy/39IYqOZiOKI9fV1ut0uYRhy/Phx1tdXGY2GZGlqKLK2g207ZFnO1SvXOHvmLI8+8hBrq6tsbm6QpSnzc7NMTU8xNTPN5OQUn/vc51haXGJ6doY0zZibm+P73vUubt64QbVs66+urvF973iHsaUqxSc+8Qn+7t/7e3zkwx9hbnaaeqPOf/zEJ7hy5Qo/9mM/xtTMFP/kf/8n/Jk/82d46aWX/sjXgef5+9RS27ap12uEYYhl2TSaTWZmZjiwvMSxB49z6PARTr32Op1Oh83NLV577XUWFpfY2tqi3+9TqVYZG5+g3mjSbNSp12s0anWmpia4c+cOKysrnHj1VWq1GkJqLMul2WoxN1cQRRFFnjIzN4vreswvLNBsN7hw8RInTpw0I5gw4lsvn+DMmbMkacrXvvI1vEqFt7/9bdy5dZtBv4fv++zt7PD6qdM4tkNeFOzt7nLl8mU67RZplrG2vk69XieObSpBBUta1Ks1pqemDfdXCHzXYazTIU0zqr7H8sIiU5PTFMrsGXmW0et36TRbpVttSH9gOD1rKxvs7ZhOSbVWNWnbllWOO22SJKbRaFKv13nooYf42te+ygsvPM8Tjz/F448+yrvf/S7+j3/zb7i9cpsf/IEfJElSnn/hm/dsL4hHA+x6hyKNyPMQqX3joJOCIi0I3CmE46DSPURQw6t4KBvyPEUHFtLTFFZKYQlcfHy7Te7aZK5GAU05weT4A1AN6BVbHG8HtItZ5uam6Z75MhPNANu2SbQgKRS+7+K5LiAYRH3qnRmqeYGX5Vi2ZL7qMBiGxEmEikJY2UUrQaglwaxFPD7LetVhQ2+TezaO9EFYaFxETUEOmU7xPBsblzz2UYkAYhIKcpWgnNxIEAoX366TWw6ZlmiVE8uEqlfHyysolaGKFKSDLR2SdIAjHXyrgrAl+d17kdZoS5oollShshGx3oEsZSRWkU5AkY6QwThSVsgTC9v2GKW7WFqShT2+VxLfH6o4+YM/+IPv+vtHPvIRJicnOXHiBG9/+9vp9Xr82q/9Gh//+Md517veBcCHP/xhHnjgAV566SWefvppPv/5z3Pu3Dm++MUvMjU1xaOPPsov/dIv8Tf/5t/k7/7dv4vrut/z8zHtxYK87FZYtoXvONhaszQ1w7FHH+H1N97gyrUbqKIwJ9O7KHCBuaknCVES77fvszz7DteMER0pVY6NsgyvRI1Ly0KVvAuhjSZFa0POdGyHosj3LXmIUvz6HawH0/bMuHvzuXbtGgvzCxw/foxz586j44hcmwLFWJeLUl/zbTePVga/j6Z0l5iCTWPIjObkaGiQw+GQcxcvUg0qHD98mEePH+P6zdvcWFlhZX2V8+fOcvqNN5hfnOf4sWMcmp7l6FiVx/2Ic72QK/GQrOLz7M//Ing1sr0tIhUxcfghul/8DOHKFnp+HuKC3sXLzDz7LN64sWiOv/NZVn7703zrW9/i3e9+9x/pGnjTW95CtVoliWO6u7vcvHmD0WhIs9Xi8KGDHDt+jH5/SJLEvH7ydZI45qWXXyFNU1SZrSQtybe+9QpZlht6MJooiun1huy+dor11U2iKGZjY8PkiUhBpVrBcoyAOY1iXnrpFfqDAb1+nzdOv8F73vNuur0eO1s7hMMRYxPjFOMZQgriKGJzY5P+cMDe7i6tVptCa6IwZNDv02g09m8CYLRVhSoolKLVaRHHMadOnuS++5cZDofcvHGTJMsYDPusrK5SCSrMzy/w0suvoAXYjsP6xiYf/ehH+Ru/8Ne4fXuFWr3O4UOHOPrAYR568DieH/CRj/wGfhDQrFYYa7ep1RvYlsZ2jftmenoa3/fwPZ+/8pf/EtVqhUq1xq/9m1/jufe8i3//H36HN06dNhqFMOTEiRP89Z//ayRJgms7ALz88sv3ZC+4m52DkLiex9KBZdZW1wzqP4oQpRB4cTjEsmx2dna4efM2a6srpHnGlStXyxwgG9d1yNPUaL1UhmNLHGmxsrJCoTU7u7ss338/vW6fja09PD9gem6Oar1Bo9mg1+vx2GOPllk0NXq7PdZu3+HIkUO02x22t7a4cf0GURRy8cJlhLTY2d7h/IWL1Gs1ZufmcF2XY8ePcf3KNZM+bEuOHDoE5X53/vx5mu0WB5aX2N3d3bfwLi4tMbswi8CA6R58+CFq9TpZmpqi2LJoNppoocnSnL3dHfxKBZUX7Ozs4lerhGGI7/k4jumeCgFhGBt7ufo2/XhxcZk0SXF9l0qlysT4JJevXMSxba5du8apU6d54aXnWVpY4koZFthqt+n2uvdkL8itgmHWxXIquO4YvmySZQWO9sBJEbaP1C7azbAqDomlSJ0EWbdQMkLmFrpQVCtNLMvDr1Tpqz2klzLuTzPVatEUKWOVLrOBSzPLaJCzde5FiHtYjk2S5MRpgQlis4jinEJpHGmRZQVuY5yit01W5AgJQcVDaU2c5YZAbgsqSsP2KkuNFkdEh2uJ5owLQzdCVBykJZHCRecJKhpQaEWBh+c3EJYkjRUqScpuCEgtcWUVhSRSPZA2whIoUkKMY8mM8/xSVO7geEHJD7UoGzBoTEacpTBmE11QEGD7jikIMxOHUnhNMp2jSRCySaoylJLkyQgpHLLke8ta+2/SnPR6PQA6nQ5g8i2yLOM973nP/mOOHjXZFi+++CJPP/00L774Ig899NB3jXne97738cEPfpCzZw3J8f98JeWp9e7V75u2UBTFVKuGLyGlxHMcrDTloQcfZv6+Rb7xwvOsbWwbYRggkcZhUQoH8zxnFIYopYyyvHTumFFPblqlRYFtW6Xv20B97hYid4sYaUmSJDWzWti3FRdFzt1UXFGi0010vNgvqIwHy5yQb968ibAkDz/8EG+cfoPRaEQhjFMnS1MEYJebvFWmIwshSlx5wd350V2GimmLahDmOYJgOBpy/tIlatUKczMzHLp/mZ2dXe6sr3NnbY0zFy7wm6+fZHZqjgePH2V6Zpq3Tk7ySDPgRrfHVqHYHm2zKRKUyhCT4wD4Y/M4uU145Q5oTcWpUazuke5tIl1TpL3yyiu8+93v/iNdA1maUvgenu8xu7DA7MIcWZpyZ8XAogCCwEMIxVNPPUmj2WJzc4O3vOUt9Pp9VlZWuHX7Nv3+AERKoQpOnHiV4WCI6xtE/db2OnmR0Wq2TE6MNidIz3EJKj6e7/G2tz7LG2fOcuLECaanJo3gcmWVIAiwbYtLFy8yGhpLZZZnbG1skiSZSQ9OUlZWV8nShC996Yu8533vY3FhAVkqosAUn7Vajdu3bxMEAddv3eH2rTssLM4zLFv5juNw9eoVlpeXWVxcJElTkiQhTTO++c3nTVdGCMbG2hw8fJin3/wk7U6b9tg4W1tb3Lh2g4XFRdqNJusbmxxutoybTRodVqvV2B8h2iWafnZ2lkcfe5hh32gJpBT0R0POnjtHURQ8/vjj/MHvf24/QmJhYeGe7AUTE+P4lQrj42MMR0PanQ6XLlyi2Wrx9DPPkGc5n/v932N8bIw0idnd2yXLUlzPJcszI1gG6rVayenwqNaq5FnO9vYOW1s7uJ5bRh1AnMSMhkOUMmGTfuCjMLyVpcUFFhfmmZya4sqlK2xtbzO/sECWphw6epRqrcY7vu+dxHHMztY2nU6brY1N9jY3adaqVDyfF775PPcfOki/20NISavd4tCRg/iVgCRNmJyexLIc1tfWGAz6OI6x0J954wxxGqNUgUCwsbXNzvY2trSIU6OFqlZrjKIRcZSgVUG/PyCOY0YjQ7u1LAvPdZmbX+DBBx8kCkO0KpDChPpVSuZJkhRIS+KVUQ53xbGXL182EMssMZTtLGV3b3ffdXav9oKgfQDPb6AzhSgysiQCJINogzDp4ft1fL+FLSG1HVIrR7hgKXBtH6lzPKeG6wY4lQrCE8xVplloeCwHio6XUpES26nQcEAN1rn2+jcQhdF9ZLliMIwIowzHtciURud3XZuCPBrhdw6j+ruo8vBrWYJKzSbvD8kK4+wUUoBKWLl0ktbOOo89/Cj3e3XO7w25PBgR+yl54KK8AJw6olBYuJDapEWOdiSBrEDJrgGbTGWE8SZR3MetNNG6IMkG1GsBVemTSE0u6ziWj9IxuU4R2qIocpASYTlkeYYtHALHJy80qU6wHYdcWGinghQ2wvHRTgUPSRFGpHGMXa/jFFUKArRTwXbucXGilOLnf/7nectb3sKDDz4IwPr6upn3tlrf9dipqSnW19f3H/OdC/Hu9+9+7z93/fIv/zJ/7+/9vf/k6wZWpk0CrO8i45Sn3/wW/GaVL33tK+zs9ctRjlXKXu8+98L416PYYJ2DwBQdltFtRHFsuCOlpQ6BOUlJax9lX5TFhdGRmENuocxCzPLCQOCEoCgZLHc5LEJKpCpKQl9u4GtS7PNUrl+/gWXZPProI7z22uv0Byb4SWhBnMRYJf4+L3Jcxy0ZLKYzo0srtMGYG1ePRhvWRWEhLAtKYe9gMOB8v08QBMzPzvDIsaPMTk8wNTbGtdt3WNnY4OsvPk+/2+XQfffz3vc+x6Ozk4SjmI1+nzsSVvKcM2+cpLZ0gLGDx9BJTOacQQhB3hvgSRvXC3AmzHrY2Nj4I18DeZ6RZymqsCisonw9LaQUjKIQy3aIkxSlNGPj40xOTlFvNAgqAQtLSzz62KPs7mzhuj69fpfhcMit67dYXVtjZ7fL9vYOcRzhey4H7jvAnTt3jFBVGDl1HJvxyaHDh6hUa2xtbXH+wgVa7TZv1oL19Q3arQYTExNMTk6yuWkYJc8+8yw3bl5Dm90IKSWd8UluXL/GoN8vJzp32bCaPC+Ik9hQZGuNfVfJ2HiHzc1N0jQjCiO0Zn9djI+NUalU2N3d4xO/8wkOHT7I2toaDz34EGmWYzku9UYDz3Vot9ul/VTiex7VahXfr6CcHMtyyPMc3/NJcsP5sWx7X7yrUXzjhRc5cuQIkxPTnD59io3eehkbUCErciplF2hiYuKe7AWeF2BZNs12C3dtjYsXL3H12jXTxYkipBSMTYxTbzY5f/48oyjCD4wbyXN9GvU6CMMyarfaBucO+3lJnudw6L77cVwT9Hjq1CkOHjrI4vIys7OzxikGjEqnzPlz51lf22A0GpLnxg2zvLTE5tYGRzptDhw4gLQkW5tb3Lp5i/e85/twPY9Bf8hb3/oWYxfeNAVjniZcXTXQtSAIkLZBzD9w9AidTtsk/QpBv99ja2OLvd1d4jji9u3bJh8njRn2h6yurRg7tTKjbFkeWuI4KW9iZj9tNpvU6jU83+HAgSV8z0dakoWFecJhiCWgXq8TxSFFXlDxK9QadV584RvMzc7x1BNP0Ov3WFtfZ2dnh9mZWZNjVnKd7tVeoLt7qEqBUqDz3IzPaz72RJWWqGPbFipKkV4V3XSpOR5u1Segiuu42LaP0AVWkTJe81ie8Jn2I9puCjrHlZq6LUi7G9y+fIq99Ts4rpEBhFlGOEpIkhzLsZGWQ6GN02bffGFpurJBnusyp02gcnOYtT2XeBihcr2fTG4LCHfWOfuNzzO9uMR7jz3GW6wxTm50udxX9FSXSOZYgUNGjHQ7eBULnWmEEriiSWA3iEYD4jwiyxwSDUXYRekC25MkRUjuRMgggCImVRa6AJ0bUasqFBpFrjRaSVr+NP20T6YKbGykluikxHU4gXGw5SF5UqCiEB2FFHGIxIY8BzshU/c4W+dDH/oQZ86c4Zvf/OZ/+cH/jdcv/uIv8gu/8Av7f+/3+ywsLBjommPj2oKOX+FN73wPvXDAF7/6BaLYkFqFMGhyS1pmEUgLrSBODEbccQx+Wsi7uSQKx7aNtbhQ2JakyA2MyHGM4PQuvtzst3pfi0KJns/zFNuS5FqbSGylDPJZa6QZBu/rXjQaoU3AoJQWruty8+YtHNvmTW96ktdeO0mv1yvbqcIECKL3x04mptwEcN0dM2n17ecIlHhyEGW3x/TpzPdGwyGXrlwl8H1mZqZ58tGHWV6Y5eq1G+wsLbGytc3Nmzf56Ed/g6WlJQ4/cIzxsXGWbMHLn/00enWFH/nFv8OoVidq1Ol1miAEzWNHsHwHKh7x996Z/UOvgY997GMsLy8zNzfHxOQE9Xodz/UQUnDu3HkEghs3b+J7Hu977jmKsZzLV65x5OhRVlfXaLba/Kv/77/hr/6Vv8zv/d7vMTs7zcLiIl61yo8+9Ajr62tcv3qNeqPOe557jg//+ofRwrymBstvNhPP9ak3G1RrNTzXQKqmpia5dPkitWqwH1J511Zca9RIUmPntB2bLEvZWF+j02mhlHGded/R0tZaEYYRg8GAW7du49gWO7u7NNtthLQpVMyF8+fod3usrq2x193jyNEjgODXfu3XiOKImelpojBkamYa1/VYXl4iTTMGwyESSatpIF6yFOZaZbfNdYzjzXZc044Wgrgk0So0X/nKN9jY2ORv/MLPUwk8/KDCYGSgXXluiuhqtfLfvgj+L9bBV7/yZa5du0oYjuj3B3zj6183iAHLYnVlFc/3yLKUb37jeaIoJA4j0BrPcfBcm6Iw4vN2q0VnfAzPdQkCv8wnsrEsaDbb5Lpgr9vj/oMHcVyTuru6uoLneTQaDSP8FYJ2p8PExDi97h7ra2tsbm0xHA2YnJwy6byOw9k3ztBoNnjmmWfwfZcsL2g0G3gT41i2xUOWoRCrQjEcDNje2ubq1Wu8/Oqr3L59h1deeJ7BcEir1WKmLJAKlaO0gUF6lYBwFJImJlwyCCqgw5LdZIB/lrRKvaDZx+LYHNiiMOL6tRv8x//4O0ghGUUhlSBgcmKS3d1dA+8rMizbpllvcOXqZba2t/kTP/IniOOY6ZkZLNvm8pXLfN+7v8+8WULQ7/X41//6X9+TNaCSXRIVYzsuqtLEbtSwag7CAiE9fOHAGGiZU7WrJtvKrdJsjeNqTdMeMesOmapJqoFAqxESRcPx8EgYbt3kwsXz7G1vYkmB7djkyhxyozAlzxVeYOzDlixfY2VG+FKAEDZZXkDJRyozQylyjRY2nh8QjkbEsWHQ2JZAAkVWcOf6Ne7cuEFnbIyDc0ssBx22dZUV7bKb20QyJ80cEhSu61BYGRQxnjdGo7aIa9kMoxGDcESuUpI4JKcg0gMG4SqpTrFcDxso4ohcJ+gsN4nTtSphlKJjk2ocDtbJlSLDJdUOjuujhETlfbAUrgzQgxjyHCksiCIKLJSS2NEImXxvjq3/quLkZ3/2Z/nMZz7D17/+debnv+3EmJ6eJk1Tut3ud3VPNjY2mJ6e3n/MK6+88l0/724Vffcx/+fL8zw8z/tPn7xlYVuSA4vLPPn4k1y7c4MXXnwBVWijEymZIVppk20iDKsiz3OTbSMFvh+gEchSpFOUQtM8zxAIVMH+zzIoeYsiz5FCGHGQOftilZoSUX797mVC5djfCErKvZkHKkWhCpNSLKVZtJi596XLV/ACn4cfeYTXTrzGYDgwHRrMZoXSZDpFaY3neeXPN3NOIQRqn9FSIKQpfpQ2i824lQR3E2nRRmx5/fp17tx2mJyY4E1PPkkcxdy4cYP75mbZ2d1jZWODr335y1SrdW5dv8y1K1f4pX/4/2JyZp5emrKqIFs+wGWlSOcnIY2o+C66vFHdPRH9Ua6Bj/7Gb2JZkkq1QrvVZmZmGt/3SdOM9bU1Tr9+ijzPmZ6Z5ge+/31ozNhrc2urDCurILTivgPL/MW/+BdYX9/g9OnTnHnjNM8+/Szj42N02m0Wl5cNYCzw0YV5f/Mig5K1Y7sOtrRLEKCkVjPExaBSQWtRJsGaAD4pBMPBkOtXrzE/N0+71ebGjZvcvnWHt7z1aaIootvdY3Jisuz2mWLzxInXmJiYYHZmmt2dXaSQhMMQgaBarbG0vMyJEyf58pe+QlEour0uozDkxvUbKKU5cN+B0kXiorVifm6OCxcvIiNBNahSq1XNqa1U8zuOTV5k+wJsg+s3I8pqpcpwOOCf/JN/yrVr13nw+HGSOKE3GmJJi1arSVEU9Hs9jhw5ZGIbMLble7EXNNsdikIjLZt2ZwwpJaPRkNFgQBTFpVjWZtAfopQRsTu2sy8aFmXxuL27i7+6gus4uJ5HrVql3eowNzdLpylA2nRabVTD5Cdtb27h+wGtdossyxkMB1y8cIksTVhaXqTdahHHCWur60xNTjA5MY7leDiOTafV4tQbb3D1ylU6nTbz8/PML8yxvbXNpUuXGQ6H+BUfKSTDwYA7Kyv0BwPCaITtWOzs9FhZWeHK1Su4bxgtkGVbhFFkOm9SUKtU8TyPOImJ43gfg+B6HqPRkEKo/dfGth2EELiuR7vVJoojvJKg3O/3GQ6GxGG8j2tIs5Q8yzm9c4owCnnk4UfI0pRLly4Rx4n5+UXBb33835Xda72fs3Uv9oJivIk/Ng4VF8dSSEeSFhEWDoGsoCnI8j6uVaXm15mYbLHcULTZoGZntKomX8hC48oU2y6oOYrdO1c4e/4MvW7XJNs7NlpCmhYm0yhMTbhrxbz+YM5/2pgyyyJekCc5/VuXaSpdFojmeatS24hlwGZJnJAmKUUhwCljUBQoXbC5scHmxiZaC1zHY25qnoP3P8kgmKVPQL8QJHnG1ug2Oh+yvnoNz2rg+dO0J2cY77Tx/QpRkpHEORt7d7BrPjkZWloMRps4ok4epzhWgO9VIFRIpWm0prEyl2IU41dbhPmQAkWaZwZTYEnAQYURxJnpMOemKIvziKJITXqx/t5o0X+o4kRrzc/93M/xiU98gq9+9ascOHDgu77/xBNP4DgOX/rSl/jABz4AwMWLF7l16xbPPPMMAM888wz/4B/8AzY3N5mcnATgC1/4Ao1Gg2PHjv1hng62JTn24MMcf+AIZy6c59UTrxmOQ16GsJWCVEGJGy+1JFmelZuvYwSOJX8CjHpcKZPV4/ouAk0YRohy9l4URWnbNZyB/W5JoVB3C42SRin3Sa8G415ohS1KtXupbRH5tzkrwhbI8kYkpeTsmXO4rmvEm+rbhZDEFEB52RFKSjYK8i4gTAJq35l0NwdIKL0fOCiELNN0KU9nZhacZim3V1ZYWVtlcmKSB449wGGluH7jFmO377AxscVnP/Npbl6/ztve/V5ur6xiOS4TnQ7jUnLg8cf5um0zubmDc/AQq1u3kbH52W9605v+yNeA6Q4JojAmTTcN5dKy+P7vfx/3338fK3dWqAYBR44eZnN7Cy0E7U6LL3zuC/iBz/zCVe4/eB/Pv/gCM7OzTE/PstjrcvrUKdI04S7C3g8COp0OWZaVRGGFY7tEcWxEyGVXynEc0jQxrAdlNuMojqkEbrlZif0CNivpwNtbW4yGQ2Znphkbn0AKi8HAnLJFqUcyUQtXmJycZGpqmhOvvYYQgtm5Wc6fO4+i4ORrr/ONb3wTpRTj4xPsbu9w/do1KpUqUkqSOMZrNLGkJAxHWLbF5sYmlm1z34H7SJIULwgAReD7pb7KjHCUUuznEQK2Y/GJT36Si5cu8ad++qc4d+4i/cEIfWed4XBAs9VESsmZM2doNOrU6sY+fPv27XuyF3zog/8j1WoNpY1LTloGXmg7Dr5ndEGO66CVZntnh3Nnz3L+3AU2d7ZI4rjkfGQ0Gi5jY2M06g2mpyaZnZ1lZmYGL/CxpCQvIwKKXDM2PkZeWv5HYcgffPqzXL1yhamJCQ4fPoTAhDTmRcHs7AzzCwsIaYjWQRBQq9ewLIvbt+9w+84dbt1eYfLKGPfdfx8HDixz4cJFTp54ndW1ddIsNc6yUhdXq1ap3HeAxcUlpJT4gY/nGZt6XmT7MEopJZaw2NvbRWPGMZ7v4TouUggarQYTE5PYjk13z6SmV4IKjucZZ5rn0u922d7aIc8zfN+j2+2SpSaH6oUXnieKI37uZ38W3/NL4bMmjhP6/QHrG+tobUbvSZrup8Hfi73AmnLIOyOU7iGVQhUZKIFKAqTlMNlZoGo16ageh6e7zE8W2AjjRMHEllQDh7FGBSsLuXnhNN+6fJEkjnEdC8uxSxekIgwTolFCmhUgJZ5joxEojRnl6309e9m1VgymjxAlkvrWjsmzKrvd+i4IVGkKLbAcF6k1eZoRJhmuY2NLc9+Qwhy2ldbEcUx44xK17RUOP/ww7YVjrIQWu7JKS0+xk2rSRspeb4No4zLrF1/A9RvYgY8/fYh6cxbXqeI4FZSQeJ7HZGWWURhSiCnSIkEW5pCexRuMkm0CXceXnnHeJENctwGiShIPKHSO59QJVNvoVZIcqR0SPUSrjAAHz2mS53vf0/v5hypOPvShD/Hxj3+cT33qU9Tr9f2ZYLPZJAgCms0mf+Ev/AV+4Rd+gU6nQ6PR4Od+7ud45plnePrppwF47rnnOHbsGH/2z/5Z/vE//sesr6/zt//23+ZDH/rQf7Ya/r+6nn3mWQ4cPsRrp17n9Ouvm/6HAKVyM/aQ0iSzyrt4esjLkECE+eAh5L7T5W5Gj8aIkkynxZS3lpTGfSO+nXxifqIpNPbDB8nRCKwSR6+0NuK0uxRbbR53N2gNBIUyXRRpSfKswMG0AtGGvIjWpUiqxN6XIliBEctqpRFSIxx7v+hxHKcU5IqyEDGvibFBF2htBG5aCxRmypNmJitG2g5aazY2N1jf2KDZbHLfgQMcPnQ/f/P/8YvcvHaNP/mTP4Xt+Fw4f5bXT55kYnyMQ4ePMDc9zXvf+xwnPvu7/KW/9gus1qf47Cd+HYCnnnrqj3wNWLZECtORkkJQrdW4fv06zWaTB449wOrqGtdv3OTGrdt85KMfw3VcxsbH+Omf/imuXrtGEidcunCRL37hSziOwyOPPEKt1Ft89N9+jDCMaLaaOK7H5RLud/DgwX2CcFGYzpTWyqwp28b3PGqVgN2dHXNS1IpwZCyDcRyXjjH2c27q1Rpnz51ndnaGjfV1Jqcmy46bZmdnh3q9zu7uLnmec+f2Cp1WhyRO2dneYWN9nbGxMW7fuU2e5SwvLlGtVblx8xbtdof7Dx5kZWWFjY110iRlMBzi+z5ZnqGUYnd3F8u2OXz4kMH+a9NlrATBPqW2KJHlVsluKZTiNz/+W7x28iS/9Et/n7W1NfzAR0hot9sorWk0Gjz22KP824/9Ju/+vu+jPdYGzE3pXuwF73jn22k06uV5oeQJlfyjXrdLf1C6GoqCerPOU29+M8+85VnyvNj/fKZphmVLurtdqhXTDfF839ilC2XCQaVFo9FkNBwZd8YwZWNjk4sXLlCvVHj/DzzH3NwctXqd0XDIxuYmg8HAEHp9A3eU0nTSCq1oNBuMj48Bgkq1SqNRNzlKWxvMzs1w/PgDgOb2nVXOnT3H2vo6SZJQq9dZvu8AB5aXSdN0H5Jml7EItuuSpSmD/gAhBIF/jOmZaVrNFkVu9oVao44f+Liua0ZUYbhfeO/t7bG9tcPW9hbhaEQUhSRpws7ONq1mk6nJcT75yU9x89ZN/vzP/Aztdpssz5GWzYHl+wijkL1ul+WlZdbW1xgfP4Lne+xsb92zvaBwt9B9javHsFQV32ngO23qDYf7mwVHpoZM1F2ErpGnGa7KcF0P269QC1wsnTHaXuXi+aus3LhJXAINjdHB7KNFoRiNItIkJ83NfuBaVhmPIsqDH0gwyPyyyyqEoN8+hLt6+dvUcWksvVqLUo8oTL6btLEdKHJFnuWEKsd1wLWtEsgoESi0NH8ajkJOvvAirbGLLB06yFMLS9BucbuXsZrabDUn6KlZ6tEsO9evs33tFDU1ZDhcw6p0yLSPX+8wPlZHZVX8aopVTNHt7lEkCVmc4QlBHu5hWQqJi84gEG10okxwYDxES4tCRGgqCOVQrbXIk4wikqAEFb+NEj7qXgT//eqv/ioA73znO7/r6x/+8If583/+zwPwT//pP0VKyQc+8IHvgrDdvSzL4jOf+Qwf/OAHeeaZZ6hWq/zMz/wMf//v//0/zFMBYGpmmldefplz586V1FVl+hSlHsSypIGpFQVSCMLIqNjRCs+rmH5GqWZVWqOLwrh4shRpmSTgJEnJ8pTAMy2/u+McieGL3B0bSWmKj7z84CvLIkmz/SJECnBsa79bcTedVliWmc3J8kYnpHHyUFbT2iQYa6VN4SDMzeHu6EgIA4qz0KSp6dwIKRCUIDl1F31v7c+ZVWk/BonW5sRoW5bRriiNLrsDafm7bG1vs7OzS6vV4gtf/CIAH/vob3zXe/H0W97GyuoKQVDhkcceJ4oi/tk//F/Ji5xHHnucrZvX78kaMLoi9jeGer2OJSWNRoNDhw+zfGCZJ554nNXVNc6dO0e93iCJI9773Ht5cH2DC+cvcGflDhcvGYfB6dOnefTRh/mRH/kTxFHM2bPnuHT5EoePHMb3Pc6cOWMCIV2HoswqyZJsP99ESJNXooBmp02wu0OlWsWxjavBcV1UkTEaDmm12iRpxqsnThCGI06dfoO5uTkeeOAB7ty6w9KSOT0vLS3wxS98ieFghO97bGz8/9n782DLsvuuE/2stfZ05jvnvTlnZVZl1ijVoFJpsmUjg4wNQT+7m3gEyE28YIiw/nKE/cKvA8Q/BES8CIIATPvBa+jXTKahbYOxMJbKNpKtUqnmUk1ZlXlzvvNw5rOHNbw/1jonS7aMy3KlrTK5FDdKmXnvuefs/dtr/YbvsMmZM6eJleKN198EPGup3mxw7t5z7O3vc/36dY6fOMaxY0e5cOE8z37jWcqqIEoSpFQz7ZNms8lw7N2Ko1h5IUEhsbgZkNwYD9x2IdGtypLf+I3fAOAnf/KnZvfi137taf7SX/ocQkjSLOMz3//9PP/ii/yHX/qlmQjbv/yX//KOxMHW1haDd4k7TZP7qqoYD8dUAVPSqNdJa5l/nuKIqvRMksuXLnPxrbeZn5vj7Lmz1JsNKmPo7uyQ5zkL8ws0Gw3G4wmTyRgQ3Lh5kyvrV5HCcezoGidPnPA+W1XF9Rs3ePPNt9jb28NZx/zCPFsbW8zPz9Ht9mh3OoxGIxqNBlGkyGo1GvUG9UaDes07+uZ5TrffZzAYUG/W+R9+5M95ps1wxMH+AYfdQ49ZiiLO3nOGOImpyooiz5lMChIVsba6ypGVFRaXFqg36n6EFUa+3ienCCOuiGxuLnjqxBxZOYI+UzHOJ4wGQw4PDzg4OODwsEvv8JDhaMTXn/V6NT/72zAk91+4n2PHj+Os5f7770cIwRtvvoG1liNHVhmFeHu/Y6A+6jDfuZc0WqMTG461NUfqE+aTIbVEEacZw36XOEqYn58nSxSZsujRAdtXb3L5nXc42D8Ign4qJCVTrSHJYJhTFKXXiCk9MFzGCSLy3SyP1ZqSH3zh6Ef+UMo6m90O9+1cwuKQigCGD4WNEzOMoDF+/B4lKRb/bBd5hYmsZx4S9jt8YSmCH87+QZfdrz3LS/I5jp86wSOPPcqHj59kpzfh4m6Xm0nG6mMPM/rwQ1Sl42Bni+7WO1QIZLnKVrkAaR0T1xAywsYRiwsL5IVh3hxHjycMDruQd3EIUulNHSfjAzLaJKJNJmokUYSOgFYNZTU1myFkGycSSmUY3amxzu+1sizjZ37mZ/iZn/mZ3/V7Tp06xRe/+MXfz6/+tusrX/0qm1ubHoPhPIDPOVCxB5Y6JyirijiKGE8mQeskQkYJKkpmnQ8pPLXXaG93r6uKVKaABzKlcUKkblN3HW4GUHXWj3SqyovAqeAcbK0lVgqEDJL1zOi+zhE6KvZdXwaBRCqHYlqJe6xKFHkfFe9VE5zg3gWAnZnQAYXRXhvAMRNji1U0S0qk8e+PwPKZsY6cZ/pIaWeOpJJpN8lhjObgYJ9/8A/+IfVGnXtOnWJhbo7t3V2uXFlHKMX+YZcbN29w5do1nIz5xJ/4DE899RTzc3N845mv3ZEY8FWIp4fHcexBkKFF6RNHRW2uQ6/XDQDHOkZXxEnCwuICj3/kCfb29vja154hjiKOrh3l+NGj/A9/5oeojOb4ieNcu37Vg17TFBAURe4ZNcDC0iJKSXZ299jc2KKqNGVZ0e322dvdnb5LsqzmsQlzc0gZsb+3j5CCVqvJiy+8yHDo5/PGGoajAf3BiLIsSLOEne1dTyu3hqxeJ01SNje3iJOYjVsbjMYjkjRGCoiSmKLMfUIbEu84VMZpmqG1N8N8/vnn2Ly5wcrKCpMb15FSUmmfFJdl5RVUx2MmoxFGT8XFDFWlyfOcf/KzP8uldy7x6e//fp5++ss8/fSv8bGPfYwz95zluWe/zt7uHp1Oi8/9pb/EE489Tnuuxf/yv/zN38HMeL/iYHNjg3qjHij7t7umSnm7iSw8w8PhgCtXrrC9vYWzsH75MsPRiKWlZS6cP8/JM6eoyord3T0AFhcXWZhboNs9xGo/0r169TpXr1xF4Dhx4gRHj63R6XRoNJtYa+j1+sRxxNG1NY4eXSVNUpIk4ey5s6RJirWOw/0D9g8O6Ha7mLAvpWlCs9lkfn6OpaUl0iyl0+mQpimHB4d87WtfR0rByRPHOX36DGfOnkEbX1yMhmMGgwESQa2WsXIkoVmvE6cJ1jp2d/bY398jDqJs7XbH7xMBE1HkhVd/zSeUZRUKJHzSUs84fvI45y94BWLf4dX82F/+n+n3euxs73Br4xaXLl9m89YmvW6XYaAl93sDFheX6HS8cFxV/E7p8vcrBh5c/jArjZLl9CpHFzJiKXySHcVY6xBYVhbn6DQyUmmYdHd4/dXXeGf9KmVZUUsDZkwSus1h5K41k7IIXTa/D099z/yYzY8/I6VQUsy6dx7r58U3dXsRmaQ4U2KV18NSQgYWjAMsCIWQCqsNzmiEUkRxMqNg56XGOKgFiQMpPLTAd2EDJEBKjHWsX77K22+vs7a2wkeeepyPn72X3aHm5v4eG7ngsLFIcu4sneIE3e0dxGRC/+0XcTKCxgK2VsPV6wh3SNZaJKLOWMa068vM6SUUkFeGwWGXdn2OqixRUmCKEUlcoxwdMpkcEitFaQuUcFSipNAV2my/p/v5gfbWWb9yJVBwLUkcobXn3cuwMfkRhvVyzGVJkqYYa6nFtQCWVX7M40/yYB/vAYNxFGOsRRs9Y9XEUYSediJi377zmiY2aKlMacUyZL+edjxFx2utwwiAb6n2cQ47fS0XWCACT/Vj6iqrwAq0LpgOlqYqGLoy73I7dlRlhRDa05aFQKhAaZYSKfHibTb8jtD5qaoyJEn+z0maBBl9Lzg3BfVWVclwYHjtjTep1+scO7rGU08+Rbe7z+7OLsdWltk7OOT12kWubW7y7LPP8nuntH+AFRI9gaVRr8+Al1EUoaRCpTIA/SRZWvPeI9Ew4HoUnU6Hdqcze63DbjcwVhSxhPmwkfsxjvSuv6Mx1sFwMODqlWsMRwNUFLN8ZIXJ8wVZlrG0uMBkPCaf5Gxt+g37oQcvoI0//B96+GHWr17hm6+9wXA4xAFznTmKvGB7e4e93X0vHiYEcZpy7LjXb1m/dIlzZ8+yv7/H8vIyC4vzFGWOkoKVI6tcXr/C4WHXO9CGeNBBY8RikTJiPBmztbVJmiUsLi1TlAWximeAV2Msk7Fn4xBGJFMRwF7Xx78OCbgIFWJZlFSVJkuT0LHQQarfjzGytHYno4D9/X3Gk7HXIcEz9LSuwoFivYFjYO9JIViYX2BhYZEPffhDXmumKjk4OGB/d4+5+XlOnzrNeDym1+thtaHZaPLmWxe5fPlyELk7Si3zRnj1eoMkTamqiuFwwP7+PlVZsbS0SKfT8ftLiMnJZMxDDz+ECKDoX/nir1BUJWtra348HJRbd3Z2mJubmynyquVF6o06+/sHvPPOZd586yKddpv5+XmWlpY4cuQIa2urnkmV54zGY/rdHlevXWd/f5/RaBTGyo5IRTQbTeYX5lhaWqRWq5GkCUnm9VrKsvQMlMmEre0dtnd2GA4HOOdI04xGo0GzUZ/J7i8tL3L2vnv47J/+rC/ejKMocg73D7h1c4PrN29yaf0ymxsbjEcj3r709h2JgUc7N2g3UpxzjHpj2p05HEGHJmvQacSkrmL72hu889bbXL+1Cc6PKtPYYxCdgyTIOnivswpdGaZSFDKIq1VGE0VihiFDCJyQlKEAvY3lMygMWyuPgbRkCqTwAp4ESQvnPOkC65NfIWUwlp1O8gVCKZSQlJVGW0ctTVDqtvimEOCMQwmBxs1YnDeub3Hzxn/iyMoSj330cZ586FF6heX6zoCbgwN6aZ2DtUWoNRmePEFv/5DioEdv/S1oN9m0Y5JWxsLxRxiUOTWZ0mzOkbVbOJvglpdRVmJKvw8Uwy7lZIyVOZFQVOMcHTmkKqn0CJHVSN+bzMkHOzmpyoK4EYH1ow3rLFmc+QrUWKaokKmAmnOOJPbI/Gn3QgrhUft57g9ieRscO7UZj6PIZ7f+ZPeg2wBOI2zmU3GhSAXwoPPdmAhBFCmEZMYMIGxXXszNj1xc0DIxgVeulAztO8LvMIGd5LVKdMAMOAdZkmCcpdTGS6aXZQBnJljh0AQeOjJosgli6W3UlYpwwh84QviHsDIV1ajyVZL04FrfCvaIHAk4o+n3ugwHA66sX+H4sTVOnT5DkY9J4ohJnrO8uEihNaPR7Tbu+708g8rfszhJ8ELTLmCEZAB0emB0HEdEAZcDkCRx6MG6GSYIZ0Ob1N+bLEsDANpvYnEc06jXePnll/k3//rnKPIJWZKyt7uDkgpdeXrw9vY233z1VRqNOoeHXYRw5GXJ/s4+tzZu8au/+itcvrROp9Nhbn6esshZXV2l3+/x3HMvcvrkCQ67Xb7x9WeZm5/jYO8AgPF4wtz8Aly9CgiyWo0PPfKwb4//0i8hpOLypfWZ3Pl/+IVfDI7dljRJaQQtlsODLkuLi0FeX3gVYh3uv67CKNH6saAAIX03yjoTRP/0jJ02BV4758UMvSt0RFlVlEVJrVZncWnhjsUAwHg09uJwUYRAkEbprM0+tbQwxmNOZOR9RfYO9qi2NdZYOnMdFoLWy/7+Pr3DHssrS8zPz/Pcc8/x8suvUBQlrXaL+XnfwWy2mywuLNJsNjDW0u/1uLWxwa1bG0RRxLGjazORxjiKZvsJ+ERlfmGeY8eOcePmjVmCoKQkCeM/JT2DCPDxiOBomtJqNTk4OGDQH3BwcMjFi2/7kWa7xZEjRzh96hRLy0sszs+zuLDApXcu8fIrL/PO5XVGoxH1eoN6vUaSZtSybCYUuLCwwNxch7l2x3dHjOHIkWXOnbuH8cibHW5tbrG/s8tGWXn10dhjrKy1FJMx3YN90jSj02rR6LSYa7c5srbE2vE1sJb9vX3+7b//P+9IDDhTYF1Mp9NGCkWn0ySJoNOImAz6XHrlTd55a51ef0ylDY16hhSWSHo5fhxESqCrikrbYCHi2ZsyYHGiaFpceq+zWpYiBQF3GN5HKAo81AC0kKzbRRYOrnj9kNiTEXzROqUZh3vsBHGcos0YY/xo1RqDsJ7noKShLAuqsqJWS4kib1ArhPCCaEYj3TRp8biWsizZ2jngl37xP3PsGy/x2Mee4NEHH+EBp7i122OjN+BmXiBrNZLTa+gTqzSOHUFLST4ZMu7u07/6Gnn/kLGuGCRNZLNGWp+DlRVco4lLElAZOpVonZItrzGvMibdAW6yhB6PKHq+uDaxek/38wOdnFjrWTFJ7EWikuAY61tdPjEpCk+3VZGv/uv1hmdchFGJlJJJ4dvg2lQoFTOVtyeAR6WMcXhwapImeJ0R/z2W6XjFa0Mgbpv+TeHaNszYojDyQRDajITujQstOjcD81XOQiQCCHGqrzLt9tiZKq7WmjJQm6MgqY8QFGUZqiTfvUniOCgG2hmLKIkTn8i5QHMGyvC+hYCiLD27QHhrAGsMFkcVkjpnvc7FeFLxxsW3uXT5Cisry6ysLHP56k20towGAw4O3xs6+ztagc3y2/88HfHMQMfGzBhXUnqBASV952yqU9NoNjh27Jj3RArVkE9kboMrB4MeAserL73M3s4u2miazRZ7e3uMxznWWPZ29xmPJ2xsbNFoNBgOvSvx66+/RafdYX39Kvv7B4zHY9qdFmfP3sdkPA4dDsETjz/KaDTi6vpVrl25Sq12P09+9CNMJmN+6zd/K4wwFTJSbG9vs7y8yMmTJ3j2mWdptufY2t4mTTymZH//gMXFOVaWFzlx8hRrq6sURe6vDVCWFcZa3zkLn9MGQLUIu+bURVmqQGN33t/HheRYSkmn00EIPwaZn5/j6Ooau3t7FGXBeDRm0L9zbrQA84vzNBpNbiPaRejayAA8tJTVhPFkwiTPscawtLTE6VOnqdfrHPa6bGxso6uKI0dWWF3r8MYbb/Laq68xyXOOHz/O6toqi0uLtNtt6rUaWZbRbDawITHZ3Nri8uUr7O7szIS3oijyQneB/joejUIb3x9w8wvzPPv8cyAli4sLREqRpCm1LKPRbJLFwSE9ioIthiHLMlqtFnt7++zv74XCJaKsSl5//Q1eeeVVarWMo2tr3HPPGR7+0MM8+dSTjEYjbl6/wRuvv8k3X3uNy+9cYjQaESdR6Cz5cVgax7Tn5kjimHqjTqvZoNVqsbAwz8nTJziycoQkTRj0+mxtbbK9tc1er0teljQaXkW4Nxxxa2ubw8NDhqMhg37fe4YFJ+w7sXynqkW7WaeRKmKl2d/e4je/9hbXrt6kNxiTxIooiqhlCbHymldJkuKY7o0Rk3LCYOgVl6f7wHSP0NqE58M/DzhC4uIQwmCtRoAXfPPeJ5RZnRuLZzhy8BZS+tgUyrvNK+k7NAJfZDmcT2aVNwuddt08ccISJQnWQaU1o9GEOIpoNmo+IZLBRT2JMLrycIUgJSGQOCPZ2Nzhys/9B+bnf41PfPJJHvvoJ7jnaMzbV29xs3fAnkvI4xrb7RrDytBqLjFoNLCVZry/R97tIpGMdrcxakxjPCFPwDQaFM2EsqiIaxmVcDi1TDaXUq9nVI0MowT5cEhVvbdi9QOenFiPMZCSepYFhVZfOyvpZcGNNUSRTy5qtQxtDGVVkYaRhw4gWCnFt1TIU6XVOBzuU+qXs/5gMCFIp0ejEL6VncQJcZSR93sAJHEDIQRFVXqwKgJj/WsrGejEwo9cIhHh0BRF4StW67BBn8V3B/x7VA4q471WfJsRQHiqofIzx2kyorX35bHG+t+hFF4MMmiy+HkNHjCuUNLOrq0QXvdFqYiqMr51GHAsJlx7Z/1MFWPIteb6jZtcu3adbq/P5fV1ut0uUSR/x717v9b04RVCcP7+++l3u8ig44CYmuYZksTrt7gQG74d4F9j6kPkHGxv73DvuXtmnZM4jjl58mQYyxkmkxxjLU8+9THO3XeeX/+1X2N7e5vtzS1effVVTpw8wV/63F/k619/lvX1dfYP9mddmdFozIXz5zHWcHBwQKPR9DPrMAYUAtrtFg889CBCwNzCAn/xxI95M7Gi4NHHH2XQH/DEk0/QmWvz/HPPEUcRr7zyTV5//Q12dnepKu0Ts/CZ8jzn8LCPQPL0l7/Mxz/5CcDrjSgpSLLM+1PpCl16Of00yYjjxOvf5Dm1LPPdwbJCBAVlE+iM2mi0NrP7kGUpx48f86ypq1fp9XpUVfUtcuN3YsVJSqPVAjyAcJLnDIdDhqMR49GIg8MeUggWFxY4e/YsR4+ueePE7W329g6IIsWJEyeYn+tw7foNXn/jTbIs48mnnqTR8FohU/aS/5wZ9XoNZx0H+wdsbm2xvb2L0ZqiLGcxZa23ntDG+G7N7i4nT54iSb3A3traGmXhxzhJHNNoegPVJIm9eaPy+Lk4jmega4cjSVOWV5Zpt1v0+wMGgz4Of0Br7XFBb118h5defoValnH61Cnuve8cJ06e5N77z/PZH/5Btre3eeuNt3j99de9fUJVUa/VwEGv2/XsG+m7vrVGk1pWo5ZlXvgyjpib73Dq1AkefvQRGvUGVVnR7w3o9Xrs7e+xf7BPliYU5TxlWVJVFWVR8JtfuzPCnctL8yzM1TGTPhtXNnnr4jts3NigKoKUAsxGly5Q+VOlMMZRGe+Bc9Dte42SmWebx5EYo4kTX8zFsRdZ84WfH5n78bsX2lTKJ3renNWRVAWfOHyTOTMIoxw/yteuZCrpAL4z4pzHnclIQVVhHMgowmkNIkJrzzDy8AJHpQ2H3b4HUWsVZCR8N8YJiVL4XnJo/GvrSOOI7mGfL/6nX+c3v/Is9z1wlqc+/hTnT53gYDBhY/uQW9099qxklHZI0gZdIWmsHqe+sIKrNNQbZHHMpD+k2twnW7TkG13EcJcCBWlEtXaOMm1gG3OUCURH51iMT6GuZe/pfn6gk5Mp8M3TH2NsYJdMaVyl9v4yUyCrH1E46vWaDw5jMdYDQSPlgU2xUkSR8gBEbVBRhDHTtv9tRo21hjRJfOUdkgZjDI9/5HGajSb/6Zf+oz8o0pRavUGtquge7IcqzhEES1BKIIRvGeoAYkzSNIim+YGkr2rwbT7pwanWOa9C6Dw4VwTKsgpdESHAhIfFOUdVFQipwEb+gA7JlhQS424fLnKatOG7P0J4yqMMG60QImh9SKwToWqTWAEE12WA8WhIo55xbPVepFJ8+Uu/emeCYDoMBg4PDhgMhiB85SKmYGTnVRyvXb8+8w2Z/ug00RIIBoMBtVrNS+CHrtdoNObi228zHo/pDwbU63V0ZejMtxmPh+D8QdXqdDh37hxCwNb2ljfqC1RDh6PVavu2++qKH/X0upw+fYZ777uPLE15/vkXOH36FEePHSVKYi+wNpoghWAyyZFScPT4cf78X/y/UxYFrXab1bU1rHP8yq/8F8rQIZx93twryrabLdpnOywseuDum6+/xc7OLoNBn62tHVa2dllYmIcAhDU2R1eaX/nP/4XTZ06T1TKuX7/Fs89+g42NDQaDAb/5m1/jxvXrNJstbt68BUAZ/E4qXVGr1djb22dnd5cTPW8hsbd/B7tnwDNf+zpR0JgpihKt/Uip0prlpWUeffTDnL9wH85Ybt66yVe+comiLMiyGufP38fCghfCu3TpMo1GnWPHjpIkCUkSz/yUpuPhRr1Oq9kkjmMODw/Z2Nzk6pVrHB4eUlYVzUaDe+89x7Hjx3wFbS3tVot2q838/MKMHQfQmWszN9dhc2uLKIpYFatQr5NPCj+Gmh5ceHxYFEXY0oZxdARpysJiTKvd9KxB4bWYev0etVqNg/0Ddnf3+Nozz/DcC8+zsLDI6VMneejhhzhz5gynTp/iU9/7Kfb3D7h65Qpvv/0O29vbdBbm6bRa1Go1+oMB3W6PsiwD0Np63RWg1x/y8iuvEynJXGeOhYU5FpeWePjoQwG/4hOy7e1tdnf36HXvXByY4TYvvnqNq9du0h+MGU8KcIZESZIoJQnjmyh0Q33B51mVRdC/CibyM2aaDsrdCF/0TfEgURSH+ibgTrityu0xWhrPjXRUZckVN0c7Osb95TeIpCLNMnRV+vMEh8P7t03xKCbYCYjwTFvnu/RCCrSz/rwzBqS38OiPc6JIEilvRqriCGest/IgkDGkJArK4LU4IS9yuv0RX/utl3nlpbe4775TfOjDD/Hw+Qc4k2u297rc2t5msw8bhSNvLFCkNSYiZenkSXRekC0tUF/qUJUlmTUwtowPtkgaTRqHY8bFIeNkC9eMGdUblK3jdEX/d72H714f7OREKZLYb+TOEQLEb7II74kRxwnGGmpZDescSRCUEgh05UGjSni5ZxEO5WlLuCgKEIo09bbXQkzBlWImyCSkl7e3QVBLa83SyhKddpvd/QPanTnuvf9+qjznG1/72m3tEekP+Vn7z7mAvPey+9aEWX8E1qlQNXmAr5QRsfDzc5wfD2mtiZWiqnToDvgRhoUADnYI66gwPqkxYoZFEMKr20aR8q6TQc/FBJPC6bhJV1NfFeXxKlE0G5clSYy1EQjfdVpbO8Lq2hGazcbMd+ROLBf+Z63j7YtvewyNm8r7E+ICBsMhOzu75HnOA/efn30may27e3sYa0kErCwvI8NrmOBEPRqO6PW6/H9+9p/yyiuvEMUx//UrX0FrzWAwwBjLv/5X/5pWq8lwOPIWAyFhml6vdquF0V7T4Mw9ZzmnFEdWj7B6dI00TTh6/CjGhG6WMcjIJ9K+s6dxTs6SYqUiHnroIR56+CHKsuRTn/oUGxsb3Lh+ne3tHYqyJEu9WNb8/DxJkjAeDSnLkrfeushwNMI5R7/Xp9vtcuH8eS5dusRhr4cxmu3dXd66eJFr12+EcadhMBgyGA4wWrN++Qp5kSOE4Pnnn0dXFcPRiIWlRa6sr3NwcMj1GzfY3NxiMsmpjOb6m2/dsRgAePONN0nSJIDhLYuLizz2+OM8/MhDNGo1NjY3ePbrz3LY7VEUBQvz8zz++GMsryxx7dp1Xn7pFYQQNBp1kiQhSz3DZprETx3Qa/U6WZYipaTf73P12jXefOMtNjY2cTgajQZra6scP36cNE29ijCChYUF4iSh0Wzcfm6FV2N94MIFrl67xt7uHvVajThSRHHkxwXGP/NmakERCiEPqLQztpoUEu00RTDb63Q6HDt2jDg4MH/ztdd48823uPjmRS99/43n6cx1+PCHHuaxxx7jxInjHDu2xiMfepj9vQNu3LzFzVs3GY9GzM13OHbiuFfNTZKQME/o9fvs7uwwHk9QKsI6wXA04tbGltdgsoZmo8Hi4iKLS4ssLS+zv7d/x2Lg5//9L6MrM2NKRlKQZUH1VXp6vJSSKkhLGGvQxjEYDn3i8a7xTRxHs9G5VIKqKgBBFHvcXxTJsI+HIllYBOpdQHQCe1NQFQX3mFs4fYiIEj+uEd4WAiEwpe+COOswUx4yEql8AqKN34edtehgJDjtjGjjPbJwjvFoTBr7/busvOmsihTCOdIsQZcFXhrAj+dnQF4sg1HO8y++zauvrXPu7PN8z6c/zv333s+p1UXevnyV2s099nf2GcVNDpsdBiJCJgllXiBjidKS+ZVlxNw8K/feR1UVDG5tIQZDXOU7V51mm6G7QTG89Z7u5wc6OYnCA+FZM54GqYNmiJ66CVcVWa3mRcmCK6vDP+CxMRRVFZgxgjSJffVpDcZUJPGUJuZBf9YYqsDIqddq/hAKYmsuJBjdbhelFIuLi+zuH9I93McaTZImLCwtcuvmDZI4pSorlPRaKknqac+RSGYdICNMaCNDUXjdESVhUnpqdBQpYhUFB+KKSDlcyNqnGBxjp21GGajHoHAz6jVOzeapHmwboZ1vQRtrSaLEC7bhkzcXujO2dLNDNAqS/GVVhaTPA43jsKkXRcl4vHMHo0D4mRSOZrPJ4tIyb77Rm1Uww+GQRr1BWRQ88MAFDvYPA5vKf8ZKV4wn49mr7e3vowNltqj8tSjKnPF4zNb2NgcHh7dF+6bvQAjKqgyATIWuSubn51leWuIjT36EtbU1lpaXWVxcZGl5yXf1isLrpFhLUXiGCWFMqCvPkprCJzyLTM82zykmylT+niwszLOwsMCHPvQhhBRelGtrmyvr62xtbWGM4ZEPPcLi0hJz8/PE00MmjPn6vT77+3v8ie//Pi5evMh4NPRKqEVOUZY4Z+j1ekwm4xkGpwoMoGnSaqyl1+1x7dp1rl+/zs72Dv1+j8lk4imlYcx5p1ZReGn2c/ed5bHHH+fUqZMM+n1efeVVNjc2KasKKSQnT57g0cc+TLvV4tLly7zzziWSLKXeqAffo5gsTUNSYrHGu+A662i3W7SaTe9OXBTs7e1x7dp1dnZ3EALqtbpPTE4cJ4ojiiIHfMfDGIM0noJaVdW7AIuC+x+4wNO//huMxiN2dnZwwGqckCS+sKoq31Gd4qjcFPMV3q8Q3pZDqam3lwehDwYDojimUa/zvZ/+Xh64/36++tXf5NL6FSaTnMPDLm+9+Rb/18//Ig9cOM8nP/lxHnzwIe655wzHjh+l37/AzvYOm1tbHHYPOeweBv+vmDiOWVxa4J57ztButcHBxq0N1q9eZW9vH4e/XkVZcfPWxszwb2oweCfWQXdII43I0iQQBeKZfohXN5ZU2o/+NZCXJabSXsYhjOq9snbkgaqJ9IraIrwmXgHWdyjUDFJQVt5LLUlSpHVhtCqJhcJUFSqKqVlFOTzwSuLOooyhcNaTFITAGI9PssZjvny33t0uLhFYE0AEziGiGFMVEIDLiKnXj2M4HJOkMXEU46aczmm15EBb33lx09G29Z1mB5iq4q23rnHx7RucPXOU7/nej3H+7DmOH1/l0tVNbm3tsqINBzn0kQyiGoNai3q9QQFEaUpqE7J6imzH1E2LSW+IKHOEE1S3tmns3wGdk++25fBjEWssUvgs10wNrQLgT0bKVxUhKExpwMFkMvY+ObNOhgoCap6C5YwHuWqtQfqxUJoEKnEYBfj77UIV5EGno8EAEMzPLTAeDukf7oMxOCE5dvwkmxsbVEFnBDzeQVceJDvVO5BCUtkKbdyMNKzDiMpZ67n0Vs6Efm4zfvzruSDOQwDEmqBGKIzFBZqlsZY49gd7HEWz9jFM8S0yJHoqaLp4kFal3w3SgpIqzHN9EiQRIdP3KolCBJDtnV7Cs5TKspjR+4y1JElKWVVM8pw4igN1HKqqpAxYiMlozJSxs7CwQFEUHHYPGU/GXF5f52D/kH/7b/89w8GAGdNKqnBQ2JA4ShYXF7lw4TwrKytcuP8Cx44dY2l5mSg4+Gpd0ev3fbxKf91nRo3CzWLCASLMlAVipoUzBcnYoFTrW0PMWFteX8e3gZeWl1hdPeJl64uC4WBI97DL5q0NyqqaxazWJTdv3ArVo+Ha1etYZ1k5skykokDJ9e7DQgqKogishSgkVy7gozxl3+E47HY9tXc8ZjgasbmxwfbOe9M2+E7XD/3wD/PER56gqirW19f5pV/6ZSbjia+i44jz5+/jI088gZCC1775Gru7ezSaDVqtJlFg80QhMfE+Qr7NXoVDtVGvB1pvjUmes7+/z/qVK2zc2gCETzyXFjl58iSLi4vgHGUoDqbKu7oqqcpqhtUSAcOysLjIypEVrly5Qq/fJ45jaqGgUgFzIoVACz0DaU6B71PAN3i5gSgA41UQcavKil7VZzwe02q3+aEf/iHW19d58cWX2djcREjFcDjiv371a3zlN7/GsbU1Hn/8UZ566qPce++9LC8tcc/ZM+zt7XP16lXW169w9cotiqKY4fKUUiwvLXH+vnv5oR/+QZrNJt1ul5s3N9je2mJ319tGxHFEWdj/1m38A61YeqHDKZ5HCM/ac4iAk/daPlprnDMEHVecE4EN4xVgk0gFHJjFWFCO0J13xMrLO/ht3xdr05H3JJ8g8YVysFQjLwyiXufF5D5OxFdpGYMldMAduMAoxFUzl28hII6lH8UIhf9GkJHAaY2K/N4cJ4nHNNlqBkx30n/PZFJSxZY08cmUdRKLCPuDwFTGn5lKzOxQbDCErSpDhOPSpRvcvLXD+ftO8dRTj/PRRx+iqB7k8uVL3Nzr8uJrl2lFKe25JYZxjazWwTQynIO8HOISizM5yVobqdsU2rI8t0z75FHe+OK//j3v5wc6ORGhBRZFEXGk/DgHD2aKY98+q9ebRFHkZ4di2up3wZOmCDNajXZ+npwmcaD7uZDoCFTksS1VONjSxFvSCykQzuuT+ENPUOQ5w36f+cUFpIDJeMx4PCSKU/r9btj0qhmmwRiDCAHqwqgmUj6bVkIEl1PCA+VFpapS+2w3jma0zUrrWSIzpSxGkSLPC29qhg/6mdonHvEtnMMaFQCg0y7LbRE46yxT5XzvR+QR4EpI8qLAOBDvOqCraWUgfevTWQt3sFqadkH9TN6DoKeS/brSs3b8ZDym0j4Zca4ZjMlGIDxjxTk/l7158yZJEvNP/sn/l4ODA9Ik4djaKgd7uzz26If50MMPe0R98GbKspR2xwtanb9wniOrqx6npDV5XnB42J2NmW7HrQAnKZ3v8ikZTNECyHj6Pdb55MpTYHVghIVRlnMhMfUJze0ExicdzjpK4z2ZrLPUmw2WlpeIooiyrOj1uty4fgOtK06dOoVSkiTLePyxx4IQ2AJpmlFVJbqqKEqPKRkMBmxvb9Pr9b1T7p5Xo9W64tbNm/zcv/k/qdcz74ZblvzKr/wXwM0q5zsWB8Lx8z//8/R6fbJanTiKqNcyHnrwQR597MMYa3j++Re4eeMWc/PzLC4tzkzwplRjTwf1+0BRaCb5hCiKmOt0aLVaJEnCcDhk7+CAS5cuc2X9Cnmek6YJteC91Gw2Ay5LU5Ye8JjVspk7s1S+mzt9phwQJzEXLtzHtatXKYuSbrfnRfOSBBFoqqLmR8G+YJAzm4opJs1jnHwnjkB1jSKv22GdDZ2tLnGccOaeM9x7771cu36dZ772da5eu4a1NjiUv8NbFy/yi//hl7j33Fk++uRHePyJJzh15jTHjx/jkYcfZmNzg0uX1nnzjTe4fuMm4/GIq1eu8uqrrzLXmePI6hHOnTvL6VOnOH36JKPhiG6vx3A04vDgzo11sjQhSrzOia00xAo9TR4cWFtirKMs/agyUtMizBBHKoCOI9+hkA4vjAZaW6LAeIyUvw+edDFNDl145s2Muam1DomlYhh12EuPcBZHHCtKDVGUIIUNnXwP6NaVnjGGzFSt3FokgjIY0UYqKJRLRV6WJJH33bFBZdZaB0rhnO+4TbWHosgws2pxFoL/VKWr0FW/PeaJY4WzHuw+GIx48YU3ee2b73Dhwml+4E/9gMdvjcacbtfZ3thle9jn5uYt9vtDoloTtXiUPGmi6xmH5RBbTaDegMriZIKx4r99I8P6QCcnSezbi3ZWMbrQfVAUVRXmjQTshA+ad88V/cHmQVEqUjNfibwofPtReHVNKb3VtVQSZwxlpQMbxtPA/JjEf+3u7fMff/E/UMsysixDRTFf/82vURlfwflACJlz0NNIiGZtBokNIClCu88EuXHPJDLagAKE7/T47lE0oyYDs6pcSokW2svyzwptF/j4PhiN8QR657zrrKm0Hw/hZ9nW6Jl2RBWuoxQ+uYkDqCoJm+MUxOsCeFAb/0Df7srcweUgTZOZ4q0xhsl4RF4UVGXJcOhHFWXhmRwvvvgCGxsbFGXJYfeQeqPOQw8+SLPZYGVlhXqtzsqFZZRSnDlzGgc0m62ZRkq73WZufo75+XkajQZCSiZjr9KpK/0t3SUXvJPU7AD09G3pPE3KWxN4oF5VVSHh8LPger1BFYwFZwyr0MlSSvouCB6LIBGUlQZ3GwgupaMoDMYZur3ezGMqyzIe+dAjvqtTVvR6PXb398nznIPDQw4ODqm0xlkzS3aL0rvQygCqS9KUpaUlWq0mg8GQ3V3vI3Ps2DFGozFpmnL82DF2dnZ55ZVX7ujt/9KXnp51PmIV8eQTj/HRp56kLAq+8dxzXL92gyiOaHfaSOmLglqt5uPTGHJdkcS+6CiDEZxSHivUarWIoojxeML+/j6XLq9z9epVut0utaxGu91mfmGezlyHer3mpefNBPBGmh6APfXDCmaAYYQ3jZILFy7w5S89DfhCpHt4OJMBiAPzLnPZ7L6qKAr0U4WwliROwli7CgmpB1tNAfjTDtx4Mp4B2o8eXeN//J9+lJdfeoXnnnuOjc0N3HBAaQsGgz4vvPgSL7/6Teb+3f/FhQv38dEnP8rjjz/GhQsXOHfuHB965CFee+113nzzLa5dv06326PXH3Dj5k1eeullL0a4tMjSwiLNVpM0y6ZDhjuypFLBm0aQZp5ya7X2oNHKq7zG0rNvQPoEMYBcLdNOhSCemqlGQcRS4qm/Uxqw8FACQne2LEsiGwVasU8QoqnfGgZbn8OSEpnSm2mGjrvvME8LQg9TqKoSrEVFHnOkJx7Pk4VRtMOzBn13JUGXpfeI0xopIvJpge7CGecElbYYZ8iyeDYCklLhjKXVmmMyGiADxk4g/PUy/jP4IlVSloYXXn6bb75xlXNnT/LZH/wsH/7oJ2k0F6iKMVc3bvDSiy/z5sVL6P5Nqv4Yh2ClMU/PCuz8AlomxK0lRuX429/A37Y+0MlJpQ1lUSAEjMtJqNajGWslieIgauZvVqQI9DBfTURx7G+GuK0KOBWWiuPb8vYIGcTVDFEA4Bpt0FbPqMXWWrI08zbiWjMeT0izzLf5rKHRqCOFAmcxzrvVVlU5A2U652fTQshgzOUTlyiKPdC28pLrOBecRz1uREoxm0nLoDAphKQyBdIFvExQHfQmdLfN6lQYS5Rl6Q9TB1OTQCH8wxIlCWVZzUYlIrQ3fcHgGUtTmWfrfJfHJ0aJF/EKyeKdXFNGjHXQ73cRQjCejNjZ3WUwGDKZTLhx4xYvvPAyRVGwu7fLP93cxgGNRp3FxUX+5A/8ACdOnqDV9K6t3rHaJ2XgN/l6vU5nrkOn3SaOvcvqZDJhe2sbE5ysp+yoKZLfU7unOBEx451POyUuUMDLaurPE4DO+HtTlX4cNJVll3JaOflDZ+pZM81MBb6zNep5RHwc+0c8SbzqsX9967Eg/b4H30pFvV7j3Nl7qNUy8klBr9ej2+0yGA4YDUfkRU6z2QzjTBs8nGRgkZlAta64dvUa127cpF6vI5Ez/MG5s2fZO9i7YzFQlSX3njvHp77nk5y/cJ7dnV2e/vKvsbGxCULSajVnrLckTogixWQyoSwKf5+FIC8Kf60RJGlKs9GcdULG4zHdbpdLly+zvn5lptuSZRntVouV5WXa7TZZzYtAVpV/ZkbD0QwXMhWKHI3HoWviZjGzemSFkydOcP3mTaI4Dq6+/dl9b7db/sDyQhk4d/uZlNIz7vx4WuIhZm7277b0I6SwEXpKb+kCkFVx4uRxVldXeP31N3n5lVfY3d2hKHJ0VaGrip3dHba2t/mvX/lN2p02D1w4z/d/+tM8+dRTfPYHP8tTH3uKd95+h29+8zXeeusiN2/dCiq5JZcuXUJJSa3mlWWz36eZ3+9nTVVRrbUImWCDHYk1krysiKSi0BVKJkSBqaMElEFEM63XwbrQ/XWkQaI+iv2IzxWWLEtwRKFIcDMrEF/wWoT1ANSyqvw5Yw3SCdK8Sy3fpTSarNagzMcI4c1CpVMBN1SiIoVEemIGgixJ/VheeXVY63xnZCoXL4Tv+Bo9tSGZ0oZ9clOVJaaqkJUOwz8RRp0SHZ5ZIRQSR6FLpPJCcEIQRls+sdVhbJgXJa+9cYkrl3+W1YU2q8eOs3hklebCAmur85w6/UnywrB/cMjm5ja3tvZpWcPB1W0azTa9m5dp8t7Uoj/QyYnRFS4wRCKliFVMXhRButwHX1WVgCBNk9nYx3dZmHUlhADj09nZwU146JWUOGuwRoaNwScQKIdEEcdeM2MKXPRdA083TpOESZ6TFwVCShqNBkrEuKry4NQgtT4F4dbTBFPpWYcD58XPpPAGhc5a0jQNplMqVMa+gpomJVOA7rQ7hIzDZ/YtROG8geBUtMlYT1uTAop8ggzCVSoAvWabX+hOTVvhxlpEUC/0DxhhpmkpdIEK+JgkUmDuXLXkW9teT+DG9esAdOY6/Iv/41/R7fUYDIY466jVa5w7d5Z2u8Pc/BzNVsu7BzebpKnXkYijOBwA4QGOfKW9vLxMrdGgLEv6/b5n9xiLelfC4QLWY9oliqTy4NMoZmdnxx8UMEt2pu12Pxb093ZmyDZlYQD1um/tF4VPIH2Tzs7wJjPKIcxGc1NrBmMtq2tr7O3s0uv3gyidnI1DPQ5CUxQjNjc32dne4erVq4wnY9rtDp/61Ce4995zNJtN8knOzu4u21s7DEdDrLUMDg9D67j0oGlr6czP833nzhFHsa/swpik1+vy9eeevWNx8NP/r/8np06f4rlnn+cf/oN/RFGUNFst6vU6WeYPk2ajMdMmGY3GnpGRpjMtIFxQk41jn4h22kRRxGjkxxLXrl3j2tXr9PsDrPV2CYuLCywuLdHptKnVagjhqd/D4Yg4SWi3W6RB2t5a5xOi4F1DSExxEMUxDz70IDdu3vIA7qqcjYY2bm1gzJFZ8eXp/jLkGrcdbqfCeVMWoQhjQiE8M9FMR39h7COVnHVTAM7ffx/HTxzjtdde4+LFtzk4OKDIJwjrcQs4R7/X47ee+TrPPPsNFhcWeOSRh/n093wPjz/xBI8/8QRbW1u8/vobPPeN53jzrbe8IeNwwGG3O2Mb3qkVSZ94VlXJaDSiMv65cgSAuZUo6UfgWT1jUvgEQga8kQeiBwBrmmGcoSoKasREUYwUlrKowFnqWQvjLMiIMi+8oJubirRZpPBnDM7biTQG78BkF2stw9GALPLjIxVJqioP2kteK0sIh7Y2JP8Coysq4wtA5/xzL4UKhV+MEMpjTZzHkXj8YuX3KKUCy8dQFF4jRQqwAWA/GY9DQqvI0swLNCqFxXgXbxd+L37viqMIazS60tzc3ufG1gFGv+Q7x7qi1WqyurbKkdUjPPzYIySRZH+/T5bEREmKGk7Qexvv7X7eqUD5w1gizLKllF7joPK6BlHiN8bKBECn9h4GdkrHg1n7XKko0N58xap1iUQQxz4LF0IGeWD85m8t2rkwU5RYB8Z6IFMVxNziKAqqsB6MmESxxwCUpRe3EuBEwA1oGzAMkvF44isL47nrcPuQnFbit8cWesbMmEq1G+s580Z7XElRegfNeq2GrgJdDYcUyrfsnSOJI4z1okAiGBmKKehzphNig1S/JZ+MvcBXwFCkaUoxmcxmpyqKiUXAswTgsBV3LjlRkaLZaNJqtejMzdFut4njmBMnTzIej1lYmA8JSHpbF8da0jRBhU1p2lxXUtFqNVlYXKDV8hXzaDzh4PCQYmubd0u1KyVngFGj9QwXkiQxS0tLxImn8h5OujMhq2kSybS7Etb0/09FnKyxYfxmvJR26IxNDxYT/KCmiU44bW6D9MJ4zVjD1atXWVleptGsc/PGLSZ5PsMsTB21hZTUanVOnjrJ2tG1QIfWbG1uc/PmBkopms0Ga2trPPTwg9RrNcqqYn9/n/0979syPRDjOEaGbqSxlkwkeMpscsdiAOCVV17hn/3z/53JOKfTmZt53RBwO/V6zTuTj/xB7CXb/fY3xcdEUUStXgsKrE2k8nThvf19Nje3uHnjZjhkfYLfaDRYWFhgfq5DkqY+oS88RifPPdX6xInj/vc4QjXtnxtjphpEof1uBGfOnJ4JPnbqbfJJTp7nlGXJrZu3PCsvibE2wYZujPd8AgI2zh+MEiFM6AS7mQbTFAQ91SmJXRSSZp8kGeuoN+p8/OMf57577+Ott97i4sWLDEdD/7mMJpEyxLthd3eXL3/5aX7913+D5eVlnnzySb7v+z7NE088zsc+9hTXr9/gtdde4/XXX+ett95ie3vb6xDdoVWU3tQSfOfCWQc2sBilxGDBeBmI3mAUqMJT0TS/rHPUY1+4SYFPMvAFkIp8IZvEEXlRzHSzjPOeY3EUESUxZZ571qXzCtpFc4G+qqFlSl6MqaW+Sy+UAiQqjtBFMdNRKcOIsdR6BnQVYTQ/Hfl6ModBKu+sba0fE8VKYXSFUlHQ8DLTrYHKGCjGZJnv8DuCbYrw55iKE2rxVNfLx4lUvhXj9wkRzhZBpU3oHPnOuNUWJRT9/pjD7mXeeecq33j2Be49d4qHHnmIuDnP7kGPU1mLS+vr7+l+fqCTE+dACS/VPj2k4ygiS+J34U98Z8UrnIYuiGNW1TkBsVJo7anHVktUELOxzlCZitglEICdUnkAEgG0SqAQGxcSHyGRCkypUUk8Mz6zATTqR0pBdj9JwekQIGKWJGljsdb/ChlQ4/53+cpLhM8pQqOuMhqFChLjnt9vrCOyFhE4/UIG92Xt0eIuYFtUFKOEoSwqEpVQOYvRFUkSz0YOaZSGZEh6Z1ujA8jMf2+aecCfE4H5Y4yv5ML/d8FP5E6sH/mRH2V+IdBjQwLimRfeqG82josipp4XRe6FuqQUZA7mF+ZZmJ+n0WygjXeV3dvbD2Mzn/hN5//WekVc6xxlWQS2jKdvr60dR0rpk5nCW69PKaNGT/2LQnfD3a5gfSzbWQIyxYVIKbj//gd45dVXvJ6BU7Ofh5DgWj+z9qZlLlTHnnEljB8BbW1tkyQx952/j8lozDdffx0hhNdAySLKSuMFdYPacqOODi7bLuBbyrLk7bff4eLFi0ghyWo1VldXOHPPGWpZxtb2Nt1ul6Io6XW7HpuiJPVa3Y+wzJ0DRQN86Uu/xuLSEq12C2sNsYhotlq02m2kFGGEUxLHMfPzcxhrGAz8aGY8nlCv10gzr4w7P9dBKUWv1+dgf58bN2+xtbXF4cGhlybIMhaXllhcmKfVas0ovlpryqqi3/cmef3BgEazQVbzoo9V6CJVugqjWxFMK/21X1lZYXFhnslkQqPR8HRWIYIR34Td3T3SLGN+fp56vTbrkIqwN8hAb50CZKUSmNInEi4cbNOxttE+WfHqw2Ug/DhGoxHWWpIs4b7z51lYXOTqlStsbGwwmUw8oDyMzqeUe2M0G7c2+IVf+AV++Zd/maNrazz5xEf43k9/D5/97J/iT//pH2RjY4Pnn3+B5597gfX1S3ckBipjsJXGBXXWLI4wOJzwzvGRVKS11B+kkacMG2d80VWZ0B0RFGXhk0gpwqjI47+si4mlxTpBLAMQVipwJdYYCicQ0hcURV4EtWXJJGtzM7sHW1+maYdYAZUu/cjelAijZorLbsqo1JoA7QqCmwARFhPsSry5rdEaECjpsIZZwe2fXceUZi4Q6MDsnPQGtJp1kIJ8XJIkAm1KFpcWZ2xCZy1xklDlE6SUpEFJGvyZ5GFQwttYhM6xL44MUnjjx6IQvPDiG6xfvc4Tjz7Mh574CO3FZeaa/x0oxPrRQzWbfyvlaWPGWJAy6AS4GfulLM2sUpnCR2VgPnivHEmUxOHwCUZ6ys8bU5ViQ4EqpcIJGfwzBELcZk0UxlCMfcvYOp8JG+dQ1iBC1RuFTN0EerAJ4msyqN3inE+Ygv6IUorxZIIO4NQpIHIquy+FF3QTgDZQEpRew0hqkueoyIv6JDJikgdQnFBoXRErRS3L0NZiTEkcR1SlB3XWa94WoJjpFEzNqCpfpUlFWeUzEbhyCtYUwYcFPEjzDq3TZ7w3ig6U8Nu+JRJrNHlVzZKpqjLU6xm1esba0aMsLS0hpGTQH8wAodMDOkn8OIxwX6fgYxG6Z1OhpUa9xtLyMs7B3t7+u/A7PrHR5ra4UzhDAk4kALSlnM2spy1vawN+QCjSLPUJUACrTZOTKY1xKn9dhQ1rqo2Dc7cTSGsYTwzvXLpEq9lkfm6O7Z0dLl++TKvVotlsvgtAK/14SyqUMYGBYGfgUGMMRVn6Vv1bh7z++pskiR+DrK6u8sCDD1Cv15iMx3S7Pfr9PsPBkO3tO0slnpvr+MNWRWQ1L7M+NXObtrZRkiRNmExyiiKn1+sTRYqsVqfeaDDX6TA/38EYw2A4pNvtsrW5xebmph8TVBUiYI/m5+dZXlkhy7JguOaBw+PJhP6gP2MnZak3Z/PdLwJQO/f7VuQ9WaaU8qxW49ixYzP2jNbaP5faH3ZCCHo9L8MfB5xMHEVMO2eCMCJ0/tB0UUwt8xo8ee4FuKYUY+scThuKMryPIPamlAeB9nv9ABrOOHP2Hubm5rh69Qp7e/u3qeVCh8NPIKVnl5RFyfqVK1y5epX/+Mu/zD1nTvOxJ5/k0ccf45Of/DhPPP44//x//9/uSAyM8xIp/HPiz4Zg/ioksZTYUMg6683+BHiAbJKgbI4kMDCFRKgIY30HwsurCcAilPfD8XgSi8GRpRkO58f3fkqHxY+REIosSXiwvArjHnkAl9ez1INZkzhgkcLeYtyMQVZpg4o941LrijhOyQsv3TCFJlRBGLMKBeAUv1gGHS0lFU76LpoMc4MokgyHY+LUkzYkXrNqOBjOxn8qXJ9IxRRlEc4nfy3qtYzBYIAM5+5UjsNaSxon6KoE5eNSSMXOdpevfu0FvvH8K5w5c4xHn/jIe7qfH+jkpDJ+tOJR1Wo2+nDOYcoKY4yfsUlPK52yZJT0PHaLlyFOk4RJMARLlAqjmqAUOE0kptoOxlBVk4CgD9StMAiZGqSJrM6kyInw8vfOGFSc4AJYLU28PH2eTygKPxJIE+/dUZYlU38gIfx4pdL+wJc2yC8HZLXDoawMRn5+Y7LOJzTW+tcUQlKNR757Y2zQ9ihRgQo7pZBNcS9RuFZxnGCMpqq814OdjaXi0AJXgY7tQWde8t2LFunQKo6CEFvoO9+RFUXRjDE1HXVUVeXBzmH8kqb+MFldPUKj2aQoCg4OD7m8fgURxllpkjI/N+crR2f9oRySVJ8wcpuRZC3NZpNjx49RlhVXr15nMpnMDvd3f9opMBHw4zw3BR7fTmpnybGbYRZnVMSiCDLmoWoR4T5Ox5DTlv5UtdgpGbqA0ayiV8oG1VrHYDDAOku77Sv+fn/A/v4BrXaLTqcdfHX8ppNIiZF+jGUCq6WqvGhglqUzoT/CmHN9/QpXr14lyzIWFuY5urbGfffei4oiNjc271gMgD/0jxxZ9ZiLQMlUIYGcTCZESpHVajNV37LwXi9z83M0mw067RaNep18kjMaj+n3+myGxKTX682YL/VGg8WlRTrtlt/Y5VQh2gYg/JjJOPejk6KkUa/759264GGkGU/GTMZjmq1mwMZNu2GW8+fv4/K6dw9O4pg4iWk2W4zHE4zW9Lq9WXx5dlA9sKcEBJzX9J7IgIeKlKJWy7xXT+61aESgKMci9uPfMPYBz0xJkgTnPFbBOVhYXMAYQ5rV2N7aIs/z21RlO3WuFigVxpHGMBoNefWbr/HqN1+j8XP/1svmP/jgHYsBa/G07bKameMJAbECN7PhACG9FQhCUmqLjEJygKDMC9IsA1uRJBGKMPqegmTjGAIzUlcVMorQAcQ+7XRoY4mj1AOphzkn3voSa/bLaOfH7JHwXddYBRaojHBOh46noixzvDZb5MGu7vaoPhLe3R6hcKErksbeqoPwfTp0TJwIY5ignWVd6XE4RhMJrwtldEWj3vDTBa1DB0cEMonBIoICroc2SCGZBI8tAdTqNYajEWlaYzIe+fGtAJ3ndJoNtA3Cn9YxnpS89Molrqz/d6AQ6xzEURwUF22YefuKQkUeqBopRVGUFEXhD9BweInEAyCF9Hodlda+bRWpAIK1VJWvRkttyLIg6hXHJLHCGo0JyYmFWQttkufgbHhwfRaflxVWCFSlUGnKMDjQTr1rwAbflhpV6WeXFg9CC2cPUkmU87braZJgjQ44ExvYG7cp0n4mKWZulyr4exjhR1dZllLkhcdLmDB/DtctCiZTzlmKskIIPZutenGnaUIGQirSVCErL6vuOznRbPNzzicLijtn/NfptGdeRL6rYGfgw8WlRVZWVsjSlNF4zO7OLtev3/AVpFLMdTqMJ2N0pSnLgjzPQ1y9qzIyhrKsZm3sxcUFVldXKXXF5cvrvislvdOxDcnLNCGZAlujKJr9eQpcnbJ3ZqiRoC0zZXQ46+j1+jz9a7/uq+o0nWGUbPiMU4yJFMLTKJ3DhXFBURS3kyXhXZq19gZ/0y5JkiRkWcZoNGJ7a5utzS2WlpZod9rU63XiANiesj7iOJ4l6EmSzJKTVrOJs5Zub+q/Ytjc3OLWrY2wOSo6nfYdiwGAZrNJUeSUpZcQUMonDpOJ1yqRScJoOGI8ngSxRcHCwjz1unfcrdcbVEbTPfQCcts7u+zt7tLtdplMJtTrddrtNp12m8WFRRrNJkkSB7acT/xmyUkQeIyjiFathhTMFHmttVRFidZmhsOZjQ6c48SJ48RRxHg8xiQJldZ0Om0PSi4K5GQy6+5ltSzgWdyMpXgb8OwT3SiKmPUtg/aT13XxwFDPtPKj3yokT8YY0jShyP2YShtNkiQsLS/Rmetw/sJ5+r0+165cZWt7y2tAlSXOerXtKatoqsJsjWE4HPDa66/z2uuv37EYsLrCmrD/xzEq8Xoj2kEj8eavZemBohqBNIXXC5nkOLzScRx7MgXW231Y6TuYUxadCCaAZeFxYEZ7zIWQAiEjdOXHNRLQVekZfdLL4xsscZohRCgaYs/EtEikSsD5cY+2mtQJPzYWEMkI4wRGO4SKkYmXfIikwko360wb4zWdpoWrxEMUykojVURZefFHFcXeB8tqkiiCvPC2H8aQpjWfvJWlj28nKIUfFfnCzPv/OGmxxjKa5DPNnST17shpkiAdHktTahqh4+pl9SuGk/dmAvqBTk68XLj/CNNEJQndgFqt7t05wybtnAlCPB534EcluUesBxCVUpKqMl7JMLS3jHXUsnRGh/U3yI+KxnkeNEAARDCVizFh9hxFcXD1VR5cGwC8HruRMplM/M1WkjT13xvFEUIphLGezmw9IEuJCC+O5sFexlmUZaYGOd0EpqwJqeTMfTcKXZBJUZIFemySeKp0HMZYZZDUrioNwpIkmReBYmp4JmYdFinCp3HMOglTwLA2OlSTeraJen+RO7Nu3rhJo1H3ImuV5uSpk5w8eZKslpIXJVubm4xGfow11R6ZKu0OBh4bcFtbxP/7FOhlrSHPC58QpiknT51ECMG169dneIAosKZ8EDITW5vqTbx7DOMTHi/tP61ufZvVt0Cd8zHktMcv+TGfVz+uqspLqls/AvLW826mkWKdI8s8TbMMuii68i7DXqQw0FDDIYrgtviYlGRZSr8/YHt7l4PDQ1aWl2i2WrPkajp6mFGXmVLf/d9lWY00zX31Nn1WAj7HGMPVa9fvWAwA9IOyapqmVKVg7KDeaNBo1P1sv6zY29ubjSXn5uZIsxr1Wo0sSylLz/DY29tja3t7hjEp8pw0+OzUajWarSaNZsOPbc1tvSJjDVEceQCmczhniFRMEkfB10XMqNdaa19lxke9VkbYfwSCZtPTl0cjbytvtGY8GtNut5lsb88SIKWkN6lUU/8X3w12NjAsZh05nyQZIZDS0Wo2yYucqqqIRYwRcsZQM8YwHk8o8hwTum/jicccjEajWbLhKs3c/DztdpuV7SNcu3qVg8MDlFYUeT5L0KeJsRW3VY6n44c7sYzzFbqn3ZYoGYUiEorSP3ul1gh8MVdvNMJzajAWGo0azgbpg8gD5KdMFxVHKATWEoCr3nlYBHp/FKWYsvL/X3m/MVtVxEpSIal06Z3ftQFXkaYp+STHSIktx9TqLfLJiFa7Q1x4q5UkCSrMCKI0ZTycYJUkiTO0LXHKExm8EnZMZSosglq9Hu6Bjx8nJEVZkdVSTOXHj6iYSPoYyYuCWjbFvhl04bViSuNl7qMopiwmBIkUIgkijils7s81GZNEMRrLYDBEIJDOMho50lo6EzUdjiczjNV7WR/o5MRaS1lp4iRGhfmrBer1hhfUIdB7hZh1MpI4gI+sn0dOjZWmVb6QnuJZViW1LPNSyKGK9nxvi7EVMqD9pbjtDByHksUGzEEewERSesxAqQ3WlLSCtbuMIiL87HDKfvHvxwd5kZdINdU7keF9+SRCIGa/eyqFPZ1fG2N85h4eNH/YetaNAwajMfV6zXv4GDsDVFpriRPPXnHWBEfO27JJ8l0KmliLU9523NMXfVKndUGSJERxgtYVo0keZp13ZpmqYmF+jsV7zxHFMcPBgBs3b3jqoJymjSLouqhA3XQ+ZpQKxn1mptVx+ytYpodELooitoJz7NTlGphpZ/iO+O2D33ev/H+nB7qUEoebUdpv07RDrAZLVE9vdzOKsjd7Cz5IQfpaCDFzPTbGIJzFuXT2mnnuk3Id7AamOBhf4fn3roPGdpqmnqlSq7GwMM/u7h5XrlwD4MyZ09RqtVAZ29nmMk2eZMAwTHU9oihCOf9cOSlw1mOkatl7A8F9p6uqqmACGu659IlyUZb0+wO6h4fe8ymOaDYXmJufD92QFgJPde52e55SvbPDwf4Bk8nYU6KT2I9zlpeYm5v3B3m49tME0zlLkeeMRuOgQuyQECjdhjwvPe1b+I5mv3uIBA/IDIm9lJKiLFheWuLmzZtorX1HqCwYjccecFt6uqbWmjyfcHjgaDYbMwybUmrW6fNJ8+3RztQ8MI69NlHYchDC+wfhPCZl6kkFzADRSZKE0ZIJ48E+UkiazSb3nT/Pzs4Ou7u7dA8Pwzi4CocSYbzqk6j3fDJ9JzFgHZOiZJIXtBp1otSzSrIs87RsY3Gmol6rI/DdR6mUp0sLz26sZ57lpY0NHTjJJJ+gkhQlHGW3YnGuhZKK0WSCxKGNYzwZYYoSGSm0LvxoXvuYHE1yBCBVRF5q4kiRV77LrVSEcJLxyFPPR4MhWaMGUmEqDSphPBwiZOSLy0bDY1sCAFtJSVUW5BPfLSmKEqlipFCUpQerChFhnCUvPVhXazPDlWjjmZiVHpMkvjOvVExlTVCWjSmKCoTCOo1QMeOixLdtRcBeSkahazl1efY4q5Jcaw8MVkEF2zniNH5P9/MDmZy8W7IbHMVkgnWQpTFOyNC680JsZVkhlMAZizaaOEqI44ii8CJoSsoghubZESqAiyQCHShatXoNZ4IuivCHta9eVFB69IeS0ZqiKCjKIiQFhiSJEQ7GeY4eDqmliUdyS+HpbqG6kVKgtSVNYvLS09jiKPYdkgD01AGwZuy0KvWmT1PpeG0MOR70FQV9FBmwIbGSWF0x0hVVVTAcTJHXgBAeuW70rMIvyoo4jLh0uM7OvVtSX2DG46Bn4rtJfgyiySceSGy0F3EqiuJb7tv7GQPHjh+j1+tx9do1jDYsLi1yz9l7kEKwt7fH7u5+oACGxNHYoGmwP/MGAX+4TccpUxn/KTi0cjZQu28vEbQmvPCVH89M6aG3/+72Qekr2Rnpyn+GADKZVZjv0oCYHvzTDX7qd+SZPlMRv2rG1iGAGGegXedmG9gUX+APCB9rWejc+c0osIDCM1WvZ5w+fYJL71zmtdde49Of/h5WV1fp9XpsbmwyGA5nlfnUCXj6+h5X4ccD1k59TNxM7+T9jIF3v57RmqIsiAJry2t7VByMxvT7fa+5k6YsLa0wv7BAo14jTSLKoqDbHbO5ucXhwQFb2zteQCyoxNbr3k9n6kRclgWjoR8bK+ljfHrtiryg1+uS5zmTyQRdNuiNxwjlXWLHoxFF6anB/cHAdyMCsNmDVf31O7q2ynPP65BYElxwg0u6c0wmvo3ebDZn8gfNZpOpv5aQ4Mx03OuT3zhOmIKaSu3b/0UYZ/skVlOVlReRrKpg6WBnz/UU+zSZTML+WWKtxhqf8DYadZJ4DSUF/V5vBvA3xru1T+N/Rki4A3uBEjKMOx2D0YgqnAHjsVf8HozGPgEsStqtJmVVkaQ1pPTYjvFwTFlUKCnIc4NlSJZ51WnrhiRJRJqmjHJNo1HzPmMW8vGEvCi8LH7lRfwQwlNurSNRylvkwEzXSAZMnnaWNGgsTQkGxla4MAxPsozhcOBVno0my0uyNMPqispabworBZOJTwi0NvRGJVF4Ji2WWMUUVUmj0UQb78RsjMZJRVEVCOHNPMcTF9yafUI6TmKSJKcoqhmmUusB1joqbTxsQEKspCd7ON8ZjOKI2KggaFdRGU0tTQHPdLLj93YeCPd+7xZ/CGt9fZ2zZ8/+Ub+Nu+v3uW7cuMHx48ffl9e6GwMfzPV+xgDcjYMP6rq7F9xdv1cMfCA7JwsLCwBcv36dTqfzR/xuPvir3+9z4sQJbty4Qbv9/gMXpyyRo0ePvm+veTcG3v91J+PgTsQA3I2D93vd3Qvuru+WGPhAJidT0GGn07kjF++/19Vut+/Y9Xy/N427MXDn1p2KgztxcNyNgzuz7u4Fd9cfdQzcOY7n3XV33V131911d91dd9d3sO4mJ3fX3XV33V131911d31XrQ9kcpKmKV/4whdI76D99n9P64N4PT+I7/m7fX0Qr+kH8T1/N68P4vX8IL7n7+b13XI9P5Bsnbvr7rq77q676+66u/74rg9k5+Tuurvurrvr7rq77q4/vutucnJ33V131911d91dd9d31bqbnNxdd9fddXfdXXfX3fVdte4mJ3fX3XV33V131911d31XrQ9kcvIzP/MznD59mizL+OhHP8o3vvGNP+q39F23/tbf+lszq/vp14ULF2b/nuc5P/7jP87i4iLNZpMf+ZEfYXt7+1te4/r16/zQD/0Q9XqdlZUVfvInf3Lm9fJHve7GwHtbf5zj4G4MvLf1xzkG4G4cvJf1gYwB90e0/tE/+kfu1KlTLk1T9+STT7pnn332Pf3cz/3cz7kkSdw/+2f/zL3++uvur/yVv+Lm5ubc9vb2HX7HH6z1hS98wT344INuc3Nz9rW7uzv797/+1/+6O3HihHv66afd888/75566in38Y9/fPbvWmv30EMPuc985jPupZdecl/84hfd0tKS++mf/un39X1+J3FwNwbe+/ogxMHdGLiz64MQA87djYM7uT4oMfDu9UeSnPxBAurJJ590P/7jPz77szHGHT161P2dv/N37uRb/sCtL3zhC+5DH/rQt/23brfr4jh2/+7f/bvZ37355psOcM8884xzzrkvfvGLTkrptra2Zt/zv/6v/6trt9uuKIr35T1+p3FwNwbe+/puj4O7MXDn13d7DDh3Nw7u9PogxMBvX38kycl3GlBFUTillPuFX/iFb/n7z33uc+7P/tk/eyfe6gd2feELX3D1et2tra25M2fOuL/wF/6Cu3btmnPOuaefftoB7vDw8Ft+5uTJk+7v/b2/55xz7m/8jb/xO4J5fX3dAe7FF198X97jdxIHd2Pg97e+2+Pgbgzc+fXdHgPO3Y2DO70+CDHw29cfuvFfWZa88MIL/PRP//Ts76SUfOYzn+GZZ575tj9TFAVFUbC5uYkxhnq9zvr6OouLiwghmJub4/XXX6ff7/9hfYzv+vXwww/zj//xP+bee+9la2uLv/t3/y6f+MQn+PrXv876+jpxHCOl/JZrtrS0xLVr1+j3+1y/fp3FxcVv+fdarQb8/i3K3btcKKcmXb/fOLgbA9/Z+m6Jg/cjBsDHwdWrVzHG0Gw26Xa7HBwcsLi4eDcGfpf13RIDcHcv+KNa3+0x8Lt94x/qunXrlgPc1772tW/5+5/8yZ90Tz755Lf9mS984QsOuPv1Af+6cePGdxwHd2Pgj8fXHyQG7sbBH5+vu3vB3a93x8C3W3/onZPvZP30T/80P/ETP0FZlhw5coSf/dmf5a/+1b/KwxfOceTYUVpZg7XVI6wPKm5cv0bL5uz3exhnuef4UcbjnHdubqOEwxQlx1aX+fDDD/KN7RH1ep3+9hZxEnO00+CNV1+jmOQkSvDA+XsY5SWfeuwhvu9jT/Ifn/4qFsnzr11Ea8325gZnz19ga3uDwcEhC0dWyFoder0Bo4N9Rof7JI02xz7+acZGM59maCEYlznx7gbtZp23X/kmaZYQJTXSVhviiGRuHhdnTG5cp7XQxownCBWRtepExtKca7K/t0d/axus5fyF8/QP+2hniaIYW2o67SZbOzscv+ckcZYRqQjnLAKHMY44iUFIiqoAa8nzCThHLauRxjFpLEliSSokr128SDtNWZhr0ayn3NzaozcYYawjTmMcEEcxINFlRVVUqFgRZSkqVpjK8KUvf4VWq/W+x8D8/AKddocizxlPJkRRRJqmpGlKrZYhEPRCth9FEVmWsby0hJSS/f0Dojii3WrR7XaptEYqSaQidFUhpKTT8bbhm5tbpElCu9NmNByRpClKSUajMUpJmo0mzVYTrTVJnGCsQWtN97DL3t4e48mENEnRRmO0ARxxnGCcwWjD8vIyVVlhrfFVjFLoqqLZapEmCdZaJnlOs9VEALWshrWWVqvF3v4eo9GIxYVFyrKk02kDgkk+Ic9zkiShXq9TFAVZLUOXmizLUJHinjNn6HZ77OzscO9956jXauzs7rG1ucWHHv0QH/vYxzg8OKCqKv7rb3yFnd0dnHMcP3acoihoNBo88OD93HPPPSwuLc3ul3MO52z4r2MwGPLJT37yDxQD0zj4/Oc/z5EjR/gX/+Jf8KlPfYqTJ09y+tgiWluMMSAgjhTLS0uA4/u+/09y6sy9PPfcc5y/9xzNZhttHXPzc/zzf/oPKYoJJ0+cpj+c8PbFiyjpuPe+C3zmsz/I/uYtjMnJK8cTH/kYi8vHsMKxs7lBHEcUxYTtrW2+/zM/hIojrK04deIYaeZjzzoLOKRUCCGmVwfnYP3KVV579RWqfMSJU6d57dVXmZ9fYGF5hcWVI7zy8ks898xXufeBB3nk4Q/xzttv8+FHH2P/sMsbr7zAl774CxjjeOJjn6RZb7D+9puk9Ta9w0M+8YlPcursBV57/SW++vSXqYzhz/7Ij3Lm7H3gDFsbWzz77NcYj0cUZYVwlm73gKrKsVojcFTlhLKyPPDQh/n49/0AP/fP/zc+8wOf5ez5B3n77Vf50n/+ZZqNBrdu3aDSGudg7dgqRlviSLK5uYN1DoFgaWmB1aNHuH5tkzffuX5H9oJPPPUg842UFEA4VBQjpEIKASEOI6WQSiGFxOGwgEoSVBQjjUY5ECKcnuHeoSTOuNnvF3D7mwLzBfx/nXX+z86i0pQoyShHI6QUWKPBGqRSOCUQAqw2OGOwKKxKsEiEk1jC68gIZ328YCZIYZEo/77Ce5TCd5qSSJGkKVJKRNjrpzEnpcI5Byry10NK/wrWgjVgNAKIlEIphXPgpL9uAhBRNA1dUMLHswVdlQj873f+3YPVCDF9jwLhwBqLtpqD/pg3t/f5L7/2zO8ZA3/oycnS0hJKqd9BU9re3mZ1dfXb/sz0sAF44okneP755wHo9UcM8ms8cPYMF995G9lqcXptkU41pNI5VanZOzxka+uAtNkkbjSIhWSplhKpmHvnmvSNYZJlLCjL4big3mxiHETC0R8XXDh1kndubKBa77DeH9NKM6IkpdsfMR6P2d3exjmYjCcIbYiR9Lc3cVqT1BssnL2X0WCElBFdWyJrNcbGQX9IdbDPsSPL7I9GaG1QxlB0u0RJhuzEpPecJt/YYO30GSbdQ+I4pbe/QaU1w8M+4+GYRsO31uI4ollvUAxHrJ06xubWNsurK1RlgZKSSlQkSUIcx4yKMbnWGGeJ4xhrDPW4RlkWYCFSKSpJGRcD9rq7rK0u8Oh9Z7l64xbaGiyAkCSJRCJRSUyUJuB8AlBrNkAIdFnhxiUqPCC3N+fffxz8bjEwHo2IVESSJLSaTeIkIc9zpBAIBAhBmiYoqchDO3g0HtNsNDDGMMknlGVJLcuY5DkREUhHu932DzOCPC/QWqO1odVq02q12NnZpd6o0+m0KcsKay3D4YgkSUCAUgopJUpFpFlGURaoSJGmKWVZUpQFzWaD4XCEFRbAb2AWjLV+s0lTpBAMBgPiOKbVbLK0tOQ3EKkYTya0Wi3SNGU4HOAQ1Oo+aVFKcfz4cfr9PkoqirIgiWOE87/nvvvOcXBwyJX1KygVobXh8qV1hoMBg9GQdqvNwf4+L77wIkeOrLBy5Agf/8THscbwpS89zbFjxzDG8MiHHuGhhx/0yem7Dl9rbfjySYoKm9sfJAbeHQdPPPEEzzzzDD/8wz8MwLG1FQbDEYPhEKkimo0Gjz76OFjNgw8/Tr3RpNFqktXqnDlzL+NigtYlZZX7hDCJaDQbLK0soaxDWMeVSxc5dfIkO7ubRFIw15mjXq+DgnJujrn5BXq9fQ52D2g2G+RFTpqktNttstDyBp+oCUC8q4XtnG+Lb25tIwXEOwfML68RxSm7uwf0Dwcc7m1i9ZjJaMD+/g5vvv4K9953H7/6xV+gf7CHEA5jKoRzNJsNojgly1Ku93tsbl7nvoc+zP7uHq1mxnCUc/P6De5/8BHOnD7D7vYu169dRqmSLM7Y3d5j7/AAbRxJIomVwjpDVUIcS+Y6c8RxhFKKVrtNs9EMB5lERRJjwToQCB+7sUJKfzD5iHDEKiKK1R3bC/Io4jBWzDtHpiQCUM4ihEBGEUJK5DQOpUIJibMWGcdESiGURMbh3/McLFhn/X0TDmsBaxGAtRapFD4pkdNzGKluv6YzGqFL4kQhEDhnsMYhZEhwrEUKgYkTZJRgnQKhcFgEEmsMDouTgAOBwhQlTlkiofyvlIpp2mSswFQVcZYi4gQhQAqBcg4pJVZrEA4ZKYSMECrCAk4AugJTIZ3/GSHwn8t/WhAOhAQpwvWUSBkRJxKnTUjKJNJXqgiHvw4CdGU4LCs2xwX7E00eJ78jBr7d+kNPTpIk4fHHH+fpp5/mz/25Pwf4G/3000/z+c9//vf8+Z/4iZ/gc5/7HACnjh9nMMlpZTEnFpu8ce0WjeUFHrjnKBZHpiLWd/dITh1ha6eLzXNyHJvFBHPpKo1mnb29Q/KyhFaDuXqT+eNHeePyVZwu2OsPuHTzJv1Sc3P8MnGS4sY5u3u7xFLRaXUoxxOG4wGLiws06nXW5lqsW0s6P09taRUdpxTjHKEiXK5xSOppxrgoOXX2FJu3NrCl9sHkoD4/j5rvMOr2iLIU2axzs9+lliTUHCwdXWUynuC0BhxLS4t0OnMMe0P29vZYaLW5dHmdxsIcS8dWKcscW2mKPCerZSRZzHAMMopI4ghr/MOXxDFJLQUrMdpQTMbs7+8gTEGj0eaV19+i1Wxx2Otz6tgK6zd3KStNVVVIIorRBGsFSZJQFQW2MsRRRFqv+y7N+xgH744BISSRUgyHQ6QUtKRifn4e5xy9fp8syzwXPwKtNc1Gg0gpirL0FYYQ/uAQgk6nzXg09tU+YJ0jkZKDgwO01tSyjPFkjBCCdrtFpTXGGGq1DCkk48kEJRWj0Zi5Toc4iSnyguFoQJKkxFGMdY40S1lYWCCKI4x1MBlTlRXGGIqiIIojpBQkaUKapkwmvgNSq9UYj8Zoo4miGKX872w2GwxHI7DGVywOtK7o9wcYY1haXKLX6yKVYntrGykkX//6N2g2fadnZ3eXjzzxBEL4g+LKlSvoquKF51+k3bnEj/7oj/D6a6/xxEc+wtNf+jLD0RBjDD/0p3+Qo2triEj9tsTE4azFWOMTFOeIo9+51fxBY+DHfuzHePDBBwE4cmSVZmtIdhBTVJY8zzl+6jTCWd/lihN/MAlBlMRkzjHSJdYYjHHk4wnLq0fBlpy/8Ai2rFi//DYPP/wYC0urbF5fR2sTKkmBs4be/g5FlTM31yHLMqIkRlelj0sEzIrrb78JOweNepMrly9SFhOcE9SaTVqNNmk9w+qKVr2OLivW1la55+w9HOzts/72W3S7XfLJGCkkDz/0EGWlkUJxuL9PHCn29/ZwzlKr1Wk1G4wmBceOHaUYjpBKYa3h9KlTnL7nJHPtBX7jy7/KOB/RHxQ4C0iopRm4EsKBpaSirEqkVERxgpDh8P6We2+Q0ndlhRDYma+sI0lilPyd1+L92gtwElvAgdZ0WjWa1iKtxVn/HoSIwGifLEbgpPPJk3NYAdJY9GSCiGJ/c6xGSN8NwVictdNfE7okFudEyDQc/kUkwgmMMUQq8hlbeAaccxhnEWUVElXfyUClWOe7FJgqfP7Kd50ESCRalzjrO67OGKwCJ/3nESoCJNoBFWALspr/zFqAUxKq0se/c7iqgth3d4T0+4UQElSCEwKLw1mDQCCsnXWQhLAIKVDCfz6njP/YxvjPicAicEajtWOY54xKw05/TLescEKC1sjyvWmj/JGMdaYbyxNPPMGTTz7J3//7f5/RaMRf/st/+ff82T//5/88169f56d+6qe4td+lLCYoa3j0/tP8j5/5OK+9fYWnnrif+WaNldVV/t//v59HxzHf/6H7+ObVDdYWFvnoIw/w6994hWs7uwxGBctzbXa6A05kNTa2tonbTWQVU2A5GI4YD8fEQKPVRihBKhyJEiwfPcKo0mS1hOFoRKNZ45H7z/HGWxfp6YpyNMI6yJbWqLc6HN7aIFtbovzmq6iqYDevKBBUVUmrM0c+GjB/4hTGWspeD2UauPk5IgeT3V1QknRxniiK6O7vc/zEcbIs43D/kF63x/LqCnme0zmyRGthHu38xttstZEI8nziD2pjMc6ihKXZaJLEEaN8QjkusFXlM2dlaTSaIOs0ooinPvUYB/s94uwsuwc95kYVGkFZFBR5iVL4dqW2OGNJkhQnIEqTd21Q708cvDsGsjQljhPaUURe+BFGWZbEcUyj0QAgjuo450g6Kcba2fcIKTiyvMLO7g5pmtFo1EnihIODA4QUNJst4iRmfn6O0dCPACd5TqQUua5IkpQ8L2i32lRa0wijk7IsydKUer1OEro2xhiM1MRJgrOO0WhEq9VCSkGW+nFPpCLKskDriqoscdaRJilplpHEsb93QlCVmmajSaUrpJQ06nWqTjVrKZdV5Tdca2k0GnR7XRr1BpPJhOPHfczs7+2jdcXe3h6RUuzv7/GnPvtZvvylL2OM4cEHH2QwGFBWBRcvvs3Ozg5vvvkWZVHSarW47757uefUKd/dFhIrmFVwLvxuaSTG+tFOFP/OBPUPGgO7u7v87b/9twFI0phabZ5GrYaxsLW1TS2roaQkimKEkJjKorWeVX5+5OSreyGg2+tx0B3w4kvP8clPfi9n7z3L5cuXabTbzM0vYIxGa00cxdQaLWxVkGQp29t7dHs9xuOczlwzJLc+ifkdR/H0IHeOV156gUYj5XOf+wskUUKz0ULEEYP+gMtvX2Q4HFBrtMgnYzZubnLf+YdIs4xjx45y8/oN5jpt0iwmTjLyvEdRTJBYrDWMxmOs0SwtzbN1MwIJcZxQ6RKtS3CG0WjIoN+le9BlnOdIpH/PQpJmCXEkqSoodIVxDhX55MRhiaLIj62MRQrfERL49n2k/LhBTM9tBNZaojhCqW8PgHw/9oLDU2s0REQyHtEdTxBFxUIjw1iLNRZnbo8ghAUXRT6BKgsiZ7FComSEswZTVUhrECKMK5QC5TskzvlExQoJSqFEiCEpfSIjBBiDdr6DYgGsxhmDMRYRKSS+s4DTODPBIREqxiEwpvJXUwocfhw43UL9eMZinPOJl3O4qkTFKdY6tBSY0uBwZLHvBhnjkxrrHFGUYm2FqCr/+Z1AKAXOIJwD50eRzhqQEqkkAjUb0QrrcK5CCoU2fnzjuzd+jN0fTdgfTjisDBPjfMJkDdI4hHRYoXDxe9N+/SNJTqYby9/8m3+Tra0tPvzhD/Mrv/IrHDly5D39/F/7a3+Nn/qpn0JmdRrC8KnH7+dwOGJn/4BICN68eI2X1tf5M8eP8clHHmA4HnLP6VP8xktv8sSFeymkYL3X53BcEuOw4wKnLe9cu4mwhqi+xLDbJe7UKQo/EzxyZJnlI2vMRQJlDPccX2M0GvLyxXVUljG4tcFkMOD0qaO0mg12r1whkhH1uQ6RLSj3Noiw2O0Niu1bRM4y6vbYvnmDzvFTyIVFWs4i6w2oLGbQJ1peppnUqZwj7nQoel262zvUWn58sbi0QDUpuHbtKkePrrG/vQtKYKSj0jlZp4kSit3tPmmcMOz3aMzNkdUynAYpFNZYjKsQlSUfj0mTjLIqiRw4a9jd3qS2usTW1j5rRxZZXFnj8uYLlA76B12cNUghqPKKKIlptFph7hlamdZSTvL3PQ6mMWCtJS98V2FhYZEkjomiCBX5jXA4GBInCVVVUVUVSim0MZSVx3dI5ccnRZGHKsmCgPFoTFVp4jgmjvzYKC8K4igiihSj3hhjLCvLy4wnY5x1JGmK1pq5+TnfsTE6vBdFFEVoYzB5gZSCWq3GcDT0aHWlwFo6nQ5pmtLv9yjLkvF4TF4UdDodWs0mSZKQJAlpkjAej1FRRFWW7O7ts7Awz2g0Yn9vn/FkwpnTp+n1ejjn8UC+irWMJ2Puv/8Ce/t7FGXJXGeObq+LEJKf+9f/ZpZgvPDiCywtLqG1ZuPWBmmSUhlDVZbUGw2+8tWv8uCDD3Di2DG/2QMIMft5ay1WytkGGin1vsfA5z//eT73uc/R6XQ42D9keWWJpeVFyqLk5q0N0iQjThIQEhXHSBVRy+oIqYhiv2n79rWgqjR73Q1qWZ2qLLh+7Yof2RVjtM052K04cvQkUvkYMVpTVRpnK5TwM/5ISZzzycG3Xe/qoPiD27G7uUnn099Do9UhSlKEFLQXllhePcpv/dZXMbaiKkpUHLO9vcncwiLPfP0bWFeRVwVREnFr8yatRouizDGV9p0OBFIIsqzGcDQhH09QMqLZbhHHCXFa58a1WxzsXmFvb8B4UhIrP74oQhdvZbGDNmAqjdMVEonRGil8wieV8JiHMK5y4b4LKUOHRIDweAlrrO+y/i7sjPdjL8iRRK0Ow0aduKzI9veYlGNiKQJGxHe8nAMhLM5qCGMcbUtUliCS1N/DPA9zKouUAhM6Ylh/yBNFuDQCpRBIhLEI54jidUBqBAAA1B1JREFUKFyDyCcwlcFagwNM6bsiQhtsNB07+5hxUvqDH3DC/71xDikcwjlEHIGTIUnxHR+PKYmpJmOMVIikhgHfpXdgy4paGiPCa0oExmm/LxsdlGIdRlc4Mx2/i1lyJYTASAnWzcZiSBWKEYU12uNJtOGwP2SvP6KXl5ROoIXEFgXCCY9dUTFWCKySVO9RVfaPDBD7+c9//j2Ncf5bay7SSJXxyttXKStDJgSVcRzsj/mT3/u9vLN1QKvd4Z2bt3jt+jMopfivr7xG69YGg26XWCVYDGn7CPnBPrYyuKoi6fWJqwp7OGRcadCa199eZ21c8b2PnEdbx0Gvx/lzp5lfXOIXv/QbGGMYDUfcuHGLg30PIHRVhTQaWeQoB/PNlCuvvIgrcxqLiwwO96m326hGy7cEEdgkJarVAb9pisxvWOPDPWpJ6jfGosIYzfVrNxDW0mo16fe61Fo1UFBv1RFOUHZHJElKOcmxUeUz6rxkOM6Jk5RqOMDUajgHvcMuOIds+7a3tRX9wwMWOm0efuRhVCR589YuO6++g7YCXerQmXAYawCJq0zoVMbEKvLtfRxR8u07J+9HHFRVhRNQr9epypKDg30ajSZpmqKritF4zFxnDhX5RGxubg4pBMPBgCRJ6PV6lEVBvdFA6wpdafJJTq1eJ0tTDg8PabVbLC4sMJ5M0NonNp1Oh1qWYZ2lLEuSOKEo8jCPb1Cr1XBAo9FgYWEBHOzu7VGWOWmaMgi/X4XRkjGGw8MDkiSh0WgwGA4oq5J2u+MTG63J84IkyUmzDGMMw9GI0XBIXhSMx2OyNGU8mZDEMb1+H2MNuzs7rK2t+WTBWBYWF8jznMODQ0bjEWfvOYeMFIuLi5w/fx/PPPN1Dg+7DIcDxqMx1lqM9ZVyHMfoSmOd49LldX7jq1/hR3/kR8nSdNbaFwjfNRDC4xGkRBv9u3bP3o8YADC6YjgcceLkKUb9LpHys/UkrRFFkcfxRQqlIqzDjy6mSzq0sYyGI5yTZGnKjRs3WFv9KFofUIwnHlc27GMXllAqJU0iinEfrCVOUmr1OiLKKYsJ49GQLKshlURKj0v4nS0UmJ9f4OaNG7zyzTc5f/4CeTFmaXmZNMsYjUdhdCKIY9DGt+BrWZ2FhQWc1VhtsLbicHeXEyfOcObsffT2dtg/OGRpeQVjHYeHXazWWOuQ0rGwuEySZB6j1W7R7W7RbHWoNxzOaLK6QUpJGke0Wg2Eiul0OkhAKEFe5LOuSKQU1oKS086JCLGiEMJjK6bX2XedPMbtTsXBZGUJZxyRUTgnuXL8KDujIUe7PeZ1iRQCZyxWCpxKkFNIRRjtWmORzvrRhjE4rRFSYqyAd4NLkwQLSOPA+C6Fw2O5tHXYyiL8vAgTkoApthYpQifF+hGLBeEsKLBYpIp8YmJMGLFYn4g4h3MGo0tUEqGEwlnnRzC1GlpGKFxITMFIycRIRKmJlE9WnZQ4p3wX0/mHwFjr34+UVGUJWEAglfLjKe0LLKGkLz6cDfgZh3GS7nDMzf0eYyvQ/nKAdbgIXFrDCt9R0kogkEjnuI2S+W+vDwRb53dbP/ann2S+Xee3nr/Idj9n+7BHXhn2u13+ywuvcm17j2Mry2zt91DKA/P6h2O29w7J0hpztYT+eMITx1YYNlPqWcxvvvBNNm/eYH6uw2MPnMc42N7dZ2wqJsM++ThnrlHjneu3OHF0jdUjvstS6Yq9gy5ff+ktLIIoiqk32yghMZMxwhikzim6+zTmOqhGk8RJhgd7LLXbjPf2MFlGFEkwJVE9Q9UyBod7JJ0FtFBoqznc3qTMcxrNJlESM9/p0Gk3GQ8GKOEDP++NUEpQ5DnUfLaexilz8x2iNEYohXBQ5iVx6sFJ+SRm2OsTyw6TYc9XmlIwKUsubW2ysLjITndA92BAUZbUm40Z2jyJFbWlBlJKtLFgHHGWorX1oNg7GQR+32AwGNDpdIijmLIsqaqKOI7ptNuMJyNA0Gw2ZwnF/Py8754Y47EfWgeAmwfcOWuJ4pgjR46gjWGS5zgceTFBCBkOOUs9qSOF9FWhkj7BUxFSKbI0Q0hBo9FACMFht8twNPKdhMhXWFpr2q02xnqchJSS4XA4a6/7hKlCNZtkWRZYH/49VpX2G6Nz9Ho9P2vvdGZYkk67Tb1Wn41ZrLX0ej22tzzwcH5unqKY0KjXWVpawjnLaDSi02mRZSnHjx9jb2+fnZ0diqIIuJsaZeGryJdfeoWPPvkUx48fJY4Tj/InVMih1W+tpSwKbt28eSejgCvXN3jkoRZ57lvci0tHuHXrJkuLKxjjcEJSFv76OuswzifUOD+PMsaSxBHdwwPSLKUYF+QPTSiLirLMUVHGcgCsWuewThDFMVVVUhQTRsOhv5bNJrVa4/YY67fhTUK44nD0egOqcsLuzgZzCwv86n/+ZWpZShGS3X6/i9Ylq6vHEUKRZDWEUiRpQlVJcBXj0YQrV9ZJkoQb167Qbs+BUhwcHjIaD7HOUqtlzHXa3Lp1k0dx7GxvoivN93/mT1BVJVGUICNJr7s/w9UYY0jTGmVeYEzJYNhH4A8wF/Y3FSXoPHQc/bmICVWxNgaBnM36rHUkcRJYfXdmlXMtqsSDdKlKnLMM1Qrd/QOOv3OdFemIhe8kqkYDM5n4boFwuOm4pMwhTvx+4KYoX+lHH+EGGmvBCXRg3uAMUgksCqc1DoupDMKjWEH7bo1KYs8QshadFwglUMqPHKUUECt0ZXzBIn2n0zdyBcIYhHVIJ7B5BWn4HutHJw5LZQwyin0CZitkHDFBkThLpkICZg1V6ULS7MA5tNFM2UZCShTCs4hCl8Y6cNohA+nBWEc3L9nojRlVnqWFNTP8InGExndrhBQ+ERuXuEAUyKZdqN9jfaCTk+s3t6nW5plrZVzeHnBisclgPOFjjz/ASxcvIWJL3ViOnjnCkYU5NnYP2Nrrsb61y+JinTRNue/EKn/qqYf56rMvM8xLPvahB3jz7XVqjRonT6xya3uHZrvBE+fu4fk33mY4GvFn/syf4t//4n/m7fVr3CsjFubnGUzGFJMJg1GBxXlmTCMDBUpGVJMRr7/5Gkmtxur5B3FpijZbZI0Gi0dWSFsdCluS1RuMNzdI5+dJ5jowGDIZdHFpzLh7gEpr1OOEqsxptVssH1tlctAliiKKvPCAvQhMqZHWUY4nLKwuc+LcaVwkPW3QegCgUJJ8PEZGklqnjhCWyWQAwpEkKbKRUZQlB9u7bN3cpKos80dWSLB+9FR4bINwCml85THpD/whZfxsdzweoc3v0uZ+P9b0ATKGfDKhKEoPUFWKJI7Jsoy8KFBK0Ww2facFj4sw4TCvAlB2PB7T6/XpdDqMx2MOD3wnI80yiqLAWI/REUKQFwWNep0kSWh3OjhrGQ6HHgTpPKXVOkuqUpIkoTPX8QlRUZAXBdZakjhBu4p+vzdLKPqDAQJmFebc3BzNVhPwCYkQgu2dHc8ukJIkSWaUaWMMURRRr9fI84JJANFOAYHgBawm+YSyKomTOFTUsL2zTZamJEnMeOxZQFvbO0SRCl0lXwEmaYoJoMKD/X0m4xGDwYAoiomTODCc/IZaVRWDwYBf/7Vf58UXXrhzMQAgHK+97in+J07ew//tz38OUGRZHRWngKOW1EiyDKQD4+tdKSXGOlZW1yhvVhSTElsainxMnhfMdRbY3b2F0WWggVcIJT3+xwmck2hjqDcbREmE0ZUHifqLMH1zzE7pWW8JokhycLDP//QXf4w0rfE//z/+Cu+89Qb/6l/8H7RaDRY7Lba3B4wnQ65fW+fchQeIpKLTVEiR0u1NGI/HVNWE1ZUV3nz1JVS0ghCSzc0ter2ur1qtRUaKl19+mfsf/jCPPPo42jmurF/lxvVL7B8cUFUFZak9bRVf1X/2h3+UZ7/xIisLNe698BC1ep1JPvH0USGIo4ixNd8yqjHGBLyTm437HA6tNcZofwjfoeXqCTKJsbrCyYRISorJmKKdsf7RB7gpJPPdAcvdAZ3+kEY9w2kDVYk11hd3VYmZ5P9/8v47ZtMsPe/Efic88c1frthdXZ17Us9wsjhDchhEUmEl0d5dm5AMG5BNSIAVDAjSXxIEiBDshWEDFlY2BAn2UtJCwQYlaimSQw6HE3o4Mz2hw3RXh8rhS29+n3iC/zhPfTMUufZImFpgoANUV1fVV/W94Xmfc5/7vq7fhcDhvEOqIGKX3Ub+UHfxsO1iu0OJc90mLAStMZ1FuLP5RlF3Cbjw2XmoCWs91niSLKdpDaYxQefh/Jl+RUoRNvkwMwvFkXe4ukJGMagodEu8OHt9RZzROI+0BpzBYHFpQhZHnUA4dNzOLEZeBJFtN66y3qKVRCkFDrz11N5Q1ZbCOk6rmkoqDA/dQgI0COPwbYsxLV5pQKA9SGuRwgcLt7PYP6qN+EesH+riZLku+eilp/jRjz7P5HPf4NaDFdLnXBwPKbe3uZgNuDtbEOWSgorx1oA/91M/xv/z//MbbO9uU1nH+5+7ynvf/wLnD/Z46/oNRlu7XPrqN/j6629x+8YNBjtjvnPzLv0HRzTrDWmsmOxu82d+/mf4f/2zf8Xb79zkp37i0/x3//2/7HQCa8qiIIpjiuUaUTUkccLxzRtIJTn3xFV8EpNlGZUSuH6f1XSGGIxRXtAsl1TTU+LxkOWDB/imwQpHnI/CqTCJmN19wGh3G6E00wcnSCmI4pjJeIyKNPVmiZKCqqhoq4bBaERrLKasWZ7OkVJRrDYoLYPHXSgQHh1J4l5MJOPQwmsanrx8mSjSvHvjLkpLmqoi6/XAO5Ik2CqFEAjrsa0hzXPatsVaR1kG50tT/dGakx/EStOUTVmgUkXTtmitaI1BeY+Lgxg3z3OapsaaMHpz3tHv9ZCda2fQ71MUBUmSMJmMqeqaLMswxrBYLomKgt29vTNGgveeyXiM1pqiLDk6PmZnZyfcULynqiq89yilw+ZXWyShkFBa01PhMUZR+ACXZUkURfT7fdLOnQOhuMvSjOFgiFKKpmmCo6eqSMcjTGs4Pjpma3uLOAp6FA8sliuyNCXW4aRqu/mx1pq6aYIVM05QStG2LfPFIliN4zi08KViuVoym80YDgZkaXrWfdFaEenwWkM4GVVVjRANsgz8A62D5XS1WnJ6cspsOmW93jyyawBg0O/RNA1vXHuLNO3hnaBuNixmJ1x58nm0jimbis16zUP7p3MOoSTCCqSCwWBAVYT37ulnnmOxnPP41SfJBzmb1SpEuAuJ8wSRswzjGucd9+7cIU5jtJI4152a+a4G5w/NdXwoAh6/fJlvvPwN9s9fpq0qvvh7v8vP//wf5/qNG2RScHh4RJZk/P5LL3Hx8Ssc7Gxz7vx5bt0+pCgKPGCMRad9jBcY05IkMZcvXwhmAaUpqwbrLM8+9zymrol0RNu03LjxLsfH91gsVgjhcJazkZzH87nf/nVWyzU7k6dC905HtHWD607JD/kh6mw+EjZvKSXWirNxT3i6wWr6vb/3g14mi/C9DO9TpBAYa1GxRjpDqyRWKdrtLR6sNvRnCy5M55w7OiUlOHMcD8dTHmfsWfci6EqCBg/jaK2DKEL3ElDddSAV3rS4qibMtkPTTEZRYKo4aMsyuHbwodskQ0fGChAqRnSCdy/C9SEe1rTd6401nUW5G/OYNuhdhMIFESHOGmxT461D4KidRfjQzfR5RpYmQeTrLN6aMN4RKnzP0EIMY+bGoKTDeVi1ltPG0EBgm1iPV2H8I0Qoynxrca1BaIUQmkC98mjrUT50Kh2KRmmc+8+gc/Lh91/my199l6f/63P8r/+3P8k7bx7z5rUTzl864N17x1CUvPD4OZJ+wu++/jbFuqZpan7hj3+KJ65e5re//C2kELz79k3WZcHxySkvv/oWH3/vc6Sx5rNf/jpPXL7EJI4ZZynzNOErX/8Ws8WCP/FzP8H/6i/8z/lv/x+/woc++CKPXbzIm2+/xWYxpSkL0izD1BVxpKlWS9q24cITT1DjMIs56weH1OsVSZIyu3UTJ24hkxhrWigLHA6vg6XUtYZ2VUESYSQMzp0D75mtN+xMxgwmgyCyci1axvT7I+rNmjRJGY5HJKOM2rY44dGjoF4f9Ma0Rc30zgNMY4j7CVv7W8REOAdxmgRrpI7YtA3peHDW4tQqpmlLmjIAyEzTEEcJxrQICVESE8cpaZZQVlX4MD+ipaOIgQwjD+dDB8U6S5IkaK3CRp6mJHHQhCDAGUddN4zGI/CeoijYFMEiLJU644ncvnOHKIo7QB1kvZytyYTT0yltaxiNx/R7PeqqCiM0IMszpFQ452jbhn4vD1qPrQlFUXB6ehq+1nvWm02wNmsdipqyxNhgv31YUDw4PGS5XDEaDYniiCROSNOUcwfngu1YB+Fda5qzcU+kNdaas2JCKYV19swyLmRgwYTOQWj3bjabcKPpWrtbky2m0xmr1YrxeIzWEUVZhKJKa7IsZbVa8uqrr/GJT37yTDsTnAUeY1q01ty9e5c7d+7SfJ+t3P/UJaUgzRKEhG9++5sMRmNwlmtvvclf/N/9NS4+fpVis6Ys1mitzzpoUkhGozHFeol3liRNcN4xHk84f+4cW8Meo1HOCcEW2zYGoSXWWaIkw+IRePL+gLv37lKVBc8+/dT3PLLv0Zv47/5kreXenbukScaFC+cYT8ZoKdne2eL6u+/QG4xJtGe+XPJ0mvHU1SvUZY1Umpe/9TrLxZJhb4hSksa0ZHnGcNDD1gVNU/Pg8JT3ffBDOAdpmtDvj8PnU4FzBu8N1sF0OodOPPuwkzQc9Jgv1symx2EM5qGpK7TS1E1B2wabq1Kq6y481BvRFeWKtm3CmLNbzgdLqvwfcev8QK4B6xGN6VwuHis8LktQLkIZC1VDYwqkkmx6fd6aDDm8fJ6DO3fZvX9IXNXoLEGqCG9Cd8hZi3IOK8BJiU1jZJYjk4xWBUAaTTAQmKZz93iHECqMcOqALJBRhMhShHFBLCwlvrPgOmPxznR/NxQesvt/5+zZqEh6F4ofCU6EUY/3DR4FcYxVAtsVMQJH67oCxoPSgk1ZhdFsrIMuxQbtUPjenRjWhlGxsZ4KwRpJXQe3licUMjiHdAKFpLUtotPNCAnCOYRzOB86Ma1zYWyUJEEQKyX2j8AK/FHrh7o4+amf+gCXX73LZHeb0f45Xty/xAsfLrnz9iHr0xnvfe4x/t3nv8mTTzzG1dE2YjfiwuUL3Lh9H6dinrr6OE1dcPP2HfJeRiIjXrx6ifVmxcWDfQ7GI9bzOVf3JqQa3vvME9y6dY8b1+/w2d/8Ak8+/STPPfs0L3/j2zz9xBO8+fZbLKZT8J4kzyFOaFZrpof3GW1PiPMeq8UCoTWmboiyFKEVzXJNYy1iHdqF0hiUt+QXLxP3B9jZnPn9O8gkwVvP1sVL4CGNNevTQ5RpiZMIZwMoLEkTdJ7x+NNXQHiMN8znC9Ync3QUUZWho6LjiP7WGIwlH/TRKiLPejS2xbRBQGYRCKmJojgIDNNAGPXe0TYVrQAlFFVdIoGqKNFJihD6DFyWJtn/v7fyP3k9tOzO5vMAiBoMMdYQR93IQimiOGZvd5flcsnR0REeWK6WtKYlyzJ6vaAR6PeC3bYoCh4cPqBtW5qmIc/zoAdREiYT8jxjuVzx7rvvAjAcDNBRGKvNZ3NGoxFVGbpH3sPOznaAsqlg+82zDCEE33njDdIkDZbjOEEIGMQxm6I4G/8Ya7rHUaO0ZtAfkOcZ9+8/YDQeMR6Pmc/nWOOoXI0HRqMhSRxGQJui6IBfKVopvApwJ601Wmk2m82ZE6mqKsqiPLNFTyYTis7y3BpDbGMEgqapybOcuql5+eVv8KlPfzqIILtOihQBxKW1pmlaojhCyT/arfODW4KmrlBSkqUxJ6dTLpw74Omnn6U3HDGbnrBerZnPp1hrQyetbcNpXmuauuLg/AWOv/0KaZJQVxteee0VNmXJU888w6aqmM/n7EQ51jpW09MzWm+kFDrSHB0+4OzIHJSW4eb/3YcYfvKhiBsOBrz6za/zzHvfh3OGdV1xdHiPOEp56plL3HrrNbSOaa1ld/8cDoeOYvZ3D4hVQlXWVFXNYj6nqkqSJKOoW3SUoGVEpGO2twcYY7hz9zbv294jTTOUipCoYEt1oTj1Xc0gOgBXpHWnRfDde94EDYS1Z8wT1Qli4zN9TRhpBl2GxZ2NE/2ZrudR6s9856QRJmzQCIGzFUJJfGtQOsZmKRJDG3uEszSJ5vjZq4zO73Lp1m3OrdboqgLhumfuqFUEWR60elJDY6Be4DsCLdbStAZsB9vD46Tr5EZhfBw2dhk6IK4TxXqPa203kjXoOEGqwOOxpu1cQi0yiRHOILpxj7EdNgAgUqA8wjtcE0S0Hk/AYwYGiXceZBSKUhfYTUFz1TF7ujdPCIHBU1lL0XYdIt91GL0PWi3XIuMY6xxCKRQSIT1eBjciPuiOnPcoIXFSIZTC6wijFa2S1P8jzr3/cP1QFyeDvR1+7OcO8M5T3Dvl7Tcf4KyhFjGXzu1y/7Rkuqx448ZdhnHCk0/t8C//7W9wNN2w863XeefuCZ/+2Iu0TYN5YNnenrC7t8M3X3+LRIU38PMvv8Kg1+fyOcOwn/OB55/kQx98H1/9xiv8+m/8Ls8//wxpHvMj73svv/47v8OyKAAoNmsOnniG+9/8OnGaMN7fJ93ZgjgOltLGYMqCqipI8pheHBPnKSJOaZYrimKNEuCloNqsaIqC4XhC1uvTLpYMticMhwPqCGRVsJnOUFFM3u8HezCC6eEpw60Bq2JNudggPIzHEypVcvPeO0ghyPo9xlsT0jxH6whrwkRw2BsGhX1tUFqRxikqDuOepq7wFuI4xTtHXXZEVq1IejlShlFCWQQmiBeP7pbU6/WwzpGlQR9Ttw2jwYDBYMBqve60HRFCSra3tymKgrIsaZuGsqzIs4yy6MZPTUPTcUqOrh8zGAzIs4ymbUmShMV8wWI+x5iAmC+rkkG/j+v1sMYSxzHGGDabDVoHXsXdu3fZbDbs7e3S6/WYbE2C7qMouXD+PK1pado2bP5RmG9bE+b4UgicF2czfWct09mU1gzZ3dnm+PiYJAmalroOeiNrDOv15my8UhRlYKx0HRkpBMYY6qZhNBohRMDcO+eo6+B+0lFEWVVMJmOkFExns3BNDIdkWdbpb8K/d/3d63z2N3+Ln/jJnzjTxABUVcU3vvFNXnvtNdrGnBFiH9VyHY1SS4Xzkle+/QrL+QnnL1ymqkq89/T7OU1dUdcV1tgzfYwxLZW3DIcj4iQLroiOS3HrxnXyPOXypcvcePdttrbPEacpvcEgkDgFJEnKcrXi8uOX6ee9ICp9WJ8QVCZh+bP/eg9plrF/cJ67t24h8UgBh3fvcPnKU0itGY8ntG1DVa2J0wFNVWOalvWmpG4N5y9cYr6YsT3s08v73H9whJAK5z29XkZrGpRQaO1p6po4jnj2+ffgfIirkFKiJNAVk8FhJWhbTxwlJEmK6kYFVVkivMN0InKlZHcAsB1JtFPTuO8C29z3aJ1CcWLOro9HsWTbQC/BAlrG3cgidPKIIowLRYuLg1NHeI9vK7yWLMcjvpPl3HWeg+vXOXhwRNy0kGd4qZGNQfjQMXrIiXJmhYiioD/xvuu4hKIIE7q4D8cybdOGJlqk8SKMf4NmKQALlZK0VYnSJkDbXLAXy0gjvMd1Wibnwr/jO0yDr5sg4PWhsyMB4eWZzMkY910NkPfIKOgOpW3Bh8en0wwZKSpjWbXgnMChsSIUOwYBSuEAh6fxHqQAH7RMXkm8AGODDo5Eh7GplBgl8cJTJhFtntGM+pT+++uk/1AXJwIJQuM1RH3NgwenVDLlretvc3Q846uv3OBktWHbeJ48SHn1zdtcv39Mv58jVcL2aMTnX3qZsm45ni957soFdn76kzRNy93jU+JIszseMBoOeM/Vx/ljn/kxqk3J7sEOfyxN+M7r1/jCF19ib2eL9KMf5ML+Hm/duoUUgseuXKGXx7xbbhhubwXB8maD6OXY9SbYd4+PycYjdJIHrURrwG5oyoJev49sDeubt2jXa3rjEa5qEEMYXN7HOU85SGFnQHl0SD9OcFWFjhKK2RytFW7YxzqHqS1Z2kNmnpN7h4wn22xtTajqmt2DA6I4xpgA0YnjGCG6D3KnLNciIu/1aExLU9dn4CUhBGXdYNrgd1dShaq/8/lDuDnYRyiIDcRKSZKmQFDSh3wVQZqmoX3vPfPZjN3dXZ64coV3b9zosmtCZ0drzXA0whpDnueYtqUsK5qmJk1Ttra2UDJ0HKSUIBo8nieeuEKapmRp0KdMZ3NGwwGbTRCJVnWNaVuuXbsWdCqTMXmW0zYtaZahtOLk+CSMcKTsRIO2yyMhZP0IgWkNdR00Ia7jhljTngl54yQOjiFjyGRwDrVNw2q5REiBMZayG1stlgvqqsbjWa/XHZAu8F+qsmQwHBBFQRTbtgYpVWchbvF4yqoMY6sOKJVlKav1ijRJO2GgoyhLvvD5L3Dz5k2KomC+mIfi6REu6xxaaZRUaOFxPozFPvVjP0lZVkilSZKYPM84enCHKApWb4SnKNYkccbp6TG379xif/cA58HaFiUld25d5wMf/DBKZsHS61xonzsoqg2mNYzHW9y7e4N7t25y+fwB5w4Cn8OfCQf+4BJCsN6sUVrxvg++yHC8halbpNTkeQ/nDHF/yHgwQHiBlpqb77zDi+97Hx//+Ec5PV3y7rvv4L1ExgltE4rJ+WxBXVfIPGE2nRKlfZxzJHHKtbfe4pVXv8W5c5dI84zHLl9C+gYpNcbUZ/krSkdIPK0xlFVNmmVh3DkYMZ2d0DR1NzKM8I4/0BV7yHmRUqL09/w+nrY1aP3oOmguFgjXdgVQILBGSQJInG07nUWNr2qckEgvQkG7KhFaIwY91q3h7Wef4fDyJbZP5/RnUwarFamGqrRIPN61YAl2adsifeC/4MuzQkB4H3J9pELqh3byh53ojgvUZWx5SShwBFhv8a4Je5u1YaxvDK5twvcL5qJuzCJxyuNtSys8WgS+CU2nCdKKttPLoDRSqk4vIzmXpsRCUjcNjYO6MaxaSysENQKvFB6JbduuEOoeY8c9QYJTCqNUp7uRYSwlRRDgCo9BsB6mtOMBRmuMAe8N7ujwj34D/4P1Q12ceC84PZxjrEZrz4d/7EP8d//953gwXWO94rmrj3P7+IQ/9pEP8Na7d9iUBTvnDpjkGfdnC9bLFZuqYbZcM8gS0khz9/4Jl8/v89EPv8iNu/f59d/6PearDUhPnGjW05JiXbC1tcsLz1ylaC1vvn2dX/v3v/Nd1oMQLI6PwQbB3e6VJ8BYyvmCdXWCF4J6uSTJ8zORWV07RBRasbZuSEZj+pMRJAkrY4iEo3/uHNnWENXPMcs1pljT3l0h85j8YIdhL8fVhnZToJRAKsn9W3cZbW/TVBWtMZzcP6Qqarb2dxh1Iw+tNFJL2sbQ1oGcGk7u8qyw8F4EIRaqs4l6jHPoOCFOUqxpibMMJTXLxRLvW9I8x3tH3Tw6QWy/1w+6iJ0xyc4Oq/U6tKCtpambTognmEwmJElMUZRkSRqKjdR3ORKC5XLJ/t5esNzGMY9dvsydu3coyxJnuw97J4bd2d6mqipWyzWRjjDWBKdOt+FXdR3C/2wRaLVxzEnX5RgMBhwfn9Af9OnlOUoqjo6Ogt6lE9QqFezCaZpSd+LaNEmo6po0TbpMoIpRl/9jjEXKzqJo2k6YHTKHkjQJ45W2IU1S4jihrmuSOA2k2q67ZIRAaY3uHE7OOYqiZDQcorWiqkLRMxwMkUqyXCzPghSvX7/B6fSUe/fucfPGTS5fvsx8Pqcs6yBA7kYBj3K1TYPOghNHSkgixZUnniLLxwgt2axXRFqyd3CR4XASAFku2OyrqiaOMqbTOdYYFosp5/Z3sdZT+wopBrz+6re5dOHxkGVjQndiuVgQx5qyWjOfnZDnPbbGW/QHw//fD/askWI5PT3kN//9r/HMc+/HmpYHh4ccXHyM1195hbJcs7N3QN22THo9tmzQ8bz1zrssZnNMEzasYrMCoKgaLJBm6RmnI4ljqspwfLpgZ++Al7/yJX72T/05inLFdDrn2lvXgviy69QpKVBaEUcKpTVRHFHVKVVZEyUxpg2jHtWJwxGErlj3nAKmPfwcuip0DqAg1o0eZXEiZbAR2wA+01GMsy1CRcgsCwRYIXGueWjyg9ZgUx+gcjpDxqH7uIyHFKN9XLEkmc8Y3z8hd2tSPHGxIfVtKFRMGwqC7zmAPbRaI0TQgliD6lwt3gQhuetcxs59d6wjRMipwYkumBCca3DOdO6dcAj0xmC1xsYabwyuMSjr8XWLi2N8mmCNxSGwETyMEvA6wlpD6Typ81xIInwUcaes2UhNm+iz10X6kBMkkwQnBdaHQjsQaQMpWXRaHK9CTlEdK2oNNo4o84RWgcHiH9zHH05hdwdbl3A6/b7ezx/u4kQqsl6PqnIUNXz1y69T1I5RnlG1lrIpWBYtX/3mawipeObxC6yKihff/xyR0uzs7fAv/tW/RWc5Lz5/laaq+cAHniPVildef4thnvLYuQN++6Wvc+/BCd/85itcPH+ZwXDAcDTmJz7zY2R5j5/69Cf4ysvf5M7REQLQSjJdbjg8OWX70kXyyYR2scLGCaKqaOuWbP8c9ckR2ljSyTi02osNtnUh66MsaY6mGGsZnz+HimJ8qiCNcEqQX7qA2RS4qkXmfWQcIbTCbiqcFOxfOk8+6BGPe8yPT8BCfzJgvLfFerHm+O59kjxj9/xBSBR1vtMKCJQKQXG9fo9eHIEXOOtpmgB/02mKjlRnrWywtcG0LXVVk2SaOAkdC+MMzhl09Ogus6YNgYZHh0ecv3CBpq55cHgI3jMeT1itVxRFQZYH63hVhQA+34SQQinCPL2s6o42W5PEMXkvJ+/1qKrqTLCqlOoycBzjyYRI63Aa7IIHH45KysNDsiwjy1JOp9PgxBn0UTIUe1EUtB5KSpq2pe6CB6VSXYdDkmYpSZKEFrrWVGXQU5jWECcJeR50K64DpD20C7etOWsVW+U6/UiPpg36BLynl/cAQRQFJsxqvQrZMFpT1w15ljEYBJLopqPYSimDW8hZTIdxXyyXrNdrmrbl2pvXuH/vPsfHx9y5fZeyLKi74lBKyWq9emTXAMBqtQwwvTSh38957PEnWCymfPuVr3JyMsOalhvvvs2D+w/oD4bYznpeVhXeOYS3zKYz8NA2NVUdogasbamNoVot6fd7JHmGF5K816fYrAM5UwT3T7kpKNflH+lO+6P6J3Gc8vjVZ7n8xGPsn79EuVoyGvSQUvDF3/0s7/vAB1BRymJ2ymR7H5wjTVOW8yXLxZw8y8PGF/WpmhrT1qRxhI4jNus1Fy8/TlG17OzsMj2dMRoMgr5KSvb3D3j2mae58vhBGMsIyPJ+2FSdJ+/18N4zGo1ZLhaslis2myrEEXTdSdmF68mHNFjoCpMug+g/ENt4F5K4H9XStQVlgiPIWVgXQbypNVZJRBwjkgypoyCatRanHWa9oi5DZlCkY3TWR0Yx0oGPc+x2xGz3gKIxxPMV+WxGXmzIT6bozSI4r2Sw3vrWopMEOlaIK0pkFIqCULYQrM7BdRwOT8hutNONxgRYApunq+7A0gljQWiNUwprwyhJRAobRSFWR2mcFwgdDpDSC5wIlFYXxwgbHHrT2qDqNWWkWbhu5EYIe6QbJzvvsDI8Fhmc1Eghg14mjjFK4SKNE4Ii0cy3EnyiAm388AQ3m2NmC3TV4pXA1yX0Uvxs+f29n4/oOvmfZAmVorUgUZL7p0d85JPv5cOfeIp66fj6197kK6/e4Gc+9SLSOw5P5lw8t8O1G/f57S9/k3tHJ/zv/ze/wN/4P/xFTNPSGM9rL3+barVhfLBHL8vZ2d1mb2eX09Wat+4d88FPDKjLkraxxHmPZz/wQXYOzjGdzXn6+ed499Y9Xn3jDZzz9PYvsTq6R397l3Vds65KWudo+0OUhyjvQVmwfekiTgna2YLR1k5gDAwn6DTh4PHHiWLNg5M5tvVQrWh7FlUbiuUR1jQ4qagPp9TpGLteILzk4PkrxB6ssZzcP6RcrUiymGotGeyOULEmS3tMdrbD7N0EDsHDdh0E7LVpbbfRBeV72zS0bUOaZpRVfeYIiZKYKMvw1lFXFUrHSOtDMrNOKOpHZyNtuyygpmm4ceMGg/4AOihZlmUhOVXrAF+zYdaeZhlZJ0p9mFIc6VB4PGTFFGUZEpazDOcCBVdJ2Y3oPFVVk00ypJTUTX02s2+aJuhOig1bkwn7e3tYa+nlPaIoYjafn7lE4jhmtVqf8U2SJAm5PXVNnMRdoGCgbuZZxnq9PtOWQChMHrp74g6aZzoIluhojlrH+O6kG97ZcNN5GEz4MDDxYWJzkiRs1huiJNBrB/0BZVkGvLeSLBZLBITxUEemtc7yW7/5W+zu7oaCp66pyhKldQcBy0II2iNccRT4K+vCIBUIdcrp0S0mkwlf/N0vIrDEccTHP/Yp9i9coCo2vHXtO0itMFUIO5tsTVivVpRlyd7+HkLC9u4Ok8kuWsKv/fq/wcsAc5vNpjhryPM+Vx6/ygsv2iA9sCEcrSNI8JAl8QcKk+4XUklefeWb7J/b5+aN6+AdTkZMT4+4dOkiVVmxN5qwWWnG4y1msyk6irjyxNMcHx+xWS2YzuY0dcNbb36H555/gdu3bgU3ymaN0hrrKoSW9Ho5AnhwNKWqKvb3D1jNZ1y+/DGMCbqRKI7ROqapS6QIDp04ycizBIRntd4AXZJ5Z5WH0HEL1NAgePUucHqUUp3eJjzhxrTh/vaIVhLlCJWAa3FaQarAtNhqg7AK2RK0EOUyFB8qwWmNHPRw/TzQnj1YYRCmRXkQscISUO2VVPi9AdF2j6Rq6E/GjGdH5MsFalNha4dWCttpMhxBf4PzWO8RwuOMC1oNKfA65OZYE8CNVkhspEIREWeIKMFLBXWNMEHrI6QORYGSYWQoVXDudMUEXoRbuAmaKe+6UZtp0G0Iccy8Y6wEG6WYeYmVkpB/3P17cBbkJ1w3IJPgELRa0mqNj6Pw2IRnQ8Mm88F+/GCFe+suqmgQTYPLI/yqhEjischhhvjPAcJmnAzVudK88IEnkarLyLh1yoc/+n62D87zzru3efv6XQ6na6rmBq+8c5sXnrrMJz70bBD5jUasZitu3LpF1suZzpYY47hzdELrGj74oQ/zF//C/4K/93/+v/P1b77Kf/mnf5bT0ym7ly7TFgWNF2xt7/L6G2/z9o0bYVMQAic80WDE/Vt3A4yrP6JZTMnGk9BNnAcBq0k0W/sHDAd9Tu/eDaeQoiIaD/BaUllDIj3x9oBy6fCNQScJRgQc8GazJhaG9ckcs1ijlKApNmxm8xBklyQMJmN0oknihDhOiWTMaDKhbVqqTYVtQuZFSFXtlNZSIYTsNBwGqT1RrFA6oa0rHqKqnbXUq2WYUwt5dmKK4yRwVB5SAx/RSpOES5cucXx83OkaBBcvXmS9XtO2LTs7O4EbIsIGVDdNuGl2bWytI+I4ZmsyZmdnhzt37511QaqqwlrLar0iyzLKzpYslWKY97r5fJfqGQl2trdZLBbEUcR0Ou04JemZULY1LfP5PLxm3fgsinQH0KtomwaZJIET0WW3KK1xXbcm7qLipQyAOWuDeHn1sLDRYcadxQmnsymi090MBv1AnRXirCjTWndhgBVRHIigQajpQnEpJM6H4kdHHbreGJq2CZ2dNFimN5tNEKQXJU3TBH5P93oDNHXDZrPh5q1bj+waAEjSGKUS2tYyX6xYrTdoHWOdJ+qcRINenytXr3Jw4RJNXWNNTZ4rXn31NWanpwyGk2ClFoLJZMx6taGtDXVTkY93ODo5oig3LGdTlqt5cERIzXpd8Kd+4b9GykAGjuMEeHhO/h4xrCe8Lp2DR0hBP4t5+9obfOSP/ThVWVNsNpw/fwHnJKvFHIclzXKSPGV9Z8mmKJme3kfgqeuWJ596ltu3bnD5sSv8zm//NnjLZLKFMS3roqQoSq6/8y55knB8ekw+3Ob69XcYT3aYLxbkp/2wiUqBswFe3jYN3pqQ0wM09Yb7D44oixLTNF2YI53+Cs7s0l3RZWwIRwxPV3S61KCT+kO8lx/gapcrYi9RSYzSMUJrvLJIEeHbGoRE+jCapm4R0mLaDdIL0sGExnmc8FjbBBGrMygvwljEhoRe5yyt82y0ZXN+i5NJStrWDE7nDA9P6TctvqihtegoCSMY13U8CKYBkJ2w1ocuTqJwUga8fBrjoxSn4i7RGJARPtZnxYMH/EORPD6Q8PFYKZDeIVuHtCGKpQ1CD9JYo5qWoVIMIoURUEiNk6rLCwK0xAmBFQIRSww+2OYfXrPW4YQKI/FurLNsNqxciTutEfdnsCiRbQfz64CgPotAOsT+CG8aSP4zcOv8+me/xcdffJ79gxFSxdDByPoTy7dee5XXr91mWVSgFFEckff6PPXYBT7w7JN85OMfpNo0vPzyd3j99bf44z/5o+yff5H1fA5AlifhxrNYM9usefF9z/HNb7/ON5+8gkdw7eYdtiZb7O3uMhwOyHt9oijGtJ0gywNREvIXTM24nzO4eI5yvUBkKRujEY1BETgoGnCbgrTfp6lKmuNDyiQmH07o9XNEFrMqQFUNRgpUHERrPVuyPjllCqRpxvbFPVQvZjRISb1CNIb14QwhBYPtLU6WR6R5htYRTd0QRTE6ikMap7AIFcBKUocLUEWSOA/BedWmDPPUOKJcFyEQjA681KnHTddNEV1Lsq7Ks6jxR7Hu3r1LmqaMx2MgiI5H4zFlWbJcLVmt11hrODk5od8PpFVrLYkOgLTWhLHQcrVie3uHPMtYrVZYa4PAVwRhXxKHdnSapjSdyDbMjIMqv26azu2gOlFxsNQmXUHRti1lWbI1mTCbzdjZ2Q48E2Po9/sdTbcAQuHgfHBYDAZDennedSxCMSM78WzdNKFY6siVpjUkqT4rKIPuxVKVFXEcipf1eo0UkrIsQ0emS1J+SPKsq2AvNNrQdMC2h7TPoOmTRFrTy3NmsxmmbZnNZkRRhO4eW1UFnsJyueq6Qkvatn1k1wBAmsQgIIoSBJ6yKNERzGcztAzJsoR9JrwfTU2Wpyit+dBHPsq3X36ZqtjQtA2tMdy4+S6rxZKmabh4aY9Ljz0TnFVNEyIanMALT56mHB8dcuvWTVxVI6SmtTZ8oz+wD//hTdkaz2pd8Md/4TMIHZMIye7eNs7DcDBkdnrMSCiW8wVKwvHhHYx17J/bR8mI4+Mp4/GE17/9bZI4YZClnJye0PQtWT7kqy99iUuXr1AVJWmacXw85Rd+8ud44qnnqKqKtmm5dfsmZV0Fu3rdYNuWqixZredURUFRbEjjhEuXr7C7fUDTNlRlETZ/+J4f4qz2ssYRRd/roX7oirJnsQaPYgklMW1FWxUI61BRBJHq9B1dC6A7LIkowmuJFA7XtrTrJTpO8EIhiDp9Ro3o0sFDarBCRCH6QxhJ6zxm1MM0KavegJPLF0nXG8YnM4anC/ymQVkbXh2pO46QxOvQrZAqCjoZb/HWg9IImWJlDK0NNl3RFTK4777GUgb9ig7CdBSYLpBSrTYB5mYsToY8qb6SjCSkkUZJgVGCEigF2FhTA1aBFYTOiACvRCALe6Bo0FoSxRpVNYjasmkqinZDvS5gsYH5OriYtOqy1oLTVJga208R53dgmMG9U8iS7+v9/KEuTv7lZ7/M175zix/9wHP83M99kiQJIqK4N+Sxq49zMq/Q8xVNHcLuLlzqM5GC0fYu0/maW9dvU9U1n/zo+zh/7jGGkx12Lj7J9P5NnogSoixlejKldzrjF/7Mn+Y7b9/gX/+b3+DjP/ezjPI+2njUpuTL336Fre1t0rzHZr1CRzFp1gsi0ck2wzwB39Dr95nfuRvsbf0BxrUM+2OksoDlqeee5uTomNO6Zvvq4zTLFXZVEqUJi9WcbH87tOxaR68fLJ1tWZJmKWkvQzhH6xyxirFlCXFKsVgwnIzxHXJbK0GcadqmRkdJxzqQoMIJ3TRtgHpRkw1S0jwNVsNYYa0LsfMdVE0qhcPhWkPV5Za01iAITo4QDGYDxOwRrTzPu/GGIYkTEKIL52vI816XoioYj8cMhwOSJHBEtrZDGF9ZlcRxw3q9oawq8jxnUxTUmwLwpGlGFOmO7qq+J7hMEMcxZdddMW3Lar0myzLyPCPPsrBZxmHTTrOUpq6pTdsRXSPqOiQPR133Jk0S1usNQsByuSRLM7LcEBMxGg1DB8p7yqoKW533rFbBKWNNgM8NR0OyLMfjg6VZKU6nU86dO4dpW5omFGNNG97nqiy7UZRFd+nJrQkFZtzlLvmOryAgpK56R13XoUCTkiiKmM9n9Pt98iwL2p2ywnVFqWkN+3t7vHntjUd2HSgd8pHiSGF0hE2aEBvRhbd5CyEhNwiIrQ3ciVe+9S1m8zlPPnGFsuhGZh7auiGOI1zb4q2gLSuW0wWbYtWJlEFHMe9/8cNcv3GbL33+c/zpP/sLRDri7bev0bQ1lx+70omb5cNGEpydoSHLUzarBf/+X/0KH/j4Z5DScfOdd3jsyYhke5f1ZsX5ixfpKVhMT4kIerbr79xkfnrMfFkw6PVxwuEVZP0ecjGnKAsOHzzg2WeexCO49NjjHFy8wIP794kiHQqdo3vcuPEuL3/ti+R50mnKahaLzZmoVRBqrPMH57ny+NP0ev0w+X0omJcSKYITRcog8oQQkaB0gJA9/Kx4T9ede3QHFWNb4jTFGQOd/kNUVeiSyrA3yDTG1hssFpFFiDxGpSFo1RmDbFtk6xBti+gn+Cih89CCC0h6RHCzyETjncWqCGk9TVvTDIds+gOmjwl664LJbEm2WCEb131eFDZJaKED34G2LmzsUuGUDvQRDc5LhPegQgfbK9kB5kApHRKBvcdJgawbqJsOPwFxLOkDIyHIOvaQk5IyUhxqyVKGzojDIb2ndTY4bdoQNttEAu811AaZSRyW5ds3yaOEuanZyBYfa9RyA2UdHIYSUIASwV6cRph+Aue3cVmCOF0gIoEffH/cqx/q4mRT1TRlzde+fQ0hJT/3c59Aa8V0uuLB0ZKbD06ZLpZs1iVbOztEUcxgL+etd96lKLaZrSr6Wcp7PvKj9AeTLvjNMzp4jHS4wtoWVMLR6Zyrzz/DL/yZ/4L/0//1/8bnfvNzPPGjn2CUZtQ37/D6y98A5zA+AJB1FFG7FldtkNWCou2RKsnShGyOnlPMbr3LaGeL5y49w+GdO9y/e5fJ9uTMPmaxEIWAuWwywLuKSZJz9/Qu1jpaU2NwxHlG25Q0tg3gJGM5vnmPJI2QexH9S3tkSY9quWIznWPblv5khIoj6rLCWVAiiMPCGCDDe8/ipLMMWk+x2oSuVBKFQqBpwymyCkyQpqrQUYwXoWCJkwQVaZSUFJsqcB8e0XoYd19symDv7OyyWmvapiFJUzKlQjfEBGbLoN9nsVgyHA5JkjSEcomC6WkIPquqkrquGA1HgfuhFdY5hoPhWVYPBBdQmiQczhdUVUgDfgieG46GXQdFknTFgJABl++9D4h/Y8l7PeomFClVl1mCEOR5fjaCOTk9DWFlSna2bwOekE5cFKw3a/IsC9TRe/eZTCaMRiN6ec7W9hZlWZ3RclerFcPhEK0U0+WSPM/Be9q2wViJLQryLEOpIMKNoxjrQgu3roOt1FpD07ZnzJP5fM5kMungZk0n2o2JgflsTpzEZ0j+R3YdSIGUvksCluRZj93dc6wWK7JeTl103T2+C4izxtLUNavlnOVywdWnn2Xv/Dm+8Lnfo67WWCewzlC3hk9/5iep2pbpfMFLX/w8IHj+hffz8R/9MU5mv8q7b7/Fjes3iKOYJBKMRyNum7cZbm2R533SXh6Es9+jwqibljiO+OinfpzLTzyFlopLV56mqhuE9DR1y2w6ZbI1wXvLuggHgIOD8ygp8ZxyfHzEcDTk9q3bxHkf8EQygNSyXp979+5y+fHHePutt2jbhvF4CykVaZp1ujLH6XTRCflV5xD5rk4mVkEMbqwJJFjvMdaSpAqpA4DLWvPdjogPfz/Pe6yWQQQdJynPPPMcdV1SNY+uOMn1BEEMUoGzyA6lLj0I57G2xTQLlI5QOke00E7LTiPkkXkSrLK5RqsMrMXUTRDVShXYHsgzuqurOi2d8NhIg5Yo7/FOUraGOpKstoZkowGTVUF/00BjgpBV6hA2iKCOBU4GbYprDNL7UIwQ7mdCCZxSnXU3FBqR88iHIyPrkLVBCcA7trViy3tS74i0ItKa2ntmEu7HitJ6vHF44YmlRnhJpKOgm6taNtJTO4tPNLan8IuazVs3qY8WbMYp9TCGQY58sERULa4xEGuctIhI4qTGZxE2j/A7Y0QvhfUm/FkswXx/XdQf6uLES9jZ3+b+/WNevXaTx65c5Kmrl/jyS6/w6lu3ODydIVRQEzfOIOOIxargmScu874XnuHkdM5z732B49NT7t5/wFPPPE9ZFsynJyznU5q65ve/9jJbkxH3bt7gySfO83M/97P85lde5ubLrxLvbmHqOijARYhHF0qRDUdUp0dkWcLW04+TRylZmoLxrKYzLJ52saC2DddefTXM9y2UVU1d1CxPp4wW+zgdYahotEAUFU2vpcXR1CXNLNBDh0rTFDVbW2PqsiLJBLVriZIMcDTekDgHxhPHEcmojweqoqLclMRZihCdF947rAk2O9/N3tfLTZcVpGmbtsOsV7R1TV3WWG/JeznGB86EbW1HBxSURYW1Dhk9ulZuVde0pkXW4Zaf5zn9fg+BYDabMT09pdc5D9bO0cvzLiE1oiwK9vb2uHP7NvP5gixLw6beCyOLu/fuYazhyuNXcM6esUaSOA4hVp124+DcAYvFvOuEbFgs5oxHY6yxLBYLIADetI7Is4xNZ/Otm8Bo6fV6FJtN6P7oUMjIrktSVWWnkQliWyEC/Go+X4TET4L48KFGpmmaM6jTeDwOKaBJwvHJMQjB7u4ORVEiu1ydk5MT9nZ3z0ZVxhiqqmI8HpPnIdHY2uDQaB6OZoSgKkvatj0DzuV5TtTpYEzHg1mulhweHZ3lAT3K1bYWZzxxx8RyzoN0pF38QJKlYWaPoK4b2qbm9OSo6yAFoW9VVty8eR2tQxp0VbU4Y5jPprz55mus1wtuXL8WQBMebt+6yZtvvEEUJazbBWmckOUJzz77DBcvPcZ8NmddlFR1y8g7ojgJ4yfonFZwdDrllW99FYOmritOZyd8+id+mptvv42KAreiLGuWixVJrJEC7t27w73bN8h6Q0ajMW+9dQ0lBXdu3mC1WDIaBnjeYLJF2rd861vfZD0/IuuNiCIdSNIdW8c50wHpLMaoh2giwKOkIE0ilABJcHCE43GXXisDO8MYd6YtgfDaCymD5kwEB9l8seD0+Ij1o3RtuRjRxGgLIorBlgip0QgkgjgmME7qKoQzWokoG7x1KKkRK4vVEPV6tPUalcSkSYSXYeTpCJqsSKWhRkn6QZtjWmwnKfXedvl/Ep+mmLKksob1sEe8NaZXNgyWNbEhwNiUxuHxTUXkCVA3QqDkQ2Gqx4fHK0A2LaIM+UjWOZSxWClxacSeVJz3lqELVmovNFpJWg9TJbiloYg0xCESJaotwlgUgsgrIiGp4ozNlqKNJcIYmtffpbl+DyKF381pBhqZZ8hNgxMNbRJcRT6TiDgB3RVvox5+e4jv9fDLJTrR+LQLgvw+D6s/1MXJjZMHiLcT6mnBg+WSZ5+7yrg/5Ph0xr37h5ycztBRxOnJKSrSzJdLkiQjy2NeeO8LjLe3sSiOTo45OplyOJ1y6+ZtTNNw5959bt6+RWscf+pnP0OSZzz32CW+9PVXGW6NmB4/gNmU3tYWIs9YP3jAerkgyXJMa8lyzXCyjS8a2MpRgx6pTkkHA0Sa0dvZxRYraqlxUiCGfe6cHFMulmwfHGA2JS0lzlni1tMzLapYYeYbmnLN5NweLdDbHrK9NWZ7a4wzlrKsaOuU0WBIUzYMJxNwnjhPGG+fxwmL6SxsMpYUqwKd9LDWkKQpZVURJzFbB3thhFBsUJEGFWysSurQOWmCnbTXz4nSGFfXtE1DcJEYlMpoFaAFrnl0nRMpwkn04bhivV7T8z0ee/zx0MWwQYgaR0EH8nA0IpXCGoOOIp5//nm+9rWv4XwI7XPOMx6FrsnR8THr9ZrdvV2KsiTLMvr9/hldNE5ikjQhSWJmszlxHFJCNx11tt/rsV6tO51IcIzEcRwErt3jLctQLHjXCdCsoaoM8/mM0XBEFAXnTAgaLOirPmmaMJ3Nvud5iYDYf+gaqhvKsuTk5AQhRHDVWMf5C+fJ85yiKNnf32OxWNC25kwk23Tpy/P5PHR4mubMFQRQ2UDClUrRbAqyNNBRsyzjypXH2dne5s1r1yirkBAtEWzKMmDNH+Fq6sC26ffzkHsTpSRxhtSa09MZCOjlCWWxpq4rirJksZiFG74MgZbL5Yq2sTz5zNO4tiWOWzarNd7B7Rs3KDYlp8cnZ4j31XKOc6GDJLa3sS4Uo0eHh+zvn0dGMUpHnJzOggC9bc+KE4AkiUiSnPF4m9FwwGhwiZ/86Z9mOl2F5FjbkWZtQ9tUdLskAsHOzi6boiHv9QBLlvUY93sUsyjolPp9vvLlL/HE1atcPH+eV47ukebBORXHCYP+kDxN6ed9vFBoFX4gBUmakiYZvbzH1nYQzj/x5JNkWc7zzz5L21QURef+EqIrRgUPqxPrzNlhzXQRDof3bgRdknp0glhRl7hmTpT1QuintQEW5jzOOqI4DtZb59EyJkpSsnxM01S4tsL7AFkTrUD5GNUIfGNxbY1I4vDn0kPhkHGIHsF5JBopNUIrnG0xNCghaZsC+jFOphhrqL2g7PdYbvUZFpZsWRE3LdJ5jBBsbEuso0CfJeAAHrqg8IGpgnNoLajbqrtfaNI04kqkOfCQCYl3CtvloLXOMteKG1nEWgucDJoQGSlELrBedPlagjKPKDNJ3RS4xQpz9xBOFvh+jDs/wPbjoNnxErvaYMYhL4fWBA1PGjRnPkpgPIReiliuw702iRGtBR9MHd/P+qEuTlzjWE7XLB/MmJ8u+R++8FXe+M4N3rlxhyjNab1jfnwSAo6SmMaFSvFwtuLdW3cYD4fcvvNVbty+x5vvvENRhNTIKI6oqoZivSHv5Xzhq99kWlRcvXCBxx+7zEeblrunM65/5xr3vvMK2889j/fhJFJs1si65PwTj+OtIZM9tJdIr9gUFaMusG22WvDchz5ANJlweOsOznnSLGN5fEy2t8f8+DQQ/uoaZkv09oRFUdF40FIGCFtd08YRF5+8HE5tvZy6rsgnfbxxVMsaWxY0dUWWZhSbFqkEXgms87jKoZykKUvqomK9XGM7qNBke4skTQNVUXiSLEX1AqhNVzFRGjPSI6xxNFVNHqcsqzUBbBhw6bZtqdfrM3vro1hRHFgdcZxQlEU4AYmCG9evd26iAIPyHvr9PloriqIkimPquuH46IjhcMj5c+cpig1Hx8ckXVBgvz8I2Tv9XgcgGwBQN3Wn3wl5EnmehY2nc+bIToexWq9Dl6GqOr1KjO3Q5svFgtls1oUVurNUYNW5PVarEFBnrKWslrCGYT98//lsRq/XO+viVHVNqhOGgwFN0zCfLzq+VItWmsFwwKDfZ7laURYlk/GYNE0xbUsUxd918qQpNk1DSrLWQVfi3B+wUnugKAqGwyGj0TCIans5Tz/9FEIIbt+5y2q1xlnL6ekp1lpaY2iaR0uIXa826EiwKYIF/KMf+yS1CWmsSr2NViHE7Y1Xv8l0eooUgqoKURNCAhLqumSzWXHh0iX6eUxRFOzu7wOGF97zfox5mfe+570orcLzalv29vfZ2TuP9ILVckYcx0znM8q65NaNWzx4cJ+dnV2uXr1yVtDSianruqGqS5Ksh5Sa5XrB537nd+kPhuzv7RNFCu+hqEoaZ6jamrpt0LFG6yEPHrwTOrIAUqCTmDjPuX3vPkcnxxycO+Cpp5/m5s3b7OzsY7zj2rXv4IDFYsVyteSpZ58PpFdPRyg2wZaKxzg4PllgTMuXX3oJpcKIoCrXofBUgl4voapa9vcPsNZz994dHiZYS6nQShLpmCzT2NbQfp+5Kv8py9Ai8hib6KApsRasD2F9StLWNUooXFXiTw5DAF2WowZjot4I0xFlnQmjVyVkKBKMwZgaURfYJoyPhSrwWqN7PRAOF4dAPJ3mCJ+CNygFVDUSh/TB2aWkxkvPJheso4S4kfRmK7S1uERTQqDPmiARcB0QxXkLzkBVgxDoOCaLY84juKgkmRDESgIOLyNwjtrBvSziWuSofXDkeBPShK33WBw+TmkSSdtPaFyDW86x0ylUJW6gEcNdxKCHsSaEKqYCtyjwoxiXx/gkQjQGnwQtnrMghn280rAJ+jkfK6RxoaVpPSrJv6/384e6OImGA9Qg50LWp5mtODpesCwdtmwRq2kYKziHimLaqqVVFtvC/emcX//8l5n0+2yPBhxOlxzP1jRlgRB0ybahCVyWJYcnU9bfeIVVaXjz5m0enJySDFOe/uB7qBYLFtfeglgjo+jMHx5nGYPxhPnRIVUTIDStdTRVgTGeXq+P7vcpbEu+NaZcb/BVzXI2gzhB5iE9OJIZrm05rSqqssTVJdVqjWtbDs7voRPNcDImS4O+wWOJK8V6XWDrmtnRMdY4Sr1BKEVTlKhIE2UJ/cEYENRdWqWQwYljm4b56ZSsl7F7YY/EBez08nRN2xqyPENJQVWU0G1OZRlO7dY72qpmOBghfJh/N82jS6Rdr9co9TB5V9DSUlUlZRnGIQ8R9kmaBmha04bWYudomc3mrFar0JYG8l4PQRiVRHFE5DVKabSKzpJs27ZFSIk1YeMNolYdXD1JfMYrETI4Fuz3OHHAh26HFKy70L0gLgxfGxxCgtFoGESXHUPiIYskiqKzoMIkSfAu2L6TNCF2CUprcjhLLLbKEVUVi0WAlD3MeSmKAudcGBXBmcBRRxG5lGeY/IcR75vNhrYNGomQUhyEsVjBk09e5dKlSzy4/4DpdMpqtUIpRbHZUJYl/X6fzXr9yK4BgDgOCbmL+QqpJFGScHx6n36vh3OeVVkw7OdMp1M2ZYlEgIQoiknTBB0l1FVN2xi+88qrPPfs01hvAuk4DaJmhMc0Ne//4CcoyjX3bt0gz3JeePETvPXGd3jjtZe5/PjVsAF1GHhrPa0J1nHrHHGkSZMkXAdxxHKx4guf+23ipEd/EHKx7ty+yeHd2yjhUFpjqpY7129gnKVtKqwx3L99iyxLkFIEbL9SjDuh/zvvvI2wDbGCfDBmU7xJ2u/T7/f5nc9+luFgQJ73AclguB3ueV2on2lbGtOGdFkbCK9KBQpyW9eUheezn/0toiglz5PQdZOSZ559jiTJODk9oW1a7t29S7EpAhDNQ1nUxJE8G0U+ipX3dhGxpm1rfFMj8EihwQCtRQqF0Ao92ULs7GAXx2w2D2BzDyUTVH+I2N7HOQsqAh1jfRCIWmNxKiLNY5RT+HIT0uaPj8PnJ89DdyWNEbHCaRlYKnmEacOoVegMlEDqGF/XeEWgqkaQnMwZLhqEAURwNrlunIQDtEQkGXowRFvLgdQ85hwTQInOqu0c1ne6IOc57aVc04bSBryDc5ZWaWyqMb4LAR3mVMLiqhK3WeNp8QdjRLQTXlQhoaiC2ymOcG2FyAI7SWgVQhV16EZhHLLXx4WNE/q9sCc1NSQC0eEpqP4z6JzkSUaaZcQqpihqqjZ4uq2xuFVBsSypqxKla5IsCP/KtiYbQFkbnFszXW7C5qkVqpezmc0wjemwBBahJYvpHGM9v//Nb7NcLHBeUdqKJIp54VMf57UvvsTJ4QPqzRqPR0cRqkOAbz/2OGVVsjmdkaYZ9WxBsViQ5Rl1G7oUrQk3gWK9CHH1B+dZ1xXlckm1XoRNj4zidIog2Fkff+YqWS8h0oqmbIi1pq5L1qslpm4xVU2x3JDEMWmv0wN4fzZS2Cw2CBQq1qhY4tEIHsZ3e3QcBG/lOgTl9cZ9nLO4xtB0Jz9xtnl2+St1i2lDfLuOQnLlcrkKs+dHtKSUtE0bRk5as7O9HciexjAYDCiriiwPlboxBikD/CzkrQSLsHUBT/8w2G69XgdnUhk0HKNx6IS4rgvwMH/nYVGkuk5J27YcHh6htWYwGDDoD/CEUdF8sejYIjlpmrKf7NM0wSWUZxlRFAX4Whzga6vVmuVyEUBqKmT/GGMwrQmi4yhCax0C2QREHS7b2BbThdo1TU2/16dtWsoiRMUvV6vgvhKCVQd1C1ZJzkSrdV0TdUF91hjKMgTnlWXZAbz2yXs509Mp682GXq/HbDqlaWqGgwEnJyecnpycaU+atgtMe5RLSLIkQWlFXTccHd7nmWeeotiU+I5YqrXm6tWr7J+/iLeed2+8gfUh9TmJE4R3obOlHHfv3UUriUMyGQ+5f/cm89NT3rl+nefe+17efOMNjo8fkPVG7J1/jLevvY6tK25fv06kNf+X/+a/Yb0puHL1CucunEcryeHRA6ZHjueef767Hlu2d3b4zE//cXb2D+j1h7RNw/TosIPkaSSWLE3o9XPu3T8kUorLlx7DWYezjrJYo+OYt996G608m82a7WGP1dozmuyynM85uneHBw+OiLTiQx/5eBArR4qTw0McobgNdbNHSkUvT1FSd3wbRaxi6mbDcDDGtJavf/NrXLpyhSTNKDcrbty+x+c+93tESYx1YYzS1CGXSApHEoX0YtdFSTyq1a4rVC8jTlK0SmhPj5FNiYgThHAhn0Zr0Jo2i9HDXdIswa3mUBe4eklxbxGYJosSkgyyFB8lqJ0xcjjAtIamrtD9DJXHKGOQ1oGx+LpGLppgLihrVJphUoWMNUJJZNKC9LTK0EtzjPSYskBEEdVkQNNrSBcV+mHhoIJZIWmDhsfqiJHUPGXhvPPkSqJlMBg3TU1rLMp58ILlIOM7mWGKxyGplcTEMbJuUQJcrxfw8sKETlHk8MMUkY9xSYKINNJYbGtQkxG+tQGf7/JQsHiHaB/yW8JnW0Qh+8s5h8p7ITvIg+oleGtDGGJTI75PrMAPdXHiIs2yKli6gt5kwKg/pmkM1jh6W9vhopzNqMsiJM8S0L8eRb2uMJEkH/WC2rpt8RKk0ngRsOvOO4qyAlME50KvR7mpkFGPZtWitnJqpRhsbXH/xvVA5EMQJQkiTtkIqFtDnKUMYs36/lE4oXhHMhjRlBUq1SRZxLJckcYxOknY3t+BxYJ6tSLr9WiswbYtSRoxPneO2d0HbF3YZ/dgl1xpTk+PMcawXqwoV0GgmOU57aDGW4+pWkzZkA/6EMekcUJfqzAWqhuMbZFeUBclSZ4xPrdLnEU4bylWJXGaUDfmDF/vTBu8/jKEZ4Ht8O4aoQxxknXi2XCjMuWj65zs7e5RliVxHFPVFZvNhtgY8iy4jr4bWgdCRygtOxhZwLWvN5uzLkGAokXs7OxwdHQUxjFK0dQ1o9GI1XIZWBDWdnj6jDgJnv35fIaUijzLuP/gAXfv3uXixYtsTSZcungRgaAoiyAcjUP3wznHYrHooFZh80ySJIhaO5tzcBiFIkRH0Xdj66Wk2GzYFAVZlgZYmlYkcYJWliSOWSyXxHFC3CUXp1nKeh1CCdM0DU6rpkZ1c+iiKOjleRjpNA2DrgO0Wq3J84wsTcPYKQoZRYPBgP/iz/5pHn/8cYyxXHvzTaQIXSJrTAeGC6j+Qb/PjZvXH9l1kEQRSRxjnCOJI9omCFmrOhCElVb0BwPiOGI02qKuKxbzFW0dOBRRlCCVDp8FnVCWTbCha0WeJ5RVSa/XY2dnh3sPDnFekOcDrlx9ite+/W2uvf4azz3zFBceu8L+/gEXzl/g1q3bTCZDsjRBqQDkG49C7k4IbzTcuX2TL/zeZ/n0Z/4kxWaDUoK810ciSeMQYVDWLZuqIkpTnLO8/fY7pEnMzTu3ePHF93Pj1m3y/gDXlMyOjxmNMiY7+/SHE778xd/l3r175EnKU88/w3/5X/0vESrGOcPhvZskUUxjXTipu6Aj8zYEUFZNi8SFUNKmJs/7lEXJ669/m9/6H36dxhieunqBT//4TzAcbvGtb36Nk5NTNqsl21vbeNsym50E/ohpEdLzCGsT7JvfQKQ5JsthazsUnMs1brlBWE8SZ5h2gdAqdNqkQGQxUX8HkxXEWmHLDbapEds5trXEzSYE1R09QF6+gJhMUGkfFmuiyQiRJXjTYKsw9gkrdCq8jlDOo1sPTY01DSIO5NzWNjhjA5G1qEjiEXlvjJEFRXuCy1uieUl/XqNbhxdwcf88zwvFbixJdQAjailCbEEa7rmV93ynp/lmLphJReMcLlKdadhhm5o6BkfQmTkVYWUcHJtSATqM/nE4pZBpFkIMmy4WwzQIF2i3PhNoITBtC9YgWgPWohx4L5AovLf4pkU4iXAgZIz/PquOH+riRHuF27RYYzA7Ka2EKElQkxHWQDwcETlHur2DqyrqMhQoTVEgTYNKIrI8w1pPrDSz6YzecMhoa5f5ySF1VVJvAobb1xUqCYFaTbWiadYIRmylOb1+nzhNgz7Ee3p75zhZr1B5ji3nxJM+qBgxyInToJaORgOauiYVYDYlxfEpZjojGwx5+v3v4zvf/jaLW3donae3s8fB1giRaep1iXSeu2/dpN/rM9yZEHVMgdXJnPnxlAtPXGIwHlCuymDzcp62rinWBZFUNHXbFRbQuocgNZjsbYe8DOeQXlAsC1xr8HFMXdTUZUWx3pCmHbTNtJgqiOGk1ug4QXl7Rmo1VUVr7JmY8lGs9Wbd2V1DGm4SJ2FkYcNmOxyN6Pf7wQLcFRsPMfNFUdAaQ6R151YK4xwPbG9vc3x8TGsCv8R14lZrA9MlywLAS0qJQHSulYidnW3yPOd0OmW5XFCVJev1+iwkrzVtSEQ2htFoFLDxVUVRFN0oKmhERuMRUgo2m4LWhFMoBICY6JKH4yhC9Puhs+FAyjQ4kZIkdD665zmdTomjiLyXs7+3x/JhJk7nIAqJxi1t27Bau9BNsvZsPBPGVYE0OxgMUFqjlGR3Z5c4TplO55RlgVSK1XLFbD5jOpuiZMhoWq83jzyVWGl1huiPk4ynn3mW2XTKU08+w9de+grl/JS6aYiTFGOCWyfv9bh0+TJvv/UmQvoulResdfT7g9AJGk/o93us1yUe2KzWfOFzv40Qgr29PabTEz74Ix9nNOxhm5BCHScxH/nEj/Ls7JS7t251eUyWoqxRumIyAYRgsjVhMp5w4dxlRqMxed6jKjcsZlOS3V2UDu+zs47X3nidZ559L857huOcSCVEWnL44C5CwPGDO0QdV2i0cw5jHV///ZfIs5zL5w9I+gOiOKWqCoryFNPW3L9/jziKKR+O+7oRrHch1dm0JnA8rAk0XDFluZgDnp2dMU3b0usPiZRkOMjx1uCNoWkM5WbBYDQOWU9U4QQNZyyUR7HEeBTcQbYkagtMnqLOHyDaFl9X2MqQqh7ULe1ija1rdBLBqEeU6cD8SAaQppBKpOs8OmkETYM9ug+37+D7faQHO8vQzz1BlPdJsgHWtZimwpqKtq1wIoRQ+sijx0NoW4TsgGyRRLQBSuJESRNbbFQjxwMaqZDeUh4QktHLhvjwhNGox8AoYmuIlEJLSRRHIeRVKprE8npkeaUnWFZF6JB29/NA6XXYLAERwgWFivDOEosAnROd20gIjZc6jJSsx7UNNG2wAPsuosF1oDdjQtMtUlg8wrjOeq1DGKIn5Ps4j3IOVDj0fj/rh7o48ZFE9fvEUtPWDUVb0SOlrYMtsm4aGi2xwtAWa3zTkmY9kkHOpDchTTJkpHCI4JqwjuHWDjqKieOUqthQlQUej4oUWgddR101KJ2SJymZVNRJRH+yRZTkVHVFsncu2PQ2FTrRVCdTbJ7Qtg1+XeCtRcsWEQlcU1KvCmhDwJhOU+7cvcVgNGC4NaLZFOyMh2wNerhIc7go2KyXPHPuBZI0ZjFfotIU29QoKejlKYvjGVpGQaxa1NRdsq4nAJRUkiCFJMuyMAJxFi0l1aai2pQIJUjzFOeDhdT7EiEVpjWUm5K6rEKSsZSBLeIdcZKSZJK6rM9IvcPtCUmWsV6ueOv6jUdyDQQIWgi/62X5maPGw1lHIo7jM8qpkPIs8XdTFHjnWG82pGlCP+4HsJy1pGnKhYsXWC6XnYujYWktWkdoFcYo3nt2dnYC6dUZ5rM5N2/cpGlbBoM+e7t7zOZz8l7OoB/EqpvNmmJTINhiMOizvb3FYrFgUxScnJ5ijOHx6DHiOGZnd4cs39A0bTjRdm3xtmnOgG8PsfJlWXZ5JkEvUlXhPapdTVmFcYx1ljzvce7ggKZpuHf/Pt4F11BRlF2IXxjtJEmCADabDf1+n8GgTxLH3Lh5g9VqHezLdU3xr/5VcGx0sLuHHBdrwyjl4V7kH/FYR3ajCaEkYBkM+7R1xXI1PYOvFZsNprVntNrBoM/5cy+yt7PD9evv4L0liROsM2zv7dDv9zk4dyHE3iM4OXoQzp/eo4Rnvpgzm015/dVXefmrL/HkE1e48sx7eO3Vb7Mp1pRFwXg0YWd3n4egssViDhfPA7BczqmNCQebpmbeVORZwt7BAXEc9CTehrwUgaKtKm7fusWDB0dMj4/Z3dkLmo/wCrNaFTz9wvM0reXenVsMehkf+shHuPHuDWaLGVrHnByfULctTVMzn83wzlKWDW1raNv6LMbAWNO5hULRpoRmNptx8+a77G73+RN/+k8QSXUWsnn1yad56ctfpmlqRuMhvTQ6A/W1bc3uzj7nzp1DqYh3b3/ukVwDQnr0aAvZttiqwdoThIJAXU7xpoblHFkYTFWg+xm+qLHVGj8eYOsKZSEaDKmyFiJoRIvMc2Qvg9UaGVm8qfCNx28NKCjwTYk0FuFBek+kNNJHgatjTQDUmQbZ5XxZAVWzwXkTxkzDCVYo0DGOFm8aDB6pEnySsGkqmnPbvG0s29mYsig550Msg45jFDHOe2QsuCJgtlny2r0j1loitgb4pg2Ft7CIfnAVSevR8xKZxKBayJKQaByH0EJvLc62AWRnHKatoa3BWJSMgi6nc2cSKegQ+iKKsHWLa1uUccgoCiLc1gTXlGkQ32cn/Ye6ONmczEkn4SQ33tlFtB5vBYNBH9O1l2xVkY9y0sllbGMoZgXZYEh/f8LucEKmNcV6zUmcsLaS/NwBsdRkUYpyvtsU3MNIRvANdVUym00ZX9wDKWnvwXhvhztv3aBtajb379I72CdKUsxyiXSGuihobIvq0n9b37I+nTMZjhhuDdmsl/TGI3rjIfu7W4z6Q07efpdeP+XDP/VR2qJkebxi+uCUOE1IRn0a7zFFxdbehPlmjRegooCVLlcBEOScDdTXLnG4qVtMUeE71LonnBQrY3DGUG4KxltDBqM+ToURSLkuaIwh7QdXSrku8V5QVjV5Fyi22RRUVUOapXgtqY3B1jW2Cmmfj2r1u/FImiRsNhvqJoDhQqquPkPIt8YwyAZhzNQlhKZpgvcuBPWtQ+dj1IVxPaSjbjbFGSH26OiYyXgc3DnGBHaHgCefvIr3AQW/WCy4e+M6/X6fy5cvBw1MFDEcDrqANcH169cJlmtHmmUBvz8a0dQ1s9kcKRVVWZKmCXneI89DYTWfzambOgC86hpnLUmaEscJ3gXHT6TDjcP5wFbJ0pT1ZkVZBpJtWVasVyvyXo/RaIhSGtO29AcDlJKcTqchxTnL6Pd67OzuhFOv1qyLMN7s93torYnjiK3JhJ2dnc7GLFguV9y4cSOEwLnO6t1ZFevmUbJOwutJlwl07+4trA2OnKYON0PjgsDXNAbnA8X487/3eUxr2N2ZsNmsePaF52nqgq2tLY6PjnjxRz5K21rG4y28cxyfnKB0eN5tGyLsR6MhV598msP7t9k9uMC3Xv4GX/vKl7h79z6/8D/7r+iPRmEc1xWCdPTV4WCIbQzXvvM6Fy5cJs161HXLYrEkiRRNoRFKMZ5so5RgZ2ebpm7oJQl2OCSKE7QO7Jp+r4+gZFMW3L55h+FoxNbOGOssWR5j3YCqqrhz5xbj0RYA4609vLUMR5amNVjnO0Cux7swvnXOAC5EHhRrFvNTnnriEof37oNwlEWNc4amqTg9PSVNc9L+Hm1xn/l8jrWeNI1QUcy6MqxWJ4/sCnBaUDdlEGoPclQrsPWSyLW05SFq2YDXWAQ+9rTUwdo6XUDskd7Snpyi5znxIMX0NdDiozW210doiUhT/KZAe4GugWWN3xkhshisxXejUqFlwM/Hwf3jfEtLTeU2CMCZCuEt1C4IRn1L4wxC2hBlIFN6NicxgqwwXOrtcjnbYk969pKcnrdI4YP921i0AITgaR3xRNzjZ6/ucavc8K5ruKULpn3JVJQYs4RGIESEyDWyqvCrFnW4DJoQ5/BtA/0UGylkY0IHajxCqhxfNaE4UR7RC2wbZ1swFrNc4hKN7I2QkQpuQCGw6w1CCZQImV1efX9Axv+o4uSXf/mX+df/+l/zxhtvkGUZn/jEJ/j7f//v88wzz5x9TVVV/PW//tf55//8n1PXNT/zMz/DP/gH/4D9/f2zr7l16xa/9Eu/xO/8zu/Q7/f5C3/hL/DLv/zLaP0fVyv5qgkKYS0xzpHXjhiNMQ1JnNKb7KCjhMJscNYBkjjNUL2c4f4OvVGfQas46I/Y66/pG4EvW+JUk2VBVZ+mwS/vXbCQNnVJiSYeC5oizFHL2Zw7b75FXTeYqqA8us/Fi+cRqaZxCtk4FrM5rWkx3tHbnrCez9BaEfUSWmMZbI2xTct4d4LHcHz6IMC6egkni9NgkR3FZKOc0d4OtXYslGF8fsygt02SZIy3d9FCslotSLKM1XTBydt3qKqayfaExXRGLxtQNTVZr49pDG1TUFclbdN2OGVPXVRM75+QjIYhl0JHeG8wtuXe/Qcc3j+iKAqklEwmE5577lkGw1EQ1+mI1lje/M4bHN67h3OOQa//h967H9Q1MBlPaNpQAMVxzHqzObNESinPRiq6m9HGcYw08gyklSZpR7AVLBYLkk5Dsr29Tdsazp874OhIsSkK9vf2zmzCAOvNhmtvXiPSmve+9z188QtfJE1TtIo4OTnFe7h69SpKa8qqIooikjTlwoULbIqCxWJxJhJMs4wLFy+egc+8h/V6c2bfjOKI/mBAcxqCC/M8DxoFrbuiowwjSmfwHpou4HC9XpOm2ZlLZ71eUynNYrnkwvnzpFlKlmc0dUO/P0ApRVVVJEkYW7WtwXZW8MGgz9NPP0UUxbx57U3u3r3DpijQWjMejbl69SpJmjAYDgJ3xDvW63XnVArrqLNu/6Cvg+VqSRRpkiRGiJh/9+/+PTuTMQfnQh5M2HVD+mucJuAdRVEwn82YTWdB+Kk19x884IMf/AA3rt+kLDYcHd5HKk1RbLDAeLzNYrVCx4J3btxlvD1henrKF7/weT71yY+Q5jmf+vSn2T93jts3bnL5sSskUfJQbwoEO7b3MBqO2drZ5kc//WNIJekNcrw3ZGlCniQIpTBVFRBi3rMuNqxWc85dOMdke4vVqsQYx9PPPM3LL3+bJI1w1jMc5PSy0E29dfMm63VBVRZEScyzzz9PbzhhenLE13//S/z+lz/fJVuH8aszNljHTYt1bRA4Wsu5cxc5OHcZ7zyL9YY333qb09mK6XxNayz/73/zOZJYsbM1oXUnCFuBCML6VeW5/q038c6TpX/4ff1BXQOuKvDLFUm/j2sqVN4PnQkrUbmmiesAjEti/KJFrQpEYxGbNf5+DZM+9CKkcphqgxYpba7wVYX3LQyGNM6ixhlu09CcHuNP7mGv7GDyDmDXG+Bw0HriKMO1JcoY7HKKbNsgym0tCIdvKkTVIGONjzVRlLGthjyb7fG4ytkSEZNM0x9GZEqi8EjCGDnEBnRgRCG6wFWP8I6014Oq4UkET8kQ3FcJOBWGW3HBjWbJfWqOmw3tIKfthyJbWokqLb6u8GUBtcHXLcq2OFPinITGY9clrq1RXiOtRWiF358Q+5jIp5jZJjymgHxCFg3YFrda4415NJyT3/3d3+Uv/aW/xIc//GGMMfytv/W3+Omf/mlef/11er0eAH/1r/5Vfu3Xfo1/8S/+BaPRiL/8l/8yf/bP/lm++MUvAoGB8fM///McHBzwpS99ifv37/Pn//yfJ4oi/t7f+3v/URejVBqzbgJ2ua4plzVxDNIJprPjMNvHgBI0VYVzgBMsj0+5JtfoLOLK/iWuDs6TDMc8+WzIXtFSB4FgWWAbEyBYSoXMkbhH3h8xUQc0dYWSUC7C6Xq9mPHwzrO/t8OD2ZS4l6J6GXK9RjR1UHpvCtJsSJLnqFhhpGd4bpvV6RKrNfeXc1QcsfPeJ5BacLRYobwiiRLS89ucu7SNGGSYTPGgLugLyZgB3ivatiJJ+0gZkY8VF59J6Y+GqCwmGfaCNiSKwMLswSFt0xAlMcYZ4jTcRK13xHmKcRatsiAq9AJMwJFfffIK/eEA07S88/a7fOUrv89HPvYxJBLbWt59+xonpydcufw4ALfu3v4D79sP8hrI8pyBHpy1t+M45uj4OGgvumIFIRiNRmw2G2xqA6pZBKhZ3YXbaR06COvVqrtZh05IHEWMRiOiOOb05ASpgjMp0jpQU5uGN998k+vXbyCA3d1dyrLkxs2brFYriqJgPB6dBa05H0BYaZqxXCw4Pjpmd3eHNE5ZrBb0B/3gJBKyQ/MHzL21NhQndXNG2ZRK0TYh3Vh2wtVer4eSkjwLXS66f0MIwaYsQomig/W0quuzsL7+YMBgKM70JsZY4iTA36y1pGnCZlMwnU1pm4Y7d+7Q7/fZ3zugKApOZ6e89JWXuHD+QkhjzjJOpifUTc3u7i4CweHRIb/4i7/ISy+99AO/DqyztEWg28ZxTFWW2GEe7ORdDIDonA22y9tp6uqs8FqvN6RxyuH9B7z67VeYbG3RSM3bb16jbiqee/Y57t2+TlGsUDJiuSywtgkdGOcpN2s2ZcP0+JC0NyAbDFkWG9698TaGIKy3zhHhuxGXJ0ojZtNTvvR7n+djn/wURRp1uUQlw0GPNMvC/aijBr997RpPPv0M77x9g3t37/KRj36Yy49d5Y3XXqZYLYmjERcvXAjFmAidLjYl6/WSxWwWQhxN22lJQsT97dt3OriY7ATsloeYWAEP3e/oKDjGrHXMZ3Pm81Om85osUTx2YYdLl6/wtW98m+u37rK/3WM86GGN53RRUreWi/tDirJmVfxBp8YP8how/SSwh5oWrIS2QsU5Ik3BWezJA1BgvUeOhtjJOKT3LmPadoWhJsp71Lgg+Kw2uEIgowRb1vj6BCUFNk8wOxOi0RB3fETrNtiNDSGvzQqXRQipaVYniNbi1iViU5Aet7QXxvhRBm2DcAI9yNl1MVeTMU/nE67kI0ZRjBYC8RC+5kN+mQvCEeI4wUHIr+oONw+zttq2xXpIsqCPM3VAKuQIUuCS6vGJZMS6bXnHTnmlmPOualipFqskfhzjncYzxNoWoWK8VwgvUWh83eJGfeI4666XNnTajAEnKJVHxjG+tSAUoteD1BI5D32D8hL7fWat/UcVJ7/+67/+B379T/7JP2Fvb4+vf/3rfOpTn2KxWPCP/tE/4p/+03/KT/zETwDwj//xP+a5557jpZde4mMf+xi/8Ru/weuvv85v/dZvsb+/zwc+8AH+7t/9u/yNv/E3+Nt/+2+Htud/sOq6/gOCuuVyCYCTkiRLEXGETCNMWtH6FlqHMQ2+cSGvyTuauiHOc5x1qFbipi1RL+K2vMduMuGgt4U1LXVVU9oSvA8nmOGQzWZFb/cAkVfc+NY3OD49Zu/q4+wO+qGV9uzzXL/2HV6eTdFpn/HeDqan6ekRbVOj4pjezhi0JDI5Xnp0GiOTiE1Rk8YJUZwQT3J0Hm6kVsLWYxeJIo2vHJEVNL5l0xNEWXDcuEhjc8W0EYzbHFFYRCvIoz6j8ZB8nODGBevJActmQ2VqHKEVKIxnuD3ENA2b5RodBVz9ZrYiTxKsgE3RIJSnl6S0jWC9XvChD36QrN/D1C1VWfPe976f3/7tz7JarEjihKquuHf/Hu997/uItWKzLji3t8+N27f46le/ymc+85kf6DUQRVFIPRac8T+ElGw2GwTiu5CqDnbWNsEC7G0QUWodhNBRHAXsfRccWHdBhs45RNOchQfO54uz00oUxRhr2GwCMyTPcoSUIWTPGO4/uE9d11Td7F1KSdwVuqPxiDiJSJdh5LQ1GSK15PT0lNFwRFWVVHXDcNA/Y5ZsOtvuaDTk+vXrLOYL6qYmSRKklJ2zqMF6x6DfDzk4zgbdkJQoGQSTzgU3T9u21HWwMyspQ2ZQ8AYCwXrdtm1H/qUjowqUkjx59ckzy3SkNXGS8Kv/9lf50Ic+xFNPPoXWmr//f/z7/OIv/iJPXHmCa29e41f+2a/wla985ZHcC0ajwcOHHRKiAWMdVV1TVUGPZY1lOj1BSIFSATInpCLSgRZc+wohBIeHRyFSwnuyLAXhQ3xDW7K3u8ud23dYl4EkfO/OfbZGO4wGKTJKiJKY4WDAi+9/kVFvAN6SpFko+q1lvV7jnGO5XPDOW9cYDvu8+MEfYTiaMJnsoHWM947FsiDvD9jeO89rr75GrzcI9wUHSRIzGPZJsog0TxiN+jzz1BPcvX8fpTW0JvBclsf8yIc/zre++S3apiSJAmretA0QYJMCcF5w9elnWc4XHB8+CGPP7jqQXdaTUpo0zaDrjjoH26Pvjqh+/Md+nF6vx6/+u9/i/KUneOLKE3z5i59jXTQ8dmGLNFJY05Ju9bjzYPlI7gWyrrACEBqVJvjWUK2n6DRFJCnplas44XFC4KsSIaMQZDgZ4eZ3UUIHJ6Jt8UWNLBpcU+JHfUScBreR9ohlgV+XNLsD3DBCOIsgRHYII/DTAjcYoqIeJBKR9ZEHAvOMRjpBtCnYaWOeSXs8rXtcSHP6WeAw4XxwS7lQlOBsGFPhkUA+HOGFYrNchBFMx+MCznSFrfPEWc7ewXnu3HqXqiw7fIDs3lNJohTvybZ4xo44apZ8qz7ltWjJ1KwxyMAq8SC9wdga4SSIEHDorYXCgU6IRIDPuUYgnMKWa6wNsDuyBBu16K64EZFGtuD9/wSak5AbAltbYYb59a9/nbZt+cmf/Mmzr3n22We5fPkyX/7yl/nYxz7Gl7/8Zd773vf+gTHPz/zMz/BLv/RLvPbaa7z44ot/6Pv88i//Mn/n7/ydP/T7pm7YNHOSOkOr0Posmg1b4zFeCpqyRiUy5N84STrIqdYhUXQzX5HJnLTtU9QVG1GGQKU0C1RME1Ia01wT5TsYpUmzhA9+6EO8/vI3eOlLX+P5H/8IO0lwqDQm4JHzvUtsPXEVZy3OBKT6ZrWGWJEN+5SLFb3xAIEmilN0miAFtN7ToogM+Fiik4wsHWK9I8o12kHRLNjf2yNSEZu2Zo7EZ2NskeBM0EloJTFNy8nxnCjNGI5HXH3qCWxTcnh8n3VdBLy0ApUHmM72RYVQnrquGO6VKCtoG0NeGtrGBp3BYEBTFaS9jGyYg/UMHBweHoX3og1tfNPRFS9cvMBiNgU8eS/lxu1b/P7v/z6f+cxnfqDXQKT1mUtH6yjkxkjJZDIOhUZrkCq00rUO6cCCkMmTxDFaa3Z3d4KAuq4fBougdUSvlyOFDL/f/d1B11WYzWakScJoPCZLgy3ZOcdyOqPX73Hx0iWEENy7/+DMmZNlGePxmDRLQwKw0ug4JlWK1XrF/t5eAO15Hxwxbct6vSaKYpbLFXt7u1R1zc5kh+3lkrqu2RQqjHSysAHqSNOLY6QMIx1jzBm2v9/vxms+sHgeIt8f8k3CiT5ok9IkIc9zRucOmIwnjCdjJuNxyB7q3E9JEtPv91Fac//+fX713/4qf+JP/kmuXHmcl19+GWstf+7P/TmyLOP555/jV/7Zr3Dp0qVHci+o6iZwNTrMvxDhuazXG+JIselGYK+9/m3Wm4K6btnZ2Q6hj13KLiLoVoxpOTw8JElDyrXSqhsLBxy70qIbCzqsMeR5j9liw4133+Lc7g5VXVC0LYtizWox42B/n9u3b4X7Q8fcmc+mfOvlb7BclxzN5hBFXH/nLaI4wTrwtuHk+Jj7d+/jbEvU75PkPZq2JU2TrsBpaBvD9v4FWntE3lvQGseNG9epi4K8pxlOJoxHI+piTd4bsFrOAscmDmj9h9yRB3fvoLXqXG0hNoOOSC8l4B06Com5bWPAh78nRAiN3NrZIekOAuvVjNPj+9R16JJY07Bp6UaiQX/2KO4FwitUlmLbGicNcjJE6whTlkRRQjE7QQ/7kKb4ch0cSFGME5qofx4XR0gdh/Th9QJGa9T0BKxBupBvY6xBZSmiNdiTJarfQ6QyCEu9BVpE0aIih1eGKEoRuoeylsmi4smN4NlkzOVen3GaE0sVUrO9w3buqBBd4ENOjwmanyzvM9za5vT4hNa0OBfw9tAVkHB2SPPeMT09wfkwnj588ICyLEPHSEo6ShVKKXQUsR/1+Emd8SPVhjfqJW+IgqNUsEkiHAJLjalKvGlxXgSCsPD4osCuN6jKomsQ/R4iS4NrMNX4SJPWFnd8gi5asAK3M8L5R8w5cc7xV/7KX+GTn/wk73nPewB48OABcRwzHo//wNfu7+/z4MGDs6/53gvx4Z8//LM/av3Nv/k3+Wt/7a+d/Xq5XHLp0iVcZXBYokhTz1ZIrZBRxKxaUduGvJ9Q1AVlvSHRCXXTBneO9CSjHkncJzY5so1olCNNYqTSRLEiSTRJommtoPUSrCMSYDw894EPcPPuHU6OTyj3B7hiRdmh/bwpyLdi4kyHDb+ocW1DlMW4SJH0UjzQ2x4jIkWcZURK4YVkJCWxg9iHfILSOVZ1gxKOOFE0o5g4i1hYwwpBRUxqE/I2Ax8uWK0UTlkwLXVRMDWW6XTJ7rk9Xnjfh6mKFffv3GG5nCGaGmT4TG3aFV5aZBQRJTFxBL1UhWwHZ2lMQ9qLIQJjLWmcYNuWa1+4xu7BHo8//3ho3d87DG39cU7b1vSGPdomXIyHh4c/8GugNS15ngGBqlrXNePx+GwkAuHECqGDVhQFg8GANEk6xLYky3OKYkOSJGyKgqqqiHTE6ekUrRWj4QghBMPBkKeffpqbN25y7/495vM5cRyztb0dGCNJKFIWy2Ugdk7GWOdClssmaHSm0yllVdHLe7zwnhc4Ojrm6PCQsixZLpdMJhPKsgLvUTJA03q9HlorVp1+5vT09Gwz3d3d5ejwkKZpSNMUpWSgMOKJdEQcRSERGbpuT9iQvPP08h5RHJ0Jcnd2d9nZ2WZ/f5+trS0GwwFZmqE6kbD3AWPvOmvi9tYWu7u7vPP22/zDf/gPeeGFF3j8scdo25bj42OiKKLf7wcoU6cf2N3dfST3giyJz0YT1gTdTZLEjEYjTk9PguNOevb2DjiQmgeHh50jSXQFqaBYh/BFKTVSSGKtOTk+YmtrGyE1zkHbGNariqZpO/hdYArFSdCJtMZhNiWPX7rM/OiQREuSNKdtWmbTE3b29mnbQItN0pwszWiqinLz/23vT4M0u67zTPTZw5m+KYfKGlFAYQYIzgQxFClKpERSotga6XvlDrdt3euwLZvWjyuF3a2+uiGH71U4wtEddreDoX+2OkLWZUuyRpqiREEiJY4gwAnzUKhCVaGGrMysnL7hDHvv/rH2OVmlZreKFEpEob8VgQBQmfXlyXP22Xutd73vu3Z58OHjfPYzf4pNUzCWxcUlVs+fZ3l5WcwBJzN++zc/zt133ikjD2ZThgtLvOOdD/ClL36OpX0LfPMbz7D/wCFePvkcuzs1586cRRlL5Rzj6ZTP/cXnGIyGvP1t78DG5ERFo8DFxUVUrmPyJfdxMinlnnoX1w4URcag36OsaiCglWZ97RKPPvY18syys73J05fXqeOAN++CqH6UopxV120vsEVPFGqzGaryOLYJaS5eIpGPETbWaZIcUzfQNDg9xZclyqZ4P0MlBcqmYFPMcD+6WKRZP4ebbGHzAhz4MpCkPZQxhJDinUF7gzcJJstRPY1yATNz9LanHPAz7iThnmzIwaUeRZrLkFiIvlEBH9V4MmpDiPNaqWgUWXDLPfdx7uwrzKqapqmFcN6aYcZp13HiIDEvp5pNOHjr7UwnUxFJlCVVHE/iQ4AKVKkxJsFawygteMinvLWsODOueG464WxScYEat71NqAOh3xflTeMJyqDSFGc8Pm0wSyl+YSTXoDUGhasbfL6MbzzeGlQD6vJ1doj96Ec/ypNPPsnnPve57/QjrjmyLOuIileGbxAb5kYIXElqKOsZ05nMNOnlBQaLrg3OgOobNk5f4PAb7+DAviMcGh7k0GiJxUFBaq3YAOvYy3dQjpsIaQrZqfGOyWTM9u4299xzN988e5rLvUA93WK4f5GiP6De3WH1qafI3noH47rEao1JNb6u6Q2H4AJ1KVI3XwxZLHoMsozae0Iu/f5BMWBDKcZ1zcyAzTXTnmawfIAt79hoZmA1epqyXPcZlEJi8z7glJApjU1wVU05m2KTlHMvn2VtdZ23vOONvP34cc6cOMWLL5ygrKZUbor1BSgn6pUAyinyJCezCeBI6hKbaZrgpLpvAp/77OfZ3NjkR/72j4t/iIHt3V1psexbQCcJZSWzga7XGmiiE2xV1YxjAqBiBey9xxjDoC+zIYKHuq44c+YMo+GwU8okiShctra25TB1Uj1nWUrwYt2ujZBix5MJ5WzGoYMHOXf+PLvjMYtLSxgt7oh5nuOiSdrWdsPy0pJ4RxDIo2povLPL2bNnOX/hAvv372d5eZlxtHq31rKwuMB0NhVybZLEaid0M4u8c1SVmIRZazlw8AA7O7uiBkIJFK6iHLhtxUSeyfK+Zfq9HotLSywvLYlMeDTsDkBjbVeJtQlQRHijAicQoiz74MEDTCZT/qf/+X/m1KlT/A//w/8osup4ne2UY4lXR0r8f7QOpmVFYixJYrGpGEmZOMyuqR0hTtRdXFwiTVJ2JxOq2YSARykPeHqDAZvb2whpNRBQvPOh42Rptuf5kliS1JLmMicpLwom4wmucSgDj37l8wwX97O6tsrJ0ycYb21z9133Yqzmy1/8HFnR5+4772I8nvDiC89jDRy77TZW9u9nWorNeV3OGPT3ibu1Efn7y2fOsLa2jtaB7Z1N9u1bZGPtAn/0h7/Pp//IsLO1yYFDh1haWmS0sMipl54DPEWRk+Y5VV1iDLzl7W/l8OGjXDx/Dq0RTpFSKKWZTGeCvDpPOavp9zO0rmMl7zHaYK2m3+9RHDsGBJwLaBX4rd/+XS5f3uLg8gLON6RWUVbyzPvDAXkmJokAXBpflzXgraE0HjtakPaI0ajGQTlG9YbQ74myxYGbbqKqGp0muF6GTwxJ0xdVla3wuiQ44X2EhQEh1/jg0I0iyQbgRNFE47EGmDlINbouybzi4MxxRzDckhTs7/UYFAVpkmBUuz85Gidkc+/lvQ3Bo0JAG2nBZkXBvkMHacoZz37z69RNE3lrwlsKsdWjYnLdyvWV92ij2dna4czpUxw7ditnT74kYFcJZVkTnI8t34DWNTOtMUaTGEuWJNyrc+7yfXbKGeenY07uOE5urrFxWFFuT1GVJ/RzKCvo5ViT47dKwvZ5fAqTzFKHBtV4TFCExmO9wfVymVx8DfEdJSf/7J/9Mz7xiU/w53/+5xw9erT780PRP2Fzc/Mq9OTixYscOnSo+55HH330qs9rs+j2e641Br0RJkmZTDapGh8lcI7eoIfJUoYrS6zkOZPxjNAIipFpze0Hb+GWlZsYJgm9XGO1BxyN89RlI/N4lLoCAkOmTqLIrCF4x74Dy+x84XOU4wK7kJAMhjR4AkrMbpoGP5lRpwZQGK/wVYNKLFlR4JKESsHMlag60Mv77EwqdGbZCo6JMrg0QScWjGFST9m9vIFJDeNmhq41h/XN9LdnpNriY1XbhkIOpVA3VL5EGc10p+HLf/Eo5y/cyve8+wEOHT3KM088zStnz+IRF8gQapxyaKUZl1WUZjqK3oBmAsE39IqEP/3DT3H6pdN86CM/wnC0SJ7l7I53GS0s4Z1HK0NvcUB12bF0WCqhtiJ6NdfAcDjs7NplGJ+hrmusMbKBxVaFKFhKIX9G8nZT17hEqgap8vtkqcyrmU7FxKjlZiRpilaK7a0tGbyVJOxfWcF5T1PXlEpaCGU1YzAYsry4RFmKx0hLXG35MHVVsbW1TZrKzzZGk7VQ/dZ210uuGplj1CvEVbaJHJEQN6f+YEBiLf1+j0OHDnH58qaYdnnfmb4tLi5yyy03s7i4GH1tkk7tk2VZN6wwSVOZTqpUl0d4vzdJOCCcHfG/EIjf+8Av/uIv8uijj/LL/79fFuJvKXOaer0eTdNw9sxZ+oN+p9i5dOnSddkL8kyuH0ROfMed93LwwAGqchZ79uJaKbO2Eo4du4uTLz6JIqB10i4TjNFUdUUIDc47nn7mKXzdsLi0hDIJVe1wviExmSS9dcX21gZ5kbK5uc3Jl0+wb982zz39DP3BiKLok/cKKXK0ZjQcEbynqRu2trbI05STJ1/mC5/7MqsXzzCbjMmynO3tHYZHDjIpp5x/bjVO0LakmQUFP/qR/5rf+Y1fZ2Ntjdl0Rl3X9PoDBoMRIFOTg5dHmSQpzolbswKeevpJDh+6icTudm0d7x3lbMriwQOsb9RxEnUQIYB34parNdYm3HnPm1hdvUhdV4Dmq1/9OuuXN/l//Dc/xWOP/jnaaKqqoTx/CZDJ3TaxNLsNTSPP4nrsBVW5iR4UMK1ga4JZWMHnA9SSIJ+oBBUqnGpgYURdjsHVhO11Qi1mayHLMDZFeYXJCkzjcX3DbObF7AxFpSRh9NqQVDVpoxg6zcqW4yanOVYUrBQ5gywnSayYeEYvoCaqxoL3nVt41G8D4lZhjWGwuMT93/f95P0Bf/6J36OsalF7RjQqyILGx3+3LdmgQCmNcRrvIG9qbn/r20nTjKe++XV049BGeGfGaFwQkz3nwDlDrWqqxsqsMK3IreX24SLH+iMeXjnCqoZz+ZgX/AbniillKt2GqhFFa29X4bbG5KUUNvmlmumCpvENSUjwVsP42gwZv63kJITAz/7sz/I7v/M7fOYzn+G222676uv3338/SZLwyCOP8JGPfASA5557jtOnT3P8+HEAjh8/zi//8i+zurrKgQMHAPj0pz/NaDTivjhz4lqjt1zQX1lkv9vHdHsHUyQs7FuhyPt44+j3+vR1zuEFTWFSMmPI77mffm8glb5WlHXDZFrJwonQmrG6G/lttHyfUkYOajzOaF7YOMe0mTA9vU3/tn001nPk3mOsvXSerJcSvKewGbOypsgy8mHBuKmoXUXRG5H2BqSqIUtTxk3F7rQhSTNmTU1WpNR5SkXAZAlNcDSzCl9WlK5iFioW8kMMgiFrGhpVR0+C1iBK7W3ICBnYWgtKo23CyWdPsHV5m4fedT8Pv/c4q+cv8cTXn+L8uQuEpkR7mS/ig2NzMkEDM9eglEaT8ReP/CEvnzzFD/3oj7I42kc1bSDU5FmPpeUVtNaceekMB48dpT8csbsj6pIHH3zwVV8D0+mMPNp6B6/FbGs6ZTgcSILoPE2s5FGCiuVFHsmtmzTRIdYa8TJpbd217ndzYQICcev49bIs0Up1Jm+9nqhCNjfFhG04HLK8vCQDEo2lqkpCUZAmKbWqGQwG1FXVzZtZX1/HGovSiizPuhZN3TRUZUVZlvT7A5H7Kc3uWAzYRqMRu7u7gGI6nYkMOXqnHDp0UJCR4ZCiyDv1UtHrsbAwkiRFS7tGay3DwmrXJT5AN3PIey+SYu+6jdBozb/4F/+Cz372s/zc/+vnUEpxafUSSZoSQuDw4SMYY/j6N77OQw8+1LXWzpw5c132gtmsxBiLsRqDZ2d3jFaXSBPhAkltKShQ09QEPL1eP1rbC+lysiuOwVor6locUh/70hewVnFg5aAktoMFvAtUXsbXZ3lGklo+/CM/xpe//EVCUKytXeATv/u/sryyj9HiCgcPHKKsKt7xwMP0ej20kQLlrnvewPlz53DOsbRvkXNnXsCj2dnZxlrNc889RzkrsYmsWZDrOnvmHH/6x39Ilmfo3V3A7yknfFRvqIi2NY40zjwRpc0Gf/bHn+an/pufJstzSUiRNay14tKly4IyBnC1GMBJUucw0Yn6a1/9EuPdXYzRnD23webWDm+4+1ZOvfwyDxz/PrKsx/PPPcWltQ0ANja2WBwW5HnGdFZet71AlduQpwQbYKVHoxuUrQg14mTqrZAykx5ee7yb4JsSOx5jioLgK9R4ip9oSDNCT5IBP4UED5MxCkluVQ1FMeCwKrhDZxxRln2DjCK1ZNaKM2t0dW6aOKvNC7HVe4drM8eo3lJKC2KpDUmaceeb3sx4d8yjn3mES6sXqBtJInxMZJQSnor84jJxWxGRTiV/7n3N5bXL/Nknfk8mTyPEZpv4bk6YR+wjgguUtSBbKpLrrRXhslEykDSxmoONY9En3FotsT7rc05NOVHM2EhLqtQwWdSohYxUJVSTGc5kqMyQ1xp/aRc/npJOrwPn5KMf/Si//uu/zu/93u8xHA67nmBL9ltYWOAf/IN/wM/93M+xvLzMaDTiZ3/2Zzl+/DgPP/wwAB/84Ae57777+Lt/9+/yb/7Nv+HChQv84i/+Ih/96Ee/JVT3fxbLt98EhWWgMu68604xV9otWS4WMUAvKUitTBRNjIkHtFgoN3VNM6mZlSXe+c54yyZJfNHjqHjlaLy0OhpkxNFGNWZ1vEW2f0haOyaTGUmmGS4som/T9A4tQZGRpprga2Z1idKO/qhH4x1eiUup8o7d8YSsVzDzNSpLyFxCPalQJqOpZnjXoDNDlucYegQCvcZT1AOSSUWmLDoA3hOcF+xGix25cA/AaCjLGUppVByQd+mVC/zxf/lT3v7Am3nLW97A+z74Hl46cZpnnniOjY0NnKtQHlKtBdatAk2o+NJnHuH5p5/ggz/yE/QGI5rGMS0nkSho0Tbhjnvv4cuf+Qve9YH3YZOEr3xWWn8PPPDAq74GptNJ9K8wMjG5KMicHKZZmuJaBMx7VJz4KwlITZqkVHUlyEiSiA2+cwyGA0lcnOs8TZz3TDa3WFgYiVR1NqPf67G5ucnF1VVxwqyES7C+vsH5c+cjV8SidMZkPKHXK9gdi+lbludyMGqDTUQ50l7DdDLtJL4hePIsj3LkkslkTJEXUQU0wxjLwsKI4Ug8SkajEYPBQFo0UfY8WhjR6/XJIi+jbfUAMfGoRT7tXHTSlcNNhBqq+5y9CPynX/tPPPLII/x3/+1/J1OpZ9M406kgyzKKIud973sfv/7rv85wOJQECDmUrsdekKVJl2iVs5K11XOEA/vYt7K/UzOE4CmnU+pyxmQ2Zn39EkrByspCfOd3YvJZyQZtDSDyzOHCInffcy+rq6uok6JsqhvN0VsXqJqKc+cv8PLLp2LyBqdPn6Q/KHj8sS/yjnfcz/raOidPPM90OuHOu+7hjz/1KZ57+glskpKkBmMsq6uXAEXTzJjOIl8DD9p2IyESm1BXFS+9dIKAYnlpmaosCVZFHoK45WqlCFoQw17Rjz4rIbq+yhTsJI5fkIGRjmbmCHGEw6FDN7GxcUn4IghvyxiDwrB+aY2il3L23AYbm7vce9ctBODpp57izNkTWC2tYKU0g17K2saYQb9AaVhdl5bO9dgLtE7QdUVwFb4whNCgmwaVjLAaXLVF8A7qhGa2g9rcwtYe7RpUWaKMJct61NNdgga3W6HzAhKLUgbte/SV4VBIud2kHEtyhklCapKrz5eIMoZGZhR5L+6xvk1GQNyMo9JJm/Z/hC9WVRVf/vPPEoLs201TU1ZVV3xqpdFGCgppubaj9zzElmvLBXLes7G21u0HJhhssLgkoY4usEROUfAeFwLKeZqqotaSuCRWzk8dVW55mlJkKYvec7QuuHcy46XNHV7oz7i0rCh1RY0j9CzO1qjGE6xBrRh6lcf2i2t6nt9WcvIrv/IrALz3ve+96s//43/8j/z0T/80AP/23/5btNZ85CMfucqErQ1jDJ/4xCf4J//kn3D8+HH6/T5//+//ff7Vv/pX386lALCYLNA3OctJwUClkEFIxM3QGIu1MqI5eKiDo64l+6yqSlQcWkFk9xtjYj/fdy+sEJQCZdMwLktMVlD7ko2dTVZPnGIyGbN4bAVfAzs7GGvJDowoFkbiV1BXOKsIQWP6GZOqhsRQpBasJk/6NM5x/twrFKMhOkkY9RfpJX0mCwsUboyxcl3KaqwWb4qeGdCfZOQOjFHgm254XVvZBh9wXjJ27zwmzk/RRlpfShtmOw2P/sVXOHv2PO/6nge4855bOXL0EM88+TzPPvMis4mw9oNraOqKuql58muPAfCJ3/r4Vc/i4fe9l1tuvx1jNPcffxhC4LOf/GOccxw8fDU8+2qugaZxlFVFnuXM6imNE6+LIs+ZxGGPw8GAsqrEA8ToaKldi2rFWpI0RRmZajudTUmTlH5PWhHONZGT4kkGVkipxkCUFvcH/Wjdrhkrxc0339whVS46uK4srrC2vkYARsMhu7u7cuCniTioKkW/16esyujLIVWyVmKAp5TM7gkBsjTDaM1gOGBlZYV+v0+Wy5+5yHnp9/tC+o0tm9a2v1sb0V5elClNRDWExJZErgbsyUglSQpdjxrgt/7zfwbgv/9///dXPY+f+Zmf4QMf+AAAf+/v/T2UUvy7f/fvOnLyr/3ar12XdeC8Ik3lnQ8ElJJZOGlM8oCoyJrKILraxcnSouyaTqcMhn2yS5ucPvMK3gtisDgacmltg1OnTsdBkRMm01JM6rTmxedfYnp0ws7OtDO683HfyPI+F85foGocg2FOOatIU0GxprMJLgTcbMaJF05w6sQLbG9vopCWISrBRi+auqpJbCIIndYoLZLidr6SqIpqski07Kz8EcRj1O91hOa86HVcpCTNuonE3vl4bEqR9r3vfR9/9IefoK5KyrLCB3GfTtMEoyHPMy6tC5fsqWdP7T2Is3DzkX0sL/XwIbBv35Dt7SkvvXwJHwLDQX7Vc3tV94I8YE1FrR2qbFAevJ+R2wnOGlAGEzwuc+jMopKMZGOMKgrUsE8oZHAki/ulkClL7PoWaT9jH5bb0hE3m4z9WU5mrfhr0VnBUDXiY6QQErC46xJRVneFSl9WSlsEEBRWGdIsRytkwGqQ4risK6qypK5ljyd6nSjhLEdkX3ekbhnOF2fvGAtlEB5R04iTtBwRlJXY6QMRKYt+Km6v1aTiGvKNw8Uz0hjfqf/EGqFgJS1YakbcNR1zahOeTUsu2THTsIOqHcoHgta4xKELTTW7Tm2dvyryPOdjH/sYH/vYx/4Pv+fYsWN88pOf/HZ+9LeMlVqTaY0OjqqpsYnFaBNHdStc7fA0kaDXxBkoToy0rJUXFijrilB6VBB2dPA+2r0byrqmIUBmWKsuU4aS9d3LOJtjFwK1ElpSOujRG+WkKuBKscYm02Jk5TJMUaCtYbyxyfDIiJLAIElxumG4f4VZLUhFaSxV2qdpKjAKn1hUaqh8zTSUBF9RJAm9RpMrJdluOwcjZtKNi60I18ji8pE8pTRVWQo6VDegNc41nH72BBsX13jXex/i2G03846H3sLtdx/jya89w4vPn6LxCmsMWmX8P//JL6C1R5lA7UtmVYlXHpqG6WRC3svJi5y3P/QQ73jooUhEdfz2f7o6mXm11kBVlaRJwiQajCVp2smLXdOwOx7TKwr6ffEwKeNUYa0NRZ7LRu8a6kpFwzFPWVUU0cRMexko17b8irxgbW2NwaAfZ/AUeO+ikdmA7e0dSUyahsY1cZjeDkmSdiS20WhEr99jNpt1E4h9fI6g4vW1Uk1F08i2VhQ5+/bJYEHvHWmaorQmz3OGAzEQ7EXlCMimKAezijOSAs55gZUbJ5JEJ/LDdn5M2+oBsXo3WmO0luGNXuytlVacPXOa/mDAn/3ZZ9i8vBk3TEWSWKqozsqyjJ/++z/N3/7bf5umafjH//gf/++UGa/WOgjBUVee4C1VdKDcc/OV99yHwHi6S2IF+WqctHLPnD4rMvSpzGlKU0tVuc4szXvHZLzL5uUNzp1f5c677uGmw4d59tknmJUzNi9vUVXCydAmISATfr/6+GNMpxO+8bVHeeqpZ8A3/NCHf1SmQdfS1jv/yiucPPmioJNKnkG/6LO2cZl8OOCum+/k5VMn8SGQphl1XVLPZE5JlmW88Q338vjjX6EuSzQIrwlxxfBBfH3SNItGfeJVcvDgIbIkhSBoZ5cQ1TVN4ylnM774hS/gnKOqapIko24Up06e4NDBA5w5cw6vKt5y320YLT+tKism0xnLK4vY6BsTEE+VQ/tH3HzTvsizgKeee+W6rAGzsYMGTM+gy4BLUkKvT6UNjXOkkxm69PJ79hUsLuL3LeOnJbY/lIF24wm28qQoFnzC7cuHuUlbFpOMfpKSGCkStTGR51ZT+/hexZZLQGASpYLMRooIZAi+84zxBJnTZRO0EqdqrRSzWpQ4PgSq6DPURIJra3Mg76vu2rFax4QcEewEL5BMUDK40EVunfNePGpCIImtvibO5hLeSewWxFELIO+/QlE3TVT7SctKR96NblvDxtDLe9zjHLeONVsu4VSTcF43jI2ndAFMhTOBqroOyclrLxTWJCQmEkIjNO2i2VTVSHXcOCc9Z63jMC3XJSoiJYwJKUAdIW0tRFDvPd4qIYkmgXrmCT1FEhTaSTXjtSfPeuyWY6aTCcXiEFd5Qq2oZyUusSRNQ57mhOGI7cu72MU+m1WJN4psaYnEJlRJRiiGoiBoPNpptNdMqh0wkKcFpQrYWtPXFus9xDkxIWbsbQIpVXGEYrUmuCZ6MwSaukYFhTIa7xw6SdlZ3+RTv/cnvPmBN/Pgw29ntLTAu977IHfccxvf+MoTnDt7kUCD1hmumUINYOiZHl55VAK+8bjasduMwXlhuqvQuXBej6iqipmZUZYVoziOvigKptOZJBNFEW3pc5aXl+j3+1TRwGlWzuKmAdY4zp8/R5blHNi/X+zm0wQdW34g7rgLCyPSLKVpHJubMgdnMOwLZyRWM8H7mOSKd0pdN+zu7rK4sICJNvrtVOAyKjRsYknTDDkMvRirRZXYcDhgeXmZPM/EHTKqkIoiFz+WQZ9Bvy8HTVQqgVRzLS9G1rsQtdsEJfgQDclMZ+KmtOrQFWk5JXjnIidL3ENTm3a2+VVVt+Vgl/woJS68rUdI6pOOc3K9IsvSrk1hjGa8K4RmlI6Qt/xOVVmhiCipj6PtI99md3fGTUcPR/Ku7Cfbu7vYRFCMhcX9XFy9RJ5Zjt12jGefexLnA66qSJMEgiZJA6puGI6WOH/+AlpbFpdX2NzYYDrd5oXnnuXrNx3lS1/4HKdfPkWWJoyGCzSuJsvEgPHh4+/i2WeeYm31IouLi/hbjrG6uioqOQSl8wjBdd+BA6ys7KNxUDUNC+2IBjQeITcP+gtopen1Brzpvrfw1FPPoI3BmoQ0S1BK09TCV5EukmZ5aYHZZJc8zWhiknPqxHMUeU6WJ+S5kcREKQhyeCWJxnbImzB8AtJq7vV6uEZQ6+sVSWlwQ3F2JV/A+gQmJT5L0Rjc4hK75ZiQDsE7VF3DrCQpFYxrMixLLnDEpBy0CQfSjCJJSHScAGylteFjC9d7L7yNQHeYtziKqJtUh2IbreNX5Z2TRNbS6w1keGddsTMW/phz8q45LyozhfxM6d7H/aht4QFNHFnRXoOs56ZDDQMBVcqQwDwXzpNNEpk/Zx0maeTatCjtggNCwPkg9htKRTRSnrM2Bm20FKxGECQd9xi0JtWWfUqznKSUznO5qTgRHCesE3FGeZ19Tl4LIZmnlUzPCbu81YrXTdWRjGQceOROBHlhfWh1OPLfkoUK0UhrcLXrYDdfNaxtbTOzAWdBoxgM+wLfJzm9ImVz5zLepGjTMJ3VeK3JewXT7U2wmpAmGJ2S9ALaWhqlmIzH2KUlfFBYm+IIEGYEBeVsjNEpo3w/zKZU0x1IoWf6qLHD1NEdMITOuCfqPTvoXapfjxYMkSo6Z5ZlKdl2LRm9cw60RjeGr/3FY1y8eInv/f53s7ww4uDhA/zgh9/Hiy+c4mtfeYKNtTUC8pJqDN6J5t1YRd8OaeKgMKcaJrNdal9RTa8tU/5OYmlpCa00Fy9eFGv4PCfLM1ZW9rG2tsb62hp5XtArZMjXwsICeZ4ziVN8W/a7qHgGnDt3rlPoNM6xuLhIVVVYa1jet0RdNeR5Lgme0tR1hfcFToktvY4E6uAD09ksVjii+tnZ3WXQFxKm94pyVnYETKKUMMsE9s/znP3790srypq9DS4EBsMBWZbR7/XE28RaSbrbDSqwl2TEpKRppPftnO8gXFARGTFxWrPqyJQgLa/Wol+SC0lukySJpNEmKjbiGRULBB171UZrQJNmmSAv1zGm05LaNN1U5hCEiLi7s939f0DaCFme4H2NClIl4uNmD2xtblPVMjgxMZqmEZWGsYZTp0/RNJ6lfUuYrGBWzSKJ2LN/5SBGKcqmpt8bsr29BR6O3XoLl1YvMpvOmE5nfPHzn6OclIy3dzlw4CZ+9Cf/FlopHv/yX+C9yPRvve0OqrLCGLHh37e0TNM0zGZTJtMxWmsOLKywub3J+fPnWNl/gPX1beomxHUgpH4XD5miVQsZIxVvJGvaNOPITccYDhbFC6UqI/+gYXdnS5yUtUJ7SPKCm28+SpqmOBdIElBG0dQ1WqVYs0tpUxZGi4xGS8wmY3KbMh5PSK2lKHoobbntjrv5xtP/6bqsAT0cyHwZB4EcbVOci8ZhRhBE1R9hlZbkIbUMpw3L1YQjQXMkzRhmljwRc0bb8iy0wRrZJ+taEn/nrkA6r1C17YWkIsIRUXiIh7kmS8Ui4O43vZX73vJ2lA5888tf4MlvfEPIqSHENo6sQx8l/D76mGilCRqUc0JobddxiKMZIqeoaqDIc6rGQVmircVoS5Kl8i5Y27VnWkO2pmnQbcvXeZRrOi5T27LSWn5n74OY07UDLQFXN107KISA8Z4Vm7DoNEd2Hc8ZxdlrnJl0QycnQHTLc52EEoiwl5jYdNBss9dTbds50ClN8Y3DaEMIUDeSSVprqJuSWdNQu8CkrqiMR6WBntdQwqQc4/MKG70T7GhEPZ2i8oJxovBlRgiK7Z0JyXKOHizh6ook61MUAyqjqJVCe09dTgkWgtZiBpUkbG5doJ7tYpVF1xY/UQybDOMdwdVCgI19xBAnHre9SWMNTd1cRX703kV+gkMrg4qwH1qjkoBWhleeOcHvrK7z3h9+H7fedITEGO58wx0cveUI33z8CZ745tOU0xk6VtraqIiOaFKd4l0jh5hOSWxKz14bAeo7if37D1CVJbfddpsknFrLAMZGkojhcMjly5fZ2RFHVeecuKkqRVWW5HneEQUb5+j1eqKGyQtoGibjsVTYKqWdz9LvD2jqmulsSpKmZFlOXVXMZmKeprQWB1hrIsphWVwqqKtayMp1LWqZiD6o2MrJi5zBoM/hw4fo9YoO9TLaYDNLYhORFvd65BFZMR28LLwRYoXTbmYtt0Ram5LQtkhCi5i0sLO64n2xsR/d9rpbqSKKeM9gNptSRmfW+JH44AjBdp+X2CROgb6+0S8yUdlpjfeB7a1dkey6Zi9Z96pzxa3qCmUMt95+N5PJLpfX17DWsH//EuNJfP7Ko5VlMt2R1lZd0e8VrF26xPPP/x7lrOLAgUMYm/Lmt76Nu+68F2UVTVnyB3/wn1FmxPLSIlYrbrvtZpRWDIZLvPt730uWG14+/TJLSyN6/QELSytMpzv0igHHbr+dwXDIZDzmwIGD3HPvvbx08iTnXzlLURS4EFha2sczT31dFCOHDnHmzDkGC4sYrTh35oSQJpXgFolNKPKcIs+4vLHOeHdMNZ2gQuCdD7yL8XiHhcVlbJrReM9kPGYyHsfEM5DlOVmacfjoUZqm4fZ7dli9cFYKt9gGG+9uMxwtcPNt9zKbTDn3ymmSRIZIthJ05xvK+tqq5u8kmjyI0ZdeQKW5JAS1JichBEsYz1CJQqFZqOHYeJejXrGQZJKQGDmsrTG082pCiEMQ24m9weOaKyX2e//uBAnxPaobJ/QCiFwoSNOc4WjE/cffzZseOI5Siq985tM88/RTlHUls7IQgrLzrlPItSgqSglJWilMlP7LpHXXoaZKRrDKHhcHgNZ1Q101VElJ0AqTWJzf2wNmrQlc2Gv/SrGucI1Mcm9HV7Rt2yRJZK+1Bil1BCvbI6BL0e9dwCrNUZtxhJwLE/hfruF53tDJSV1XtCPvlQJjbHcQx+ZfB2mD3OgWJZEtWKSZ7X+7tvJUisZ7NicTAoEKz3a86a6cYLShyTLqusKGQNpLxRMgsYybGTPlUeWMPB/Qu+kwbmcH03iGgxHbRtMkCS4twA7RvsZoTV1WpFnGeG0dlSVoY+WQ947MZJTjKf18P/ksIWtqdKgjatLq5GUBFWnSQb7OyZJpDbGsTcRwyck98wRciAeRC9TeYxPJgHdX1/jEb/wBx3/w+3jbG+4m1Rab5zzwPQ9w21238dgXHuPUyTO4EPBeAYbgonWVMiRKYzTUvsa5v5qr9J2Gd466bhiNFiAqldoDX2vDwQMHUMD29g5VJVycfr/P2vq62LIvLrK2voYOmul0wv4D+9na2iYQyIsCrRRZlA9770kSmdQL0O/1UUo8IopewWwmM3RoGppafAlkSrGgckW/h4792zRJIgKhxXMkzxgM+pHQKJtbmmakaRrHEohiK8uySEyLZLaIiLQM/XaiccuxakndbYIi3H4xZbPWRPWO7trZ7Yaijel4MHt+J/Ici3hfQpRH+nYjp33XQvc5xgjh8mq1z3UIZeLVGUFFkMowz0XmPchlOGRVicpGhiIGfuJv/desXlxlNt7lzz77JyytrLD/wGF+4AMfYnNrmwvnzvEnn/4Ew8GQ93/wh1jed4AvfeHzXFrd5Pbb7+TIkaOkeR/w6MTywEMPs752icY3bG/vEBzc/+A7+bEf/b9x2513dmvpyE2H+epXH6PIcnpFjwceejdHb76J9UtrjMdjFpdXOHrrMQ4fvpnGBfrDEe98+F2d5YFCM53scPudb2A6mfDWtz/I+Qvnuf+dD9LvFbx04gTldMJgtEhZOX7iI3+XEALrWzu8+93vYe3SOjZJuXDuHHnR47lnn+HS2irTyVSGKNa1tADbFqEXhNb7tpL3gtgGH7kUkBc9tPnTSKx0VxCo94jYjftWKMOrtASaRhR30zFhMkFZg5uVGG/QWZ+iDCxf9hwKhgPWMrQpeZFitJVZvyoWtBHla1qelnd7KLtzMRlXezyxttiNyUNbIEgLR+Tt1opVwb4Dh3jPB36I2+++l3I25XN/9Am++bXHmU4mYlegxGfHxfaNjuRT4XrpDpGQtqPq3rO2mFDKdgh6N5IhyDycsqpAKXrGsri0xMLIsL21yY5WuCAKHe9VLOEds6oUPpKVIrT9FVtTPgDVFvRVTUfijyiqNgaiyqttsTaNY4i5pud5Yycn1RRj+gKLR8KRjptUC0NJ21UWiwshDj+KxmpKSGIhtAx7wCga55nimSYa7x3jWYWrPdPdTQ7c1GNaz7Ck5MsDmp0x460xYbnPbtFjur0t7pSDPqU11D6QHzzI7mxCqkBpy8wHqp0xo8URpXf4qqaeTnGhIfgGvzOV3m+W0dQ1vWJEQo5uNEMHfQ3aC48kiVM42/5jVZXRm6I16/FRBx83hfi7GiOkNY3CRdmxtAWc+EUYjd8d8/nf/zSrlzY4/tA7GCUpidbsO7iPH/qxD3LyxVM8+sXHWV1dlwpfabxvaBqxirZKqpHg1bd8fq9GXL68Sa8npNQAInlTujN+0lpx5MgRRgtj1tfWuHz5MlmaduqsqhZSaEjgwIEDWGuZTKbUVU2xIFOJkzQhzzLW1tdJ0xQf3RWrqpTKMAQGgwH9vnx/VYk8eTab4hqHL4QjQjkjy3KUUowWRuxb2SfJi7W4yA8SI8FAr1eIIsQYslymJrcj5NtWnCA67KlR2vkfjRwabVIi/WN/1UbWWtKryPyHVgigup/TKnlaeXH7s7MIC9dN3dmCC2qjYmLkaU0AhSSbdJ95/SJ6E5mU3OQcOpTTG/TQ1lAUBcv7ltkdj1lYXiFPU86fP0diNVp53vaOdzCbzXj+xWfY2RlTLAx4+eWzNK5hcXEfDzzwPdx335voj4bUteMdD76LBx5+DwuLS9R1zXi8QzmbobXla49/lbzo8cY3v5O77r6Lfr8fxwqYDqVN0pS3veN+brv9dnY2tzj7yjkur6/x5BNfZ2d7m9aW3LmaSxdWMdYymU4YDUc416CNJU0ytE44e+Z0JF87FhYWeOnEi/SKglldEZRibX2VCxdfgdBA0GysnQelKfKCxjuquuTy5hrb29tCsk6kWMuzNvltOn5SCG3i2cqWY68sulJ3yDSijGnbaYoAShDe5lu2QF6dsBe2CCsBtVCgvCdpoJgF9teaQ6XmgM1IUyH3W2NIjMFokf+27f8QglhHxINc0BM5MrRSWKNjsRcLWue7JKZN9G0kGbetUq0tRX/A0aO38uD3vIejt93KbLLDn/2X3+ObX/2aICTxPauqiqap99o3RNWM0rF93hYSMVkIYc82IiYEqkWCa9Xx/aQ9JP8Ml5Z5zwc/xPL+A2xeusgX/uSPuHDxApsb650gQFuLcUKaB9Up/lwjhVCrTAteDp7Gueh268UiwUhhEqy5SkijIsH+mp7nq7c0/uZD62g+E/kiLeKhtWS1WgvARXR6NVEa2c4i0NbKQ1UaTURZgqKkpsKDsrgyoDBUsxlKB2xmyIKh3N2lDAJ7TxNDk3imroljpRv0KAVr0SZB6xRVjxkXhjGeLM+pd7alWp9VlOUUNx6T5ClNU+GqisQmBFcJd6Bu6OUDek1CL7rPtoeI90I69d6hkUUZ2j5nfIOqqkIH1UF2ckuEVCezRDTO1bSzSYJ3NN4J4W025ZlHPsel8xf5/g9+H4dHIxIMidHcec9t3HTzYR7/yjd48hvPdi+0UZbgXZyYm+Or68c3yLKUNE2jGVu2R7yMLa7goT8YsLC4yGg45IUTJ+Lv66JapqSJkt/d3V0xY0tSqlBSVxVZ+9lZxnAwkAnDkeA3Ho9Js0xIxVpRV3UHo0rbxkS1TUOWZYwWRqys7GM0GpHGuS5KyyZkUnG0NfFl7hU98eexSVe1tMZLLSLS+tjAFb48sY0TIuG7tfFXCKO+lc3rK4bdQUukDiQ2pZ3G7K/YdPeqQSXKJ73XOlIKkS22qoRIFDSRoNoO47ue8cBD7yKEhqWl/aQ2Y3d3E2NSDh4+RFlOsDYBNEvL+yh6A5TWjAYjesNhRMI03/u+H2Q6HpNlBWjNztYmIQRuPnYb27tjzpw9y2QyljUWTywfkDXW73PP3UPe9ra3cPTYMXr9vtzbaPc/q8t4r6Kkm8BguMjy8gGO3XE3D73r3VxeX+fkiRO8+MJzvHzqJS5ePM/mjqB4zjl2tjcxNhFlhzYdv07QXo1CVB6XL7fW5orG1V0714dAuCztbe98xyXozLwiuuGC74jCLQGz+54I3XckY4I40ca/66/YX1rH6vYsFbL49VsD6tAytnSojTEZiiMzyxFfMLApeZJglZY5ZngMCqvFx0YrOT9cEOPJxl2JDCiM0gR0JKjGad1N3SlV2vsknKZWUaMxififFHnOXXfcw3s++CEW9++nnIz57Cf/gG989asycsPIJPTWEyVW1JFKHDDI+RVUnIkT2y/C/9CiMlVKWma1CCQUQoZP0hSbGKSBL4jWzvY2586c5uBNN3PgpmO84W3voHrsK1RVxWR3F2MNdeNiG0eUhy4EVNiTK7fPGTxN6eJQSHn/67rGOY1STefXZLQmRIUZ11ir3tDJiVKtUVKEmGOGFgIdmqKVkAjbcfEBIBJdQ5usgCQDQBOEJJg4xWwyxuocbwLFKFDPKsqqRGeKyjWUNmEKzCZjmsuXsfuW8dFqPMl7TFNNplPKnRIahbM5zXgbV9ck/ZxL0x1qAsYkOEQyGupAqBtpzTQNeTGkpwYkM0vuiYCYTNsNCkLTQHARfvTouHU0sWKu61q8DEKAJvYD4+LWRqNcg2vqjjwZ8AQbNyQv8KUhcPEbT/O72zt8/4//EHftWyaEQKI1SZZy/Hse4K47b+NLn3uMl0+fwXmBM5NUMurm+nV1KCuRMC4sLJDluVSNsxmz2SxuJPUe6Vcp9u/bR5bLbI66bmQfqGvGuzukWUZVSZvNJmLzPplOqOs69t+Fp9JK6vI8o65NbPck9Hv9aEcvX2tf1v5gwL7lZdIsFXwhvsCt02pe9Oj1ig5haP/p+CDxbZaKzXfruz0wnNsjvrZfb6JcuN18tdHxc5M4HHDPiE0SnVZBIJvIlY7JsOdEqbWY2IlEXT6/NejS6Hget43SPY7X9Y6qgbvueAMEhdJgbcbC8hK9wZD11VU2NtZw3rMznuKceJyADLyrSklE67qhzfeEu9Xy0HyXILSddZTMMDp85ChvfsvbeNNb3spoaQlx6dSUtet4CypC2kTSMiiReQZFGVuNBBgsLPGmt9/Pm9/xAN47NtbXOHPqJZ5/7mlOnniB9fVLMhJhOu7QXnl2bXva7wkAFAQlapkQZN20yYf3ewdhm9R6f+VL6rtDl7g2ZJ1Ejp4sBsQ1W7Iz1U4p7g4tOqlrBIy6luP1Crs1Zf9EcVgl7Ct65NpgE/H70G3LhtChAErr6JRaR4Jr5GPFizTR6VWUOfJn3pfxngZsEAGvim3QFj0k/hkoBoMh73z7gzzwvveRD4dMx7t85r/8AV9/7DFmVQkqRHsD3z2XtkiUwhMSayAmnsaHrqDwQbhmVVNHSkMkwkdZcyDgy5KqFMQiSRKSQYr3jpeee5Zb7riLlQOHuPWeN3LhlbNMp1Nm06koVkPcb1oWSXwHWtWfJtoLxOfbssq8c1EoINeEcoAT8YpWgjRd44FwQycn7YvunO8emFLCrm55JVLxSYJCzIK10viYzmtjcI0wk4NSlI2QtpqmQlnYqrcJbobXgHZsr25w9N7bUGnGmdV1mDlC3VD0Fth+4TwLb7+XoBsm69uw2MPlBlWkNCqgxlOGpMzGM7wOOOUpXU1iEpzRaFdjKgfektqM4BU9s0yqlwi+iHm08ESMMTR1hUEMlFrM2IU2sWiVEyZ6oUh1JTBfEEfZiC4FL1m2vBQNTRV19S00GVsB05Nn+KP//+8w/vEf5s1HDsmhFF/6lUMrfOjHP8ALz7zIVx/9BqtraxHBMSJpvE7hvcMaKxyP2jIOgSxNmZUVvV7BbCbTfgeDPoTA8vIyWZ51A+nqpmG0MBKeilLRiXUm7SjETElrQTVa87bGNd2QQRkz38fahKIQgymjDYtLSwwGfdI0I8tS8RiIPI624slzafGkqagDirzYkxle2aqJPfsrN3rv24NmD+Foq6o20QTxLzERuWiVQ62JkiSqdMqelhfS+n+0KFSXyMR115rS7SErQtYLKkil5fZs7wWt09c9QTl54hkunjslv7OSA8IjRYlssqEzZ5Q8QdPKyOUs11e1rkAQhfbPgI4TsLy8wpve8g7e9s6HOHD4CC5AXXvWL487bo+CvYQw8gGI72UIIbZfXXy+vmsVtj1pH2TswnDpAO/63qO89wd+mNl0zPlzZzlz+hTnXjnLxtoqu+PtyIcSuXdrvNi2huhwjr3CrUU5JMGJl9aui/h3riJBo7rkRsWDs/0wObRVhyS1KIkc27Et0e5JXIHSXId4cJywVPSi1XoSCeWR/9CyokKgaUDpmMTXddeOMsZ0NhPaiCjBVa7bSyGIGiieLaKVieWgAhNndCVJSpKkrOw/wHve/b284Z3vxGYZO1uX+ZPf/12++fWvUpWzmJCI+KJ29V5CEpMeoSnoyB2MrZ3g0drIXB4nnl1aIdeN/K6SzMgeYRNxC24a4RARZFr51uUNnnvi6yx+3w+QFT3e+I4HmExLdnZ3qFquUa06Swq5ACfFh/OiyowooPOuSyRUTLxtRHzbfcxFe33l2rPlr44bOjlpCa6y8chrZc3exg6yCcVvxpoEqy0mHjwuhKjTlk2qrGu0gkRBQ6ByFc6UTCfbZHmC6VuqKrC6uk7tPKm1NEs93KUNpuMJxcF9VLtjssMHSb3CKcAIypKYhIWkoNGKwWCFUJVcvHwBvKN2DpukZEqjrMMqjU0MKqRk6X5C6EfXvqrrPzpfg5fv1UqL22TTdD3R9kBp4cZW+94S2ITIKTCz0gEdicWy8GWjs4mF6NkRW4uE1XX+7Nd+k60Pf4B33XcPWQCtAq6S5OauN97Fsdtu5uuPP8E3v/ok09ph0951WwODgcyxOX/uAgM9oCxFMXPp0ioLowWM0fTSTIbVWSsbiE0EelbinJilGVVdYY0VRQ0iletlGTqT7zHa0Ov3YpICvaKQDcL7bshlkiQsLi6K8V40KGptppvG4YKLQ/YSevGgStKk453svczq6oQDugq8g9vj8+o8TeJh0yInKqIcWqtOVWU6Aqzq0kUVW6Bp5OG0fiZ12z/+S/1hY4yYv6m9jadD4oJBOkXREfOKKvo65qcAWC1Ih6AUBm3kaNTxtGxc29po/SjoEAZC5N207V7dHgxCHE5szr7lFe66+x7uve+N3HTsVrTNmc4qVtc38e0wtljUBi/mV0qpjt8kagvZq5pGFESiZGmJozLLpz3ufJy94uIhRJB73x+t8NC7biXLUvCere0NLp5/hXOvvMLZs6e5dOki0+mEJraRpHhz3bt+pYzchz333wBX8EpazcXeQ7uy1XdltH9f2lt7wgPxYgmxZjSCN4UA5vpBJwtpRpEmKC0eLq2ZYGiRv7AneKBDBiRB04o4P0oO8NC0KEv83qYRVFEyiPh7WtJEuERtEZemKf3+kGO33s573v8BjtxyDKU16xfP84e/9XGefupJIZrGZN9HdEII2vG+tfydK9pqwvuQhFWEOyEmKFJAtch5++SaWpSBjXNoYzGxNVfOSsbjXdKtjHOnTnLhjlMcvfUu9h06wl1vuI/drS2qWYkKYhXQxJ/fNHW8LmL7VndW+iFIIdMm3iF4QUqMwTlBlfGC5njCXrLzV8SNnZzolvUbjdMgZpJRUhhJgUoprJaXhXYTUorM2A6W8x60sTQ+gNIEY1DTCT2bopcXaDY2Mf0++dEjkFqaSYlRislkilEGmpqmEiOiMCsps4SgpdcnDn6wM9llqxozWlom8Tl+KtWaLxIMhsVsiMvEWdGqFBcy6tDDVhXGy3ttCBiFmElFwm9b0Yau2qEjWbWLVFQgYurT1AEXHDZm4NBW2CGSiDVKiTzNmpigIImgdw61vctXfusT7Hy45D1veyMDpbCIHNpqTVKIqueOO2/j83/+ZV46+fJ1WwM729vs7or0c3Nrk0G/z3g8plf0IlEsJQRPmuaCDilpS2izpyQpyzLOqhFp8fLSUrcZN7GVUlZV5INAf9Cn3+vR1KLGWVhcpNfriZ8EyCHjXYeUiE+KZTDoixMnkhhZK4eWvgLZENj0CvlrRKZamL01dRJppu8OhDYxkb+iuuTEmBYxiQfEFZ8lfy90SoIO4o++CvKeSLLURlHkJGlC8EEY+u1GGitTUWZdgeggn3Mt7tJ/nfDhL6nyGh+Rj/Z3atVDumvzCXm+bY2obviicw5rEpaX93HfG97E2+5/J3fcfS+VC6ytXebipS182IzJkKCKIYhc1IXQ7UWKeI9SrkDO5J1sN3HnhL+gkAOOzkZeUEHX1OJUrBRNBZPJLpsb63I4eI9NEhaWj3DnvW9hOBqigmd7a5NLF89z+uRLnDr1Eq+8coatrc3YSmzbOK5rJwF7iXGshtu124YgjXsFj9xnWT9tO+RK+/4r1xdIu8dHtc/1ijTJuuuXd2GPoxUvNvLNZA6Zi+ietVa4QbTKHFmvshakc6WMig63LQJn4u8X3yFj4mgBw5133837PvRfMVhYYDabsHr+PH/8+7/L2ZdOMJ3OcCHOTYooQgjtOyL79h4RN2CtvH/Oe2mXoyKXrOUV+ohmBSkene+es/KggwIdcIQ4X0z4LbPZjI2NdZ775tdZ2neA/nCB2+55A7ubm8wmY145d1YQUequSAo+UMfCN7GicBKETnVooY/FkTgg+649bLpWFde8Bm7o5KRpGnTcWEN8oVrL7ihqpSXyoRSJkcm8HvEvCCg8ChVHqQcUlXdMm8DE1YQspzETglOYiLqELGczA2+0zLsY9PHRVrqwOQqDMlZmMNU1qgK3sUXopdg8xU4rKrVFk1SEyYR0kJCoAXmR42ggSXHU+NphlMHPttE+ITUZNBUu1FityBJLXYphW8BJVUKrsfdxARl83Picbzr1RgvF+yCyX62FOKeNxtW1uA4GB15R+z0Lc1Tb5tDo6Ywnf+e/sLG1zQ98z4OsGE2BoDb4gDaa5cP7+fBPfoivfflxfvPX/s+f5Xcak6kMnGvqhtFoxHg8wXvPaDRiOpXZQJcvy8a8sLAgSchsxtb2NsvLS6RJ2iUneSYTgdc3NkhssscR0aJ2ms1EBdTUNUmacujwIfIsJ8tScSiOst7WYVgbLShJv9eNS0CJ94egGqarQkAqt5YTEGCvT37FZu+8l1kXvvUvEURADl7LHieFbr4ULQeBEJP1PR5B26bZIzT6rvXXvktK7bU6iqLXQbcuonJate+ZQMzuiopdJKi+OwSvV7Qf37p2thuxDqEbZxG8l/e9QwtaJ93YhDCGlaUV7rrnXt76tvvZf+QoVeMZjyc8f+KMIIgxWRWZrZPK0Qmx0jXSNk2zDKUNysb9KO5LLQcpSVKaphZJuN5DM0KgM/Zq238yC8p2CEvbpq7KGXVdobVlsrvD+to6/eGQffuW8a4hK4bcf/w9/OCHfwxt4NLqKidPvMgLzz/LyVMnWFtdZTqbdshq1w4MdNfatu+AjkTe3uN2CF1gDz0B9hLmCEpJ8irFDWovWbkeISiD7dQqWnkaL4MOQ7yfVV1fMR5CkoDWnNJF4rAxVlCLhuhVFOJwWGKLVN6pVk7vvUx+1xEpePnkSf7XX/0PMuS1rtm8fJmdna04GFRaMSGaIVZV3RXZ7b69h2pK0axUiIW33VPPKVGfcsW7piJKWFWVjHGxshFUdQVB2t3SyhL/puA9aZaz8syTvPmdD2Nswj1veRuXL57j8uV1xpOJoB9NgwacktZXO9G4VSQZawl1hVIG5SNyZoSrpbQohuqIqtiokLyWuKGTk676JXSKBmsttRMfgHDFQYGAvCIdCwGC6vr2wQhhLQBNgGAtRbFAZgNr4TI5HrOwSNIr2CjHGOUIWmOLBXZ2dkn6Q5odTZWkFNrgy5ppXaMbT1hcIBkOSbOM0s3IByN8VTIrN8mXejSNOFSWboqvZ/R8Kj3EmSM3Cc3WJrkdkKkijuNOoJGBZSq14sjHXs84diu7jaQzoXOtXb9seM4LbKjiBq2VwYeo3Il8DOcatLZy4Dj5Ga0MzBiLLqec+cNP89vjMR/8wPdye5qSAcbLi+J8wCaW+97+7Y0+/3YiSRKm0ymLi4s0TUOv12N7e4vZbIY2mvHulDSVw3d3PKbf61FWlRBi40A1FdGUJEmYzWa46M+RxkN7MBzQSmIPHz4ss3F6BS1aMJvN8D6Qpil5EQ3nggxHA0k6lJJExXQGT/F5xTZAEyv9FqX4y2hJZ0PfObyGSHiVNb8H1xN9UPTez+oQkD3YHhXdYSNyI3wasRffq5hVhzQCnScLsXr0rf9Dy9+KG35i2iopdMjc9Y6rZNHe75F+2xYZV7QwumQpkGUFhw4e4b43vpk3v+3trBw8xM7uhI2NTZ5/4STaGCFBh4BNktiu8CQxqWtcTeOnKMBaSVJNkpJo8X4ICaiq7nhEZTmLz9GJSq/11IhttNYWveXNuKiGIkiLpKkdgThXiRAPVE9mEmaTXc7sblNXFdtbW2gjhnS9XsHSvmVuuvl23nb/Q+R5ynQ85uWXT/L8C8/x0okXOX/uFba2Ll/FNWoRJyKyJOsJQtDUdYOJ97zl9LQHOPFg0lqIkSq03hmq26ev2xqI74+K+5hMK69ll4voQ4uq7PXhBP1pZ8oo5bu11DqJG90OuksiMT0SV2N7PC/EzyhNEjbW1/Crq/KOKSXFz2waR6z4yPcL4mOlFHhJTJJEjmMXf6YKAWWMJPstQqXkPjqI7dSWUSQEIhXEOd25BuVVp9LKUnHDThL5WlNrxo3jwtlXePQv/gIXAkeO3oJzjpWjR3Hf/CYuJvrCOSIWQZag4h6khADrmtCtg7Z1ueeaGyK3UROcp4nJ4bXEDZ2cGG2ib4n0D7XVktEpMbpqiWjeB4xuM/vQVatJklLFDNCHAFqY3bkK5L0+pa8pPShr2XHbVFZjTC5juXUiQ74ulaiFgp41NImhrBvCdEbR6zG5tIqaOZpBQT7MYdeDlZ+VJinD5SWaqmZna4M80wyXhqjGM14fk1cGrUryYDBVhUo806kQDtNIZtRKi+W9ElWMjEqPi6Zl4CvVadVbqFZaWUESG2PjQpLtozXf8tFW3UW3V6UUyrUtqgiDJymhmrL5Z5/lD7Z3+OCP/SB39wpywMYqNdRXmni9+tHv98nisL/2MF9cXGRj4zILCyOKImc6mVIUBePJhO3tbYqikMQjfkaapLLpxDbO5tYWRw4fxljL4uJCZyPf7/e6gV9VVXcvvndekhUFSUwUkiSR7wk+Jj5Wqmm1d0i2f7cl6oHsVVdO0QU61UwnWYyHvo+EuT2PBdW1iFoL69ZBVnVZRCtflmdpre0OoG7TiNWb0nGrj1CM1prhQCSyxpjOKVL4PKpbY/LzIm7pw3V9/m1UlRBBZYaJ75QE0taK5lBxjedZj2PHbuOdDz7EG974ZvqDIVu7Yy6trvHKN5+lKksU0jqzNhH+CArv5eDOsgybyTyU2WwWJeMalNyPqpzinTxvH4RPYoyNz7GhrGrSuE5QCoOi8u3GLTOpqtZIsH1ng8dGmTdKPGbaxCSEwNbWVrdGbJKQJPL5jRMl2ubmJq+cOSvctjTj8JHDrKwc5Ac+cCc//pMDXF1x+vTLPPfMUzz73DOcOX2K8e7O3nDIiLq5iIS1PIg2MQ0+YIwUgSixeACZCk17cLXkjusULQexVehZbShLmfStvIsJ/h5JvB1i2ap3feMiOhal+rHNllgTEy8ZHNom+U18RtaI1YTJc7ze4+V4YFqWuKZhNitJ00R+jvcQ9vbS9r1up5u7IMm1uCv7TlUUImoWIlWh7rhEewVNe906JjXSzpW5S1oplN8Tf2RJwvbONruTMadOniBNCxovJF3vPbPpJL5PkaTPnvrMR5St3URd42jtDQKeNMkisihtpTp6t7SJzrXEDZ2coE18FzQGoQL9ZWOqtm8e4k1RMTFRKOrGkZgET0BbQ+PkIPHOUzc1WZpSlA07dUntKhqXUPoSrKGXFfgykC8tYIqMaTGj3B6TpAWohIaE3sIRqKfYbEDjldzt4MiLISZP2ZnsYlTD4EAfm6WUDpwKJAsLpJOArQ3WapKgSZQlbWSYlIoLuqzriH6oqNUXB8Y6zn3xXpAB72SjTZO0kxA2taNxnqou44tgaILbmzNkTCRfmZgEiiqq1dcTlQ8hyQjVjPLxr/H7u2O+9yc/zDtWlhgqjY5Van2NBKjvJNoNPs0yCFD0CozWHDhgGQwH0dzMkmXxZdGaPMtI0pSqFEfXVi6I0txzzz2MRkO88+w/uJ/FhYWO2JpY27UMZLKmIsszkiJhaUlm8Ij6yzErS6wx5FkvztS40hNhD8a/soWz59TaEiJDx6XY45Fo6VkH1fFEYG90ujGyMbUuli2fIr4Msv6RDcZGVn+Ih1wTD6IQ+RHtz2sreWsMw36fxOgoxyeSBttKeS/xatsPey2h69/XaYmfIJuyMe1co4z9+w9yzz33cfe993HwyFGK3oDt7TEvn73I5uVnO3fpqipFQqo0OiisVtgk7xJypSDPCoy1GJuQFQVVVdPUNWUpM5ia6BGRJIlwRWzV3RPnPVmSdkiYNTKJWCsdf66glPV0Gr1wolrLe8bjnW5CdJuAEmWtklCGbg6U0ZokTTsL/yKXeVG1bxjvbrGxdrE7vJI0ZWlpiSOHD/Gu93w/P/yjP0lTV5w/f46XTjzPiRee5/TpU1y8cJ7JZExDILjW4I94byIgHSv4EPbaFDbuH4Qgw1ivU9SuIUlMRI7jEDsPKB8HVEbPEu+po6W+UZEA7UOXCBqT4KPvU5tL6cgr2ksExPW0KHpYrWVemREkpYnk5qZuqBrxrAKoorN00EomSFsbjQx9RJRURKBaE0WPUkYI2zERbOo9m3kiUmSi502b5Lha5sqladIRodsivmnEv2o6m9E61hgjPl9NLS3J1i8ry3PK6TQmpfI5Pk66V22rWdF51/jgMUpjbCovpA/UvulI9237+lqLlRs6OYlb4BXkPdWZj7UudiK9EihMIF2Hhi6DV0qRaCOoiQ6Mq0o8TLSinjRMVY23DV4bwqxG4Wh0g1IJaVZQqm2a7Qo9zOmPlqnXJtj+kKXhIs2sYrZxQfqtlcMHjTKGEByNm9CzGqsSahS7u2MZMmZzVFikDAFdVyglSIkOOlrWC+yXGIO14gjbUhbb318r3VUu9RUZbVVVciBGWVzL01ERMtQmAd8IUUtrTOynuuhVopTC1bVY3HsPOJQy2CTDhsD02ef43H+GnR/9Ib73pgMMgyh5wjUuxu8kFHT+IFVVx2TDsNjvC0we6s4+eXlpKVZWcZOIL5c1CdPJlIWFAcvLS9x09KY44dZ0cLaYtpXd/UiSlH6/z3A4wFrLrJQhfs7LLJM0TbuqUkXZqu+svGNlFfv2Xe82cqVaEzUgVqSmu97WHKqdodQhJtFYrSXWdpUtbfOpdZpUtLbyrQ9FO1eoTV4kMdGxEt4bz26NobAWqzWO2GLwAdmnJXk1Jlxl0Na51Had9OsVV/BotGFpcZnbbr+TN7357dz9hvtYXjlAXTdcWl3j7CuXaOpzeOfwwWGMwtoorU6ic7CrCAi3bGdXTNxEYQHj3bHcV23o9/udNDLPss6kT8iMhiaAqzzWmOi9E4QzFM0S67qKSTLiraMN09kEayVp8HEUQlXJ9OqsP8AYS1nNcC50SWVdVZF7J8nKrJyxOxkLqmiscIlabxPXqj6iXHbWcObMNi+feokvfelL9IcDDh04xP4D+3nr2x7kB37gh9BGc2n1As8/9yzPPvMUJ158nnPnXmE8GUe+Ch2a0O4tKq5ZF5VHskddm4z0OwnvWoNKg9bx8NQyiToEkWw3IRI3vcweq5pGUKy2hdquJa2FIB1VV+2761yDTRLSREZKEIREmyQJPkBT1d30ZR8EadLBoyLvyHsv/kpBJv62SGMrWd8bzCl+JdrIumzRbRNbZrhIPqUlTkfn4DShrqRFW5YBYy1EhNdqsdDwTkz2ZlV5lfeRdz4iNESFpkdbK+dBaBHStEucWhNU5yNZOvLT6rqijAl0gG40gNzdPbXcXxU3dHKigur6mQSBoVt4OgRQxnQEQGNUd3C0Mi4Q07Gm8dhEhi1lxtJUJfV4zEQFJkFBkaD7PYIvyR14X1PtTKjyQKMD/X6GsxpMgbagpjW1PweZxQw1ZmBBe+rS05QTEjSJStGFxQcYb24y29mkns7oj1ZIen3SxpLahDQYsqBIiKxsLdVcKxU0xuDjoSi90T1Tuo6QSFvlsldJRxt/H6E35wIWkVtXPqCUx0Yznfbv7bWGhEPh2TvsvA8YZaifeYavu4D+Wz/Cuw8s0Qe4jhuSNuJB0nqOAMxmM7a3t2mahkG/TxZn0/QHA7a3tq6oOsWKPUsz7rrrTpaXRaVjInu/LEtR5TQNu7u74m4YN96DBw+glGYyGccWiibPcpRW2Eh4VbGRIBvIHloii1funVF7SXI75Ks10GsVN6GtXIjmgkHHIYJSNbWOr0K01d+6rx/2nlXrEtupfyB6KYTuWtp72RIhjTH0sow0SQRdaYl2cWGZiFSAcFlam/K/rNq4XtHv9bnp8FHuvvcNvPltb+eOu+4GbVhdXefyzoTzq89TzmZMxrs4X5MYS1VOsRFNlPuSAIHxeCrPCiDIGIFWZeVcg0U2XWstWZSBt07Do4URSSojDLI0ZXd3FxDlW5qlYvYYAuPJmOlkSl4U2AC05nmuod/vg3fs7m5TZDneOfq9fvsYmU4nlGUZryc+m16PWTmTg8YmZDn0IpmxKkvQRM5T3kk+G9fI4MbIn2kdg3e3tzldlrzw4gt845vfxDnHvn37uPnmo9x62108+PC7ybKUzcsbnDjxAs88/SQvvvgCF86/wvraugxbbJGiRvYg23n8XL8kVbxhfNwbAyYxcf8DtKDrdV1Re4dROnIlpOVhrRUFT+zxpDbBKIUPuuNe9PKCqvKRpBzNx+qGNE8JXgwh0yShrGTwqI/vcFU1e+uJlssnrrSNc2gFjQskVniPyhiUsKe7th2RfyLfr6maGosgmO2YgLquqGvZU1r1VYtSJKioPKSzN6hrmfFVO0mulIe68aARa4FgSJWhmcgk7LqsKOP9af1WlDHoyPFyQdRGbREkRmwmIsR7ip9rna90QycnKLqMVDAU1c2NEShKbrqQ43Q3TCm0vWmlOrZzqzNPEkOeFSibUJdTNF5GTk88Bk9eiDlakhpZhMFhCxvdRUsWjxT4mUc7qMtKrNsrRZqneF9RT2fYoFBeY3M5zJaHy4RkQOVqrM7IcSTeoTx4p1AqR1vQOLyCqhH/hjrKgbWxKF/L4Cbt4sbjhJAaM+3auT0EIxLsrNHUVQNG/GFEadLKkkXdYONm6nDd1N8Wx2vqmjSSPrVRpFmOaTTlC8/x5d/2bP/wD/GeowfoXceDqR38aCPnZG1tjcRa+oOBDKjTAq8bbdja3EJpRa8nw+D6/T6LS4tifqZE5TSbzQAljq2pbDSdDDiiKUlimUxnaCWtlTahMRFpaROPK6vHK4fntUO8riS9+ugLEtoKM7ZHXLQZJ0iS2crjW2fkdkhgm5R0ZlrqCskne4bj7dBAGfHQGoLVnfLnStOxDsKOSEyvyMXwTst7VlcV5orEs23fCNpkaVGivaGD1y9+4f/z/2VxaTkaSY154qnnmUzG7GxuUlVTCHRJWVmVkpw0Da7ZIklSiqJge2sLHxyu8YxGixhrMDZhOp0wSBYI3pMkGQRp61VlTdErsKmslboqGS2MmE2nGKWoyhllVdErCobDEeDp9fqMd3cpioLZYCbuoL4BB2U5I8kzQVnqOtqmy4ZfR3SEKIX13kvSZIWrUtUVSZJSzqaU5eVIB1EyEFMpIeL6wNrGpehsXFPVNQujBaq6RmvFdFJS1hXT2ZSF4YjpdJed7Q2SJGP90gVOvfQiaZaTZxnL+/Zx8OABDh0+zI/82P+dhYURVTnj5Zdf4olvfIOnn3mK06dOcvnyGnUlM5hQEK4jgOadR2UGtCf4Ghfba9qYKO8XBNloaaC0xnCtvNsjSbZrGrBJRD9anyhR8iRJIp9hLd4Fev1eNLiMvjTOU5V1Jxdu/64UH9L2EB5TiK33WCxG1Mk1jSBubs9nB+S+uaaOTucNSVQG4TwoQSuVk/fStZ8dAjZJUaE1whf+mlVWWrcRRVaG+C4I4pNmGUUu7cmAcHRcoBvkh47mht5FbyOFWFTUe4lb/EcMGSNYoJW0g/+vQIhteSTS65fNPok8FKfipugdrRlVO/CsHWRmojlVCFA1MgpbG4MTRxSGSYohUNGwXm4SdGBrkNBkCp2kpKlBJwafG4oipxjIgWGDoZnM8JsN9e4ug/QAs8vrLGU9pqNFglbkNkHbhKpx9JOcOsvIgyI3Ob4BX5dkzohBXONQTgzXmsZhbCKLOhVYVrdLT1vxyAhXsM0jAarNXK3SXaXYQmzBQ9VU3QHn4yHVxIm0bQUgbURP01RYm1DVYr/cHo5CsJTDeueZp3liPGH2Yz/C8QOL120NuMajaOKLIRVkN3MpSaKcNqHf67G0vIjWmqLoXXVAW2sYjyfR3THpWhTlZEpR5NF4rOgk6lppsqi8kbkRplMy+SteTOCK/24Pbi3DuyKaJXHl7JJwFapxJUdKkhTpgwv3R6DUK+3uWwMs4YLsEWvb3nTb/gQhO7fwbMvH6lp9LWoT6O5Vv9/viLEG2COwyHW3SJ4kJ3vDCa8k7V2veP7FUxhzFpQieMd0MpZWl9H0+gOm43E360UrQ54XJEEUE7JmReLbyum7PrmmO+BDhKbTPGdpZQXnpEc/m846VGo6ndHr9QiTMTs7U1b27aPX60mrqHRsrG1grBj7TaczytkUbTRpUUhyUU2F1xS5AHXTdAqz1sm31++xuLTEdDalqWuyPGc83sW5Jo6xnzEYDDvn2OlkDEoxm06o65LhUL5mtCB/GxvrMltLGeqmZjzeZXtjnVk5I7GWhYVldrY3SdOUxaUVdrc2WLt0gRMvvkCSpPR6fRYXFzl0+CCHDh3iB97/IX7sIz9FWc544dln+MpXvsRTT36TC+deYTIZX7c1IIl2JftbXJiNE+l9O2IiEmPkwI2oRJ7nwhOKHk9pZqm9w2qN1Sm1ayiyHBXfBaPiu6Q9ZVVHw0Ixaqy8JCZaG+G0WEvjxO9GGxNN9UI8k/aKGBfXogp7yi2HOH5bm0SbAjG7kqGt0VRPeVCmc7CV/am1steR0CzJQWKFgNuaSjbOsTud0StyqlpTzmbipWIMu5NJlA3LPcEJEuSCx9cBqT2kze9DQBvi/Kw9Tp0Q4j3KyLmV2SyCANf2PG/I5KTd+GezKeJe16AQlnoTKqAl3UQ/D2uxSULdNJRViYoqn9ZaunG+s3H2zuIrqSCc97gQCCaQBc24mjDdKWGYQ2R2Z2mKDpqmFIKkTixV7dF1zXT3EjbzlNM1ynqH1Z3L6DRF91KsyciqjAWTMR1vSY9OWVxTUZclidM0XmGsqEiwCQ7pVZtoolTXohihiT3dAN41cb4BNJVoz6uq3Mtmte7MhFwjDPY6KnJQGuo6ErVcbEEIPHsVT8MLMdYYFRe6YjaZkBUiM3XBk9mE3eef5cmPj7nwfd931XN7NddAW3UmwZPoRBwilRhqZXlGURTdVFjvpb1njGE6nQhUH9tf8nd0rBQk+xc7dznEyzJ0bZQkaf0G9qzou3EJ8ZRvza6uTFRaWuiVB/WeSke1f3DV18Le/8TEYg8JaR1uW2Sic39tFRThajKtMw4qcKkkty5Cz1cNHEPcMFtkh0guN8aIam0yIWgZMra7u0tZzuJcEUEju/dRqe73rWIP/NVeA1d+3sUL58iylPF4Sq+XExpHWVeMFpZIrWGys4NNk45ns7q9yXgypugVJElGbziMkkeonWN8eYOFhQU2Lq2SFwXBBbTVNHXNYLRAVc0oy1LahkXBK2fOMBiO2N7aJEkTsjTDNQ3jnS28DyRpxmAwJM9zptMpLhqxXb68wc72tqjO8ozZdMpgMKRpasqypK4bRqMBk/GEEAJFr890Otnb++qaC+fPMd7dYXFhJOTwJGVzY4OynHHgwEF2d7eZlTMUwmuZTqdSIaeJyO+Lgs3tEucbZrOZIIOTKUYbiqxgOBhgFORFTn8w5PSpVWlB1TVZr8dk3OPS6nmefeYper0+/cGIpmkYLgx4y5vu48P/1U/w4R/5Sc6ePcupUy/x+Uf/2XXZCwQBkv0c71Dd6AKkXao9TV0JidcHbGpji23amVgqQ4dOeqNJEkn2G+fifqpJEsPlnV2yJBHkMO6ppZf5TD4EfDMDpdAx0Wwah2oc2kqB4OLsJZskXdLsnZNkpq4hvksutuxDbIWIrbyYmnknZNO6rmiZCioEnHLy981esdlOJAbxSGl8IDiHqptoEFju3adJQ1pWHYekqmrhqjSC7Eh+13riRH+YiKy4qMoJsUgIPkT5syjHZBL8te0FKlzvZvB1iJdeeok77rjju30Z8/g248yZMxw9evRV+az5Grgx49VcAzBfBzdqzPeCefxVa+CGRE6Wl5cBOH36NAsLC9/lq7nxY3t7m5tvvpkzZ84wGo1e9c8PIbCzs8ORI0detc+cr4FXP67nOrgeawDm6+DVjvleMI/Xyhq4IZOTtpe+sLBwXW7e/1VjNBpdt/v5am8a8zVw/eJ6rYPrcXDM18H1ifleMI/v9hq4fhrPecxjHvOYxzzmMY/vIObJyTzmMY95zGMe83hNxQ2ZnGRZxi/90i9FU6x5/HXjRryfN+I1v9bjRrynN+I1v5bjRryfN+I1v5bjtXI/b0i1zjzmMY95zGMe83j9xg2JnMxjHvOYxzzmMY/Xb8yTk3nMYx7zmMc85vGainlyMo95zGMe85jHPF5TMU9O5jGPecxjHvOYx2sq5snJPOYxj3nMYx7zeE3FDZmcfOxjH+PWW28lz3MeeughHn300e/2Jb3m4l/+y3/ZDXxr/7n33nu7r89mMz760Y+yb98+BoMBH/nIR7h48eJVn3H69Gk+/OEP0+v1OHDgAP/8n//zbgDgdzvma+Da4vW8DuZr4Nri9bwGYL4OriVuyDUQbrD4+Mc/HtI0Df/hP/yH8NRTT4V/+A//YVhcXAwXL178bl/aayp+6Zd+KbzxjW8M58+f7/65dOlS9/Wf+ZmfCTfffHN45JFHwmOPPRYefvjh8K53vav7etM04U1velN4//vfH772ta+FT37yk2FlZSX8wi/8wnfj17kq5mvg2uP1ug7ma+Da4/W6BkKYr4NrjRtxDdxwycmDDz4YPvrRj3b/75wLR44cCf/6X//r7+JVvfbil37pl8Jb3/rWb/m1zc3NkCRJ+M3f/M3uz5555pkAhC9+8YshhBA++clPBq11uHDhQvc9v/IrvxJGo1Eoy/K6XvtfFfM1cO3xel0H8zVw7fF6XQMhzNfBtcaNuAZuqLZOVVU8/vjjvP/97+/+TGvN+9//fr74xS9+F6/stRkvvPACR44c4fbbb+fv/J2/w+nTpwF4/PHHqev6qvt47733csstt3T38Ytf/CJvfvObOXjwYPc9P/iDP8j29jZPPfXU3+wvckXM18C3H6+3dTBfA99+vN7WAMzXwbcbN9oauKGSk7W1NZxzV90ggIMHD3LhwoXv0lW9NuOhhx7iV3/1V/nUpz7Fr/zKr3Dy5Ene8573sLOzw4ULF0jTlMXFxav+zpX38cKFC9/yPrdf+27FfA18e/F6XAfzNfDtxetxDcB8HXw7cSOuAXtdPnUe3/X40Ic+1P33W97yFh566CGOHTvGb/zGb1AUxXfxyubxNxnzdTCP+RqYx424Bm4o5GRlZQVjzP+ORXzx4kUOHTr0XbqqGyMWFxe5++67efHFFzl06BBVVbG5uXnV91x5Hw8dOvQt73P7te9WzNfAXy9eD+tgvgb+evF6WAMwXwd/nbgR1sANlZykacr999/PI4880v2Z955HHnmE48ePfxev7LUfu7u7nDhxgsOHD3P//feTJMlV9/G5557j9OnT3X08fvw4TzzxBKurq933fPrTn2Y0GnHffff9jV9/G/M18NeL18M6mK+Bv168HtYAzNfBXyduiDVwXWi21zE+/vGPhyzLwq/+6q+Gp59+Ovyjf/SPwuLi4lUs4nmE8PM///PhM5/5TDh58mT4/Oc/H97//veHlZWVsLq6GkIQ6dgtt9wS/vRP/zQ89thj4fjx4+H48ePd32+lYx/84AfD17/+9fCpT30q7N+//zUjH5yvgWuL1+s6mK+Ba4/X6xoIYb4OrjVuxDVwwyUnIYTw7//9vw+33HJLSNM0PPjgg+FLX/rSd/uSXnPxUz/1U+Hw4cMhTdNw0003hZ/6qZ8KL774Yvf16XQa/uk//adhaWkp9Hq98BM/8RPh/PnzV33GqVOnwoc+9KFQFEVYWVkJP//zPx/quv6b/lW+ZczXwLXF63kdzNfAtcXreQ2EMF8H1xI34hpQIYRwfTCZecxjHvOYxzzmMY9vP24ozsk85jGPecxjHvN4/cc8OZnHPOYxj3nMYx6vqZgnJ/OYxzzmMY95zOM1FfPkZB7zmMc85jGPebymYp6czGMe85jHPOYxj9dUzJOTecxjHvOYxzzm8ZqKeXIyj3nMYx7zmMc8XlMxT07mMY95zGMe85jHayrmyck85jGPecxjHvN4TcU8OZnHPOYxj3nMYx6vqZgnJ/OYxzzmMY95zOM1Ff8bZKxcsqu3+dQAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "# Printing the first sample of the each minibatch of size 8\n", + "\n", + "plt.figure(figsize = (100, 100))\n", + "\n", + "f, axarr = plt.subplots(5, 4)\n", + "i = 0\n", + "j = 0\n", + "\n", + "for batch in train_dataloader:\n", + " original_image, image_name, input, target = batch\n", + " print(image_name[0])\n", + " axarr[i, j].imshow(original_image[0])\n", + " j += 1\n", + " if j%4 == 0:\n", + " i += 1\n", + " j = 0\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Copy the required files from the repository to Root" + ], + "metadata": { + "id": "BDoZcfeX63aq" + } + }, + { + "cell_type": "code", + "source": [ + "# Copy pretrained model from repository to root\n", + "!cp road-detection/TwinLiteNet/pretrained/best.pth ./\n", + "\n", + "# Copy pytorch Neural Net from repo to root\n", + "!cp road-detection/TwinLiteNet/model/TwinLite.py ./\n", + "\n", + "# Copy Loss function pytorch code from repo to root\n", + "!cp road-detection/TwinLiteNet/loss.py ./\n", + "\n", + "# Copy all reqired constants from repo to root\n", + "!cp road-detection/TwinLiteNet/const.py ./" + ], + "metadata": { + "id": "sQGZMaLUnYye" + }, + "execution_count": 9, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "## Load the pretrained model" + ], + "metadata": { + "id": "QrOBDJi87Amz" + } + }, + { + "cell_type": "code", + "source": [ + "import TwinLite as net\n", + "\n", + "\n", + "model = net.TwinLiteNet()\n", + "model = torch.nn.DataParallel(model)\n", + "model = model.cuda()\n", + "model.load_state_dict(torch.load('best.pth'))\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 0 + }, + "id": "Et8TxQbdh-jl", + "outputId": "4da9b07e-4c42-4ecb-b0e3-6a1fdb3226f2" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Intialize loss and optimizer.\n", + "\n", + "- This is based on the original code from paper author" + ], + "metadata": { + "id": "n0X1UQbA7EzP" + } + }, + { + "cell_type": "code", + "source": [ + "from tqdm import tqdm\n", + "from loss import TotalLoss\n", + "\n", + "lr = 5e-4\n", + "optimizer = torch.optim.Adam(model.parameters(), lr, (0.9, 0.999), eps=1e-08, weight_decay=5e-4)\n", + "\n", + "criteria = TotalLoss()" + ], + "metadata": { + "id": "QfBEZ0m2yJdZ" + }, + "execution_count": 11, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "args = dict()\n", + "\n", + "args[\"lr\"] = lr\n", + "args[\"max_epochs\"] = 3\n", + "args[\"onGPU\"] = True" + ], + "metadata": { + "id": "ZjDD0kdoxsBl" + }, + "execution_count": 12, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "args" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 0 + }, + "id": "yK-XipnNyg6-", + "outputId": "76198bcd-130e-41a5-c234-09bffee15532" + }, + "execution_count": 13, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'lr': 0.0005, 'max_epochs': 3, 'onGPU': True}" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Intialize Polynomial Learning Rate Scheduler\n", + "\n", + "- By Paper Author" + ], + "metadata": { + "id": "6HloyA_M7aZD" + } + }, + { + "cell_type": "code", + "source": [ + "def poly_lr_scheduler(args, optimizer, epoch, power=2):\n", + " lr = round(args[\"lr\"] * (1 - epoch / args[\"max_epochs\"]) ** power, 8)\n", + " for param_group in optimizer.param_groups:\n", + " param_group['lr'] = lr\n", + "\n", + " return lr" + ], + "metadata": { + "id": "57m3r9mrw32u" + }, + "execution_count": 14, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "## Write a trainer function for each epoch\n", + "\n", + "- By Paper Author" + ], + "metadata": { + "id": "gJz_8_Ff7eL5" + } + }, + { + "cell_type": "code", + "source": [ + "def train(args, train_loader, model, criterion, optimizer, epoch):\n", + " model.train()\n", + "\n", + " total_batches = len(train_loader)\n", + " pbar = enumerate(train_loader)\n", + " pbar = tqdm(pbar, total=total_batches, bar_format='{l_bar}{bar:10}{r_bar}')\n", + " for i, (_, _, input, target) in pbar:\n", + " if args[\"onGPU\"] == True:\n", + " input = input.cuda().float() / 255.0\n", + " output = model(input)\n", + "\n", + " # target=target.cuda()\n", + " optimizer.zero_grad()\n", + "\n", + " focal_loss,tversky_loss,loss = criterion(output,target)\n", + "\n", + "\n", + " optimizer.zero_grad()\n", + " loss.backward()\n", + " optimizer.step()\n", + " pbar.set_description(('%13s' * 1 + '%13.4g' * 3) %\n", + " (f'{epoch}/{args[\"max_epochs\"] - 1}', tversky_loss, focal_loss, loss.item()))" + ], + "metadata": { + "id": "QMqLJaF8xRAn" + }, + "execution_count": 19, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "## Train the model with custom data and also print the loss\n", + "\n", + "- This loss is based on the paper" + ], + "metadata": { + "id": "Dx0ZjFpZ7j2x" + } + }, + { + "cell_type": "code", + "source": [ + "for epoch in range(0, args[\"max_epochs\"]):\n", + " poly_lr_scheduler(args, optimizer, epoch)\n", + " for param_group in optimizer.param_groups:\n", + " lr = param_group['lr']\n", + " print(\"Learning rate: \" + str(lr))\n", + "\n", + " # train for one epoch\n", + " model.train()\n", + " train( args, train_dataloader, model, criteria, optimizer, epoch)\n", + " model.eval()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 0 + }, + "id": "ji-d8PG1xKVG", + "outputId": "ebb9ac0f-a5f4-4005-a268-6eb267ad99fb" + }, + "execution_count": 20, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Learning rate: 0.0005\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 0/2 0.09088 0.04699 0.1379: 100%|██████████| 20/20 [00:09<00:00, 2.20it/s]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Learning rate: 0.00022222\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 1/2 0.0794 0.03391 0.1133: 100%|██████████| 20/20 [00:09<00:00, 2.13it/s]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Learning rate: 5.556e-05\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 2/2 0.08025 0.04639 0.1266: 100%|██████████| 20/20 [00:08<00:00, 2.33it/s]\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Loss\n", + "\n", + "- Loss in epoch 1: 0.1379\n", + "- Loss in epoch 2: 0.1133\n", + "- Loss in epoch 3: 0.1266" + ], + "metadata": { + "id": "XK32dzELPB5j" + } + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "GF3nWi76-qkw" + }, + "execution_count": null, + "outputs": [] + } + ], + "metadata": { + "colab": { + "provenance": [], + "gpuType": "T4", + "authorship_tag": "ABX9TyOM1xsmb1OeD/eVtZQX3V/p", + "include_colab_link": true + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + }, + "accelerator": "GPU" + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/submissions/Final Submission/Data Collection and Preprocessing/Update_1.pdf b/submissions/Final Submission/Data Collection and Preprocessing/Update_1.pdf new file mode 100644 index 0000000..23a60c3 Binary files /dev/null and b/submissions/Final Submission/Data Collection and Preprocessing/Update_1.pdf differ diff --git a/submissions/Final Submission/Transfer Learning and Deployment/Deployment/Deployment.zip b/submissions/Final Submission/Transfer Learning and Deployment/Deployment/Deployment.zip new file mode 100644 index 0000000..51d5cc8 Binary files /dev/null and b/submissions/Final Submission/Transfer Learning and Deployment/Deployment/Deployment.zip differ diff --git a/submissions/Final Submission/Transfer Learning and Deployment/Deployment/Readme.md b/submissions/Final Submission/Transfer Learning and Deployment/Deployment/Readme.md new file mode 100644 index 0000000..166f035 --- /dev/null +++ b/submissions/Final Submission/Transfer Learning and Deployment/Deployment/Readme.md @@ -0,0 +1,19 @@ +# Deployment + +## Docker-Compose +There is a docker image available with this repository. that is road-detection. +git clone this repo. and cd into deployment and run docker-compose up. +open http://localhost:7860/ in you browser to see the app + +## Docker +you can run the following command. This will download the image and deploy it. open http://localhost:7860/ in you browser to see the app. + +"docker run -p 7860:7860 -e SHARE=True ghcr.io/balnarendrasapa/road-detection:latest" + +## Python Virtual Environment +cd into deployment directory. and run "python -m venv .venv" to create a virtual environment. +run "pip install -r requirements.txt" +run "python app.py" +open http://localhost:7860/ in you browser to see the app + +[Youtube Presentation](https://youtu.be/bnyA-d6lZi8) \ No newline at end of file diff --git a/submissions/Final Submission/Transfer Learning and Deployment/Update_2.ipynb b/submissions/Final Submission/Transfer Learning and Deployment/Update_2.ipynb new file mode 100644 index 0000000..60f0778 --- /dev/null +++ b/submissions/Final Submission/Transfer Learning and Deployment/Update_2.ipynb @@ -0,0 +1,2153 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Download the Repository\n", + "\n", + "[Repository Link](https://github.com/balnarendrasapa/road-detection)\n", + "\n", + "- This is our team's repository. This repository contains all the necessary code that we worked on and it also contains the dataset that we annotated.\n", + "\n", + "- You do not need to do anything like uploading and adjusting the paths. Just run the cells sequentially.\n", + "\n", + "- All the necessary commands are written in this notebook itself" + ], + "metadata": { + "id": "JzycIPSy2AKH" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dyznWPpKmNIs", + "outputId": "bc63e380-cac8-4820-a080-ce6716822127" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Cloning into 'road-detection'...\n", + "remote: Enumerating objects: 441, done.\u001b[K\n", + "remote: Counting objects: 100% (182/182), done.\u001b[K\n", + "remote: Compressing objects: 100% (162/162), done.\u001b[K\n", + "remote: Total 441 (delta 62), reused 49 (delta 17), pack-reused 259\u001b[K\n", + "Receiving objects: 100% (441/441), 204.71 MiB | 16.66 MiB/s, done.\n", + "Resolving deltas: 100% (155/155), done.\n" + ] + } + ], + "source": [ + "!git clone https://github.com/balnarendrasapa/road-detection.git" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Install the Requirements\n", + "\n", + "- Install all the python dependencies\n", + "- After Installing dependencies, Restart the runtime. If you do not restart the runtime, the python will throw \"module not found error\"" + ], + "metadata": { + "id": "AVXcandz2wFA" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "298SpxZcDf1R", + "outputId": "40f10204-c617-4af4-b32b-5230ed4b6cab" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: certifi==2023.7.22 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 1)) (2023.7.22)\n", + "Requirement already satisfied: charset-normalizer==3.3.2 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 2)) (3.3.2)\n", + "Collecting colorama==0.4.6 (from -r road-detection/TwinLiteNet/requirements.txt (line 3))\n", + " Downloading colorama-0.4.6-py2.py3-none-any.whl (25 kB)\n", + "Requirement already satisfied: contourpy==1.2.0 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 4)) (1.2.0)\n", + "Requirement already satisfied: cycler==0.12.1 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 5)) (0.12.1)\n", + "Collecting dnspython==2.4.2 (from -r road-detection/TwinLiteNet/requirements.txt (line 6))\n", + " Downloading dnspython-2.4.2-py3-none-any.whl (300 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m300.4/300.4 kB\u001b[0m \u001b[31m6.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting elephant==0.12.0 (from -r road-detection/TwinLiteNet/requirements.txt (line 7))\n", + " Downloading elephant-0.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m5.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: filelock==3.13.1 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 8)) (3.13.1)\n", + "Collecting fonttools==4.44.0 (from -r road-detection/TwinLiteNet/requirements.txt (line 9))\n", + " Downloading fonttools-4.44.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.5/4.5 MB\u001b[0m \u001b[31m5.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting fsspec==2023.10.0 (from -r road-detection/TwinLiteNet/requirements.txt (line 10))\n", + " Downloading fsspec-2023.10.0-py3-none-any.whl (166 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m166.4/166.4 kB\u001b[0m \u001b[31m14.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: idna==3.4 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 11)) (3.4)\n", + "Requirement already satisfied: Jinja2==3.1.2 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 12)) (3.1.2)\n", + "Collecting joblib==1.2.0 (from -r road-detection/TwinLiteNet/requirements.txt (line 13))\n", + " Downloading joblib-1.2.0-py3-none-any.whl (297 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m298.0/298.0 kB\u001b[0m \u001b[31m36.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: kiwisolver==1.4.5 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 14)) (1.4.5)\n", + "Requirement already satisfied: MarkupSafe==2.1.3 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 15)) (2.1.3)\n", + "Requirement already satisfied: matplotlib==3.7.1 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 16)) (3.7.1)\n", + "Requirement already satisfied: mpmath==1.3.0 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 17)) (1.3.0)\n", + "Collecting neo==0.12.0 (from -r road-detection/TwinLiteNet/requirements.txt (line 18))\n", + " Downloading neo-0.12.0-py3-none-any.whl (586 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m586.9/586.9 kB\u001b[0m \u001b[31m47.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: networkx==3.2.1 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 19)) (3.2.1)\n", + "Collecting numpy==1.24.3 (from -r road-detection/TwinLiteNet/requirements.txt (line 20))\n", + " Downloading numpy-1.24.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m17.3/17.3 MB\u001b[0m \u001b[31m46.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting opencv-python==4.7.0.72 (from -r road-detection/TwinLiteNet/requirements.txt (line 21))\n", + " Downloading opencv_python-4.7.0.72-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (61.8 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m61.8/61.8 MB\u001b[0m \u001b[31m9.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: packaging==23.2 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 22)) (23.2)\n", + "Collecting Pillow==9.5.0 (from -r road-detection/TwinLiteNet/requirements.txt (line 23))\n", + " Downloading Pillow-9.5.0-cp310-cp310-manylinux_2_28_x86_64.whl (3.4 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.4/3.4 MB\u001b[0m \u001b[31m105.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: pyparsing==3.1.1 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 24)) (3.1.1)\n", + "Requirement already satisfied: python-dateutil==2.8.2 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 25)) (2.8.2)\n", + "Collecting python-etcd==0.4.5 (from -r road-detection/TwinLiteNet/requirements.txt (line 26))\n", + " Downloading python-etcd-0.4.5.tar.gz (37 kB)\n", + " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "Requirement already satisfied: PyYAML==6.0.1 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 27)) (6.0.1)\n", + "Collecting quantities==0.14.1 (from -r road-detection/TwinLiteNet/requirements.txt (line 28))\n", + " Downloading quantities-0.14.1-py3-none-any.whl (87 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m87.9/87.9 kB\u001b[0m \u001b[31m13.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: requests==2.31.0 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 29)) (2.31.0)\n", + "Collecting scikit-learn==1.3.2 (from -r road-detection/TwinLiteNet/requirements.txt (line 30))\n", + " Downloading scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.8 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.8/10.8 MB\u001b[0m \u001b[31m78.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting scipy==1.10.1 (from -r road-detection/TwinLiteNet/requirements.txt (line 31))\n", + " Downloading scipy-1.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.4 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m34.4/34.4 MB\u001b[0m \u001b[31m50.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: six==1.16.0 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 32)) (1.16.0)\n", + "Requirement already satisfied: sympy==1.12 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 33)) (1.12)\n", + "Requirement already satisfied: threadpoolctl==3.2.0 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 34)) (3.2.0)\n", + "Requirement already satisfied: torch==2.1.0 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 35)) (2.1.0+cu118)\n", + "Requirement already satisfied: torchdata==0.7.0 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 36)) (0.7.0)\n", + "Collecting torchelastic==0.2.2 (from -r road-detection/TwinLiteNet/requirements.txt (line 37))\n", + " Downloading torchelastic-0.2.2-py3-none-any.whl (111 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m111.5/111.5 kB\u001b[0m \u001b[31m936.7 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: torchtext==0.16.0 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 38)) (0.16.0)\n", + "Requirement already satisfied: torchvision==0.16.0 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 39)) (0.16.0+cu118)\n", + "Requirement already satisfied: tqdm==4.66.1 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 40)) (4.66.1)\n", + "Collecting typing_extensions==4.8.0 (from -r road-detection/TwinLiteNet/requirements.txt (line 41))\n", + " Downloading typing_extensions-4.8.0-py3-none-any.whl (31 kB)\n", + "Requirement already satisfied: urllib3==2.0.7 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 42)) (2.0.7)\n", + "Requirement already satisfied: webcolors==1.13 in /usr/local/lib/python3.10/dist-packages (from -r road-detection/TwinLiteNet/requirements.txt (line 43)) (1.13)\n", + "Collecting yacs==0.1.8 (from -r road-detection/TwinLiteNet/requirements.txt (line 44))\n", + " Downloading yacs-0.1.8-py3-none-any.whl (14 kB)\n", + "Collecting zipp==3.15.0 (from -r road-detection/TwinLiteNet/requirements.txt (line 45))\n", + " Downloading zipp-3.15.0-py3-none-any.whl (6.8 kB)\n", + "Requirement already satisfied: triton==2.1.0 in /usr/local/lib/python3.10/dist-packages (from torch==2.1.0->-r road-detection/TwinLiteNet/requirements.txt (line 35)) (2.1.0)\n", + "Building wheels for collected packages: python-etcd\n", + " Building wheel for python-etcd (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for python-etcd: filename=python_etcd-0.4.5-py3-none-any.whl size=38481 sha256=f339be183854359130f20a0e497726b5480925d6a40d5e616bd30effeb5fe1b0\n", + " Stored in directory: /root/.cache/pip/wheels/93/5f/1b/056db07a0ab1c0b7efe175928d2a10b614e0e00d7bab0b6496\n", + "Successfully built python-etcd\n", + "Installing collected packages: zipp, yacs, typing_extensions, Pillow, numpy, joblib, fsspec, fonttools, dnspython, colorama, scipy, quantities, python-etcd, opencv-python, torchelastic, scikit-learn, neo, elephant\n", + " Attempting uninstall: zipp\n", + " Found existing installation: zipp 3.17.0\n", + " Uninstalling zipp-3.17.0:\n", + " Successfully uninstalled zipp-3.17.0\n", + " Attempting uninstall: typing_extensions\n", + " Found existing installation: typing_extensions 4.5.0\n", + " Uninstalling typing_extensions-4.5.0:\n", + " Successfully uninstalled typing_extensions-4.5.0\n", + " Attempting uninstall: Pillow\n", + " Found existing installation: Pillow 9.4.0\n", + " Uninstalling Pillow-9.4.0:\n", + " Successfully uninstalled Pillow-9.4.0\n", + " Attempting uninstall: numpy\n", + " Found existing installation: numpy 1.23.5\n", + " Uninstalling numpy-1.23.5:\n", + " Successfully uninstalled numpy-1.23.5\n", + " Attempting uninstall: joblib\n", + " Found existing installation: joblib 1.3.2\n", + " Uninstalling joblib-1.3.2:\n", + " Successfully uninstalled joblib-1.3.2\n", + " Attempting uninstall: fsspec\n", + " Found existing installation: fsspec 2023.6.0\n", + " Uninstalling fsspec-2023.6.0:\n", + " Successfully uninstalled fsspec-2023.6.0\n", + " Attempting uninstall: fonttools\n", + " Found existing installation: fonttools 4.44.3\n", + " Uninstalling fonttools-4.44.3:\n", + " Successfully uninstalled fonttools-4.44.3\n", + " Attempting uninstall: scipy\n", + " Found existing installation: scipy 1.11.3\n", + " Uninstalling scipy-1.11.3:\n", + " Successfully uninstalled scipy-1.11.3\n", + " Attempting uninstall: opencv-python\n", + " Found existing installation: opencv-python 4.8.0.76\n", + " Uninstalling opencv-python-4.8.0.76:\n", + " Successfully uninstalled opencv-python-4.8.0.76\n", + " Attempting uninstall: scikit-learn\n", + " Found existing installation: scikit-learn 1.2.2\n", + " Uninstalling scikit-learn-1.2.2:\n", + " Successfully uninstalled scikit-learn-1.2.2\n", + "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", + "lida 0.0.10 requires fastapi, which is not installed.\n", + "lida 0.0.10 requires kaleido, which is not installed.\n", + "lida 0.0.10 requires python-multipart, which is not installed.\n", + "lida 0.0.10 requires uvicorn, which is not installed.\n", + "gcsfs 2023.6.0 requires fsspec==2023.6.0, but you have fsspec 2023.10.0 which is incompatible.\n", + "tensorflow-probability 0.22.0 requires typing-extensions<4.6.0, but you have typing-extensions 4.8.0 which is incompatible.\u001b[0m\u001b[31m\n", + "\u001b[0mSuccessfully installed Pillow-9.5.0 colorama-0.4.6 dnspython-2.4.2 elephant-0.12.0 fonttools-4.44.0 fsspec-2023.10.0 joblib-1.2.0 neo-0.12.0 numpy-1.24.3 opencv-python-4.7.0.72 python-etcd-0.4.5 quantities-0.14.1 scikit-learn-1.3.2 scipy-1.10.1 torchelastic-0.2.2 typing_extensions-4.8.0 yacs-0.1.8 zipp-3.15.0\n" + ] + }, + { + "output_type": "display_data", + "data": { + "application/vnd.colab-display-data+json": { + "pip_warning": { + "packages": [ + "PIL", + "numpy" + ] + } + } + }, + "metadata": {} + } + ], + "source": [ + "!pip install -r road-detection/TwinLiteNet/requirements.txt" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Copy Dataset from Repository\n", + "\n", + "- Our repository contains dataset.zip in datasets folder in the repository. copy that zip file to root" + ], + "metadata": { + "id": "WtYxavR2503Q" + } + }, + { + "cell_type": "code", + "source": [ + "!cp road-detection/datasets/dataset.zip ./" + ], + "metadata": { + "id": "ihjXltFR1OQI" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "## Unzip the file" + ], + "metadata": { + "id": "ferlFJ_76GBA" + } + }, + { + "cell_type": "code", + "source": [ + "!unzip dataset.zip" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "w7AUZJZ0f491", + "outputId": "c067b7a9-91a2-449f-db0d-3ec9964410b5" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Archive: dataset.zip\n", + " creating: dataset/test/\n", + " creating: dataset/test/images/\n", + " inflating: dataset/test/images/road_image_160.png \n", + " inflating: dataset/test/images/road_image_161.png \n", + " inflating: dataset/test/images/road_image_162.png \n", + " inflating: dataset/test/images/road_image_163.png \n", + " inflating: dataset/test/images/road_image_164.png \n", + " inflating: dataset/test/images/road_image_165.png \n", + " inflating: dataset/test/images/road_image_166.png \n", + " inflating: dataset/test/images/road_image_167.png \n", + " inflating: dataset/test/images/road_image_168.png \n", + " inflating: dataset/test/images/road_image_169.png \n", + " inflating: dataset/test/images/road_image_170.png \n", + " inflating: dataset/test/images/road_image_171.png \n", + " inflating: dataset/test/images/road_image_172.png \n", + " inflating: dataset/test/images/road_image_173.png \n", + " inflating: dataset/test/images/road_image_174.png \n", + " inflating: dataset/test/images/road_image_175.png \n", + " inflating: dataset/test/images/road_image_176.png \n", + " inflating: dataset/test/images/road_image_177.png \n", + " inflating: dataset/test/images/road_image_178.png \n", + " inflating: dataset/test/images/road_image_179.png \n", + " creating: dataset/test/lane/\n", + " inflating: dataset/test/lane/road_image_160.png \n", + " inflating: dataset/test/lane/road_image_161.png \n", + " inflating: dataset/test/lane/road_image_162.png \n", + " inflating: dataset/test/lane/road_image_163.png \n", + " inflating: dataset/test/lane/road_image_164.png \n", + " inflating: dataset/test/lane/road_image_165.png \n", + " inflating: dataset/test/lane/road_image_166.png \n", + " inflating: dataset/test/lane/road_image_167.png \n", + " inflating: dataset/test/lane/road_image_168.png \n", + " inflating: dataset/test/lane/road_image_169.png \n", + " inflating: dataset/test/lane/road_image_170.png \n", + " inflating: dataset/test/lane/road_image_171.png \n", + " inflating: dataset/test/lane/road_image_172.png \n", + " inflating: dataset/test/lane/road_image_173.png \n", + " inflating: dataset/test/lane/road_image_174.png \n", + " inflating: dataset/test/lane/road_image_175.png \n", + " inflating: dataset/test/lane/road_image_176.png \n", + " inflating: dataset/test/lane/road_image_177.png \n", + " inflating: dataset/test/lane/road_image_178.png \n", + " inflating: dataset/test/lane/road_image_179.png \n", + " creating: dataset/test/segments/\n", + " inflating: dataset/test/segments/road_image_160.png \n", + " inflating: dataset/test/segments/road_image_161.png \n", + " inflating: dataset/test/segments/road_image_162.png \n", + " inflating: dataset/test/segments/road_image_163.png \n", + " inflating: dataset/test/segments/road_image_164.png \n", + " inflating: dataset/test/segments/road_image_165.png \n", + " inflating: dataset/test/segments/road_image_166.png \n", + " inflating: dataset/test/segments/road_image_167.png \n", + " inflating: dataset/test/segments/road_image_168.png \n", + " inflating: dataset/test/segments/road_image_169.png \n", + " inflating: dataset/test/segments/road_image_170.png \n", + " inflating: dataset/test/segments/road_image_171.png \n", + " inflating: dataset/test/segments/road_image_172.png \n", + " inflating: dataset/test/segments/road_image_173.png \n", + " inflating: dataset/test/segments/road_image_174.png \n", + " inflating: dataset/test/segments/road_image_175.png \n", + " inflating: dataset/test/segments/road_image_176.png \n", + " inflating: dataset/test/segments/road_image_177.png \n", + " inflating: dataset/test/segments/road_image_178.png \n", + " inflating: dataset/test/segments/road_image_179.png \n", + " creating: dataset/train/\n", + " creating: dataset/train/images/\n", + " inflating: dataset/train/images/road_image_0.png \n", + " inflating: dataset/train/images/road_image_1.png \n", + " inflating: dataset/train/images/road_image_10.png \n", + " inflating: dataset/train/images/road_image_100.png \n", + " inflating: dataset/train/images/road_image_101.png \n", + " inflating: dataset/train/images/road_image_102.png \n", + " inflating: dataset/train/images/road_image_103.png \n", + " inflating: dataset/train/images/road_image_104.png \n", + " inflating: dataset/train/images/road_image_105.png \n", + " inflating: dataset/train/images/road_image_106.png \n", + " inflating: dataset/train/images/road_image_107.png \n", + " inflating: dataset/train/images/road_image_108.png \n", + " inflating: dataset/train/images/road_image_109.png \n", + " inflating: dataset/train/images/road_image_11.png \n", + " inflating: dataset/train/images/road_image_110.png \n", + " inflating: dataset/train/images/road_image_111.png \n", + " inflating: dataset/train/images/road_image_112.png \n", + " inflating: dataset/train/images/road_image_113.png \n", + " inflating: dataset/train/images/road_image_114.png \n", + " inflating: dataset/train/images/road_image_115.png \n", + " inflating: dataset/train/images/road_image_116.png \n", + " inflating: dataset/train/images/road_image_117.png \n", + " inflating: dataset/train/images/road_image_118.png \n", + " inflating: dataset/train/images/road_image_119.png \n", + " inflating: dataset/train/images/road_image_12.png \n", + " inflating: dataset/train/images/road_image_120.png \n", + " inflating: dataset/train/images/road_image_121.png \n", + " inflating: dataset/train/images/road_image_122.png \n", + " inflating: dataset/train/images/road_image_123.png \n", + " inflating: dataset/train/images/road_image_124.png \n", + " inflating: dataset/train/images/road_image_125.png \n", + " inflating: dataset/train/images/road_image_126.png \n", + " inflating: dataset/train/images/road_image_127.png \n", + " inflating: dataset/train/images/road_image_128.png \n", + " inflating: dataset/train/images/road_image_129.png \n", + " inflating: dataset/train/images/road_image_13.png \n", + " inflating: dataset/train/images/road_image_130.png \n", + " inflating: dataset/train/images/road_image_131.png \n", + " inflating: dataset/train/images/road_image_132.png \n", + " inflating: dataset/train/images/road_image_133.png \n", + " inflating: dataset/train/images/road_image_134.png \n", + " inflating: dataset/train/images/road_image_135.png \n", + " inflating: dataset/train/images/road_image_136.png \n", + " inflating: dataset/train/images/road_image_137.png \n", + " inflating: dataset/train/images/road_image_138.png \n", + " inflating: dataset/train/images/road_image_139.png \n", + " inflating: dataset/train/images/road_image_14.png \n", + " inflating: dataset/train/images/road_image_140.png \n", + " inflating: dataset/train/images/road_image_141.png \n", + " inflating: dataset/train/images/road_image_142.png \n", + " inflating: dataset/train/images/road_image_143.png \n", + " inflating: dataset/train/images/road_image_144.png \n", + " inflating: dataset/train/images/road_image_145.png \n", + " inflating: dataset/train/images/road_image_146.png \n", + " inflating: dataset/train/images/road_image_147.png \n", + " inflating: dataset/train/images/road_image_148.png \n", + " inflating: dataset/train/images/road_image_149.png \n", + " inflating: dataset/train/images/road_image_15.png \n", + " inflating: dataset/train/images/road_image_150.png \n", + " inflating: dataset/train/images/road_image_151.png \n", + " inflating: dataset/train/images/road_image_152.png \n", + " inflating: dataset/train/images/road_image_153.png \n", + " inflating: dataset/train/images/road_image_154.png \n", + " inflating: dataset/train/images/road_image_155.png \n", + " inflating: dataset/train/images/road_image_156.png \n", + " inflating: dataset/train/images/road_image_157.png \n", + " inflating: dataset/train/images/road_image_158.png \n", + " inflating: dataset/train/images/road_image_159.png \n", + " inflating: dataset/train/images/road_image_16.png \n", + " inflating: dataset/train/images/road_image_17.png \n", + " inflating: dataset/train/images/road_image_18.png \n", + " inflating: dataset/train/images/road_image_19.png \n", + " inflating: dataset/train/images/road_image_2.png \n", + " inflating: dataset/train/images/road_image_20.png \n", + " inflating: dataset/train/images/road_image_21.png \n", + " inflating: dataset/train/images/road_image_22.png \n", + " inflating: dataset/train/images/road_image_23.png \n", + " inflating: dataset/train/images/road_image_24.png \n", + " inflating: dataset/train/images/road_image_25.png \n", + " inflating: dataset/train/images/road_image_26.png \n", + " inflating: dataset/train/images/road_image_27.png \n", + " inflating: dataset/train/images/road_image_28.png \n", + " inflating: dataset/train/images/road_image_29.png \n", + " inflating: dataset/train/images/road_image_3.png \n", + " inflating: dataset/train/images/road_image_30.png \n", + " inflating: dataset/train/images/road_image_31.png \n", + " inflating: dataset/train/images/road_image_32.png \n", + " inflating: dataset/train/images/road_image_33.png \n", + " inflating: dataset/train/images/road_image_34.png \n", + " inflating: dataset/train/images/road_image_35.png \n", + " inflating: dataset/train/images/road_image_36.png \n", + " inflating: dataset/train/images/road_image_37.png \n", + " inflating: dataset/train/images/road_image_38.png \n", + " inflating: dataset/train/images/road_image_39.png \n", + " inflating: dataset/train/images/road_image_4.png \n", + " inflating: dataset/train/images/road_image_40.png \n", + " inflating: dataset/train/images/road_image_41.png \n", + " inflating: dataset/train/images/road_image_42.png \n", + " inflating: dataset/train/images/road_image_43.png \n", + " inflating: dataset/train/images/road_image_44.png \n", + " inflating: dataset/train/images/road_image_45.png \n", + " inflating: dataset/train/images/road_image_46.png \n", + " inflating: dataset/train/images/road_image_47.png \n", + " inflating: dataset/train/images/road_image_48.png \n", + " inflating: dataset/train/images/road_image_49.png \n", + " inflating: dataset/train/images/road_image_5.png \n", + " inflating: dataset/train/images/road_image_50.png \n", + " inflating: dataset/train/images/road_image_51.png \n", + " inflating: dataset/train/images/road_image_52.png \n", + " inflating: dataset/train/images/road_image_53.png \n", + " inflating: dataset/train/images/road_image_54.png \n", + " inflating: dataset/train/images/road_image_55.png \n", + " inflating: dataset/train/images/road_image_56.png \n", + " inflating: dataset/train/images/road_image_57.png \n", + " inflating: dataset/train/images/road_image_58.png \n", + " inflating: dataset/train/images/road_image_59.png \n", + " inflating: dataset/train/images/road_image_6.png \n", + " inflating: dataset/train/images/road_image_60.png \n", + " inflating: dataset/train/images/road_image_61.png \n", + " inflating: dataset/train/images/road_image_62.png \n", + " inflating: dataset/train/images/road_image_63.png \n", + " inflating: dataset/train/images/road_image_64.png \n", + " inflating: dataset/train/images/road_image_65.png \n", + " inflating: dataset/train/images/road_image_66.png \n", + " inflating: dataset/train/images/road_image_67.png \n", + " inflating: dataset/train/images/road_image_68.png \n", + " inflating: dataset/train/images/road_image_69.png \n", + " inflating: dataset/train/images/road_image_7.png \n", + " inflating: dataset/train/images/road_image_70.png \n", + " inflating: dataset/train/images/road_image_71.png \n", + " inflating: dataset/train/images/road_image_72.png \n", + " inflating: dataset/train/images/road_image_73.png \n", + " inflating: dataset/train/images/road_image_74.png \n", + " inflating: dataset/train/images/road_image_75.png \n", + " inflating: dataset/train/images/road_image_76.png \n", + " inflating: dataset/train/images/road_image_77.png \n", + " inflating: dataset/train/images/road_image_78.png \n", + " inflating: dataset/train/images/road_image_79.png \n", + " inflating: dataset/train/images/road_image_8.png \n", + " inflating: dataset/train/images/road_image_80.png \n", + " inflating: dataset/train/images/road_image_81.png \n", + " inflating: dataset/train/images/road_image_82.png \n", + " inflating: dataset/train/images/road_image_83.png \n", + " inflating: dataset/train/images/road_image_84.png \n", + " inflating: dataset/train/images/road_image_85.png \n", + " inflating: dataset/train/images/road_image_86.png \n", + " inflating: dataset/train/images/road_image_87.png \n", + " inflating: dataset/train/images/road_image_88.png \n", + " inflating: dataset/train/images/road_image_89.png \n", + " inflating: dataset/train/images/road_image_9.png \n", + " inflating: dataset/train/images/road_image_90.png \n", + " inflating: dataset/train/images/road_image_91.png \n", + " inflating: dataset/train/images/road_image_92.png \n", + " inflating: dataset/train/images/road_image_93.png \n", + " inflating: dataset/train/images/road_image_94.png \n", + " inflating: dataset/train/images/road_image_95.png \n", + " inflating: dataset/train/images/road_image_96.png \n", + " inflating: dataset/train/images/road_image_97.png \n", + " inflating: dataset/train/images/road_image_98.png \n", + " inflating: dataset/train/images/road_image_99.png \n", + " creating: dataset/train/lane/\n", + " inflating: dataset/train/lane/road_image_0.png \n", + " inflating: dataset/train/lane/road_image_1.png \n", + " inflating: dataset/train/lane/road_image_10.png \n", + " inflating: dataset/train/lane/road_image_100.png \n", + " inflating: dataset/train/lane/road_image_101.png \n", + " inflating: dataset/train/lane/road_image_102.png \n", + " inflating: dataset/train/lane/road_image_103.png \n", + " inflating: dataset/train/lane/road_image_104.png \n", + " inflating: dataset/train/lane/road_image_105.png \n", + " inflating: dataset/train/lane/road_image_106.png \n", + " inflating: dataset/train/lane/road_image_107.png \n", + " inflating: dataset/train/lane/road_image_108.png \n", + " inflating: dataset/train/lane/road_image_109.png \n", + " inflating: dataset/train/lane/road_image_11.png \n", + " inflating: dataset/train/lane/road_image_110.png \n", + " inflating: dataset/train/lane/road_image_111.png \n", + " inflating: dataset/train/lane/road_image_112.png \n", + " inflating: dataset/train/lane/road_image_113.png \n", + " inflating: dataset/train/lane/road_image_114.png \n", + " inflating: dataset/train/lane/road_image_115.png \n", + " inflating: dataset/train/lane/road_image_116.png \n", + " inflating: dataset/train/lane/road_image_117.png \n", + " inflating: dataset/train/lane/road_image_118.png \n", + " inflating: dataset/train/lane/road_image_119.png \n", + " inflating: dataset/train/lane/road_image_12.png \n", + " inflating: dataset/train/lane/road_image_120.png \n", + " inflating: dataset/train/lane/road_image_121.png \n", + " inflating: dataset/train/lane/road_image_122.png \n", + " inflating: dataset/train/lane/road_image_123.png \n", + " inflating: dataset/train/lane/road_image_124.png \n", + " inflating: dataset/train/lane/road_image_125.png \n", + " inflating: dataset/train/lane/road_image_126.png \n", + " inflating: dataset/train/lane/road_image_127.png \n", + " inflating: dataset/train/lane/road_image_128.png \n", + " inflating: dataset/train/lane/road_image_129.png \n", + " inflating: dataset/train/lane/road_image_13.png \n", + " inflating: dataset/train/lane/road_image_130.png \n", + " inflating: dataset/train/lane/road_image_131.png \n", + " inflating: dataset/train/lane/road_image_132.png \n", + " inflating: dataset/train/lane/road_image_133.png \n", + " inflating: dataset/train/lane/road_image_134.png \n", + " inflating: dataset/train/lane/road_image_135.png \n", + " inflating: dataset/train/lane/road_image_136.png \n", + " inflating: dataset/train/lane/road_image_137.png \n", + " inflating: dataset/train/lane/road_image_138.png \n", + " inflating: dataset/train/lane/road_image_139.png \n", + " inflating: dataset/train/lane/road_image_14.png \n", + " inflating: dataset/train/lane/road_image_140.png \n", + " inflating: dataset/train/lane/road_image_141.png \n", + " inflating: dataset/train/lane/road_image_142.png \n", + " inflating: dataset/train/lane/road_image_143.png \n", + " inflating: dataset/train/lane/road_image_144.png \n", + " inflating: dataset/train/lane/road_image_145.png \n", + " inflating: dataset/train/lane/road_image_146.png \n", + " inflating: dataset/train/lane/road_image_147.png \n", + " inflating: dataset/train/lane/road_image_148.png \n", + " inflating: dataset/train/lane/road_image_149.png \n", + " inflating: dataset/train/lane/road_image_15.png \n", + " inflating: dataset/train/lane/road_image_150.png \n", + " inflating: dataset/train/lane/road_image_151.png \n", + " inflating: dataset/train/lane/road_image_152.png \n", + " inflating: dataset/train/lane/road_image_153.png \n", + " inflating: dataset/train/lane/road_image_154.png \n", + " inflating: dataset/train/lane/road_image_155.png \n", + " inflating: dataset/train/lane/road_image_156.png \n", + " inflating: dataset/train/lane/road_image_157.png \n", + " inflating: dataset/train/lane/road_image_158.png \n", + " inflating: dataset/train/lane/road_image_159.png \n", + " inflating: dataset/train/lane/road_image_16.png \n", + " inflating: dataset/train/lane/road_image_17.png \n", + " inflating: dataset/train/lane/road_image_18.png \n", + " inflating: dataset/train/lane/road_image_19.png \n", + " inflating: dataset/train/lane/road_image_2.png \n", + " inflating: dataset/train/lane/road_image_20.png \n", + " inflating: dataset/train/lane/road_image_21.png \n", + " inflating: dataset/train/lane/road_image_22.png \n", + " inflating: dataset/train/lane/road_image_23.png \n", + " inflating: dataset/train/lane/road_image_24.png \n", + " inflating: dataset/train/lane/road_image_25.png \n", + " inflating: dataset/train/lane/road_image_26.png \n", + " inflating: dataset/train/lane/road_image_27.png \n", + " inflating: dataset/train/lane/road_image_28.png \n", + " inflating: dataset/train/lane/road_image_29.png \n", + " inflating: dataset/train/lane/road_image_3.png \n", + " inflating: dataset/train/lane/road_image_30.png \n", + " inflating: dataset/train/lane/road_image_31.png \n", + " inflating: dataset/train/lane/road_image_32.png \n", + " inflating: dataset/train/lane/road_image_33.png \n", + " inflating: dataset/train/lane/road_image_34.png \n", + " inflating: dataset/train/lane/road_image_35.png \n", + " inflating: dataset/train/lane/road_image_36.png \n", + " inflating: dataset/train/lane/road_image_37.png \n", + " inflating: dataset/train/lane/road_image_38.png \n", + " inflating: dataset/train/lane/road_image_39.png \n", + " inflating: dataset/train/lane/road_image_4.png \n", + " inflating: dataset/train/lane/road_image_40.png \n", + " inflating: dataset/train/lane/road_image_41.png \n", + " inflating: dataset/train/lane/road_image_42.png \n", + " inflating: dataset/train/lane/road_image_43.png \n", + " inflating: dataset/train/lane/road_image_44.png \n", + " inflating: dataset/train/lane/road_image_45.png \n", + " inflating: dataset/train/lane/road_image_46.png \n", + " inflating: dataset/train/lane/road_image_47.png \n", + " inflating: dataset/train/lane/road_image_48.png \n", + " inflating: dataset/train/lane/road_image_49.png \n", + " inflating: dataset/train/lane/road_image_5.png \n", + " inflating: dataset/train/lane/road_image_50.png \n", + " inflating: dataset/train/lane/road_image_51.png \n", + " inflating: dataset/train/lane/road_image_52.png \n", + " inflating: dataset/train/lane/road_image_53.png \n", + " inflating: dataset/train/lane/road_image_54.png \n", + " inflating: dataset/train/lane/road_image_55.png \n", + " inflating: dataset/train/lane/road_image_56.png \n", + " inflating: dataset/train/lane/road_image_57.png \n", + " inflating: dataset/train/lane/road_image_58.png \n", + " inflating: dataset/train/lane/road_image_59.png \n", + " inflating: dataset/train/lane/road_image_6.png \n", + " inflating: dataset/train/lane/road_image_60.png \n", + " inflating: dataset/train/lane/road_image_61.png \n", + " inflating: dataset/train/lane/road_image_62.png \n", + " inflating: dataset/train/lane/road_image_63.png \n", + " inflating: dataset/train/lane/road_image_64.png \n", + " inflating: dataset/train/lane/road_image_65.png \n", + " inflating: dataset/train/lane/road_image_66.png \n", + " inflating: dataset/train/lane/road_image_67.png \n", + " inflating: dataset/train/lane/road_image_68.png \n", + " inflating: dataset/train/lane/road_image_69.png \n", + " inflating: dataset/train/lane/road_image_7.png \n", + " inflating: dataset/train/lane/road_image_70.png \n", + " inflating: dataset/train/lane/road_image_71.png \n", + " inflating: dataset/train/lane/road_image_72.png \n", + " inflating: dataset/train/lane/road_image_73.png \n", + " inflating: dataset/train/lane/road_image_74.png \n", + " inflating: dataset/train/lane/road_image_75.png \n", + " inflating: dataset/train/lane/road_image_76.png \n", + " inflating: dataset/train/lane/road_image_77.png \n", + " inflating: dataset/train/lane/road_image_78.png \n", + " inflating: dataset/train/lane/road_image_79.png \n", + " inflating: dataset/train/lane/road_image_8.png \n", + " inflating: dataset/train/lane/road_image_80.png \n", + " inflating: dataset/train/lane/road_image_81.png \n", + " inflating: dataset/train/lane/road_image_82.png \n", + " inflating: dataset/train/lane/road_image_83.png \n", + " inflating: dataset/train/lane/road_image_84.png \n", + " inflating: dataset/train/lane/road_image_85.png \n", + " inflating: dataset/train/lane/road_image_86.png \n", + " inflating: dataset/train/lane/road_image_87.png \n", + " inflating: dataset/train/lane/road_image_88.png \n", + " inflating: dataset/train/lane/road_image_89.png \n", + " inflating: dataset/train/lane/road_image_9.png \n", + " inflating: dataset/train/lane/road_image_90.png \n", + " inflating: dataset/train/lane/road_image_91.png \n", + " inflating: dataset/train/lane/road_image_92.png \n", + " inflating: dataset/train/lane/road_image_93.png \n", + " inflating: dataset/train/lane/road_image_94.png \n", + " inflating: dataset/train/lane/road_image_95.png \n", + " inflating: dataset/train/lane/road_image_96.png \n", + " inflating: dataset/train/lane/road_image_97.png \n", + " inflating: dataset/train/lane/road_image_98.png \n", + " inflating: dataset/train/lane/road_image_99.png \n", + " creating: dataset/train/segments/\n", + " inflating: dataset/train/segments/road_image_0.png \n", + " inflating: dataset/train/segments/road_image_1.png \n", + " inflating: dataset/train/segments/road_image_10.png \n", + " inflating: dataset/train/segments/road_image_100.png \n", + " inflating: dataset/train/segments/road_image_101.png \n", + " inflating: dataset/train/segments/road_image_102.png \n", + " inflating: dataset/train/segments/road_image_103.png \n", + " inflating: dataset/train/segments/road_image_104.png \n", + " inflating: dataset/train/segments/road_image_105.png \n", + " inflating: dataset/train/segments/road_image_106.png \n", + " inflating: dataset/train/segments/road_image_107.png \n", + " inflating: dataset/train/segments/road_image_108.png \n", + " inflating: dataset/train/segments/road_image_109.png \n", + " inflating: dataset/train/segments/road_image_11.png \n", + " inflating: dataset/train/segments/road_image_110.png \n", + " inflating: dataset/train/segments/road_image_111.png \n", + " inflating: dataset/train/segments/road_image_112.png \n", + " inflating: dataset/train/segments/road_image_113.png \n", + " inflating: dataset/train/segments/road_image_114.png \n", + " inflating: dataset/train/segments/road_image_115.png \n", + " inflating: dataset/train/segments/road_image_116.png \n", + " inflating: dataset/train/segments/road_image_117.png \n", + " inflating: dataset/train/segments/road_image_118.png \n", + " inflating: dataset/train/segments/road_image_119.png \n", + " inflating: dataset/train/segments/road_image_12.png \n", + " inflating: dataset/train/segments/road_image_120.png \n", + " inflating: dataset/train/segments/road_image_121.png \n", + " inflating: dataset/train/segments/road_image_122.png \n", + " inflating: dataset/train/segments/road_image_123.png \n", + " inflating: dataset/train/segments/road_image_124.png \n", + " inflating: dataset/train/segments/road_image_125.png \n", + " inflating: dataset/train/segments/road_image_126.png \n", + " inflating: dataset/train/segments/road_image_127.png \n", + " inflating: dataset/train/segments/road_image_128.png \n", + " inflating: dataset/train/segments/road_image_129.png \n", + " inflating: dataset/train/segments/road_image_13.png \n", + " inflating: dataset/train/segments/road_image_130.png \n", + " inflating: dataset/train/segments/road_image_131.png \n", + " inflating: dataset/train/segments/road_image_132.png \n", + " inflating: dataset/train/segments/road_image_133.png \n", + " inflating: dataset/train/segments/road_image_134.png \n", + " inflating: dataset/train/segments/road_image_135.png \n", + " inflating: dataset/train/segments/road_image_136.png \n", + " inflating: dataset/train/segments/road_image_137.png \n", + " inflating: dataset/train/segments/road_image_138.png \n", + " inflating: dataset/train/segments/road_image_139.png \n", + " inflating: dataset/train/segments/road_image_14.png \n", + " inflating: dataset/train/segments/road_image_140.png \n", + " inflating: dataset/train/segments/road_image_141.png \n", + " inflating: dataset/train/segments/road_image_142.png \n", + " inflating: dataset/train/segments/road_image_143.png \n", + " inflating: dataset/train/segments/road_image_144.png \n", + " inflating: dataset/train/segments/road_image_145.png \n", + " inflating: dataset/train/segments/road_image_146.png \n", + " inflating: dataset/train/segments/road_image_147.png \n", + " inflating: dataset/train/segments/road_image_148.png \n", + " inflating: dataset/train/segments/road_image_149.png \n", + " inflating: dataset/train/segments/road_image_15.png \n", + " inflating: dataset/train/segments/road_image_150.png \n", + " inflating: dataset/train/segments/road_image_151.png \n", + " inflating: dataset/train/segments/road_image_152.png \n", + " inflating: dataset/train/segments/road_image_153.png \n", + " inflating: dataset/train/segments/road_image_154.png \n", + " inflating: dataset/train/segments/road_image_155.png \n", + " inflating: dataset/train/segments/road_image_156.png \n", + " inflating: dataset/train/segments/road_image_157.png \n", + " inflating: dataset/train/segments/road_image_158.png \n", + " inflating: dataset/train/segments/road_image_159.png \n", + " inflating: dataset/train/segments/road_image_16.png \n", + " inflating: dataset/train/segments/road_image_17.png \n", + " inflating: dataset/train/segments/road_image_18.png \n", + " inflating: dataset/train/segments/road_image_19.png \n", + " inflating: dataset/train/segments/road_image_2.png \n", + " inflating: dataset/train/segments/road_image_20.png \n", + " inflating: dataset/train/segments/road_image_21.png \n", + " inflating: dataset/train/segments/road_image_22.png \n", + " inflating: dataset/train/segments/road_image_23.png \n", + " inflating: dataset/train/segments/road_image_24.png \n", + " inflating: dataset/train/segments/road_image_25.png \n", + " inflating: dataset/train/segments/road_image_26.png \n", + " inflating: dataset/train/segments/road_image_27.png \n", + " inflating: dataset/train/segments/road_image_28.png \n", + " inflating: dataset/train/segments/road_image_29.png \n", + " inflating: dataset/train/segments/road_image_3.png \n", + " inflating: dataset/train/segments/road_image_30.png \n", + " inflating: dataset/train/segments/road_image_31.png \n", + " inflating: dataset/train/segments/road_image_32.png \n", + " inflating: dataset/train/segments/road_image_33.png \n", + " inflating: dataset/train/segments/road_image_34.png \n", + " inflating: dataset/train/segments/road_image_35.png \n", + " inflating: dataset/train/segments/road_image_36.png \n", + " inflating: dataset/train/segments/road_image_37.png \n", + " inflating: dataset/train/segments/road_image_38.png \n", + " inflating: dataset/train/segments/road_image_39.png \n", + " inflating: dataset/train/segments/road_image_4.png \n", + " inflating: dataset/train/segments/road_image_40.png \n", + " inflating: dataset/train/segments/road_image_41.png \n", + " inflating: dataset/train/segments/road_image_42.png \n", + " inflating: dataset/train/segments/road_image_43.png \n", + " inflating: dataset/train/segments/road_image_44.png \n", + " inflating: dataset/train/segments/road_image_45.png \n", + " inflating: dataset/train/segments/road_image_46.png \n", + " inflating: dataset/train/segments/road_image_47.png \n", + " inflating: dataset/train/segments/road_image_48.png \n", + " inflating: dataset/train/segments/road_image_49.png \n", + " inflating: dataset/train/segments/road_image_5.png \n", + " inflating: dataset/train/segments/road_image_50.png \n", + " inflating: dataset/train/segments/road_image_51.png \n", + " inflating: dataset/train/segments/road_image_52.png \n", + " inflating: dataset/train/segments/road_image_53.png \n", + " inflating: dataset/train/segments/road_image_54.png \n", + " inflating: dataset/train/segments/road_image_55.png \n", + " inflating: dataset/train/segments/road_image_56.png \n", + " inflating: dataset/train/segments/road_image_57.png \n", + " inflating: dataset/train/segments/road_image_58.png \n", + " inflating: dataset/train/segments/road_image_59.png \n", + " inflating: dataset/train/segments/road_image_6.png \n", + " inflating: dataset/train/segments/road_image_60.png \n", + " inflating: dataset/train/segments/road_image_61.png \n", + " inflating: dataset/train/segments/road_image_62.png \n", + " inflating: dataset/train/segments/road_image_63.png \n", + " inflating: dataset/train/segments/road_image_64.png \n", + " inflating: dataset/train/segments/road_image_65.png \n", + " inflating: dataset/train/segments/road_image_66.png \n", + " inflating: dataset/train/segments/road_image_67.png \n", + " inflating: dataset/train/segments/road_image_68.png \n", + " inflating: dataset/train/segments/road_image_69.png \n", + " inflating: dataset/train/segments/road_image_7.png \n", + " inflating: dataset/train/segments/road_image_70.png \n", + " inflating: dataset/train/segments/road_image_71.png \n", + " inflating: dataset/train/segments/road_image_72.png \n", + " inflating: dataset/train/segments/road_image_73.png \n", + " inflating: dataset/train/segments/road_image_74.png \n", + " inflating: dataset/train/segments/road_image_75.png \n", + " inflating: dataset/train/segments/road_image_76.png \n", + " inflating: dataset/train/segments/road_image_77.png \n", + " inflating: dataset/train/segments/road_image_78.png \n", + " inflating: dataset/train/segments/road_image_79.png \n", + " inflating: dataset/train/segments/road_image_8.png \n", + " inflating: dataset/train/segments/road_image_80.png \n", + " inflating: dataset/train/segments/road_image_81.png \n", + " inflating: dataset/train/segments/road_image_82.png \n", + " inflating: dataset/train/segments/road_image_83.png \n", + " inflating: dataset/train/segments/road_image_84.png \n", + " inflating: dataset/train/segments/road_image_85.png \n", + " inflating: dataset/train/segments/road_image_86.png \n", + " inflating: dataset/train/segments/road_image_87.png \n", + " inflating: dataset/train/segments/road_image_88.png \n", + " inflating: dataset/train/segments/road_image_89.png \n", + " inflating: dataset/train/segments/road_image_9.png \n", + " inflating: dataset/train/segments/road_image_90.png \n", + " inflating: dataset/train/segments/road_image_91.png \n", + " inflating: dataset/train/segments/road_image_92.png \n", + " inflating: dataset/train/segments/road_image_93.png \n", + " inflating: dataset/train/segments/road_image_94.png \n", + " inflating: dataset/train/segments/road_image_95.png \n", + " inflating: dataset/train/segments/road_image_96.png \n", + " inflating: dataset/train/segments/road_image_97.png \n", + " inflating: dataset/train/segments/road_image_98.png \n", + " inflating: dataset/train/segments/road_image_99.png \n", + " creating: dataset/validation/\n", + " creating: dataset/validation/images/\n", + " inflating: dataset/validation/images/road_image_180.png \n", + " inflating: dataset/validation/images/road_image_181.png \n", + " inflating: dataset/validation/images/road_image_182.png \n", + " inflating: dataset/validation/images/road_image_183.png \n", + " inflating: dataset/validation/images/road_image_184.png \n", + " inflating: dataset/validation/images/road_image_185.png \n", + " inflating: dataset/validation/images/road_image_186.png \n", + " inflating: dataset/validation/images/road_image_187.png \n", + " inflating: dataset/validation/images/road_image_188.png \n", + " inflating: dataset/validation/images/road_image_189.png \n", + " inflating: dataset/validation/images/road_image_190.png \n", + " inflating: dataset/validation/images/road_image_191.png \n", + " inflating: dataset/validation/images/road_image_192.png \n", + " inflating: dataset/validation/images/road_image_193.png \n", + " inflating: dataset/validation/images/road_image_194.png \n", + " inflating: dataset/validation/images/road_image_195.png \n", + " inflating: dataset/validation/images/road_image_196.png \n", + " inflating: dataset/validation/images/road_image_197.png \n", + " inflating: dataset/validation/images/road_image_198.png \n", + " inflating: dataset/validation/images/road_image_199.png \n", + " creating: dataset/validation/lane/\n", + " inflating: dataset/validation/lane/road_image_180.png \n", + " inflating: dataset/validation/lane/road_image_181.png \n", + " inflating: dataset/validation/lane/road_image_182.png \n", + " inflating: dataset/validation/lane/road_image_183.png \n", + " inflating: dataset/validation/lane/road_image_184.png \n", + " inflating: dataset/validation/lane/road_image_185.png \n", + " inflating: dataset/validation/lane/road_image_186.png \n", + " inflating: dataset/validation/lane/road_image_187.png \n", + " inflating: dataset/validation/lane/road_image_188.png \n", + " inflating: dataset/validation/lane/road_image_189.png \n", + " inflating: dataset/validation/lane/road_image_190.png \n", + " inflating: dataset/validation/lane/road_image_191.png \n", + " inflating: dataset/validation/lane/road_image_192.png \n", + " inflating: dataset/validation/lane/road_image_193.png \n", + " inflating: dataset/validation/lane/road_image_194.png \n", + " inflating: dataset/validation/lane/road_image_195.png \n", + " inflating: dataset/validation/lane/road_image_196.png \n", + " inflating: dataset/validation/lane/road_image_197.png \n", + " inflating: dataset/validation/lane/road_image_198.png \n", + " inflating: dataset/validation/lane/road_image_199.png \n", + " creating: dataset/validation/segments/\n", + " inflating: dataset/validation/segments/road_image_180.png \n", + " inflating: dataset/validation/segments/road_image_181.png \n", + " inflating: dataset/validation/segments/road_image_182.png \n", + " inflating: dataset/validation/segments/road_image_183.png \n", + " inflating: dataset/validation/segments/road_image_184.png \n", + " inflating: dataset/validation/segments/road_image_185.png \n", + " inflating: dataset/validation/segments/road_image_186.png \n", + " inflating: dataset/validation/segments/road_image_187.png \n", + " inflating: dataset/validation/segments/road_image_188.png \n", + " inflating: dataset/validation/segments/road_image_189.png \n", + " inflating: dataset/validation/segments/road_image_190.png \n", + " inflating: dataset/validation/segments/road_image_191.png \n", + " inflating: dataset/validation/segments/road_image_192.png \n", + " inflating: dataset/validation/segments/road_image_193.png \n", + " inflating: dataset/validation/segments/road_image_194.png \n", + " inflating: dataset/validation/segments/road_image_195.png \n", + " inflating: dataset/validation/segments/road_image_196.png \n", + " inflating: dataset/validation/segments/road_image_197.png \n", + " inflating: dataset/validation/segments/road_image_198.png \n", + " inflating: dataset/validation/segments/road_image_199.png \n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Import the all the required libraries" + ], + "metadata": { + "id": "bpUdANiK6K-i" + } + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "id": "hVDJcpeP5d1J" + }, + "outputs": [], + "source": [ + "import torch\n", + "import cv2\n", + "import torch.utils.data\n", + "import torchvision.transforms as transforms\n", + "import numpy as np\n", + "import os\n", + "import random\n", + "import math\n", + "from matplotlib import pyplot as plt\n", + "import torch.nn as nn" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Image transformation functions\n", + "\n", + "- By paper author" + ], + "metadata": { + "id": "MXX5-aH58B4c" + } + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "id": "ywi8_wbg5jZQ" + }, + "outputs": [], + "source": [ + "def augment_hsv(img, hgain=0.015, sgain=0.7, vgain=0.4):\n", + " \"\"\"change color hue, saturation, value\"\"\"\n", + " r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains\n", + " hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))\n", + " dtype = img.dtype # uint8\n", + "\n", + " x = np.arange(0, 256, dtype=np.int16)\n", + " lut_hue = ((x * r[0]) % 180).astype(dtype)\n", + " lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)\n", + " lut_val = np.clip(x * r[2], 0, 255).astype(dtype)\n", + "\n", + " img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)\n", + " cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "id": "NMEu5Ey35mWQ" + }, + "outputs": [], + "source": [ + "def random_perspective(combination, degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, border=(0, 0)):\n", + " \"\"\"combination of img transform\"\"\"\n", + " # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))\n", + " # targets = [cls, xyxy]\n", + " img, gray, line = combination\n", + " height = img.shape[0] + border[0] * 2 # shape(h,w,c)\n", + " width = img.shape[1] + border[1] * 2\n", + "\n", + " # Center\n", + " C = np.eye(3)\n", + " C[0, 2] = -img.shape[1] / 2 # x translation (pixels)\n", + " C[1, 2] = -img.shape[0] / 2 # y translation (pixels)\n", + "\n", + " # Perspective\n", + " P = np.eye(3)\n", + " P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)\n", + " P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)\n", + "\n", + " # Rotation and Scale\n", + " R = np.eye(3)\n", + " a = random.uniform(-degrees, degrees)\n", + " # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations\n", + " s = random.uniform(1 - scale, 1 + scale)\n", + " # s = 2 ** random.uniform(-scale, scale)\n", + " R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)\n", + "\n", + " # Shear\n", + " S = np.eye(3)\n", + " S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)\n", + " S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)\n", + "\n", + " # Translation\n", + " T = np.eye(3)\n", + " T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)\n", + " T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)\n", + "\n", + " # Combined rotation matrix\n", + " M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT\n", + " if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed\n", + " if perspective:\n", + " img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))\n", + " gray = cv2.warpPerspective(gray, M, dsize=(width, height), borderValue=0)\n", + " line = cv2.warpPerspective(line, M, dsize=(width, height), borderValue=0)\n", + " else: # affine\n", + " img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))\n", + " gray = cv2.warpAffine(gray, M[:2], dsize=(width, height), borderValue=0)\n", + " line = cv2.warpAffine(line, M[:2], dsize=(width, height), borderValue=0)\n", + "\n", + "\n", + "\n", + " combination = (img, gray, line)\n", + " return combination" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Custom Dataset Class\n", + "\n", + "- This custom dataset class is based on the dataset class written by the author but with slight modifications like path. we have adjusted the path according to the google colab." + ], + "metadata": { + "id": "mFv9HU486TLr" + } + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "id": "_LoqglKDR2Sw" + }, + "outputs": [], + "source": [ + "class MyDataset(torch.utils.data.Dataset):\n", + " '''\n", + " Class to load the dataset\n", + " '''\n", + " def __init__(self, transform=None, valid=False, test=False):\n", + " '''\n", + " :param imList: image list (Note that these lists have been processed and pickled using the loadData.py)\n", + " :param labelList: label list (Note that these lists have been processed and pickled using the loadData.py)\n", + " :param transform: Type of transformation. SEe Transforms.py for supported transformations\n", + " '''\n", + "\n", + " self.transform = transform\n", + " self.Tensor = transforms.ToTensor()\n", + " self.valid=valid\n", + " if valid:\n", + " self.root='dataset/validation/images'\n", + " self.names=os.listdir(self.root)\n", + " elif test:\n", + " self.root='dataset/test/images'\n", + " self.names=os.listdir(self.root)\n", + " else:\n", + " self.root='dataset/train/images/'\n", + " self.names=os.listdir(self.root)\n", + "\n", + " def __len__(self):\n", + " return len(self.names)\n", + "\n", + " def __getitem__(self, idx):\n", + " '''\n", + "\n", + " :param idx: Index of the image file\n", + " :return: returns the image and corresponding label file.\n", + " '''\n", + " W_=640\n", + " H_=360\n", + " image_name=os.path.join(self.root,self.names[idx])\n", + "\n", + " image = cv2.imread(image_name)\n", + " original_image = cv2.imread(image_name)\n", + " label1 = cv2.imread(image_name.replace(\"images\",\"segments\").replace(\"jpg\",\"png\"), 0)\n", + " label2 = cv2.imread(image_name.replace(\"images\",\"lane\").replace(\"jpg\",\"png\"), 0)\n", + " if not self.valid:\n", + " if random.random()<0.5:\n", + " combination = (image, label1, label2)\n", + " (image, label1, label2)= random_perspective(\n", + " combination=combination,\n", + " degrees=10,\n", + " translate=0.1,\n", + " scale=0.25,\n", + " shear=0.0\n", + " )\n", + " if random.random()<0.5:\n", + " augment_hsv(image)\n", + " if random.random() < 0.5:\n", + " image = np.fliplr(image)\n", + " label1 = np.fliplr(label1)\n", + " label2 = np.fliplr(label2)\n", + "\n", + " label1 = cv2.resize(label1, (W_, H_))\n", + " label2 = cv2.resize(label2, (W_, H_))\n", + " image = cv2.resize(image, (W_, H_))\n", + "\n", + " _,seg_b1 = cv2.threshold(label1,1,255,cv2.THRESH_BINARY_INV)\n", + " _,seg_b2 = cv2.threshold(label2,1,255,cv2.THRESH_BINARY_INV)\n", + " _,seg1 = cv2.threshold(label1,1,255,cv2.THRESH_BINARY)\n", + " _,seg2 = cv2.threshold(label2,1,255,cv2.THRESH_BINARY)\n", + "\n", + " seg1 = self.Tensor(seg1)\n", + " seg2 = self.Tensor(seg2)\n", + " seg_b1 = self.Tensor(seg_b1)\n", + " seg_b2 = self.Tensor(seg_b2)\n", + " seg_da = torch.stack((seg_b1[0], seg1[0]),0)\n", + " seg_ll = torch.stack((seg_b2[0], seg2[0]),0)\n", + " image = image[:, :, ::-1].transpose(2, 0, 1)\n", + " image = np.ascontiguousarray(image)\n", + "\n", + " return original_image, image_name,torch.from_numpy(image),(seg_da,seg_ll)" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Intialize a dataloader\n", + "\n", + "- Intialize a dataloader with batch size 8\n", + "\n", + "- Intialize train, test, validation datasets." + ], + "metadata": { + "id": "b6Ly9Ek16kg-" + } + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "id": "qIK3UcD3STAG" + }, + "outputs": [], + "source": [ + "from torch.utils.data import DataLoader\n", + "\n", + "train_dataloader = DataLoader(MyDataset(), batch_size = 8, shuffle = True)\n", + "test_dataloader = DataLoader(MyDataset(test=True), batch_size = 8, shuffle = True)\n", + "val_dataloader = DataLoader(MyDataset(valid=True), batch_size = 8, shuffle = True)" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Display images\n", + "\n", + "- Show first sample of each mini-batch with size 8" + ], + "metadata": { + "id": "ERrb-mex6rGx" + } + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "id": "DjQRwgtn5XJY", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 796 + }, + "outputId": "8a969af4-44ad-4220-c420-a33ca41acf43" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "dataset/train/images/road_image_99.png\n", + "dataset/train/images/road_image_108.png\n", + "dataset/train/images/road_image_105.png\n", + "dataset/train/images/road_image_143.png\n", + "dataset/train/images/road_image_6.png\n", + "dataset/train/images/road_image_22.png\n", + "dataset/train/images/road_image_34.png\n", + "dataset/train/images/road_image_39.png\n", + "dataset/train/images/road_image_149.png\n", + "dataset/train/images/road_image_154.png\n", + "dataset/train/images/road_image_155.png\n", + "dataset/train/images/road_image_138.png\n", + "dataset/train/images/road_image_7.png\n", + "dataset/train/images/road_image_41.png\n", + "dataset/train/images/road_image_92.png\n", + "dataset/train/images/road_image_93.png\n", + "dataset/train/images/road_image_9.png\n", + "dataset/train/images/road_image_45.png\n", + "dataset/train/images/road_image_16.png\n", + "dataset/train/images/road_image_107.png\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAGfCAYAAACEIXJYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5Rk2XXeif6OuS5cRnpbWd5Xm2qP7oYHGobeiaJE0ck8SiK15vGNZsRZS9LS0nujWSMzlEhKHI1EURRAI4LwHuhuNNq7alfeu6xKn+HjunPO++NGVTdoIRFFEDP5rZVl0kTeiLvjnH32/r5vC+ecYxOb2MQmNrGJTWziLwjkt/sCNrGJTWxiE5vYxCbeis3kZBOb2MQmNrGJTfyFwmZysolNbGITm9jEJv5CYTM52cQmNrGJTWxiE3+hsJmcbGITm9jEJjaxib9Q2ExONrGJTWxiE5vYxF8obCYnm9jEJjaxiU1s4i8UNpOTTWxiE5vYxCY28RcKm8nJJjaxiU1sYhOb+AuFzeRkE5vYxCY2sYlN/IXCty05+dVf/VW2bdtGGIbcf//9vPDCC9+uS9nEtxGbcbCJzRjYBGzGwSa+Ed+W5OR3f/d3+YVf+AX+8T/+xxw5coQ77riDD3zgAywvL387LmcT3yZsxsEmNmNgE7AZB5v4wxDfjsF/999/P/feey+/8iu/AoC1li1btvDzP//z/IN/8A/+vC9nE98mbMbBJjZjYBOwGQeb+MPQf96/ME1TXn75ZX7xF3/x5ueklLzvfe/j2Wef/SN/JkkSkiS5+X9rLevr64yOjiKEuOXXvIk/G5xztNttZmZmkLIo1v23xsFmDHxn41sRA7AZB9/p2FwLNvFHxcAfhT/35GR1dRVjDJOTk9/w+cnJSU6ePPlH/sw/+2f/jH/yT/7Jn8flbeIW4sqVK8zNzQH/7XGwGQP/98CfJQZgMw7+74LNtWATb42BPwp/7snJfw9+8Rd/kV/4hV+4+f9ms8n8/DzDu7aBJ5HlAOdpXLOL8gO8egXh+bhejDSWrNfBC0KkgNwYlBC4PAcpENpHlyPSPAffR8cZEokQgizPcDiU1hjnUEqjPQ9RKqFKFYQ1OJtCnJDHLWw/wy+V0H6IzgRkljxO8IKQzOU44TBYtBdg8hSTZPh+gLMOASgtyZ1FRT5WChQCkxuU52GcweWW3uoicaeFFQaJAOuoz4yTtDpUtEc/t0wMl/kHf/PvsXPnbj7++/8Xzxw/zpWVRfLUotGUR8rIekSkoK8d108sUqpUkX6I9HxMmkOWQmZRqSXu9amN18niBJsapJMI5WOlwoaa3HM4KbB5jtAe1lmcAGctLskwnZgrr52nWq1+y2PgZ/7f/5zLJ15h344aB3bPsu/w24jjBE9pGo0NgjDE5ilCSZTnoZ1BK8WF06eQwlAdGmVkfJZDh+7E4jBO4IRECInSkuIgJnCuOKE5YyCPETikEDgAZ8GZ4vuwZGmCUhop1eD7NEhJv9fgo//0+1H5EsqzaF8Tlco0k4B2K6NWL7O80mHf3oDOasJiM6G1Ydm5bZatD/0MxljSuI/0AuYP3MXkln2ILOaNR3+Txz/6z5iYKzNUr+CsR22oTJYbrCcQaB7/6hVOX+oyNBzyg989x5FnL9LuZWBAe9DqgVIhU/vvoiOmePGl10iTnO99z2H+7t/925RGJzl35gRnjr3KhVMXOXLsPKeuXOXet72fiZ2HWb5yieeeeIIkXiZpLxE5S9c4hPZwSvLh7/sRPvZf/8ufKQb+pDgYm9qFVBrnDAIomtUOBwxuIUIIpFAgBO949wfotzu0GhtsNNYwFmq1IYbGJxgfG+Nv/cxP82/+93/OS6++SFAqU6kMMz27lQ9/4IeYnpwhdylp3qWz0eWOg9uZm6oPruiP7pL/yb1z98ee+B3FSfPGAwhR/CGAZ599ic89+nVGhoZYXLjM3Pb9HDp8L6+++BJHXnue1sYKh+98gHvue4iV5SVqtSq/819/nb2H7iX0DY9+6VN81w//v7jj7nfwhU/8Bk8+8VmcLeLa83x+7Kf/B4RX5rO/9+t0uw0wMd//l/429ck5OusbPP/E5zh64hn27jnIv/nX/5ocweLyBmtrTX7lX/1vLFy/gEAglaY+PEmSxBiTc+nMC7dkLRgfG0dpzc//3N/hU5/8NEma8td+4se5cPY8n/zUp/kf//7f57c++lHOnT9Hnlve9a538g//4f+CMZZ/+k/+v5w7f54Pf/iDfPCDH+AX/j9/n7sO38Nzzz/PIx98hKefepKx0VFOnz6DQ3D34TupDw/x4e/+Lq5fXeD1N95gZHSEO26/g6NHj3L16jUeeuht3HPPXVhjGBkbG8ShQCmNkIJep81QfZhz587xcz/393jg/vt56qmnWVlZYWRkhPvvu5fcOk4cO0Yvjvn7/+B/YmJ8As8P+KX/418zs2Ur7Y1VxsYnsNaxeH0B6xx33nGQWnWIq1cXUEpz+tRp1tZWKVcqKKkwJieIIirVKo31dS5dusTExAS1Wp3Tp08yNTnJvffdyyuvvsoDDz3Mu979HjrdHmdOnWZ9dY1Ot0cS93HOAo7lpUXuuvtufve3Pkq/38dZW7zfEBhrkFKS5zngKJcrbNm6lcce/cqfGgN/7snJ2NgYSimWlpa+4fNLS0tMTU39kT8TBAFBEPzhL4jiw+EQWU6e54QzE0il8XyfGAtC4muBdA4nwHMahSAxOVJrpFa4JEdZsFlSLGBagoBSpUIv6eMAHYaYLMc5hwIEFuX7mPUO9GOEceSdGC000i9hnSOIykjt44xBSU1uc0yaIxG4PEMqiecHGJMjlcLaHK188jTF8z2sAKklTivyfkoQlFBhBO0G0jqEEoiSxgqHtZZekiK1Rz9LyfOEhasXOXHxDIuNdbLEkSU5ruLRVRIb56xsdAhrZcKwij86DTokzzK0SMF2UZ4iT1tUShWElZjYIpA4QPkaPIkLBMqTuCxHWAdphg48jLMYA84KkKq4XW9ZgP9b4+CPi4ErJ16gt3GdI0+3UflBZKmEFhLfi5jZMo/WGkHIqy98DZOnDEU587vuZXpmkma7xXIfNq6s8PDDQxgHuQNri51AKo0bXLNzgLMILMKESOEQQmJdkVg6XLFxuBv/lhRvT3DOgHBozxB4DmFzhAWRZtigy+J1wdmFnC1TbRpty+hEn+66ox1DOwkZGy9RHxnGWui126A1ke/ha4FfGUOX6mw0FEblGGEQIuP6pTVM7pAlSZ4a1ldz4h6kacJjnziL9BxhBOM7d3L/B3+Ak2+8wakXXqfn5jh7cYP73/lDtNst7n7wAN005dKRF1FRyK7d+2l3Dft0jfNLa1jnivdYuYrvK/odyJ1DSokUkr2H387p4y8WifSfMQb+pDjQnmZsfIaVpYXidR+sDbhi43fOIqXCueJevvzSsxw8eJipuTmuXbuMVIq11R4bzTWk2UF9qMptt9/N0eNvFDEkodtt4yT4URlP+HTX2qggwo9KVGs1vjG9eGs6It7y/zf//Qe/4xu+Kt78d3HNbrDciZvf7GufMAjBOKKozuzcNhrNFn7Jp9NucNvtDzI6NsV6o8P49DSVUoWpme088si7+b/+3b9CCkEYlEkziOOEodowDoXWGs/z6fX6HD/6LPPzcxx/YxnPCxClMr1uB88v4ZerKO0xOjaBDqo4IRgZlXQ6Gb72UEoTBhFRqUaWG7wgpN9Y/jPHwR8XA9ZaPASB55OlGUEQkMYxJ06cwA98xsfHOXzHYbIk4+LlS1QqVT7zuS/ywz/4A4yNjXL56hVqtRr1+jDWWhqNDXbs2M7c7Azb5reS54YdO7Zz7tw5fN/nySefYs/evUyMjaOVx+jIKMYYkjhFKcXLL73Epz/1KQ7feQc///d+HqmL7VZrXbw/cNRqNZI4wRlHEJZotztIqfB8Hy8IWF5YwDrL7Owcayur7Ni+g9deP8rk5CRTk5OMDdcRUvL8c8+wfetWRuoV9uzYQW4sWgiWV9fYsXM7DocxhlK5jDOWZrNJs9EaHL4c27ZuQypFGs/z8DveznMvvEgQhExNTVOpVMlzQ6VSpdVso1TC8PAwy0vXeOmF5wjCgPvuuw97IxGxBiUV1jmcK35vGITs3X+AO+++m34c89ijX/lTW3B/7mod3/e5++67efTRR29+zlrLo48+ytve9rb/pseyGqSvwRhMkoAUOCUwztBptYibTbJuDxA4IRBIcII8TnGpRUsP5XlI7aEDH2VBqUEABT6pyfC0BudIej2CUhnlB0ilMP0+4LDOIiwQF0mHSTPSVg/pJNIVv8/dOI1LRVSq4IchKiyhvQCpNb4fIJzExBlZtw8WsiQj6yVYa0nJ0EMlDBaLRUYBUnvYrEh6sn6GSXPiXkyapOQIXBhgAsXFtSadfoZQGut7iKlhcgSmneLrECUCwuowwjhcp42Oe4g8p1gdJSAJSmWSNCfP8mLj9TzQRTXASYfJM/I4Q0qB8jVpmmGy4gRrjUWVolsWB5dOn+Tll5+j2WuyfPEsv/fL/5z/8i/+Vy4efRUtFGFUQiuPI1/9Gh/7zY9w+YUvol1GWBqiXKpz5OlneOaJL5H0e2gp0bpYnKWSWGPI45Sk2yft9XFZVmwOKsCpEKs8UD5O+zhVfKA9hPIR0iteHyFBeaADhNQoDV4A0leENR8rPMr1Kvv3Vtixs8b+PXUmR4eZmSuzZ2fIth2WpX6OdYIkt2QOjHE0GmtcPneEK2deJOmsIbWj3zQ8+XSPN15LubbkuLqcs3DVcupURjt26EBSH9Nsv72GChVhpLnz3T/Ar/2nTxONzNJjgo1+lbF9D/P+H3gfe/ZMcXFhlRdfeJnXz1zl8qWrOL9Cq9fh5ddP0ev3kX7A8499gi9/4j+wvHQa6zKsg0ZuUUHA+PQW8jxjY23xlsUARbRSHRoC3lz8i428+BBCoLVHGIYIoNtqcfXKBWpDQ2zdvpuJiWmGanXKUYnb7riPUuRz1wMPcfDgXWRpHyUdQ7Uhev1+cfL0A2zWJcv6tNp9kjRHCHHj1xUfN6/uLWmIcDcPVTfypz+4REu+MVkpiiXFc3jrzzpn8D3N5OQWbr/9Lman5vCkoBSWGBoaJknbHDtxhGee/Qqf/MRv8YlPfYz3vOedPP3U17h6+QrCCbIsQ+Co1eooHRQJHI48zzh78nXe/Z6386EPfw+e54OzNJeuYq1kZm6Mnbt2MDszT602guf75Lnj2vUGzhqkpxkeHicq1zFOIqSk1VjG5vktiwM3KJNFpRLaK9bx0bFx4jjGuSIu7r3/Pn7kR3+EvXv3AI7PfOaz/PZv/w5T09N42kMphed5KKHodrts276NKPR5xzvfzvz8HFJqtm/bRpqmVMoVlpeWCMKQdqcNQJKkxcE4jhkeHqZarsBgk7759+A+SiHAOdbW1qjX6xhj8T0PpSQ2N3z5S1+h2WyxvtFgz549nDx+kiiKWN9oMTU5xdjoKLNbtrBj504C32PHrh10egkvvHAEzw8olctEvo+zjpnp6cHvg0q1yvDoKLnJKUUR5VKZ+nCdnTt3ct+DD/DKa29Qrw/j+wFxv49SRSchzYpD8/DwMMePvc5jX/0yGxsbzMzMsrq6SpykxUFbysFrKNFKs2PnLn70x3+Ct7/7PVgrSJP0m7qf35a2zi/8wi/wkz/5k9xzzz3cd999/NIv/RLdbpef/umf/m96HIHDZTlJs4Nfr6LLESY3mDxHOoEnNVk/RigfL/AwcYK0DucsOgwRnofWIfgexhrCKCTr9RE4kn6PLEnQno/SGqk8tB+QC0ueZ9g8J24aXJaQ9TrYNB20AjzCcgVhFVIorHEo3wcSjCnKzNYJ/DAEO8gsc4s1FuF7yMhDeB5OCoS1SOXj0h795gae0kihcU4BDiclFjDGgisCPjcZrU6PS601IlmlG0icceRY/JEqNs4RsUGjikQus0TlKmmni5YShMAqh0scuCL5EVrjco0qRZgkReDwnMAasKnFOYtSEofFmmywiSusEsVKq/7oDPlbEQdje9/JtaUFGitrjO0cgvYSvlYMV4pKlDE5zmRIAeMjPso60riDVUMsX7tKp9GgPj5OlsSEpRIMEspBvwYpQQoJwqGUBFFUjhwgBq+5GJzUBzUW3OA04pDFfaRYjxzgcnBOIpTC4NHrJTzzwhK91LB33uPKkuW+2xwBjo22YXk9Z2RmgjvfG2LzBKeKJCdNLbX6CNLkKDK2z1qcVEzMVOg3mgzVHbIUMrJlO6eOnKV1LkUaSakWsGvfCIuXe4Qln15qSNoZzz95nHz0IMHsbuq79/PaQsyRs218z6Nx5Qy1akS1GlJ6dY2Lx45z6vQZgkAwMbOT6V2HmT7+PK8++wTNRhOHYHRyiq3bdjA1Ocx9DzxMtTZ6y2LgBnwvQCAolSv0e11MnhcVLCGKCpcQhGFIksSAYPH6VY4ei9izZz/HX3uVoXqd69cXWLh6hS9/+QX2HtzP7r37ieM+fZMzOj7D0NAwq+tLBF2NrzVxr49zjlY7oRR63OwjOTF4S/4JDZ2blbYCxliazc7NShw4hkeGisSEIq+5kbUIwFlHqVrjr/3176HR6PD88xc4eeINnnzqS8Rxn6XrF+n1u2R5inOORx75HtbXV7CZQ0lJmsW02y20VmR5Sq/fQKniOdRqdb77ez7IvW97kE6zwc5d+8nyHuVamahWo9+9hiVlenYaz1esrHVZXGrhhWW++PlPcX3xOnmW4YchWZaQJT0Qgj9OHPqtiIMbJ/HMZFhrUbJIvua2bGFpeQWpFDt27aQ2VOU973o3V68t4HsevW6P64uLVKsVpJBFYisF1uYcP3qU3bu2E5XK3HnnHczOzXHk5ZdJkgStFMvLK2zdvpUDB/azvLLMrl27qFbKTE9PUSqXuefeezh+4hhpmhJ5Gga5CQiELCr06+vrjE9MYKzl4Ycf4vHHH2d2yxY8rRkerpOlCTt27WRmeoqXXj5Cv9NmcnoK6ywmyQmjkLc9+BBJklGuVDl/7hzrX/wSB/bvp58mNDY2QAimp6dZ39ggzXIuXbpIGASMT4zT7XbYvmM73X6fM8fPMT09Q5ZlNJsNer0euTH0+n3iOMFag3Nw8cJ5jMmx1jE/v5WFhQWsMRhj8H0fEExOz3DHXXczOjZOGEV02h263TYvvfDcN3U/vy3JyY/+6I+ysrLCP/pH/4jFxUXuvPNOvvjFL/4hQtSfBuEg7/YRUqD8YkO3vRgnBMY6yA3OGJyy5CZDakHWSfFLEV4pIipVkU7Qz2OkdVhjsbktNlSpcBaUFxSVgkCTOlO0j/p9dBiQpwX3IEtjTBxjnEOTU56cglSg/RCSPrkw5M5itSgWGOcw1uKMxWYZWnkY4fCG62TS4PJiI7SuqPY4W5xusm4PrSVBuUSWx0gri1aQ1AghyTOL1BIbSH7jic8SDtXo9WLSbo5fC0EpbC/Hlx4my1HKR0kfYxzK94pWg/awJsVkBukrkJLE5DghcAgQCqE0uTWIIETqgluCcQgncJmB3IKnkJ5Cao2Ns1sWB7Pb9xB3v5f1059ly6HDTO+eh17M2MQoMgjACYSQfOD7fxAnUsj7iKAoX/fbHXQUMjw+SZIm1ETRrhMIhLNIbMFLEkVbquDRmKIKJxhU4gYnICi4NoPF14mi8vSNi/Fgk7QOpQzWJFSGSvzID+3iwokT1Op1pOzy9vdXmSl3OHfBsrFi6RPi+T7CC6lU60ilGZ2aZmp6G1IoVs+/gJaSqK6Y3Hc7106ch2SdUimDeJXRYYhKsNF2LF7t8vnPd+n3QEc5b7xxguHJWZLh/QzvfDvR1AS6XCKWjnu/70fJOk0e/4/HaAtNRkQ/t2TeEGEUURuqkHRbmLRHmsQ015fIcgPOkiZ9rl+7TJr26XR79GJzy2LgBpQqTv3lcoUsTYqkHTeopPikaUK73brZInHGcfHcaaJKjW2793P66Ms4B2fPnGLXnv2MNWbxwoj/7Z/9I37/E5/mC1/9Gu95/yOMDE9w9cI5lhavsHXbNtIsZ32jzfR4ZdBm5mZ142Z6coMzcjMU3CCBcQiKTbvV6vHJzz8zWPQtw8M1fuh73l5Ub9/ywzfaPZ24z8K16/zyr/w6V69cpDo0Ta/dZ23lOs4Vipcsy4oWs+dz5uQxpubm2bFzDy88U6K/3qJUHUKKor2cJjFaGcKojDEpe/fu5eyZK+zfO8XBO/bxid/7Lfbc8QDaD1hZ7HP0tWOcO/Ui23fs5fLCCs12l6ce/xRPPPZ5rCnud5b1B1nVjb/+6OTkWxEHQhTP+Quf+yLNZoux8TE8z+OVV17FOItwlhMnjrFv3z7e/f738uLzL3Dn4cMk/T4vvPACzWaTofpQwS3UHg44fNdhpqam+cQnP81DD72Ntz/8EBfOnuXs+Qt0u11ef/U1/t2//TXedv/9PPf887z3ve9l6/btrK6tEQQhi8srXLl6jSzNKJUFDNrBBf9JIBCkccLu3bu5unCdvfv28LUnnqDT6TA+Ps7OXTtJs6JFlRvH6VNnOHTbIZaXVzCuiPlrC9fYs3sXJrfEWcbs/FYunD3Lk08+RaVaGSQaLaIootFo0Ov1KZdLaK0YGqrxgQ99kOWVVdbW1pmb24Jz0I/7xeHaOrIsIwwjJiYmuHj+Aq1Wg36/h7VFwj8yOsbRo8ew1hKEAfv3H+Tw3fcQhCF5bsjynG6nzQvPPsOZ0yf/2Bj4g/i2EWJ/7ud+jp/7uZ/7Mz2GKHloAboUYqRAlkKsdbg0w/YSlFcEmDNFwmGEQ0YaFICjv76Ow4DS5HmOlOomgVUGHmF1COl5CK2Jex187WN6/SLzVRpPSawsNmKhfbA5BIJma4UoqJNhcVohPAdOIZQAKxCu2NScyRFKk+U50vfIbI7NMpT2wBiEMQSBppvleNUiufB9TRSN0W+sk/Y75FlSJFXW4nAFB6CX0LhwjcrWDNPL0aFGVUIym+MFCucEShUlXBxkcUzg62LjzA1OKPyhOlJrTLxWkJmEQJVK5CJGhSWcVIjAJ096FBUGgbIKkxtsmqM8H5NbGJB9b1Uc9Bde5I53fB+PXnmNT3/tKIfuugujq6g1yUi3TyvrknYauKiO8hRJv8X1tR5Sxqw2WrRb66wuXuO5p7/G9/zQjxV8IOEQwhZEVwq+Au7GGVii5I1zbcHBMc4Wraw8Q6uienbjVHSDEwWAs3jKYo0DWRBRsYZKfS+zu3zGp3xye5JO0mOh49EXjrwiiQiKx7IW6wTOJkXlrtcmNYbcmaICVspJk4tMTkMQRfS7mtwfRq2uYAzkpuDRNDqCbjdjZtcdXF2U5BMPMb71DnYfnOfyyefxq3cjtaafGnrraxy64yCT05NUxyfQyuPCyYirZ9/AWMvVC2fp9JtcPn+eOE2Rg15za2ODuNOhWhpjdXmVg3e8nReff+yWxAAUnAylitgOwqhooSmH1oo0TcjJitgcVCHcjaC0jhOvvcz97/kwo+PTXLt0nub6Cp//1O+BBSsUteEye/bs4CuPfY1Hv/wZtmzZygce+RCXLpxkZGSYIAzxPe9mxeRmBe0t1/dme/2t5Y/Be2OQzSgpqZZLZCZHeZqp8bFBSR1upCTOwdHTF1hvNslyQ5bEvPD8y8Rxm/pIl5WlRaTS2DwnCgOMyQiDMnff/Q4mJifxvCpeaZh3P/KDfPL3/yPVcpU8zXAOSqUavhfQbK/jBz6nTl9m/x0H6Sd9jr78Ammvj4kzTBrT6cVYR7GGILh+fYHHH/08r770OM6Yb+DG3Lz2P2VT+rPGwY0YuHjpEo1mk6HhOlKpmwRiz/P59//+P7B161Z+4Ae+n7vvvYeFhQWqc3PccccdHHnlFYZqQ7Q6bbbNz3N9eZGdu3cxPDLC2uoyTz75FO9///uQUnBt8dqgDaR57ZVX+Ct/5ce4ffkQnU6XC+fPcfXqVcbGxxgdHWFyYoLc5AMCqXhTPjs4uPSTGKUUjY11Xnz+BbIso9fpspCmHDi4H609rl69ClKxe99elKc5d/48Y2PjBL7PbYf2cc89d/GFLz/KlcsLlKKIWn2I4dFRTp86TakU0e12Wbi2gLOOarVKqVSiXC5x1z1389rrb1AqVRifmKDX6yGFQMriAGasod/vE4UB1UoFz/fotDukaYoQgiAIKFcqZHnO/oOHuP3Ow4xPTiKg2FMdXDxzipeef45+v4vv+2j9zaUd3xFqnT8OJjNoT6H8AJHluNzhJGAdEoHNMpx1oDTWWkRuEVLgbE6c9CiVKvSbTUSa4kURWVy84FnSR2UZVkqCSg00SAd5r1eUaiVYW5SMk14PgoKXYpOCkdxtbBBMVEhthlUFf0VkxRs0jWM8z8P3Q2w/pVQu0++0wBhIU6SSkBr8QdbaX29Av4/VOZ7WxJ0uIsuQkY/yqvh+lWRjHZFanLBYDM4K/EpY8GG0Br/gPujcgdaoMEShYKBAktbgjEVJDQik52GylLTdwTqHF/jkzoAEKQKMkigvIJc5aZZSrhYLXG4MQktM34Ax2NwilMT/o8jM3yLk55+kdOd7uPeRH8ec/wpvPP0cw5Mj5IslRtLL7HzXj9JOffIsRSLwvBAhFFG5gqc0reUFPNNnYuK7MCYZVDok2IFKAlXwRqR8s2JPcQq0WLI0JUmzos8uLEiNRA3K7vZmLV5IARictDjlcNaS5+Bsn69+6uNcWITpCZ+rizGvHofLKzBc0bR7MLelyc8+FGOsIssTlFSsLV8n7bcp1UZIO11WGoKes1T7MUkzQQYZ2hMkdpV+E3CCMBBUhjX75xXdZk44sR0ZvYP5LfOMjcHxF7+GTDuE8xalBMZaVlba9Nb7NNJV6rFPVCpz/tIizjkajXVUUEJlnaL1JxxeWCbuNRHaY3J2BxPz+9nobFCr/dlUOn8anLNFYj4gJpdKFRKdMjo2iskdVy+fewsB7810WQiBs5YjTz/GOz7wvawuX6fTatLvt/jKZz/G/Q8+gjEO4XziTo8Xn/4a17Zu4QPv/wCTs3NcvHCJyclZmkoThtBuNckHpe1t87MEnv4D/JM/fA1v/ZQxOVmakhtzk4x947odBUdhqFahPlbnysWLlGs1UB6t5garq8usNVbJshycpdPp4gS85/3fTymqcO+D7+b6wiWmZ+eJe52iAigDHIJmc51KuUqrtU4YRMT9Hrk1PPn4U3Qaixg8EBpnHRfPn8OkbZwrWpdra2t87lO/x7mzb1BUigSeFyClJE37b3maf2KT68+Mer1OnuWsra3jnCPwQ37/Y58gSwvVZZKlmDznqaeewhjDu9/1ThYXl5nfMsvs3Az9fo/VtVW++muPcei2g7zykVf4/Oc/z1//6Z/mypWrCCH57Gc/y+z8PLVqjY2NJjPTo+R5zukzZxgZGcbzPLqdHt1Ol5WVFSYHSpo0ywbEbN5MTgZqv42NBqdOnaFeH2Ln9u2cPHEcqSTOGowt9qxSqURUirDG0Wo08D0fZy0HDuzlrrvu5Fd+9de4em2RHdt3kOU57WYbz/cLLxElWVvfYHRkFDVQzuzauZ29+/dz7MQpxicmicKI9fV1tNYYY4jCEIA8y+j3Y6qVKlEpxA8KAQfWorVm774D9PopDzz4ML4fUBuqUa/XSdOEtdVVnv7617lw7gzOOaIoKlpm4pujun5HJyd+GCB9RZrE+KUS/V6MksXGILTCpjlaKYSS5J0e2vMRShYbS5wS00VHPtJxk8lsraO5topEFa2bLEZIh0SS9GL8aoRUEpOluNhCkiKkQFhBqEsIFHiW1OUoZXBO0NpYI+338HwfHYRkNsMahQp8VODjm4gsSSAzuNRSCiLibos8S7Fa4wmPrJfghRKdC7K8BzYgqJYxeRfpa1JiXO4wzuGXNE4LpAOkRGmBdAKHvPnGkKJI7tLc4GmNyQ1OCqSnsVkKWYZwDhV4SF/juiki0ggFNjM4k5K4GOlLjAYbm2LpsY4sMfgViU1N0RfVf3RJ/1uCrMPJx3+bw3/pf2FZNJmtvkQnzogvvc4V0eDAI5LS3BbiOEYrRZ70EFLi+SGjYyNs2TpHpVThi7/5Lzny8f8fcQe+92//I2YPPFhkIVIOqiBFi6aoohR/mywljROMdXied/PNhy2erxAOZ288d4VwRdIspVcQD03BZdp/W8j+w47RyWnSuMe27WB6fc6cSTC5IMkrhfxdFi0krTRCOLwgQmtNdShkvO4Ym6viwjn6doXK8DRLly7i1SZJdAnECoicODaMjwRMT4bYfQepTd1FZ/ECq+eu4HkRQ0NljBVkaQ5CIpVGAaVShMZh+i0Wz58mThJKZZ8wKtHp66J14sBkMQjB1MwO9t/9Pswg6R0bH7t1MTCAtRYoXqMg8OnHXTytKJVLBEFImia4G603J27ygECQ9nu8+NSj7Nq5D9KEtZUlhscn6Pe6PPvM6yjhMzU9x/Vrl9BCYrFsmd/Gk1/7CsJ5NNZbNFbWePW1I0gF+/cfYMvMNMJ7a93wj9ma35K8CFGU6qW6QeodfO0tCcxGY4PMWWTg4wc+3/fd7+Py5av81u99gqnJaX7g+z/MpYsLvHDkVaLAI/BKKCFpbqzTbTS4cvokiwsXEM6RWcvlS6dJ+m1yWxCvrTFUKzXmt21hqNnh+CtLVOt1HnrHOxmqlzl/7gKLi5dZvnaBKCzT7bQ4e/JlJma3UQpDzp1+A60lWvvfkJzcatSH63TbHfI8R3seGxvrtFpNsrxobX3xi18quChC0O10aLVb3H7bQfIsY+euXWRxQrVSYXJinNNnztKP44I4LAQ/9RM/wWc++1l+57d/l7e/6508+ODb+OpXHiXLUnCOr37py9xzz2HKlQp5nrF161YqlQrdXo92p0M/7hfcIVlwTZyzN1jNLC0usrq6yuyWLYxNTaA9j4nJSeI45oXnnqPd6vD2d7yDyxcucNc9d+PpSVaWV5nbMseh2w7wkY/8Di+/9DIHDt1OtVrF8zRjoyOUKxFnTp3m8uUr7Nm7F2cNy0tL7Nu3ly3btrPR7jIyMkIYRlhTKG2sNVhjSZKUPM9ptdvEcR87SHYvXbzE2toaE1PTHDh0O7VanWargdaaqBQyPTVBmqY8+9STHHnpRbTW+EGANYZSqYyQgjz/5vaD7+jkJDcZXg5CSpJ+QWR1g6avTTJclkMYkHdibJojSyXQCmcMQbmMikJskhT8Ck+TWYvWPn5UxlmDzXOSRhuhe3i+V5QrpcJkOTZNcbYo62vpocKilO9HZWKT4qQgdSlCOHJysjTGZgkmz/CiEsoXhJUKzlrCUgVnHXHSoVIZIot75HmO8wNUFGH6HfzARzhJEJbwXU4/7ZF0+whlEFKiQ5+0m6GlQjiBh8I2ElwnxwqJX/VxsiCoOixZ7nB5jqc9bG4oyq4FodWkOTYtWPVRKSJPc2Tkk2sQWaEZwqSIAT3e5RaXWaTWZHFcVAwA5XtQ8sHeuhg4s9RlxJ7j3MtfZdveQ8yWzzG1/300nvh1nj9xilc//Z+560f+TiEbFw4tRSFtNglLyyt84Utfpxr5fPAd+2ialOZ6xr4zZ5k/+BAGi7PpQCUhkM7eWE/A2aKFU4qwzqK0h/I0Ns8weYIwhdpHKIWQsuClCIsTDutACIuSCcYZTp105FlCmjboOcnP/t15JqZHudZYp3ktxg8d0iW4NEWqACENQSmiMjQGNkdYQdoD4wx53mBoVlMfG0HmKwTz21m9BpXrHTp5gjEx6+sdtATdzVg69jIi7RMOlRivBoxOz3E5k0ipSbOczA6k0XmCJx3V4XHCUhmTx8xtPYBSmjzLsCZDeR612jAbGyuEpQpKCYKwQpL06bQbty4IBvfkBs8hSRM8rRHOUa0NkWaG0ckpXJ7T3Nig22vDzbViUG1B0lxb5aI+z6H9t9FpNui0m1y6fBr9gqJaDojKEQcP3YUOCh7DwYP7WV1cZMvMDrZt30a1FLF75y6yNGZudgu+8ooEdUCahm8UFH8DBsoNh0DpIjnRN6ou4i1tKAEvv/QK6532wCMp48DBrbSaa6xcv8yh2w5yz/338cLLv06pXOEv/7WfYn2xRdyPqVRrMDVNrTZCP+/ieSGtjRWGKmVKpTq9Xq/YbClOzHEvxvNCDt51N1/50mdYuHKG+2LD9NxOTh1/kSTpDPg7kqm5Hfzs//SPefXpr3P+zBsFH3DwWOLG80O8tb/1LcdQdYgwCNkyN89f/5t/nQvnL/Arv/qr9Ho9KtUKnta0Wi2sc6yvr7OyssrQUJ1t8/MsLi5y4PZDdBstarUaU5MTBAPVzeraKvPbtvGOhx7m608/xdnTZ/mrf+WvcOXSZXCClbVVPvjhD7OyvEir1WLbjh2sr23g+4rVlVXSJGNtbZ2dO3cWiacomG0MuEZRGDA+Psb+/ftpNjbIspy11VU2Nja4++7D5JnBWsuFC+f44R/5IR577Aluu+0g45Pj/J+/9h/pdrtEUcTo6Ai+5zE8Mszs3AzPPP0sTzzxJPPzW5mZnaO5scbMzDS5MZy7cInt27cVhyRrEUJgjKHb7WGtxQ8CSlHE4rXrN9U6jY0NBI65LfPMzM5hjSHNUlxRZqZcinj26Sd5/vnnabealKISnufR6/XxvEIpp7S+eYj40/AdnZzQy0lthjdUBuswnbiQFmtdJBKDN4KJE4KhCsJTYIosWiiQxuAQ6FJYqCfSHKNAlSOEpUhAhMQLA5yAIAqQvkdBGPHJkxipBVY4sqQPgiLBkQXxNCsZZDnEG68jSz6m0cFYg4v7+GG5OFU6h9UCGYSUA49+mpBpgQuLcq3TkixP8IIAk6ZkUiJViBMG4cuBX4rC+nqQpHiAwLc+7dV1TGKIqiFCK5yziIGUWkmN0qoIFCvQnkb6HkmnhxYKlLpJ3LVYsriPqkTkaYqqlslabTAWVY4w/QxyS+YyrHBoXxfmO4GPqpbIVlu3LASWeobhqM6lV75G1lmiHCxx+H0TVO9/G+XxgC998av0dZ3Dj3wPKIkanEZxGaEHH/rAOxgfrpOunuS2nREbZYHCoQdSVGstzt6QP9qbm4yQekBktEhjcXmCsYWKC5ff1PhL6RCuSE5snpBlFk87jJCoQFKqjHHHA7s498YRxsY1R0/HfOaTl2leM8QWGhs5e/dWuDdroSyYLCHXPqXSNkrVOmmviacFygOb5ozMVWitXMVNtQjHp1jqDxGO30mmlknSLp4vsM5gchgZHWdt0Wdyeohuv8GWPbs5vuwQukjzS6F/k6xZKkeFWsnlhJV6IXFPExAWzw+Iogrz2/dQqY/ROLLG2Mx2okoVLQV5ltLeWL1lMVCgkPUjII5jauU6INFegM0LKanUirBUwvM0zWZzcHodbBIU1ZTV5etcqlbZuX0Xr7/yHIzC5SvnMXGCFY7v+6G/QqlU4Tf/07/lMx//Le44dHfRm3cO7Xk3lR6e0kVL74ZaiyIF+gbqyVuu/QZfLDdm0DbMC3UEjiw3qIH3kpAFD8AN/GU2Vtf4hf/hH7K6tob2A86dvcDf+pt/l16vw8Hb7uK5Z17iQx/6LjrNVkEK9RSlWo1KeYhqdRwtLZNz2zh+/BW63Q7CFd5QvV6HIy+9ysz8VqpljcAihaJUrrC6vkoc9/A8n7jfRwjHnQ+8j7m5rZwqVYr2BQJrDd/AsaGoCt0qlMtlri9ep7KlyuzsDLt37yRLYj7xqU+zuLTEo48+OuBKFAoZIQT9Xo+TJ48xXB+m2Wzy9ocfYvjqAsuLS9x7z70cPX4UYywf+a3f4qf+2k9wbWmRifEJmp0OD7/zXbSaTT75iY/zyU9+El8rTp46jRzYUUxNjBfrqxBcvHiB++679+ZBR7g3eTi5tXR7PS5fukieF5L0KAhwQzW+5/u/jy9/4Ys8/eTXSdOUJ772JLWhGnv27uE//cZ/od3pMDwywvraGuVymfn5OeojdR5/7AleO/IKk+MTDA8Ps2XLLPv27eZLX/oytaE6ExMTBWcpy+nZopqY5zme5xWtfKVwFKMFnLWYQTVqbHyMa1cXBmtbwU3xA49du/dw/vRpXnzheQLfJw8j0iylVCrh+UUHo1qrgRB02u1v6n5+Rycn3ugwebuDywcKkdwWhldJYbCGK8rqwpcYm+EZRdrqUapVyfopzqXY3JApSVArIzwfz48QUhamY76P9j1MlmHSBOF72CynWNMK58M8SxHSon0f7fsYBGm/j0kS1MCZROQBLnME9SFyZxC5xZkcp3KsULg8xymFCULy0AdrEbkB4/BDHxMMkQiHMxLtJDI1uCBEachtQtZpQ2bQJR9nLFLIwmfEgfY9VOhjJYDDZhZf64JjIjyUVjhXLIxJp4fLDRkGKRQCQZ7lWJFDv1DwYOyADKzppzEyd5gkQ8OgxGlv9vGVH+Di4mR/q2CRBKUK5fo05157moMP7UFhuXD2Mnceuou/OrOfTjBZnEBVsTlkcR9PpiiXc+HEMS5JzbBtcM+dbyO+dAZT8NZw1hUfrjiRO2cKbpEDKW2h6HIW5wbJi7EIm1JsQ8XGJAUoTw8IZgWXRQPCacgh6ee0kzZoicIwOe5zx+11etu6VEa20Vg8zXA1RKgQEdTQpoi9XmuDfmWJIKgUBF4lyG3K+rXz2CxlaXmK516/jfMNzdiMouWOstZbhb7k6VMKJ+CDfUsYKsr1Es0s5VzLo5f0iCjun3OCLE5J04w4TpBeSq/TodtcxznD6WNHmJyYQYiCNB5IQdYrHCKbK1eYnpvH2OJEtr56i6fLOgaVzOL1KQ8NMZwn9Lp9ylGAAJRURKWIwK8jhGCjsf6mOcaAuCyc4NKFs0RhmZ27D3L61EniPGd6cpYoKlOvDzM8NsHE+DhPP/kKBw7eSbVWQUuB7/ucuXCWlfUVltY2OHP2FKVamempCR68ez9Svvk+cN/wlhCDuCpsChwSpQSNjTbdTsrrx09THRpi7+4tRKG8Kd3XWoNQXLm+SJqmzG7fSWN9jZUL1xgaGsbzfLZv28LG2noRk4PndvnCedqdHtXhGWxmkapYB24Qc4vWoWJ4ZJR6fQglUiam58iShLMnjw+4Kpo87w44VQ5sihRQG6owNDzJ7Nw2Vpeusrh09eYhUSpFnv/Ryr1vBSanpnj9jTeYmZocGFoqtm6fZ++eXZTLZQ4duo2vfvUrrG9sECcxWZYyMzdLY3WF9WYTm6RcW7jKwpUrzG/dyv3338/S0iJTE5M01ldJ04QtW7ewd+8+uv2YjY11JiamGB6uc+Hc+ZtqoV6/D0Lwgfe/v6hWAXE/Ic8y2u0O436AkkWb2BpLq9VkeXGRxsYGUamE73nMbpljfGKMpdUVev0eW7bMs7qyxpUrV7jrnrv53d/7OFJKRkdH0Z5HqVRibGwU7Wk++YlPE/cTpmdmiPs9DhzcR314mGeeeppet8fo6BhxHGPX1kEIwjDA05ogDEnT4j3ed+B5HlluiOOE3BjKpRLj42MsXrtOnqfUR0ZvmuG1Wy2klIRBiJCSKIrwcq/wO0kzHMWhIYqib5p39B2dnGQmQVZ8VBAg22nhUeJJhBlsmGFQmJaFAXmSYIRCez7OuOKEYAufFKEV0hYLsgw1lgQlBXk/LYzdcMS9Ll4eFkoaIE/Swv/E9xFOkHZjsAKrZbEp+R4gcbHB0xIngqI94nsIH/LU4pI++BFaaUyakZkUkhSMQw9VsL4ldgkuCNBKYnKF7cWYJEYGCpREKI0SijxL0JFftFisJen2EFojtSwM26wlSzN8UZjDWQNKyuLzeYYfBMXi6Q/Kbkbgab+ohlgK5UKSo6RAApktxgDYXoKwtlDmCIdJs2KRy0FYD9d15PGto8EZa+l1Guioyvj0dpaaXZRwXLy8zKEf+nnmx0exWUKWxggKYrPnZ2ibEQQ1xkqWUug4dPBBPvTT/4L/8i/+LvYt6ohBv2CQgNhiL7MOa5PiGCsUQipwFmdShLM3PSpADGLMYKWEgVNslls8L0MCvfVVFhZazExJAgWjZeg01mhe63LmaJOgIpAzgmhoikxEIECrgCAKC36AkCjlITyQ2kNRWMb3/YexpQ7vv3+GXfvn+dpXGuy84y5cZui2Voj7MUFYp6XrJLUtaM/Qaza4/PKX2bL/HobG58hs8foWqiVQWuGHAV5QQimf/Xfcw8yew5SqQ7S/9DF0oFlbuobDsbZ8lRee+CS7dt8FSLrt5i2LARicQQdhVnhcSPq9Hlt2juLJgqgulEYag9YeU7NzGGNotZvcMLm/qbKxjjOnj3H48P1MTU3Rbm7QbDUwSM6dOkd9bQMnPaTUnD7+Og/c83YCHRIGAdu37WB1kAxcvb6MW5RcurrEwb3bGK6V/tB13yRYI256NBWVqACH45kX3uDl148zPD7F2MQU86WAfq9HP83w/FJRCbCOaqnM6tVLRbXK89ix5xD7Dt7JUH2K5kYTIQVTMzNcvXyG55/5GtNz28GFpHkfKRm0lIqEtEjwJLmAxaVVPG0YnZwht475bXt47dWXabfWuZFr3aiNWGtptTpYa/mhH/8Zzhw/yu/8518F4QZ8Bnuz5XsrUCpF1KpVvu/7v5ddu3axuHiddqtFfdDm+LG/+hOUyyV+67d+mzRLifsxn/vs53j7ww8yEkUsLa1QHxkmDAK6nR79JCEzGUHo8953v5urV65w9Ogx7jp8mOtLy5w5c4bV1XXmtswzMTnF5UuXClUNUIpC1jbWOXjoEKurqwhgaWmZL3/lq9x7373cd999g2pFkaxt31440e7cuYvXX34FgMXri1y5eoXLl69y9z33FMqcO+/g9deP4Qc+1WoVZy3WGmZmZuh2O7z4wkuFAVupUH5t37GNlbU1kiSlVCpTKpWw1g0qNJIgCIiiElIK+r0+dqB4CoOQJI5BFEMW4zhGKkma5VSqJbodx8b6BiOjYwS+x1BtiKXri3Q6XWpDNbI8Z2R4mDhJqFarZGlGGIZEpRJxHH9T9/M7OjmxuUFGAWmjg41TVOBhpcClBpvlyEoEUmGSDOUEaT/BC/wiY40LMqP2PfxySG4tUmpaa+tF+8M6lK9xvsYFHjpPSRst/HKp4BJIiY4iXJqR9ftFL02LYsZPnOLyHBmGeF6IyUEKVRiaSUluM6R0eNojMwZfB8WJux9j4j66VCFJY4xnCz91J7C+LE4eJQ3lKg6J7fQhtbgMjBVICTrwsHGOQmGEKaR+BlxskLlF6MJBVwp5k9yphCh4IVYUPdFBD9FZi7MF8TKaHyHtdMg6XawU2LgoL9i4sGLXWg96jxaTZ+ArXAZKhgThrSvlOgDp0VlfZOf+u2m3LtGNY/pxzO9+5NcR0sMTjoka7N67n8vHnyfpdNh/zzvwKiFvu2OcqDZcsOI9zfjctsGJVBaP7nJwKcJlgCus7W94oCMBPegfOwSGm1WTGwoLm2EsSCUwWVKcNJUEr5DaBaWQcq3MekuCFqR9h18ybKQ+fk2y3MmpEZFZSPIY6wxKpeTCFRL3ZJU4jkliyBIDQU6WKyam4MOH7kX6ITPbd3KXGmbf9iFCrfG7p7GZ5JmLGcvtOmttQxK3WL1wnMbpF9ly4G5yitNx4WY88FkRgjAICUsVpPLYftsD1Ke2IrFoXxXGVH6Ec5ZmYw2c5cDBe7EuR8tbqdO4qcoEHCYvKnhBGOKFESbtFndFSIw1ZM5S9jxm5rbQP9sne8tpXgweLE9Tjrz0NLv3HqRUHsIPAoaGhxmfnsBaRZYk5HnGwvUrvPLKEfbvvo3qUIW9e/dz9MRJ+mlKGISFMk9rVhs9RoYibvievLVwciMXtrZwVfY9hackfuRx9dpVWu0GflTj2edf5/xoQLufU6qU6XY75Caj02uTNRPyLCXsdTl810O89wPfS6PRQHkefjkiTzJefvE5mo0mldoIUsKVS0fZe+g2MuPo93uDylPhrSSkJE36XDx3lqOvPMXl86dQSvFjP/4TRFGZj108OWjbFM61QVQizwuFkdQ+j33pM5w68QZOFC5zxti3KKpuDbrdHm9/+CEO330XpVKZKApRUrB4bYnbD+1Ha8V9993L6VOnuba4yPTUJO1Wh6NvvMH45BQ7ts2TpSkXL1/i4G13YKXktddewRhDnFvmRobptFpkaYo1lsO33U5mDKfaTfbs3cv8/Dxf/MIXyPKMkeFhzp45y/d+3/czPjF207XY5Bkb6xs3msMAzG2ZY2lxlaF6jTAKGR4Z4bnnniNNM0qliNwYhupD3HX4MMfPnMcPAyqVMrVKmYmJCXrdHl/9yldotdp4no8UML91K9ValdffeINarcbY1uL7hJSkWUq1VqVWGyoI/KK4P37go5RCK02/H1MfHi72QiBNUjrtNkmaYBGMT07iBz5aatI0xfM8At+jVC6jtS7EB3lBslVKgV8kr3E/JiqXv6n7+Z2dnPQSknaPAE3a6RWl8TDAmhypJWm3jxNFOdEJgVSKJE4IqgG5tcXGphUyjIhqdexA2pnnGUJLsl6PqFIhXm9CbtCBj0TS77TwyhGddpsgiojqQ6S9Hk5phFD4UYms10daUVQtEkOe9wdVk5AkzdFCFXwXqYizHCscTmmcVFghSbpdVEkXAwqtg8oQJs2QoU+fojXkO4PzAsKRCbxaiul1EFlhNuRSRx6niLJG+Zp8UG43RhQeHlJhyAv/DuuweY60jixNUVIV9u0Ccmvw/TKyVsWYFKlEkchFheFUljSRWiE8H19rpM7pJRuoMMIpDxdWEEN/+MT4rcKNHu4NDoR2cOnCRWZ37ufEagMRBPTWV3j05RfYNjPCuw4NkS2vke3eSRJX+c9fOE0l8lHAC69+GJH0+MGf2kFm0mIGziAxKU6VFulskbMAxZ/2LYQ/d/PjrWtwkacorMnJEnDKFnwjX1CqljHrFSgJJkeqfO3Jc9TrOWcWYdt8mSxzlLUij7tkRmAsaN8SqWHqI3NkcQftKSojUJ4sk6Qlrix3GVchX3/iNe59+G6+9twlxqfqLPclkVbMS0G32yXOAuLWGq7f4Pnf/9dsvfOD3PeuR6A6MpCZD8i8nkcQFJUBcISlEJMnNJYWqEVDRMN1lNT0mstkg56YUh55FoO1AzLwrU1OBKJQSbmiHZemKU5AKfJpJ22EAK0kfhQNeCCFXLpSrdFqNjE3+BE3dOIU7agzp49z8LZ7SHo9rlw8xaVLh7j99vt52wPv4thrL7L/0F1UylUuXbiMHwZMTo4SBB5xHBOGEd1ur5DSC4kELN845O8tORXWWnJjSdIMoRTS12TGkcQpa6srXF+4yNYtUxw7eYL9e/cQlcp4Xki1VsdZS6e9zs69e/nQ9/4wgV8iKg/hRxHXr6zQajQ4e/oYUvvs2nsYnOPsyTdQnod1BqGKWUhiwMFJk4THv/gprl1foF4rMzI2QbfT5cr5U/S7Gzft2EFgXcFNyIzl2sI1er0Oz3z9q4Vb9I03wq29/UCR7D/4wP0sLi3RaDZI0wQpJdvm53jf+97HUK1KEIWEUcTM9BS7du/mu7/7u/ncpz/Dr/y7/5Of//m/Q7fbo91s88pLL3Hl2nVyU5BR036PTrvDxOQEQRhQCn063R65yREIzp87RxhFSKVob2yw0WhQLpXpdLukSUqpXELpYn/YWFsrVFm68ASK+zFnz5xh69YtrK83WFxeYmRkFKUVURgQBCEjI2McP3mazDrqtQpbt22lsdHkpZdeptvpYoxlZHSYwNfMzk2z0Wxx8sQpAj+kPlRHKUUQFcly4YJb8A2VKloxw8N1+r0+G40Nhup1pqYier0ely9dZmlxiSCM2Gg0uH59kUqpRJ4XRoGVcgU5sFkolUoEvk+5XCFNU4w1BEHAbbfdTqPZZGRkGJCsb2x8U/fzOzo5EVqBNSSdfsExERQl9LwooxezUjxQEmdy8izFUx55bvCiAOdJhOcVXAonC5lx6BN5JYRQ9JuOpNcFB0m7S9btEo2NYAVYkyP8gCzuY5IUrTQutShlkb6PrhQ3P4sTRO5waUpmMgQ5Xjki7hSStzCoEiOQSKzJkF5Av9uCksSWApzzMN0eIvGRQmAabXwg06ogANq8mNuCRKKRCpwwYEDYweM6ixQU7QdT9Dn9yAfjCjIthoGEpBhIpQTGWIy0yEqAHq7R6/fJ4v6gQlVG+gG210UKiRUCkxmUkCghiWpDeGEJOTRGrspk4tZVToQs2O/SCxBYTpw4zYHts0xt34ZbfY2aXyKqj+GFY7j6ToJtt7GevoEuVZmo1fl7PzWP72/jdz7yFLPDba4u9FlvNTh54Rr75keKw40sFGACUfiduDc9G4R7065+cEUAhZlb8UPIQcVM4Ag9g1QO35NoXyGcZWq0RhqnuF6Lew5U2DopKQWO8bEyi7U2lagot0upyPPCq8HYjMwU5ngISBjlKyceYvXqCY6dXWP+/ibLFy+T3HMHGWCzlJPPnWbj2gKuscZjj7/EzH0HaC1fwA+r7Dh4D+OzM1w6/Spbt4WgveJ1VcX99aMQoTS+5+FpjecFZFmC0BbP18XQsNRxfeFMQaTOk0H1LUcJhb6FRMjiZS98WW5YfTkcvW6blcVrQEFq7nWaJIMJ5XqkTpoaPD9Aex4YUVT8bqJIVPIs49SJ1zmw/056nTatZoPl60uUq0OMT82Tp9lAttpgZWUJP/SJ4x5hqYTJMyqVaiGfvCEv502+SRFHg8hxYJ3D5DlJzKDappmYmiKzkiiIuHjxDLt2bacUeUSlMmvNJtt37+b7fvC7uXD+Ks89+wz33v8go2PjWGNZW99ASMHnP/7bjE3MMDWzhbgfMzG9nWtXzg5ko0XVTDCY+4IrqhzWEPe6/ORP/Q2uLVzhs5/+XTCWX/u3vzJwQi6S9CL8HFcvX6Td6tNutcjyDDEwmHtrReuWw1nm5uf48he+xFcfe4y9e3dz6NB+Dtx+kF379tLvdHjtpZe5du0a3W6XV199jQ9/14d53yPv58qVqywvL/Jf/+vvMTs9y7ve9TBcvcbrr7/GysoqQRgwXK/TbDQZGhqiVGkwPTVNq9Xk6qXLXDxzgR07d1IulRneNcyFixeo12rYPOO22w4SlaLB+ITgZmtcKYU1ligqsWvnTjY2GuzevZtqtcJ4qcypUyd55AM/jKc0zz/7PFMzM+y/7QC+F3DuzFleffV1oiiiFPlopRgdHqI+UufEyVMoqSmXi0OhlJIoDBgZHqZWrRX2EkpSH6pRG6ohECRxgpSC2S1bWFtdZXl5mdXlFWZmZqhUKyAcY2OjpGlWDIfVikajSadbyPV936c+XMcPfIIwuGmtUK/XCUsl/H5h5WFyS+D739Tt/M5OTvLBhlry0eUSJHnB/xAxKDVYBAqpq5IaJw1CaZynSfMYPFW0ZnJb+JkEJSyiIIba4ntJkmJ6sFKE0xO4kWFkLyys3oMQjMX24sLifMBh6Xc7aD8ArTEmw5nCNVRpSZ5k4OmihGsMqZNkUqM8j6BSIu93sXGONQriBFkvIb0yJksR0sP3A/rNFsrTuNzh5w6bG0yc4QkfJ3KE5xdcGk/heRqXD5wJB8PDsjQBW2yuylc31JTF5mcSXD44QfqCHEu3W/TlbWrAakxqMZ0GwuWF9FEUG3YeZ8UMovoYDI1gqpNAHaX+8LCvbxWkvGHyVkxHXtpo8su//lFmJ8c4sHcnfrVCZXSMBz/8A2y9+720jcMfeYiz/TXC7Cqf/MQCLlmk4ixHTiWkcUalPsHiYpO9W6eQysOahCLbM0WrC27uMDfsx2/Ykd+sEAjeMqxNDZKT4sMJhR3oQ7srTY6ezhia9Mh7Mb2mQWtLd8Nno9cliSXjIznWGewNWS+SfqfLyvISY0NVrPK53h+hs7rE1IRhcTkgszk773+Qaphz590z/NO//3EWTl5ly7ZhmqvXaTVy5pXH1n13EkQV+o0FqkMVKu/5IYzw35ycKiTOQiE6KKp9zbUVpNasXbvE/LbdHHvxMTqtJq3Gys3BX/XRUdaWl0FrdBDcUq7BjThgsGEaY8jznFJUptdaAyHJ0hTt+YXfj3U4J8hzi9I+WheztbTnk2cZb801BZI0iTlz9jgH9x/mwvlzTE9vwXRS0iyh3Vjn3PkzTI5uIYlTri0skqbFnKYwKiOAJOn/gUzkTZ7GHxDtkOU5mbFIC0EUEicx166toAKPqBSxurzBq28cZ8fOnayur9JL+myZH2NleRk1sEG4dOkcEoeQAWdOHEfpgG6vzf27P8Di9UtMz26h11odzALz6XZb7Duwn9bqFVrNxk3H0v/xf/6f2bXnAB/9jf+EHbye3X7nplfMjZlSIOi21nEmo1afICoPkScdjHNvUezwB5/ttxwjIyP4gc/axjrtdpsXnn8JkxuSNGVmZpZ6tYYfBmitGR0ZJU9SVpaXWV1dpdPr0O51GB4eZnJqgiOvvkar1QYE/bjPiRMn2bN7N+99z7sYHR3js5/7PI984IOsbayhtOTAoUNMz0xz7PixovVhLcY5nnnmWe67/17G1fggSQjxpEC6Ym6XMcWU5Xa3i5OCAwcO8OqRV1jbKCzit27bxrWFK1ibceDgAUbGp/jUx36fVnMDJSVSQBRF7Nm7m063x/WTS1TKRUIcBgFSCGZnpuh0Oxw7doJSpUIQBExPTxH4fjELR3tMTY1zfXGZxvoG5VKZ2vYaUgqSJCEIAnzPIzYJnucVjuEIypUyS4vXSeI+L7zwHDu2b8fzCoXfjSpcnCQ469DaK5IyT6PeQgz/k/AdnZzILIehEs7XxAtrmF6CGioDxXh0k6SosDAdM3mOyy1WZEgVIqVHlmc4rfCiiDRNCGSALpUxYUieJyBARQE2SfFLVWycIlMDXoCLIiSKxJdEI6O4Th/TL6zcUYIsy4tFL88RYQCej9QSZTJAIIMKWb9N2l7D9yOErGKUJjMZaZqgohKuWiI3FpVkRR/dK6oy0grytSZOCJSV2CTGL1UIfA+T9rG2UOUU/iISpSXSabIsQ0lZeJsYV9j6BwKlNXmaY5zFmKLvLYGsGUNUTG02eYa04IwhvaGAamfFtQBCekgd4qrD2LFp0qE6XlTH71sE3xwB6r8HQkik8PC0wKUJgaeZ2XY7y2vLfOXrL7Bz5jxbJkfZef972bVtGhz0EkvSnaB7bokf+d5H6PfgK5/7HNu31UlaHY6dPM0d9XnarWnq9eGCEIvAuYKH4jA3SQM3e8fiLQvwoJpxo+WE1AOXWYWQg7O9EmQ2xwjFnh0lypHFuJBG2TI+mlKNPBoNhycMzhmkClECchToEKkCIk+ipSCzkp27Z9iydxtGjHD1SpdzZy+x2hDk6xdYuLxAp93m/ndVuPO+ffzq/3oKL4gIg4iNlSts3XcX0ei9dEVI3snxo6IaYJ3FClkMujQF8c4hSNMe/U4DP/Bora9x+fRRTJKTJMW4d2syWo0GN0w6tC7cRW8lrHWsr60MXDhdoRyTEqU0nh8Ws6S0hxxIJRmoiJ0xBEFInmeDieMpWVJ4N9xQ/ggkvV6PM+dPc/89D5H0e9RHhtBK4KTk3NmTjNRnaLRaiE6LpNdkNY0Zn5im2y4qNUUb1RVDJN2bnJObCYqgcK+mSLSU9igPjdPeWAEhaa6tMb5znqtXr9NotOj3EzCGMydP8fN/53HSfpdybZQnvppx/I3nGBke4a5738HlS1fYd/AOOhtrlIOQpN9n8eJ5NtaWkUrSaDYISwEXzp6mG8eoIGC0PowUoHVI0s+IKkOFdFRrtPIJSwHdfh87WMsEkn23PYAXDDExNcPk1CzrK1dpN/o37FtuPtu3trS+1ZiamSYIwsI5XGn6aZ+zZ88xMTHBL/0fv8w73v52XnvjdeIkZn7rPLcfvoPcWF588WVyUyTPxhre/4FHWF9d5t/88r9DSkmeG7Zunefxx7/G2MQYQRgyOTHOlUsXmZmZ4eyZM0xNz/K1xx4nSWI6nQ44x+rKCo1GgzzP2DIzQ6vZot3pEvkKBKysrBJFFarVKhsbG0SlotJQrpR44KEHuf2O21hdW+PatesMDdWZ37adz33mMxzav4fr15dotppsmZ/H8z0ef+wx6sOjjE9M4nkaTylmpqdxOI4fO8FnPvtZ7rrrbua3bkUpSaUUMTY2hnOWXq9P3I/ZvXsXcRzT6/VYXVkhy2JmZ2fxg2Cg3MwweU6a9Dl94QJXLl1ieWmRPCscjW87dBCtNeVymVarhe/7VCsVwiik1+vgex6tdodu75sz5vuOTk7yJMXLApxWqMArTNecxWYG6QQisxA4jAMv9AtlS+APuIwaT3vkOKRzaCRpYwMxOYWNImwqCcMyvlR0lhbR5RDjJxgEWnmQ5WRJF1WKyDDkJodaufA5sBYX9zEWTJ5hG21ia1FRiCqFeH6EDcuINAbXw3gCk6fk5ZA0FNgu5I021CPC4TppnECSFac9ZxF5hnEWLwwxcQpp4TWgRRnnIEsztNJIHNYUpVtn88IjweQ45/AGK0aW5ThZbJRIRW4N3mA6sYOiitKNMVkGmcXzfJSy9NYbKCfQ1Tq5X4GwRlaqIYIIPT6OMsV14hduvLcKQkisA3RAOjDhmpqY5ra77uEzH/soS60u+/dv5diRZ0mkZmp6Dh2W6aWOMHVsmZug03d0MsPXX1xi27jPhY9/AttcYWvdZ+SB92I1OJMVlTEBzt2YkwHgkDerJzevipvuFkKB1KB8EB7OCISVkGvwHTpwmASaWZ0L55dZWMw4aHIunDO8+x1Vhso1+pnA5QmYBBH3yIUkGJ5mqLKtOP3EgtZGxvX2AofvmAalydopf/lHDrF6/jFMukqlNIzWltHJCYbq22k2rxJEQ0xu34k/PE2vnyCExMPh+z7WgTNFO6vbWKO5WiUuVcjSlF63jXOW9aUFRqoTSCXRfkiW9G9armdZEWdJPwEUXvDNkeD+e+FwNJsNEJI8y2m3WviBT24M2hVDNI0p/EGE1CAEShal9WqtRhB49PoxgS6R64AkGRBlxUACLiSddpMz507ytoceolKrs3Xbbk6dOMbU5DbyNGZoaIJGc5VOr4f2cpwwKA/SpEuj1WfhumBueuTNBqC4efGDak1hb26sZbhWZX29gScDdu7czeRohfW1DcrRENNbdzE1NsKTT36RbqeJNQbtBcSdJg2lUEKhpM+1a5cplWtMT88SbNtFWKkyO7uFUqXO4tJFpPIQEq6cP83rLz1Fr7uB70fFdOuJSZQUeL4iiiKiUok07iGEo1ytMj27nbOn3ygqeVIwOjrO1EiA57rkWYc87Q/k6H8O7ZwBtm/bzr69+5iZmS5ImKJYH2q1ITYaTYIg5IXnnifJMhaXFtm6bSs79+yiUquwvbSDNE44dvQYzlriNGdsbJRGY4N+v8873vF2zp89C1KyvLTI+vo6b3/7Ozl/4Rzr6xtMTE5SrpTIs5wDBw6wdX4bpVLEs889x7WFBWrDQyAEnl/wtxCFeqnb7ZGkGVu2zKE8j0q1SmOjweTkJFcXFjj6+uuMjY3heZpL589z+6GDzM7NEkZnOPLKES5eukDo+3haUymXqZRKRFGIMYaLFy9y6dJlfK2plCtMTk2wf98ehofr9PrFIXZkZJgwDGm1W1y5fIXLly5y8uRJjh09SrvV4Uf/6o+zZds2arUage/T3NjgyIvPF68FhZdNwWeJCKOomCEEhYu6KQjQ/X6fLMtpNVusrq0TJ/8PUOuo0CPt9tASqIbo4RI2y9GZQyQ56ga/YrwOlmJCrhDYVh+/XMIrlcEVc2VMmmPiFNtqIsUQfnUIkVqU0ETlUUgSnPDQgUbavDBHirvkzTXc2Agq9DGiIJb6FHN90vXmoJJjwGSQK2yq6acd8shHD0WIiiQPPURqyUqCdGIUO+wjVhvofkwWxKihKmkWAwbre+jMR4SaOPLxehotBUmjh/KLuS4g8bwQKxV5luFpRZ7kKFUofqywxdRmClfNG0mPzfLCxtgV8lgnBcIrGOZKFmoS5QtkalBGICoV+rUR8vFZjFbgBSjPJ5AWhcWWQaUS17mFbR0lMYAnJYHyyJ0rnFut5b69W+mbhGNnF9lodJBjO+i22yyceo1DDz/C1O7dTMzuhdOvgpOM1UNyIRiZGmHn7YdJnGFh+Rpjo+MoXXjIWAygivaMoyDK4gabctHaebOaIhDKR6gAqT2E9vG9gkioZaHq0UGNsdnt+H7C+Eyd5SvrzI01uWu+w/V2TKo1uY2QGJQSeH5OlmZ4posXREVhxhuip+Z59rlHOXzHHLv27eGRd2yneeEJdKnC+PgkUdChXC4G1AkpkDhyQJfH8JQiCEKEZKBak0hPopBIl7Jw4XXSzgJjU/P4QUjaad5sD3pa4vshYTlE4orEyJoiZpTCWMfIxAzO3boTc/Fq3xQCk6YJ6+urTExOYYzDMOBbOQoTQpOTD9prQhWVrHKlUlQTnaMUVukqj16vXcyIURrfD4h7HZYWLvLv/+0vMTEzzf79t9FqLLF71yEym9NPYoIgQqOwuaG5voIUkqhSp9nqsiwzRkeqhL7+xgqCeJNgbQfD4dI854UXX+LOAwc4eOh2RkbKTIyMcvr0WR5/4ots27qVXpISRhXe9vb30G62ePHZJ9jY2GB0fIZdu/ejlWLv/nuYnJzg4vlz4CSNxhrlcg0lFZVSlcsXT3P1/ImCI0TBe7F5ipbFgDjfDxkbnWRkdIaN9RXyfpvGxgYIXVQAnaNSrbO6eJqpse+itbHKpXMn4cbkZ9yAX1yU+YPBzJZbgcnJCcIoZKhWw/M9RE+wbdtWDh48QBAEjI2NoT2NscVMrBPHjvPqkVeRWjI2Nsadd97JBz70QWbn5nj99TdQSjE5OVX4kKys0otjDu4/WMzwSQxPff3rvPM976Lb7rDRaLOx3iAIQ+6443aaAyfag/v3sba+zrWF60xNTBKGAdJT3Cgp/cZv/KebXihrq6ssLS+BEDzzzDN8/OMfZ+euXSwsXONDH3iEPXt20o1jnn3meU4dP8GVK5eZ3TJHMKyJwpDA95iemebSpcsce/0o1lomJseYm5vj7nvvYcv8FqRSxEnCUL2OVILrCwsce+Mor732GouLi6ytrBatGAeTk9Ns2bKF4foQ169d4/y585SiiEqlWiT5QhR8LeduJtpSFCaXvvYKV3U7mKkjCk6Xc3ZArP/T8R2dnBhZlNetdKgwwrQ6xejVAfnOGIMWCtNoI7Um1apo8vUzrFYYqRG5IdABIiiDDsnSGBIPV4rITVaMjraicGUctBCEtbg8Q3gRXhhhSxG51si4j8HS9TW6A9H8FB2XIwNdTPjtp5S8Eg5H3lxD+D5SC0QpIvVTpElxugojwzBUxVxewvQ6YH1kGOA2Wogsx0yPgLM4qcm0Jh+tItY6qJUuUSlAlUswSDBkLsmdQYcRGFvMTHEOS4b0deFwawtnTZdbpPaQQmONxcQZKtDFAEFL4RybWmQmEH5AOjRCsmUvWVBFVgzS9Qr9SgCUI1yeka/lwK3lnIRRhTAI0FoBjn6WMzUzy/zsd3Ph4iWefOrrgOXcq89TvetOSpU64yNDbNmxk1ZvmU6/g9QetZEKrWaXRrPL6Gid48ef5esvHOVnfuZvMFKvY0kpuCcC58Sg965AqLfodMygZlIwTIpTt8ANWo1OSOxAXimdQuucxStXWVrs0uoYhB8wPWUp1UZwcUQ/dpRqNfzAAxHgwpAwqBFEJXr9mK9//UkunjlFL2mxurrBxYVFNpau0Lpygru+92dZun6BbtxGCIfvadygBWWdB1IRVUI8pfE9Q7+3QX+9gRiaxVmBFIY0z1m5fgFfWWa2H2BqfgfXrl5nZfkyUgrCUpncmCLGoRgImaX4YYktOw4yPb+H1Ze+Rj/+5khw/70oNvc3HVids2R5TpwkqCAvKEKDoaDWWDyl6GcOIRWlUoQQGu0lA1NFgRcEBDZDa4+JyS2sry3xtrd/kOHRCSqVKl/89G9y9eJZoqBEv9cFofDiLoHvE1WqxP0eI0OjWGvpWUeSpJy9uM6xc9f4wfceplaOsELcpCk5GLRcNb0kZm11icbaIlLu4zOf+23uPnw3L734PMtL11lZXWLr/CwbG2vkecLc1jlOvH6MSnWYobpmx47d3H/v/SAkWofU6lXSLKHVbXP+3GnOnjnFemOR1FnOHj9C4KuitZupm69dHCf0Yke3l3D58gWWlxYwWTGbyOQZa8sLeNojzTI67XW6zVWyzNJqdwZS+7cyTQTCOYLSEO///p/kP/zvP3tLYuDll19mZmYG7fvUalXyLONtDz7I/v37mJ+fxw0sD6x1jAzX2bVzB6dPn+XEiRMc6R7h5ImTHD58mBMnjjMxOc72bdtZXLpOEiecOnmKhWvXuPe+B0AKHrj/MLNzWxECri5cY2JyiixL2b1rJ9u27eCjH/0IWmkmJicLw7+NwvBMKx8pCquC3BguX7rE/Q8+RJwk+H7AqZOnWF1Z49nnnidJEi6ev0iWpYxPTrKwcI0nn3ya1ZVVAt+jUink0mNjE2zbvpuLl69y7twFVhavMz42wu49e5nbMktUitCej/I9hLMsL17n6aNvcOTll1lZLjyP2p0O42NjjI+Ns7SyjDGGmbktDA/Xefapp1m4do2pqSkmJieo1+uFXFjrYtBht4tSmqhUYmioxsjICN1uh1KpjB/49Ps9kqQYd2KM+X/GVOK03SucWjOLGgkgNdCLsbhiKNZoBREFmH5SSHuFRKDwlI8yFFN6kfTyBGdSXJYhKxGpD0bGiLSPNgppFTZJEDhMmmAFhbIHgauViSshqlbD9GLsxkYx2C+QWGdwnoZyRBbnSCOIu+2B82hG3o8RQyVskuJZyFobiMDDViJspYTeMYfrtKBSwjY6SD9AWINZbUPJRw5XCn+sLCMfqdEvRSRAkDhsxyKth5RewWbUgEnQulDuZDYlMSkyiYt2hSk8C5SnyLIMLWRxMrKDnrEr5Jk6qGGUR6ZapNUqQoDfyci9HnlVQOhj/QCyGNvv05cS7W5hWwfL8Pgks7NbaF47jzWWvN+mawx9GZLIEgf230ZUDVBGsLy0yNXL5yiLRQ4e2MnQ+BaeON0ksY44TpidGWLh/DKLl6/gTe1ClrbxzFNfYd/WMXYeeBilPZzJMTdsZLmRlMibHJMbpWwrCuv21uo1tPZReW9wYpYDDoui13ds9HKCEY/52QqTw7sobb2H0UPvZihpIpVPGsc89toquRUo5VMdkth0kWef+AhnzlxkdHyYXSOCODNcOX6cQCq27Z1HBxGJS3DOkCHJhCHLivuMKEzfClO2RU49/xhrGy0mxsaoH6pS9qPC1RbFjn33cvu99zO7Yy9DI+Mcf/n5gbpLooOCrJ2bIi1TA6ns6Pgsc9sPUB0eJe53ydLolsXADbgbKcrgGJenBfel2+2RpzFC+MW07MFoCwkY6xgdnaTZaIBQBS9FeWhrsDYlDCv8tZ/4Gzz+lc+xsXqNua3bCCOfsfGJQn4vvcJFOs1J+z2MyQsvCZdiMChPk7eLCb8Li2s0O32UOMyb83nfrKAoLVFaYXqWqKrRWtDtt1hdvooTd+AFJaanppkYH2NsdIzjJ46jhOLXf/WXSdM+W3fuZWxskr2795DmhmaryfDwEBdfOsepo68wNredjfXrNFobrK+vEidxQfwX/k3CshtUPDzPJyiFaE+TO4tSijwrXHYH4jWmZ+a4dPEcQmjqo1s4d3GNXq8HyJscLOeK1srk7Dbue8eH2HvbHbfs/v/zf/Ev+fznv1i0S3pdojBgy9Z5/NAnjEKCIKJSKdPrxdx1z9387N/+2/zmb/4mS0tLZHlOGqe8/uprvPjCi5QqZfbs2cM73vlOTpw4iRCSHdu28crLLzG/ZZqltXXGpmcZH5lm3949HD16nL/8l3+U9z/yfpZWVsjyjLGREU6fOsVGs8Wdd92JksWGnueGLM954YWXSbOcVrMJTpCkCVGpVLjyKoUQMDo6ytsefJDXXj/K2XMXKEcRo2OjBL5m1+5dVKpDnLt4kXPnL1IuV5nfvp2D+/dRqVZuWsxHUcji4iJHXnmJ40ePc+b0WZQq5L+1ShWtNGmW4fv+4H4NeFvGsrK8UvgXKY3v+TSbLZRWjIyMsLa+zo2xC8YU7tlCFrOhOt3eTfNlrRStfr8YDhhGbw35PxHf0clJttZFBx6iLEFpVFgib3RQ5bAwAQs98jRFeOpNspkriGe5yTGdFl4YkuYxWZ4TVKu4PCdVFmQKOqVsFc5I8qyPzAw2TQvZslJYJRBDJaSDZL2B8EPk8Ci2tYGcHSVJe8h+TJ7muCzD9trYLEOkOa5ewSqJHKtjJMiry4X52fIKQo4gQw9RqyFsRu55iOkJUAICH5sm2G4f1S0Gb8luH290FDtZIzU5JghJ+wa1nhPmEplYNAaRx4hel7jfJDX9wSnSgS3m4eTxYMhd5gb8k5y83UVKRYpEhEOI2jix8slH58jn6sgoQrW6SJvjiSomMRj6A95NiuwKZHzrKic4y/KVMzz8rneQTk7w2ONfwosqdHLFfd/zk+xLu+StVcJKqVC75CnXjz3D7/27f8R9rzzBu3/wZ3n4e3+MIy89Si2IubrcIxqeYHTXnfQp0V3o8vgT/5bL87P87L4HUV4xogBbKMOsKwirQtib1ZOCSa0RSnP5xNd49tGPEMd9ts9tIekW+n8/EPTSBGo1unGAUprd+29H2xJTt32Y3HMsvfL7zN35XtKsxbobwy/VESbh1ce+zMbqdTrNDZobK3Q3rvOeH/tAwc63jjCwOOlhraOz2ivmHFpB4IUEQYhzEqUtGMf5V57j2FO/z7b99zCy9XZoXyp6xcailEb7Ptv2HqJSGybp9ujoBl5QxvMj4rhHt7uBNUUbZ37XHtIk59rV85Srder1UcLAHxBib7GU+CbeZGBaB7XKCJ1emzxLcDZDCIkxGXG/V3hzpIblpes3DbKksFiTMzu7hbjXohSWuP3ADvbv/Bn+5T//V3QbK+zc9QB79t3BVz7/X1HaY3R8ligoBvUlSY8syWg31tGe4sChO2l3ejgcY+N1ut0eaZohogDhxDfY2BtjiNOYOMupSkE5Cml0WpQqI1hbDFU8eXKBE8dfJajU6cVFLx8hEFKRphm1+giTc/OMjI5y+vhplhZXOXXqKBfOHyUTgkZzg8Wlq28ZvlaU5K29kdgVn82yjCTpkpsqjUaT6tAwh+95EK0Djr36HN1uk0ajUVTPwjKH7ryfbrfLxsbamwxYcYPcG9LrJZw7c5qD9z14y+58FIaEQcj6xgZLi0vUh4Z48qmnuP/eezl69BiHDx9mYnyCXq/Ptm3bGB0bY8+evbz00hEA7rn3Pq5evUKv2+XM2bNsrG3QWN9gY2ODXXt2MTe3E89T+EHA2TNneeWV1/mbf+tv0O11abXb+EFAq93G5DmzMzOMjY3ywEMP84UvfJnTp8/w/T/goz2NF2iMMZw/c5Zer8/Kyhra88g6LerDde68604uXrpESyl+5Ed/hPHxcT758U/yzne/k6H6CJVqhTAscfLUac5fPEbc73L3PXcxOT5xU2GTm4zGRoNTp07x6itHOHvmDHmeE4UhzlmiqEyWFZXFUqk0kP6WcM6hlSZLM4zJ8aOQqcGk4WqlxOjoMKv1OkmSIKWiUq5QKhVVYU8ryuUKpahErVqlXC4zPFKnVq2wurxMN0lQStFqf3Oz1r6jkxMhBwZizpB0mignkfVi8jCZwbZjXD/FOIvyPXToY+OMuNuntG0KZQXJ6jqyGsJYGTs2iltoEUxMkJgYIx3JRh/ZjzEekMbIfq+YS1MuQSnC9nuY4RKUK5hKjTwIkDPT5L0eUlryXhc6DVRVYAKFNAbZiRGhxkiBzTOoRqjtM3jG0W23EEJgN1rQzyBLC3v4ssCM1cEYTMlHjA0jNlqF9X2nTyaK4UxhZYi81yOtRciaT9pOUBlkOWgzhN/YQNUjvLiH67SxvRhnMoQBkVtEmlMZqhP3+gWvwvPI/QAXDWPmtpKM17AVnzwUqMTh1rtYLRAj41jpYfsJylaxvRiNxsUttLx1feYkSVlfXeSJL32W93/oQ9xx30N4TuEHNfqpwcsda8vLuBXH2PgcfmWY+nCFQAiSXotyyWd8bIxOXyPzFtevGPzA4+yxV8hkQHn0TiYO1ulca2DyHOUFgALMW1oJ7k3eyUDdcu7Uc9RHJlm9dAx/8XXy2EC9hg4kuQHngcot9RGPnbbORG2c7/qJv8e5a2uI+gjLRz/LjoPvpTpzGBc1uK3so4Myj3/id9i/by/PPnmNS2dPUapUcUqhSyUmpibopm3GoxGSfsZGs0tQqqFESmYSWp3CZEmwhGQNcCipOPC270LXRkgTB84glUJriRAD71tb2I9r7SFc4QYalMtMTU4xNred6T23cf7460TVElfOnylujApwWuKFEU4UG++txk1S8mBvtCbnofd/N6tLi5w7foTFxYtYkxbyeleoD5I4oY2lXKkUvhPW4VxO4Ht4XsDE9FacFETVCpXqMNcXrjA8Ms3Q8ATz2/Zy/tzr5EkfGZQRUhbmdbpQxvW6MWma0m62GRobod3aIMlSbjgMf6NXbHEC7bQ7BUnySpd7H3iAN954lW67ixQeDke1XkNIRxiEmEHbanpmniTusr68gNh/J6vLiyxcvcTVy+dYXd/g/LkT6KjM2MQE62vXimqnpwsvI+sGQypvXgbWFUThclShWvaZmhzlzjvvoVQZwznBth2HijlCZ14HqVBa8uiXP8aZk0dZXb7+5g0Y3BUpFVv37OXuh9/FkWe+fsvufxhGjI2PgYAkidFa0Wm3uXD+PL/10Y/ykf/ykYL3EgTkuWFtfZ2JqSkmJyfZMj/HD//ID/Gxj/0+09PTXLlyhQfuv5/Tp0/Rj2OOvPQyR15+he/6rkeKw4Xvk6UNet0uWmnCMOTpp57hlVde4S/96F9ianKSMArITM7E+BinTp2m0y7mzxTGZYr5bfMkaUZ9ZIQszwgCn6GhGo1Wh127d1Mul2h3mpw6dYr6UIV9+w4wvWWOE8dPcubUKbSQPPK+dwGO1dU1er0u3X6PY0eP8dqrr5L0YxobDea3zoO1VMplRkbHWF1dKSTBWVFB9JRGSUUYBggh0bqo2ixdu0qeJtTrdaxxVGs1du7cwfVr1wZeOJZ2p1PIkYPC22R0dOQbbBRuzNrxfB8hLd1OlyT55irp39HJiawE6MhHKo3t9HHVUuFj0kuwcSENNHEGEozW2DT7/5P351GXZWd5J/g7+8znzvd+8xhzREbkPCkzJaVSAxJIgA3YLhcG4za1lgsLetnYvbzsdveyTRnKdq9212pjiqZAnqABMQmE0JRISkmZqZwiI2OeI755uve745nP3v3HvvElKkwhKGWtxerzR2YMN7744p5993n3+z7P78G2bchSRptt7dLxbQrbQlTL5IYGSslCIqSBDHOkZergO6l08qwjyaMY1/MoRILKTYhHyGiEkcRQm4Zqi9y1MV0Ppn1IO+TDDoacRqYx7O3BOGUUqVC2TZLnRJ4FU0tYhUJs72B4LoWr28xCOCjLhDRFIFG2TTE9SR6FGDNNRJRgmoI4GmIKG7HTRzke0rXB94h3+tiGiTkxQbNU4sj0BJNSUk5DouEQJ81IBgOSLEWiIVCFkLitFqkT0Lc9tlsVdrKQttLFjGkGpMkuxdQ8hedjxinFKNeoftXACGzyrEfXeudOzVJKSkFAd2ebc9/4Go89/jQXXnuZvBB0NleZnWwxN1lBiYJG2aad5aRZjm8LMjWiIGdissZDD9/HrUt97j9dMDV1lFMPPYV0SqxsKCzLx3Z1sKHrV7iXFVIohSEYJ8SiXSBCJ0Vv3r2BUBFO2eZu3wYhmXMUjm+NRTkKp1bCtAPmTzxIrT7P9voGOHWG1z5PZe4UG6UnCPcEEJCKiG/8/m9ipV2OHD7C2ZcMhCyoVRoMhz3SeA/TACkzZloztObPYNYq7Oy5XL1wif3NAfniIVAFyBKKACVMckNgBxUsDKSKiJWGN9m2Vs4UhaS312ZucYFCCJSwsCwbzws4+cizGHYZbH0a67X1qVkphVGEpINdimJRE5ffYUIscODOwADbtgBFe3eNuUPHmFlY5uqbr3DlwquYpoZQGUqhioxomJCmKRgGMs+xLIc8zUjTCGEK4qwgy7Tzrd/tcP3Kea5efYPmxBRTkwu4no/rewxHfbrdPaJwSCHhrbfOcuqhR5CqYDiIeO3V16lUmxTj9OR78DX9reuHpuu7zNSaZMmAYb/HKy9/nSPHTiBMnU+0s7mOUsUB1O3Eqfv4a//ND/Abv/l7nHngEdI05eWXX+L2nZvs72m3TlAqM714lCMnTnP9ynmUVBhC6I4faCfe2Oar7hUqhkkpMLFtiKKI61ev8JP/8P8OwiFKnqVQ8Es/969pd7YYjvq88uLz+j4r8fb9GAvG8zTkxvlXuXH+daLht0YH/fNcnudRLpVI4oRtsY0wBIeWlxmOhkxNTdJud+gPBsRJzPrGOv/kH/9f6fV71Gt1pmemyIuMEyePs7S8zNNPP813fPiDvPTyS0ilePD+M4RhSOCXMIXJRKvFE48/yfrGJpVKmc4YXHb6zGmSNOGv/NW/xssvfR0/CDh0aIlut02WZVQqJbr9PkVRYNomR48fo1qt0uv3aTQbHD18mEGvy6n7TnLu3FsUSvLWm2/x3d/zMcrVCmsrK5w8vMwzTzzC6vo6u7u7FIXkzbfOceXiJbY2t8iLnDRJOXzkCMPhgBMnTrC3u43tuDSbDZQsqNXqbG5uUkiJGJOglWLsvtFQRQBZSKIwYjjoaxeQ1AA+zTqBUlAiSRK0c0cRRjGNRgPf9/E8DyEE29u7uJ5L1Rl3br9F3s1f6OLE8G2wTEzPQxRAKpGjCJno8USRaYGnzCUyyrA9QT4KMRwbZUjyMKKwfIpqGVEycbZDsC3i7i5mOcCrlihMgaq6yH6IEhJMDyP3SQ2BUAbSyDGTEDctyLd2YSYnzzOEbSEMBW5AnmSYSugQQr9E0cwximzsmhB6TOA5GLZFXkgMQ2BMT0Oeg+sihYswSxQmqDTEMLV91rADDDvHCAwIE4reAFGpIYSNEQtyw8TxSlixwbFqk9O2wemGz0I5oFyyiJOUXVmi3dQL0WQG2w1oVJvMlnyGG2tIy0ZkKWaWYIkcVfHZVz5rhWBFKW6Z09woCvb7XZJBBJFCuT6iWkUqHRYd2e9c5wRDIGwXv1Rh0Osj1+8we/QU5cYE65cvMBE8hFudwLbKlDzJzn5EkQ5RWUQcCXa2uhR5xObGJt2BpN2HKFylF/YJ+wnDJKDROk2++1XiOKJU090RxBhHfm8zVpoea5gC03LxHRPLhNy0abmRZpxgkqQGUSIRQqIo6A+3ef3Kb1BqLvGT/+OHiMMeibvIenofvU6INBRFHrJ79RzWaBvLNfjp/9s/YzSK8IIAYXtMTlZYvbVLp9Nl1oftTpudtVvsX7tKV1bwPQffa2Iok1q1pBOnDRNDCcQ4O8MQBq1DRzFOPUCsTDxh4FoWjiWRRUy/vUeWZmTlIeVWC7dcpbu/Q1Cp4AifJBxiOg5uoMFju+vX2Vq7CcJj0N1nsvHOWolhTDgd27q1O0fxwuc+xeETpzly6kGwBF5QQRggVaED71AYhs6RsSxbk33HBZYqClQUk6UFUkmmZxc4/cDDnHzkYb76/Axf/Oxvk6Ux7fYWeZZQqzdwHYcssUBJwkGfm1dv6Ha3hL2ddZI4Zmuvy1Sj9sf+BUWes725RaU1wYmTR4gGPZQqGPbbFDJjFEYUaT4O3FPEcYhhwObuLoNRn3KlzMb6DW7evESWJJRrjTH6fJphu8O1ixe+ydp7MNoxjHHnxDh4cCip6A9SlJnh+yUajSazcxNcunyFL335i7x19hU67e1xAWKMeUMWkrF2hbflyVIVRKOB/vUDC/63/3I9j6AUMByNyHNtZc/ynE57n6KQ2OP03kq5TCkos7ayxsrtO9xBoYqcjfVN8iJnZ2f3IFemyAuOnTjOY088TrUcEMUpK3dXmZye4tn3vZff+/TvMz87S7mqHSz9fp+VOytMTk0xGA5Jc0kQBExOTrK5scHtGzeJkpQPfuBD7O5ohsnp06e5ee0GJ8/cx267Q5plfOp3fpfNzU3SLGVpYYGF2VkG7R2arSbVeoVLVy7z6quvcefOKhsbG2xurLO4sEi5UsUwoNvtjE0CFkGphB8ECGHRak4QRTGer/OyRJ7jOpowW61USLMcx3WwY50oLGVBIQviJCGMQkDHwdi2rXN4LIsojrAthyDwcWz9vDUtC8d1KJVKCNMiCkcoNDCuUq1+S/fzL3ZxIgws19VOmjxHjhIMBcI1EYZJkeTawqYUBrqVW+QFouxhVEv6lCcERgZ0QozingPIQtgOhW1CnpFVfZQNhl0gTEefrkwHud1BmIoiibBMB9tUZKN9RNVDxro5kic9rEYJ4VYxiwS1t4vpWFo8aOhRgOn5OJZHEg+wlNSjH99HjkKkVJhS6m6JaaCCMiKKsROL3DLIsRFSIapTqF6IuRtiFjm2U2LGczhSGDxUtTjqSgJTJ/KmSZe1XkweJQjLZMZysE0b4XqYTgl6bfp7KYKCPC8oghp+PMRUCjOCSdNk2nZ4WCpUvUrouFzNJd+wR5xPR3SKjLC/oYF1UiCSMQ/uHbiEYeA5NsoQOI7Llz73uzz13g/hzxzDsFwyw8QJtxn2byDKExjYjPoDzLzg+t2QRzpD1lfW2NvvMDXlYRSp5rhEA4zaPHIYsrcfMT81R7vbRjkejVoLiUAZhs5sEjojA0N/cE0rB8shqDTY377D9Y0ReZJTnh8QjVJimWGgcEs2UtjMzNWYWp5hOAq5utLmdn+KYBokAmTOW5/9VTYvvwp5yNUrl3Bdn1prBtdrMLF4isVDD3H71V8gTxMs4WEUkrWLr3Fnd5+pBz+I77n4gYvneNR8D4HENAwyKQkmZgmqNVLDJnPdMdVTkmeZTqk2DEzbx/JKeEEFw/S49trvsXXnMpPNFrLZpDQ7he16rF26ThrHejwR6fly2NcQKt99Z906B2ZcqR+PSRRqG7AQ7G6ssHbnOijI84JqrUpQrlOkOX5ZQ9GSaKQf1qYWskfRCAyDKEvZ2NqhVvJZWb/DC1/7LIvnXiaOEny/gmO7TExMoQpFlmdIpej19uns7xGnKS+9+GWqlQpPPvNBhGmS5Sm31rZ54PgyQoK811Q0wC95DIcDrt++SqNVxrbMsWXTZGt7G6VyLNemkJI4jnBcn+tXLvPKy1+lXKkSODard28i84LGxCyT0wuU/QquF7C5fle37E1rDJcTGAfhn/rErNQ9i42h+TAGhKMRWSExbYt/8Pf/ezbWV8mydFzQCqRSmjwNCGEgMEnz/I/QY+8VL/pHwnznHjl5nmOZFpZlavaGqyFgt6Pwj8D5dN5PnCSUqxUmJieI45iFxXlWV9a4ceMmm+sbZFnO2bNnqTfqHDq0zNTUFLLI8PwSjUaDTqcNhsHtm7fY2tjA9zwefOABiiLngQcfZHt9k2tXrnP/A2fY29vDsR2aExM4tsXv/M7vsru3i+M6zC8sMDHRYnFpgTRJ+MLnvshwEDI9PU2z2aJcLvOhDzzHo48/xjdeeY3k+i0uXLjIaDRie3cX3w8oct0BU2OmSL1WpRSUME0T07RwXQ/T1AF9ea5xEYP+gDTRWWm242BaJuVKmSRJMIWJYRgHHUbHsWm1GlimSRxFyEKSpCmu4xx0WuqNOpVqFdMUlColyuUy5bIGzOlMu4hKuYJU/P/HWEcqSSZTCpkjDAPT09kxRaxPOiqXmJZuU5q2TaFyKDsUeYYxirBdB2oBmA5ylJLnCoYSLAMlhxQVRxNSU4ldbiDLLbI0hDSGFITtkVUdjKwg6Y0QhUJmKXT3EdhI00d4LvkgRcoYoaIDQqhwbVQYQhii8pg4SrBQKNfDMJSmL1qWdj9ICTLGUCXwa9jSg802melgUsHIU8wYLHxm61PcFzjcV3NYKAuqjsARElMYpGlGGI1IwgQQeI6LU25gNKc1ar+3hxq2sS0Ly7XI04x4NCSXisH2FirPWVqcgyJnFEZ4vo8hTIz9Eccl3FdyiU9OspEJzvUizrdTtrOc0doWw3doDSgMjDGCPC5yhoMBKzeuUl28j+lDJ9hYvcEDjyzRMrtsdveZWj5O2xJkGSjLZLsT4pqKNM0pSpJ2VyKUjYgzbt99mcrMfcg4Y7ezRxj2WXnjLtXpY+RKgCyoV6scW17GQI96NFHSABlSqJypmXkmmi7tLgizAFuQDAVkilGimFhoUJlYJJIBpVqVdpFz4/w1Hpg6gTANVJGzt7nG6u2rxGGIYwfU6tMsH32UmaOP0Vo+TnN6lluv/0dtn80EW52IRyYmePjkc8hSjeFwB1PYGELHGWBaFFgoYUBtilChO3ZJjrAMSoGD59pIDIb9Pv3OFoY4QWEIbNsmjRPSJMY0DSxHoPIRgWsTjQYHp/E0TfE9X2cvjU9f/0ddBuB5wRg4OE4QN22iaESe5RR5TqVWZ2pylr3dTXqDns6DkYUOKsRgfXOFPM/Z73X4vd/5DVrNJmE4ottps7e3hWXaB5EE/UGfSrlKt7uHZbvUW1PEaYgsCvIk5vbOGg8+8V4MQzEc7POlr73Ko8cXWZqfRSiF1LNB4iRnr71DFA5Jk2wsTjQpcsXOVptKfYLNrS2SNGF7Z4PN9VskSYztBoyGA177xtdxPZ/5peMsHj5NvVqnFFTo9fvcvXVN7ym6MtHibaVF3IUsdHGtdN/EdlxG4ZB/869/itW1VTrtHe3mUZrpo4n1Qh8AVaFVV2qsu5Jvjzn/qC3jXiFk2e+sMNqy9cM4CAKmp6Y4dGiZN8+eJSiVUOjidGZ6lmq1Rp5lbIh16rUajzz8MIPegKWlJTzPY2+vzfrGBhOTLQb9HpcvX8bzXJaXlhDCpD8Y8Prrb1AgEcLgzJnThGHI2XPnqNTqfOxjH+XqtStU6nWkgizfZmNtna3NDYo8Z219g4WFRf7jJ/4TK3fukGY5dcfj9P2ao/K5z3+OtBjhl0rMLCywsb3Lyy+9TLM1wfLhQ8i8YGpmFsdxePmlF8nyjDAKicIRhw8vE4ajMXRQjgsNC9MscBwL3/exLYs4TkjThCiKSNOUNNXiWM9zwQDHcVhYWGB6coJ+r08UxwSBT1DSoDfb1sVJmupiIwxD7YhVUK1UCEpah1Wr1jQp2dbBh9NTk9/avXwH18k7fhm5AYlCZEpDwgpFEWdYjj2u1o1xBa9D+BD6ZGBaFjLLycIY0wQVJ1qEaruookDEBUYWIVRBoRSu6ZCkXSzTRvgORqmKY/vIaZdcJDAcoKq+RribFmowwPIbiP0eslShcGoIqYsnZWbIXhtlW5iepe2NRooILMxUopIcFefYtgOewDBNzKCKabjITGFECoZgEBB0TerCYsn3OT5tMefBlKOoWgpL6IWJoe2Sw2FInhRIU2A0WqjmLF23Rri5gbh2mYaQNBolHMdGCEWexHTbPZLyJNWghOm6dAYD+sMhU5Mt8ixj2O9TLpfxXYc4yQh7PWTRYcFxON6s8Vfnp9kcpbx1K+bn3qk1AKi8wLYUQmWA0vhmw2Xtwpu4tqR/qoFVxJSqNbBtHMfGFIpKvU67F9FwYGc3Rkpo1j3MQjB3/DQyCAmVS699m+FeF8/1mZz2CbOY1PBRWaIdDUrRG3aZbLQOrMSyMJBpwqDXJxwK6pWaDs3zCpxcICqCMCoojJgkj1hoLWOIgDsXX6LZmMK2bIaDLuee/zQySZFZjuv6HD35KPMnHmDuxGO4jQUsSzDsbbC700YoyArw0xHlksej7/swl65dJxq2KZSBoQqEpU/MhrQxTRvDcjWDwpBIlWMUEXkqCC0LxzERls3W6g1mFw8zYWodh0IhhEVQqjDY3eYbX/8ilaBFmsb6IXTvviiluSHwTseq8PaDUJ/SrfHGqaQkSWNsy9HcH1ORphlxOGBufh5hW1STKfZ3d9jZXCVP9ckxShKSJEYhGQ5CNldX6LTXmZpeIM1i+t39cbJrzv6+Fhhuba6z195mfn6JMBxhmyatyWn9QL83iolG5NIkKJf+yOxdIRUMBpHuVOQ5jusRDvuMRj0q1TrCcjBN6HZ3ybOM1175OnEUYjs+pVKdJE0wyDjz4BMszC0xM7eEaTmkacrc7BxXzr+KMN9OHVb3xmDj+8RYa6JQmo6bZbz66ovjPXScXYRmsRSFZPxlEEIXn5ZpYdsOWZZS3HutZR1QeYUwkAXk6TuHFQBwHRvHtmk0mzz08EMsLi5pwa/UoYqmKWi2GiwdWqIU+KyurTA3O8uJkyfZ2WkTlFfZ3d0ljCPdTSiVSbOMtZVVojRl5fYK0jAJhyHr6xuEg5BHH3oE1/P4whef5/z5C9i2w/ETx1k6fIhOZ5/BaIjnufR6fQbDiPmFBarVKrOzMzz33LN84EMf5PVX3yAIAgwUtVoVx3aRxYB6vUE4jDCExRNPPklrcgLPD7h25QpNQwuX9nZ3xp0hzXHxXI8wDBkOh2RpjhAmhqGYmZ3DcV2Ccom56Rm6vT6u52EJQaVcpsh1pxylsC1LA/ZKAXNzs+xsb7O9vUOW53T398mye5EWOt07DEOCwOfw8hKTY33PvSDL4WjI3t4uFy5eIEtzhuMR3592/YUuTrz5CT3OGcS6ejcFwjMRro1hu5hxQZ6BUUiUYJz8K1GuiWFZqDhBpTlyGGNWSyiZ6rFQGOvXDCUiz8mbAZaSOmo91+4Mme0jSwam4QEm7HcwshRGIZbnYHQ7yChFVauYeYJqlMhVhrAdzNqkBgTGIUZtFsKO3tAdQaEElu9hpOM8EilRexme4VBF0DAFM77DQsNhzjeoCokj+8gsx4gVLh6G6WKaNrKQDOOYJJdIYZE1WuQzhxgZHqNbV8iuv0jNUkxOt6hWKpi2hWkaKCmJRiMtnizXKfIc19PVdpokJGmC47mMwpDBoEe5UsWyBLZtMYgjRqMhw0EPx7WpOS7PTFvvWHGCMDBsC8Mpkab6QywsB+EHVDyfkiMZ5GXu3LiBMAvk9YuE2+uUPcF8K0AO11nf22K6avPQA8d533d9H45lU29NsDcMUXGGVTURRQkwUXmKyBLd3coSDFFmJBXpODodAKXIs4TAdTDKgulJBz8oMdq5y85OSlZozkkWC3qdiL7sMrXgkReS0w88Qnvk0t/b4K0XvsTRMw9y4vgiJG3aOzvsbN/VIZGWzeyDAXsbPd564Uvs7+2AYVCYgswQjLJECzzJ2dpYRcnDhElCFIYgTQzlI0xL03STLijJcDDAFDlFxSMhIcoUuVQk8YALr34e90JAffIwhtLt4rC7TVCfQEmdNCqLgjE1HFPoB6HtuAhhod7Bdj687Q4Y/0x/ngyBQiJziXBMrRUa6032djbI0xjLssjyjCzN8XyPaHzq91x/zABRCBMsL2BqZhHXC5idX+T6pbcwLBdBgZQ57c4OaZqAzPEcm8T1MJDksqBSbxFFMUmakOcpaRqjLC1Gvif7kIUu+JQsSOKQJEnYWFshy1M8z6NUKiFVRqetAVlZliGl4oln3su73/scX3n+C2xvrPDko++iXG3iuAF7+11cT8c6pEVOqVIdY92NcZfkwPjO2zansftszDt5O7BQab6JHB/whP46xnic6jgeSRJ/U/Ghxo4OpaTWYxm8o5ZywzBwHU/rHRyHeq1+sC6qtSpSSnq9Pnfu3EEIkzAMiaKYtfUNXnzxJRrNOtmYht1ut3Esm3K5TJak9PsD+sMRU2fO0Gu3efqZZ/TnLcvwAhfX9TGFSa1WZ9Af8olf+gRFXmDbNl7g8/7nPsDU1AQvfOUFBjLHdV06nT2OHTtGq9XSI6hqhbNvnMW2bXZ3d3nyqXdhGPDMu5+i09nn8sXLWI7LtWs32NvZodVqMRgMcRyXNE3IMz1WHAyHhGHIzvY2GII0S0mSlNu3bwNw9doV9nbbRLEOeFRKkaQp3V6PfHeP7e1t4iQhzVJefPElbt+8zcrK6tjFZxNHMVEYIaUcJ95rMe3XXvg67b1dojhiv6MLmFq1xszkNLVKhcOLy8zMzlBIxQsvfPlPvZ9/ph3jZ37mZ/it3/otrly5gu/7PPPMM/yrf/WvOHny5MFr4jjmH/yDf8Cv/uqvkiQJH/nIR/j3//7fMz09ffCalZUVfuzHfowvfelLlMtlfuRHfoSf+Zmf+ZbJcQdXxUeECaYhKEwQJV0F5msdzCQH28KoOKhRhOFYMEr1zNNzAAXNMoWtixmZZBi+g3IdlKHANSkGISI2ybMEWhbKcVDSRChLuxZsn2K/i1UJKFIPlaRYnocRuFDEWF4JYUFhJhSZQsUSUbc0gyJPUMpEyADR0/8G07axehmCAFcZNBzFdMnkUMNmzpM0zQxf5lhSt2dNLITSwWqG52E5Ok02STN290eESUZuORRTC6Szh8nDmOTiecI71/FFTqtSptmqEwQ+wrIwMMjSnCxNGfaHJAiUX8MeavuhaZn87guvcf72Bus7HWzL5Oj8FH/7ez/E8SPLmhhoCTr7Xf7zp7/E69fuUBSS+w7N/7Fb9+1aA6qQ7Hf28P2AcNijVAowZEI66DIajKifOsx6O+Rzn/oK1XKdknkNURTs9QxW795lInOxDQvfhs7KJa58o4d0Fjh/8Tzd0KMxtYDf6TFpGoTRENstk29dIu5uIZXNYDTPVryr0fnVOlJY3L27Qr/XJc9TpLAo8oRB38L0XXb7AtOvkSuDOIsooozZeRNTRnRWrlKbepDunV3Wbq7x5Ie/G79c4pXf/gW2NtfwvDLf+QM/yAe+8zkGA8mv/8ofsnFrF8PQqczCgCI3KAWC9kaXq7c2Wb27g+P4mKaD4/j4QQnTdBCWrR0faY+ovYXAoL95B9P2CQ41sD0PU4GwXILqNNFoj9FoRLm2gDAESZrw1rnXGIUjlJJsVddRSmlYV57jODZKKS5ffIVef49vvNwGYGdnh+ofEcR92/YC4I+OEYosHbtOtG4mjqMD0FgSh6zeucWWvUaaxDoPS5gI06RabxL4FdI4xfEDZmcXOPPgk2xubLK/3+G+Mw9w5v6TIAvyTDEYdFi5e4NypYLnuoSWDQos28ZQOd1Oh1K1hin0+5LlKa7nMBhJRKEwbYEsIE0VoxBcx0P2UgJPA+NcW4cGBuUSO5ubGMIZO5G1UyxNI65euUS/30Mqg1JtijwvMJHkWUIapURxTJqG3Lpxgb3drYPxzR+jYRlwD7yiS5V73ee34XbaLa+tpr39LcJRjyLXBgTHDShVJrFsvR71mEcy6G2TxANQCs+v/LG79u1aA67rHVBLLcuiUikThiGmaVGt1ZidneXwoWVO33+G4ydOcu6NN2k2m+zs7PLGG2+yuLTM7u4u/X6foFSiNTFJpVqjVq1QqZSplitMT0+ytrbG+vo6r7/2GuVyGUMoTNOhVq8zP18QRRFFnjI7P4fjuCwsLlJrVLly9Rqvv35Wj2DCiFe/8ToXLlwkSVO+8qWv4AYBzz77XtZWVhn0e3iex367zZvn3tI5cEXBfqfDjevXaTbqpFnG5tYWlUqFOLYI/ABTmFRKZWamZ8YTPK3JazWbpGlGyXM5tLjE9NQMhZSkWUaeZfT6XZq1OmmWMhoN6Q+GKKnYXN9mv60LjVK5hDI4KHDNsewgyzKKoiAKQ1ZXV/CDMgYGjz78MB/84AcwLYsbN26yurLCpcuX2dvb/Zbu55/p7n/lK1/h4x//OE888QR5nvNP/sk/4cMf/jCXLl2iVNJq/L//9/8+v//7v88nP/lJarUaP/7jP873f//38/Wvfx3QvIOPfexjzMzM8OKLL7K5ucnf/Jt/E9u2+emf/uk/02KMuj28wEMVBoUnEPaYc7DURMYZeZSifKBVQfouAgOzlyJtSzsVokR3VVo+ZDm5VHqcUkjdhZlvoFQGroEyNS3TdMuY2ChDp7MaDRdcF7Nax+z3Mao+hWFgBzlOKSBXIIWJaboUhUExzBBZjlUYiFCAHyEyE7dQTPg2Cw2fBV+w4CpmPUVgZBSZnp3LosAQJpbvY47V0qZtITBI84z+KCKOM+Jckjo+8ewycvYQebvN4PnPke9s4BmKejXA88tUxxuqdjYVZEgwlLZOKoV0A3zPI9uNGex36fZ6nL+xync8/RAP33eULMv4xd9+nn/+C7/O//R/+dvUqzU81+U3v/QKF+9s8KMfey++Y/PrX3r1m+7bt3MNNKeWyDOFa3tExojBYEiapsy0SqRlG8c0WDpygh/7l/+KW29dolY2uPH6l7lz7k1kkrO5vsOpkyfJs4KVtZSwf5PHv+c7efg9H+HO7ZsYaYhwfOxyBdNQuK5NMtxktPomeVZQcp8kzPu0jj+CMCSjcMhrL3yRmmNg2yXyOKY+fZwkLkhJSHIDp7B0vssww7VcHn74capLxzn6wDO8+aXLnH3xNR798PfjV+soQ3L75nWSOOa+B56i0aywcuMiX/r9L3PzrU3MwMWyCuZmSqzdjSjiHGe6wqPv+zC1uSmyuMftwS2yImFrY5sLb0ASbZKlKUYWsXf1DQSKwCthjjNHhABhgO1YeOUqU4cegqTLaBSxdOQ0K9fPI2XKkUOnWVw8xLmLZ+nt7yNR1OstdnY2UYUkKwr2dtcJ/ApHjh3hwvk3+aEf+iFefvnlb/s6uHfdkzqk4/GMGo92pdSoYyV1MnAuM+DtjdYAVFHQ6+wRjQa4boBpCtI4ZnVlFb9UYntnlV5vm2tXXqOz2+boiTNkUmcIxeEQhcD1Ata3N0iiEa7rMh00iYYhu7sdRv0+WRwy6O7xytlLnJg/QrVcpZAQFwWvnjtPlGb45QaOZdLr93DcgO2tdV77xlfo7HfxSxVGoy5ZGqOU5Pb165z9xsuYlsnU1CyGIUjiIRtrd9jYWGVnZ42Vu9fp9TpsbkjuMY3vpY/r8Q5jt42BbTvUanXmFw9RFOD6ATevXSQc9XUnCYlSWvyaxCOCSgPXLYGCfm+b/fYKE1NHtRNRWPT2d0iTEc2JBYRp0+tsvGN7wb3sHAyB47osHz7E5samhttFEYZS7O3tsTQcYpoW7Xabu3dX2dxYJ80zbty4Oeb5WDjOGOCpJMgM2xLYwmR9fZ1CKdqdDoeOHqXX7bO9u4/r+czMz1OqVKnWqvR6PR555OFxFk2ZXqfH5uoaJ08ep9Fosre7y53bd4iikKtXrmMIk/Zem8tXrlIpl5mbn8dxHE6fOc3tG7d0+rAlOHn8OBQFeVFw+fJlao06hw8t0+l0Diy8S8vLzC3OYaDBdPc/+ADlSkV/5g19gKhVayhDkaU5+502XhAg84J2u4NXKhGGIZ7rYdsmUZxgGBCGMaPhSNuPx/o6KYuxY0sRxzH7nS5SwuL8PLdu3eLixUskaaKFtFJTtZM0+Zbu55+pOPnsZz/7TT//D//hPzA1NcXrr7/Os88+S6/X4xd/8Rf5lV/5FT7wgQ8A8IlPfIL77ruPl19+maeeeorPf/7zXLp0iS9+8YtMT0/z8MMP81M/9VP8o3/0j/hn/+yf4TjfuqrfFCa5yhFlR2PFc4VRslElH+VYWKaNzFIya6znKDLSmo89LCAFDAm5xEwKlGtjVks6+CpJdXyeMpC+D5N1bR2NYjBcpO+BZWGpKkWag+mgREE6MYGFwEgKCleRWgHKCTATE9kDB5ssGSLyHC9NmaBgRmUsNl2OVG0mPQMXhWnojVMIEyFcHDc4ELEZY0GbGM9+kzhnGIaESYrEIPPKxEuHkPPHSbd2GH758yTrd3ANRT1w8FyXcqVEs1mjHASYwiCKQnrdPnGio697wwjHsakvz+KGA3ACvMYUlULxfe8+w32nDjHRqmMKk5/469/F3/4X/zOXb67y8CmbrFA8/8o5/t7f+Es8eHSefrfH9z/7KP/PX/8Cr776Kh/84Ae/rWvg5Hf8TWZrHqp9gzQLcV2XpflFqo4kEzmT05N8/nd+A0sOefdzH2V97Qa5yGkGMDU9hVE/httawrNtwsGIJDUwTcXFy9cpVXyqJRsnjNjf6lJtTuFXpyDpU2uUcByDw/c/QXP2PpygpVureUpehFiejxdUyLIhYdhm2I/IpUQVAqFizCIjSTOEFHzu+Vc5/phJYX2er3z2HJYziTDFQcKvYcAHPvI9qAK+/KlPsrm5waA/oNmYwRJltu6e5/ic4LaUFFIS5pKrb75BsLbP5spVOt09ZFSmvFijNb+EX77DYJRiGiZILR4Vjq/pyRSYAtxxJ820HQzDwi3VqEzOM7sww8r1y3hulUNHjtOqt/C8Mo1D07x57kWEpR/2WZaTIzl65Azb63cplfSJ+Rvf+MY7thfc64C4rodAd3GF0OMcJQs0Ul2hDJ3HBAZYYjy+0V0CKQuyNEEnBBe0O9uUak3SLGXj7hWyNMLzK0RhyPr6Cn5QolKukKWxvp+miczlWEDKWNhqEIURWZ5iCEEY9rly4ypXzp3lO579HnIl6Ucjzl96k+UjRwhHA1ZWV7h56wZxklKq1ml3OnQ7O4ThgDxPD0Yy3f0OpmVjWhZxHDMc9lhfu83Zsy+xevc6cRyOX6ujOu7xK9Q9CzkmjXqLpaVDLCwtU2tMYPtlbNsnR4Bh0mm3icLBGH1g6uLENJmcOYJUkkq1zkc/+lGuX77Gp3/3P5BlMbarE2qj0T7V5hyW7YNhUKlN0d65847sBZOTE3hBwMREi+FoSKPZ5NqVa9TqdZ56+mnyLOdzf/AZJlot0iSms98hy1Ic1yHLszEbByrl8pjT4VIql8iznL29Nru7bRzXIYlTDAPiJGY0HCKlwrE1Il+ieSvLS4ssLS4wNT3NjWs32N3bY2FxkSxNOX7qFKVymfe9/zniOKa9u0ez2WB3e4f9nR1q5RKB6/Hi177O0ePH6Hd7GEJQb9Q5fvIYXuCTpAlTM1OYps3W5iaDQR/btum0O1w4f4E4jZFSi5W3d/do7+1hCZM41W6bUqnMKBoRRwlKFvT7A+I4ZjTStFvTNHEdh/mFRe6//36iMETJAmHoUL9gzDxJkgJhClxHh/nlucbxv7a5qXVQYjxuPdA3ccBI+dOu/12D4F6vB0Cz2QR08FKWZXzoQx86eM2pUzp06aWXXuKpp57ipZde4oEHHvimMc9HPvIRfuzHfoyLFzVi+H99JUkyBr3oq9/X+FtZryAsA5UVqExhxpkWwKYZ5nyNLBxhWDZurUGx38HyAzJVoKwCJzMoXA97sqQx5L6FLGLMUGmtiG+jigQlXKwsoygsjFINw/ZQToDs76NyEMomx0EECpKcvDCxpEtu2uSrPexwAMIjUJIJy2C+ZLFUFyxXPJqugWfqGycEIPSc17IcTNNCjq1vMtNtU0NAkUvyoiBJM5I0JykkueORlaeIZg+T16bJNlaIf+eXybc2sA1F1XdwHItqJWBqcoJqvYpt22RJot0Y/QFRFDOKI+I4xbQsKvUJRve9izyHRtTHzGxc38e2bFbWNikKRaNRI0x1IVWtBCjgxuomeSF54v4TeK6N67rc82m88sorfPCDH/y2roHAc5m+7xECdRL7jS9x+/pV5g8fJkq1oHHGL1FYDnONOSYmW0z5+6h1gze6GSsrd/noh3+YndUNHEMySgoS06K91+bd7/1+tldvkqQxr7+xh5EVHLtyjtbkEQwFpnIxYrj12gs475/n2suvEvZ3OfXMd+LaUK7WwLJwbI9RZ8RwMCIJM2aaJaYWZsgyh5K7Q3u3w3d95COY1RKeLbjv4efICBCmRTzqcu4rv0d78y4rhKyt3GZ7e4O51iSlapP3vPe9zM9X2Fqbx/Mc2oPnKYZ7JGHKsLNLZfIYs8fup7l7kds7DeIowvdLCNPVgXOALYAsBtshjQdYlUkdUKjuuS4U1VaTQIXkGLiOQKGdF8IwkJYzBtBpEeSg3wWgVG3Q67c5eeo0WTyi3mwBsLi4+I7sBTqLxByzZkw81yFKEooiJ8/TMRtEp+5aQlAqVwjD8GBk4dg2SknSVHcoC1Nv7Juba2xsrHLk2H3j1yqSKNJ2VUMRDvqgoNFqkff2CeNQi0cNY5y/VOguWRZrlyA59VoD36/wyitf59iRkwxGA/B8VlZuYBgFJb/Cyu07+v44HoNem25newzJypFSHhBdTcvGdjyq1RpRNOKX//O/o93epsjvkWgBxpBAdPZJtVKjUZ+gNTlNqzlJc3KKuflDpHlKGkd0OvuEURfDDrAdW1NNyxVq1Sr1Wo1as4XnB5w7+zo7u1uAwZWr19je3gR0UjhAmowA8PzKWKRs6xTbd2gvcF0f07SoNeo4m5tcvXqNm7duaadJFCGEQWtygkqtxuXLlxlFEZ7v4ZcCXMejWtGARYWiUW9onDuQZ9mYLGtz/MhRbMcGDM6dO8ex48dYOnSIubk5yuUyAKOxU+bypctsbW4zGg3HWqOEQ8vL7Oxuc7LZ4PDhwwhTsLuzy8rdFT70offjuC6D/pD3vOfd2i68s8udW3fI04SbGxq65vt6DJ+lGfedOkmz2dBJv4ZBv99jd3uX/U6HOI5YXV3V+ThpzLA/ZGNzXduppSJJE4QhNGgwTnQXBB1lUKvVKFfKuJ7N4cPLeK6HMAWLiwuEwxDTgEqlQhSHFHlB4AVU6zUmGnUC1+fqjWv0+j3kWIgcJwlxrGNi0m9RFP3nLk6klPy9v/f3ePe73839998PwNbWlhYi1evf9Nrp6Wm2trYOXvNHF+K937/3e/+162d+5mf45//8n/+xXzcqFYzJJnK3g1uuYA1Csm4PwzQwLIFRrWA5DlmvB1mCkgJhORTSQPoOInDJbKGdNBLMSh1ZKRAtX3dikgJZcpGGjalKGJmFjAyUsjDzEqrkIPZHiFxQ7PYIcgccE0OBHfdp2TbzbsHRmmKp7lF1ClwTTAHCMnBcd0znMw/U8EpJ8iQjGo3Ii7fpIEVRMBpFpLmkUCBNQeGWSSZniGaPkRgO2co1ii9/gXRvE1sVlH0P2zJxbZPJySYTE02C0tvt6izNGAcSk2UZ0ShCKqhUytQaLULTxd7foEhiZJ5jWjaVSpVROCKOE/Jc8onf/TKnDs0zPz1BXkjavQGWaeJ749m7ZVMaf2i3t7e/7WtAhR3ibpv6wiJzp5/B+/oXefOVF9nZ3GDh6EmOPv4speoskwsTJGlEvw+maeMKg8Eo4vyLX6I1tYSdx5ws52zkDjfWRjyJSb3RINqPmKgvMD87R7XSpB+GYJbZaq9QNj0c20PmsH77Esun7sMxwZIRm5ttZreXKPs+0zMBpbrD7s6Ad3/fP2TpsY8RJSkv/ebPcvfVL/LYx/46K1ffojI5zUQ+x97WDu2NO1x94yVmj93HsUef5ewXfxVZ5Cwu3sdM2WU7KahOlnnfB9/PF74AZctk8dACty7skBeKyuwC1UaDXIBsu7iujW0X+K6n4UlCIfMMy3GhyBG2Q3npJFZ9BtPVGRuGkmRJgsxShsmANIrYWvcwLR9DWERxSE0Y1GpNbt+6RqVSY3HpBDeuvYVtOxiGYHJyEtcLCEca4DQ5OfmO7AVJmuiQS9CaKT2r0PsEEoQ5bkHr0Y4ap5Ldc68IYSCl0K9WxtsW6LHb5MbVi3iOg+82KNVrRKMhteYMo9GQJA7Zb+ekcUaaxmMXjyTLE7a2bmO7AYZSoCQSzQzpdvtsbm9y+/ZNWjOLJKni1rWL/PW/8d9x5MQZNjd22NnZ4e7KtYOC5N73azkuShbkeUq13qBaa7F6+xppph/Y6pvRs/p/Yx6PZVo8+MhTnDjxIAoDU9j0ex167R77vR5xmrCztUajNcPsRBm/5LM3N8t99x2mPxiwsb7O7XMrDPs90jRGKkkSR7ze3qHbXsN2fCzbPRgVYRhUKnVGI01FdWx9wn4n9oIvf+kPuXXrJmE4ot8f8NUXXkAYBsI02VjfwPVcsizla1/9OlEUEocRKIVr27iORVHkuK5Do16nOdHSCdO+RxCUMIWFaUKt1iBXBfvdHkePHcN2dOruxsY6rutSrVZ1VINh0Gg2mZycoNfdZ2tzk53dXYajAVNT0zqd17a5eP4C1VqVp59+Gs9zyMYcHndyAtMyecC0MIU2cgwHA/Z297h58xbfeO01VlfXeOXFrzMYDqnX68yOC6RC5kgFsihwA59wFJImKUopfD8AFWqxvNTWcFOYY1mGZhzFcUye50RhxO1bd/jN3/wthCEYRSGB7zM1OUWn00FJSV5kmJZFrVJlYWGezv4+Sams+VmzszQaDUpBwMHpwDDo93r8/M///H/13v7R689dnHz84x/nwoULfO1rX/vzfolv+frH//gf85M/+ZMHP+/3+ywuLmLlKWp9G9PxILXIvBpmw4Y0JL+7A55DIlOMNENUfUQlQDoCwxKkykCgEK6LEZTA1NoLZVkgBUWRIsomtmmTZxYqTTG76uBUKVIJgxgrE1hZTkn6THkWM1bOQlkyW/Zp+gaeYWFIsCwTYTtYtoNwbMQ4h0UWOcm4UNDJjtoOJsaLJ01zoiQlSlKkAuV4qFKZtDVNOn+KGJvs4mskl18l72k0dMl3cV0PW5hMtupMTDapVCu64leKKIrHO5jSrdckIU5iikLi+R6VahUbWLrxClkhkUWBkjmqKLAcm7xfMByG/M5Xn2dlc4+f+T//ENbYNpiPRYfabmhgWhri806tgZd+5+dYv/AIR5/4AIvHThLHI1ZXOti+x9LREyhpUJmZpVWDmYkKv/OpK0z215lqWsyfOE7gK4a7m9ztmdSkYqbmsd8bAAKDHCMb0O1skxkJzvVruJUJaoUAs0wvgYWpQ3T7bVolxezUFL32NhuXX2F97Q6B6fDoU+8jzSoMBgPSwuH5//zv8D/5y7zrv/07HDn2AIeP3s/V8xfpbK9i3dqgmPsIe9vrGJbgsQ99L5g2Z//w1wjKFeZmFrHry9gkuLtrlP0y/+6nf4UjJ8+wHt9k7bLEsRcpiHWB7LlYNvQCX0ec2xa2beGWPQLfxPOqiMllZJ6T5Tm2AVi2vndKYgkTy3FwPAdDlKi16lQbNYriNoYwiNIYYdn0hkNGoz7Hjj3AoL9LVuQHYwdpCAwhcINvDyH2T1oH9zoE91JVDcPQgk7eJpUqdOfEkAVpksDYaSBNnfaMkEw2moDAtiw21le0A8kwqVTrlIMalcYEQanE3NISd2/dZGdrk6KIiCMFSqAMiak06l5KMCzBmfvux1QWrmeytXmX/fYO1eoEo1HIdrfD4sn7aa+vESUjms06Rw8f0k4vQyeIF/JtyzEYyCJHFjnCEJqJksYIUyAK8U0ZRoYhNEgPg3K5iuv5mu5p2RimSyZNLCFwXC2O9ko+pgtTtIjifS6cv8bG+jpbG2vIXHcPSuXyOCQx1u6d8fhr0NshzxMak0sHXZ2gXKG7Z2A5HsZooAu0b4On/E9aA7VGk6LQoLdGs4UQgtFoyGigO8NaLGsx6A+RcrzmLZs4Scbvic6V2et08DbWcWwbx3Upl0o06k3m5+do1gwQFs16A1mtMRj02dvZxfN86o06WZYzGA64euUaWZqwfGiJRr1OHCdsbmwxPTXJ1OQEpu1i2xbNep1z589z88ZNms0GCwsLLCzOs7e7x7Vr1xkOh3iBhzAEw8GAtfV1+oMBYTTCsk3a7R7r6+vcuHkD57yL53qYlkkYReNJnkE5KOG6LnESE8exprsKrcsZjYYUhjx4byzL1uJmx6VRbxDFEa7n093fp9/vMxwMicOYLM8oZEGapeRZTtvbw7Jt2u09Jlotrl27Nu7GSKRUesRkaJG0/BZztv5cxcmP//iP8+lPf5oXXniBhYWFg1+fmZkhTVO63e43dU+2t7eZmZk5eM0rr7zyTV/vXhV97zX/68t1XVzX/eO/ERcYUiJ8h5whKh5RFBKBAstEjBKsms6XMQooogwlLQzPRcQK5VXIiwRjlGAHJfI4BNNAeHWKVGEUDrJIdGpebGClkkJkmHmMnyoqBSz5gmPTFoeaPjVPYGNhqgJkgWFaWJaL5WkBqw4q1AmuSZYjx9HZsnjb1oeCYRiRZgVplpEVWlAr/SqF7RDNLpIsniIZJmSvvUhx6yJFv4tUBZ5jj08BJuWSz/Rki3q9huPpDk2RF7pbonTBkcTaWjoaDRmNYkxbq9pLpTJ5keusIAVJmqKkfl9ty8ZQkt/48qvc2uzwUx//QVr1KnmhPfIV39O6lcGQchDwRzejeyeib+caUCjOHJvi3CsvceONl5Gq4L4j0zj1BSbmDiMMyXxDEMmcu1ttZhcm4E6ZnS4YO7sUpsVTD92PNHJ6iYFb5GTJCBOT5UOHuLJ9hzhKeWihysOPPgWWz/UvnyUa7GIJi2rZoVyyqXsRru/T73Q5/fCDCPYxXJ2BkmcJJU8wSgIqfsqR5RluvvT7JGaJ7bUt3vXhv8zyfY8QRQW//Vu/wWgkec/3/SBBtUaWxHS313j0Pd+BwmJr9S6jdEQ46tILDdq9UyyvzVCbXaJS3iWVfTY7u9y59Rbzxx/DL9VwgiYYhbbE2iZ5nFNkJlLY2LYH5AgZkWQRZp7g2MCwC0aO2d+mu32LrTsXyfMEQ0nqkw9gIDj/1llWVtdZX73N4099mK3bl4mHff3QFxZKSUb9PqZpHSCCd3d335m9AHWw1NS4a+I4DlOT02xtbWpHhRCQazpvniWAiet7lCo1nnv/+9naaROnGabpMj3RZOPudd46f440TbWTTaYUMmPz7jWuX3uLPM0oikyDp1DESYQwDbAcJJpWGzgueSZpd7cZdHdZWDyEsDwKaZDJglEUsbm1wdqadrahBEpCpVolzTMwTJSR6zGvlAhT4LkuURiBwXhkkBEEwQEA796IyzCMsR7A0WmxpSqmbbG/v8fZV7+MsCwN4Qr7pHHI1vYmURyhigLXc4mjSB+i7r2n6I657/tUy2W2d/ZQsqDb2ySJhzQmljBNh3sBjMK0xqOy+O17hO4QvxN7wcd/7O9QKpWRSmoNkil0kW3beK6H67nYjo2Sir12m0sXL3L50hV22rskcTzmfGRUqw6tVotqpcrM9BRzc3PMzs7i+h6mEOR5TpImFLmiNdEiL3KyLGcUhnz2936fmzduMD05yYkTxzEwiOKYvCiYm5tlYXERQxiYwsD3fcoVHTi5urrG6toaK6vrTN1oceToEQ4fPsSVK1c5+/qbbGxukWapJrIKgWmalEslgiOHWVpaRgiB53u4rk44zwsN8SuKQidDGyb7+xpZUalUcD0Xx3YQhkG1XmVycgrLtujud8myjMAPsF0XJRW269DvdtnbbZPnGZ7n0u12ydKUMAzJspQgCDh29CiDwQDHstHxCglhGNHt9QjDcPy+pRRS/rF791+7/kzFiVKKn/iJn+C3f/u3+fKXv8zhw4e/6fcfe+wxbNvm+eef5wd+4AcAuHr1KisrKzz99NMAPP300/zLf/kv2dnZYWpqCoAvfOELVKtVTp8+/Wf5drAmamQq0wjxkotVspCYuIFP1gsxpCL3LQrLGjttGshcgYDcyrWAVgmM3S6y6iKzHMudhIGJbShMJaA/RCQpdp5Tt2Cu7LJc8zlUFUz44Bra4SJkgiEFwrKwTFdbCccjmyLPKCJdYcZxipIFUmnrm2k7CFORpRlRlJBkOWmhyJVCmQ5FOSArN+hPLRLOHoYoQrz2ItmF1yiGXQwUjmvj2C62JQg8j4lGlXqrQRAEWPa4LagUeZoeIJzTJCPPUva7PUajiHu5B6VKGYQgy3Jtc1QmUuncD1sAhsHnXr/K1bUd/u73fYCSa5PlxVjpb3FkYQrTFJy9fJOnH9Jz+vVtbSN98sknv+1rAAxKvsXpQy0uX71DmoT49jRHzzzA/PIR3FKDonOHfZmRWT6OV8e0TGr2GJZZmAyHI8w8J8JmaNTxK1MUlkG3vcnu9gZbaz2uvbXFyQ/GlOtVVrcLtjc9pu57L6v9Mre/doFqvMcsisCr8PrnX2Bve5dB+DqHjzzMIIsZ9gaM9gvmHn6YyUffR7Wog13ijf/Pv2MQSS595UVu3lplb9/CD5pYloVpmQjTY+HIMZ597j189vc+zaU3X6Bc0tbUr7/wJdI05MtritJwkry8ipcmiJFgutng2pUrKBkjZY4hplCkel1Kk8qkhS8GeIMuedTFino4acSgOyQr+fR6+/T6+3q9ZgkqHeA6Fo6wkOkWcdgjjgoG/T5PvOd7qdVq7KxofotSBih9Urp94xLCGudMAaurq+/IXqCXgsJQoJIFhDyEmZXx6vPU/T0cb4SwuwxHt0jSWLfwPYdn3vse2rt9XnjhJQzLplk/xpGlj/Hg6TLf9R3v51/+Dz/FxuYqwhKUS1Xm55bZKCTtlesIQ1AUGaZtU63WSLPkm1wMUsGw32Vz4y4KaLe3sSzBKIqZnDkEWFy/cYWVtRXSJNY6gEIRxSnd/R79XgcAx/X0SGo82lFj0B1KUcgckLoQIEYYgmq1zuTUDNPTM9i2xWg0otPZJ0ki+u0et0cDsjTR3Vl1r9ukP0vaovx2v+memwdDABqPbloW5TGKvD8uTJqTy7heQJ7nB3/SFBZgMOjuYNueZvukEfDO7AXve+5ZqtWKVgaN85GklGRZRq/bpT8YUChJURRUahWeeNe7ePrdz5DnxcHJPk0zTEvQ7XQpBbob4nqeTvEtJEmcIIRJtVpjNBxh2hbJMGV7e4erV65QCQI+9l0fZn5+nnKlwmg4ZHtnh8FAC4pdT49VhdB4+EJJqrUqExMtwCAolahWK2RZzvbuNnPzs5w5cx+gWF3b4NLFS5oSnCSUKxUOHTnM4UOHSNP0AJKmx+quljSkKYP+AMMw8L3TzMzOUK9pdpVhGJSrFTzfw3EcPaIKw3E6t2R/f5+93Ta7e7uEoxFRFJKkCe32HvVajempCVAGQmjNWalUwnYdLNPixPGT9Po99rtdqrUqSZwQhiFxkpDEMZubG3/K3fwzFicf//jH+ZVf+RU+9alPUalUDmaCtVoN3/ep1Wr86I/+KD/5kz9Js9mkWq3yEz/xEzz99NM89dRTAHz4wx/m9OnT/PAP/zD/+l//a7a2tvin//Sf8vGPf/xPOBH9yZfhOVh+BZkVGK4HbgkzU0RpQrlZI+wPkLmBKEoYCGTioIwRhooxcTRrRHgIbwIZ21iUsQc5ZrqHnaeUioIF12SpZbFcK9HyBb4lMSmA4mB2bRgCy3OxXBfTsnT7apxPkiQjXV2mOufH9Vxsy8E0NEo5ilPSJCNKMzIFGQa4AXgBSaXJYOEIo9Ysxu424iufRd25TNjZwyhShGUSBB7u+EFWLZeYmGhSKgc4thayCQyKPKeQUkekF7kG0SEZjYakWUpWSDzfp1wta3quAkwTiaBQgIboU8iCTz7/DS7e3eJ7n7iPLMtY29qj0cipV0vYpkWlXOZ9j53hv3zmBcqBR+C5/NKnngfgiSee+LavgSzPmT22xN/60Hdw7sJV/s1P/QvKpQqplBQqI4lD1jd7xN09yn1FrTZFJ5EMpEHZsFFAr9dFGjCUgijyOKxM2itXuXn7FUbtDvWGy9GjTUqlAK9cpjBrdKNtvFHB7lAy2M6Jb9zhyHMp5eY8J579q5SvvMa7vvtjOFaVwZ5kNMoZhgW26/Ly7/0aT37fP8QuN3jz/A0++FcavPf7fxTxwpcIdiSx9FCGRZLkFEXBztYW/9P/8M+wvRKLy8dBQhoNiUcDnHyd73rfAvMzCak3Qbdt8nu/m+NMHsL165giZTiMtfsi69Hrj8hlQmHd5OxXbtHZ3WDY65PlBa49dq5YLq5fJ2jO4LaW8QKBu3ETP7Bp1aqUpu9n5c4VpMz5zu/5QaZnlzCFye76BDKL6Vq6uJ+dmefixbOcPPMY3a4WLT755JPvyF4ABk3vFMePPMrNm0fo7s6RxDFrt3Is9zTexMNUXcnssU/gV3pcOP8qSTxic30LO5hkbvkMzdLTWINT1OUsZUuhii7HTjyMwmLQ3+e9zzzLu9/3HNWqyy/8z7/A7btbHD92kmtXXiVNIqYmpwm8MnvdDnnR16nHBrR3NkmTkEIWrK7exSt1OPnwMziOiyEEuZTYrocwYHV9lVK5RTTokWUZucy1a7DIx+RhRRKFB4WFQCCV3msMbfQlT1PW11a4c+uaBrblGZbl6K/B27i1cq1OFOpMIWEYFEUOSmmDQJ5jWTZ5kcOYcGsYuuthKJ1A2+usEw67zC2dwhD6tFwUuXZNGYIoHOGXanR2V6k1ZjGESX9/6x3bC7a2thgM+gc/l2NBcJZlhMOQbKwpKQUBru+hpMKyLbI0pbPf4eaNm1y9co1Gvc7RY0cJyiWyoqC7s0McxzQbTcqlEmEYEUUhYLC6tsbtW3cQhmJ+bpalxUWarSZZlrGyusrly1fY29tDSUWj2WBrY4tGo06326NaqzEajSiVSliWief7lIISQalE4OtE3ziO6fb7DAYDgnLA9/3AX9ZOm+GITrvDfnefNE2wLIujRw5jOzZZmpHEMVGU4JgWszMzTE9N0RprDu3x6EavJ0mSJuMRl4VXr48zdWymp6bJD2eEccRoMGR/v0On02F/v0tvf5/haMRgOCBJE7rdLuEoZK/TpsgLdI6SqbuHQYDv+7ieXu/CEJw9d/ZPvZ9/puLk535Ocz6fe+65b/r1T3ziE/ytv/W3APi3//bfIoTgB37gB74JwnbvMk2TT3/60/zYj/0YTz/9NKVSiR/5kR/hX/yLf/Fn+VYAUAnIJNLhfYZHkpqILKKQkkEhMe0JimSoPywYWMpGxDYyG2JhITOdF2FJCyNPqIicOdHnRN1iqeYxEfj4lkDKDNPQc3hD6g1AjL30jqudNYwtU0UhiZOIOIxI4pRcSsR44Tm2QyEL8iQjSVKiNCPJCnIEyrZRQQVpO0S1Fv3lU8SNGexb1zC+9Etkm3fIoxCjKHAcm0qtjGHqfItKyafVqlOpljWt0dYbhZKKTOqRjFSKNMlRSPI8IxyFRFFEHCWYlkWpFOC6HoahuyY4PpkUqDGiuJAKKXO+/tZVAD754vlvuhd/97/5KM8+egYF/OB3PQtK8f/6lU+T5wWnjyx+02u/nWugSBOuX77CXD3FcA+RjEbcuH2b0c11kr01jjz2fp58+km63X0iSqSrr1OEG5i1EpYXUG/U2R3s45gWYR7DcJ3btw16e+/Dckqsb1+m0XSpmDlxv4Pl1XBbM9TnJGZm4JmCtSRhdTvn/BuXePjxOvWJBqPpSYLmFEIkTLUMBrZBPyroJx3uXF3hTJJjqSFxmhMEAY7jkEUj5o6cYeX2Jr2dLbZXbxON9unvbuGYJpahT33S0Jt2kqccXmjyvg+fIag22bl5mXSnjm1uc2d1i6XlCVZX7hKlkrA7SSEkv/FrX6XU9Lj1+jZhvE1rYRJL1JEyZnKiyrC/T+5P406doDyzRGnuEKJzl/71L2NbWkuEISjGnJA/+O3/+E334/DiEYRp0picYenYfdy9e4uL514mz7RC/7/8l//yjqwDMBkMDe5egzh6C1H6NMrbZWp+kWqwQNk0WDp0hg//1f+ey1ffYuHwEQbdDpV6nTBOcVyL7/zgEjur+/zS//Kf+OyLHZJ8h7TYxRIaXudWKphCsr66ypOPP84TT3o88a6HqVX/Nls7QxzPQQiLF7/2Kv/hl/7fDIZdLMsmiSP8UpU0TTBQ+L7PG9/4GrZtoYoC2zWo1eq0JqZZvX2TRrXBZ3//N0iSUBcc48JEB7Jpp9Q9XYfjOKSpIktTLNMkLyRxqvPGZJFrhw6Kosgw7o29xtrENImxLFu7J8aFByhMyxojz41xC14daFf0XyyoVOuMBrojun730jfdiWpjFr9UB6BSn8boGXQ7GyglcZzgm+/at3ENbG5sEJSCsdZGa52kVJimoUmttj7VD4cDbt++zfb2FkrCrZs3GY5GTExMcurkSZYOL5OlGbu7ewC0Wi2a9Sbd7j4yL7Asizt3Vrhz+w4GisXFRebmZ6nVapTKZaQs6PX62LbF3Owsc3MzuI6L4zgcPXYU13GRUrHf7miLeLdLURTjkD6HcrlMo1FnYmIC13Op1Wq4rst+Z58XX3wZIQyWFhc4dOgwh48eHo/UM0bDkMFggMDA9z2mph3KQYDtOkip2N3Zo93ewx5D2arVmrZqG7rTlMSJpr/GEWmakY9ZOLZl4QUeC0sLnDx1Qlv1TUGe5YxGIf1ej53tHdY31rlx8yab65v0ul2GY1vyfqc7piPnWqqQvAOckz8at/0nXZ7n8bM/+7P87M/+7J/4muXlZT7zmc/8Wf7q/+qVCg8sGyUccukiswTXKWEpGzXog2dgWXUMQ8IwwhIGhiyDMgnMMp4c0DQEsyXJobrPVMmgYilMWSDzHJXnFNggBAUGjm1pp4NtY1om9/JDsizTCOwk0/PFrMB2bB1pb5qAIk9zhsOQJInJkoKkkGSWhfKrSNcj9336tWn2F49iuDWsa+cwP/dbJOt3KKIQgwLbsqg3a5TLgU4NNU0qlTL1eg0/8DBNgS30/FtKrWOR4/ZdlucHiZRREjHo9xn0B2RFQa1Sxg+CcUS2pDAdViePs1eYHN67g1doS2aR5fw//t7/iXDYY9Dro5SiWq9Rr1VpNBsUssBA4Ng2P/yx5/gbH30W0xAkacbf+elvVmd/u9YAwKljp3n8XR/kpZfPUuQFN26t89jT78YrV8FQnH31RVzHxS23mG1N0rZrbHVSqlHI8mPv5uoXPokUBsKy8P0ShsoQyiao1Fhb2eTC7i75AI785YBC5owGPSqtBiYu0jApuxZpqFhdXefJ9zdQhkMYxRoE5ppEMmc/LhjEEpVnDKOC9u4WC8fO4AUeoHB9n2c/8pf5hZ//z3TaIeXmBMceehzDUFx6+Q84engBmcf09nZ48r0f4tU/+CRhPoK0zs/+j5/ie7/3KJdfvMP/94ubBNMz3L3TZnXrKhcvnKVRq5Pt9zFKLd77/mf4Xz7/BdJ0hOVNUG0usL+zjYkijSIMy6Q6MY1z3xN4rocjBKooQJhEYQ/HqoGAkluh3qrzse//YUrNCWynxPU3vs7W2i3WNu4SRSGykDz+3g/x+Hu/g+HuJr/1a7/4x5wZ3651EMhHIVijY3yGwtdCPFXA6moH27lMELzIdtzg4r8p41gOO7sb7OysYQoTPyhRFAUvfP73cDyP3n6Hfr97sN+5YhryMn/w6d/lc7//O3S7HQxhYFsen/v8IZ565lm+/tXX8AOL6akWt25dQcoCzw0olyrkXsTSoePU6g0c22L58Akef/h+Fmam8Es+hmEwGOb82m99mjQJKTkO/+1f+xusra8yGo5YWVshjCOaU1OMBgPSJGFne50iz0iTCMd2SLOMUuATxalmImUaGY8ysahRr86T2VuEgx5FlmEYujgxLQvQUC1pGAjD1ILFgwJI25BNy6bVmGBiapbJmTkmZ2bY2tymvbuhaaGmfeBuOqhhDMAQNKeWDrgzUhbsbd14R9ZAu90mjELNIRl3evM8G49t5HjP1odIYRg0G02azRYPPfwQwjRJs5ROp0N7d496o8Gh5UOEYUiv10PmBeVSmctXrnLz5k0CP2BhYQ7f00F4QVDCcV2yLGM4HNBut8nSjImJFrVa7UBTaFkWURRy/wP3YxgGw8GQz37msyRZyuzsLKZpHpBbd3Z2qNfrlMZBe+Zki6AU0G53uH79JpevXKVWrdJoNJiYmGB6eprZ2RkMw9DMkjCk3+1x5+4K7Xab0Wik77NSWKZFuVSm0awzMdHC930cV4vfPd8jTVOiKCaKIra2d9je2WE4HKCUwnV1nEK5FBxg9ycmWxw9cYTv/Oh36q5MoUiSmP12h/W1DVbW1rhx6yabGxuEoxHXblz7U+/nX+hsHanAROiE4Hyose7SQtkeRhHAyMQ0gCjCyRWBFTJpC2bMnNnSiPkZj6ptYIscQ0okBYY0KKTCEKbOBzEtLMfGHpNYxT0cdpJoAVWmW+9FUSClbmV5Zd2Sy5Uki3TRkiY5aZqR5gWG6yKqNQrfZ+A32JpeZrh4BMP0KV09j/fqr8PWLVQaQyHxHItSqUQQ+KAMpNJFYLVaplotY1sWpsHYrjgOuSo06EZJSZZpF00hC6I4ZNDr0+/3SeKUoFrG8wNsx8UwLRCCKKhw9tBDDDLJdHsFpxizH2SBbZooqTerOIqJo5jQcXFHIb7vYQg1PrmYSKnIi4JvTf7057uEIVhZWeUTP/dvMPwFHn/maVzH5ckn3sVoOMQuck4uTjIcjXD8nMZkk6nlOdK0YOfOTW6dfw2j3+XpR++j88o1QinxDZsCRZpkZFHI1ESVww+dYTjoMRjlpElKgcJQOcK2ccoBDz3yOLVKhbiAcBQx7Pc4/+LXOf3g/ezspLR3I7Y3Uwrl0Jhv0mxMcOf6TYpCsbO7Tv+l5zn/xlvsbWxQKJ/65BS1epWkKLSDRkmEMJmZnsT1A5YnfQajmJIHL14q+MpPv4ZT5AxThSgktlkmqM7QmDzE0nyD24MRKAfH9YgGAabV5cFnHmLm8BJZ2GFisk4SSkqTLYJmC6PUxPV8MmFQJEtsvvm7rN/cRAiLw80mwrYwgFEY4pZiXKeEbZtjBgp0u21uXHmLNI+Zmlum1+28g6sAUucSJtr9VhT528wGZZClI8LRPp32Bo7jHyS15llGquKxJbag3+9gGIIgKOtMGKn1ZInaxJIVdnZAymysD9EP793dDS5dOIftWJR8l0GnxezMPE88+BDLy0ssLy8yOTVBpVzDwEYhMIVJq2ExGhWkqa4hnCr8dz/015FSYTvWQVBgUUiSJCWMIi1AjBNG4Yjefod2p81wOCSKY8Ioptfr4vhlNjbu0G7vMBr1yXNJkfucOnOSflzmyltnMYVAURwEM9qOgz3uKoDGFuT3OClofP30zDytyQX6gy63X/4qcThAFhJDWG9btoXAvDceQv9xU+j3+d6oR7yDocThKNSutDFA0LXcA+aKbds64bnQ3UdhmWRZxl5nj2xbj7pr9RrNRgPTNGm32/T2e0xOTdBoNHj11Vd5881zJElKpVqh0dDd6HK1TKvZolwuUUhJv9djfWOD9fUNLMtifm5Wj9dN7QBL0/QAQmZZFo1mg/n5eVbXVg8KBFPovCLb0T+2rPGbNnagzbkulUqZTqfDoD+g09nn6tVrmKZJpVphenqaQ8vLTExO0Go0aDWb3Lh+gzfPvcn1m7cYjUYEgX6eOK6H73n4vo9lmTSbTer1GvVqTXdHioLp6UmOHTtCONJhh1ubW7R3dtlIM5QBwrbwXBcpJUkU0u20cV2PWqVCqVahXq0yPTvB7MIsSEl7r82v/cav/6n38y90cVJJ60RRjHB9GA4wpYlQPoQF1ijHyGLKMmbGMViqOixUBU0fXNNEqQxhFJiFOR576HanMAWWbSKERsOblo0Qur2pMMiLgji5Z/3VLU8wMEwT4VgYpkmuJGkYk8QpWZaTZfoBLU0Lo1ohcgP6lQn2Dx8lWT6Fa3k0z7+G88rzyLWbyCQkl7ozUioHBIGLMExA4LoOQeBRKpd0NW1qKqZCZ6tIKSmK7EDIposnHY0ehhH9Xo/hcMRwGFGulimVK5rpMoZuSWWwW5ti5/hx3PUNjExjstWYB6Gd8RqBLMy3letRnOA4DqrQVblhCGQu9fzzW7SO/bkuA1Jp8Pqr1zly2mJ6borBIOStC28hVcErr7/J2TfOkRcFC4eW+Ls/8fe5ce0OSoHj+Nx4+as47RUe+dCzGK9dJ4sjyhWTJBxy4fxrKNPBYZvLb3yGz3zxRcqzRzl68imOnLmPRqnEqWMzrJl90sbjLC5PMep1GUQRSZaBAuE6nHz0NHevX+Xm1iaD/SGyMKi1ZtgablBrTRDt7zHca9PbW6cxuUiaCZQwiZOEO+deJI9GbK/HVIISMrBwPI9yq8r19S1WOl32uz36aUrVEuRAGOqR4XStyvTMDLVWBcvTgLJhmHLq8SVuX97j2Q89QnN+kngYYrllPv+rv8z9J/8Ss8tz5EnBYDhkfyjp91NqE/McO1THLjfotWOQCqkkqkgZ9ff1pm85MD75WY5Dtd5g7c5NLp17jdP3P/TOrQFAygSjMCn+iI3ZNIVOd5U6KA84wL7fs/a8/WMD1y+RpzGjYXcMOlOag2JAkacEfolabYZmvUG93qTVmmR6apapyWmaE03qtSoTrTqVSoDj2SAhSyVZrihyXbSbwsCytBhyNAiJw5xiHMJXjNN7XcfEtPX7GA4TkiQdA9gEQroEro03VWFmcmk8ZjOQSJAa0JjlGZKcOI3J84ysyIiimO7+Ag8cP0G3s0d3f59ur8soGpErbffM0ogwHOE4NralT9gAcTRid2ttrJ2LiYb9sWhW4Xou2oGjxu6QDP1x10BJDaQTOpAvsDR99x26Gq0GpVL5bVGNYYzFp3rMo6QkzSLCKCKKY2RRMDExwaHlQwRBwH6vy8bGNnmWMT09xcxsjUuXLnPhrQtEcczCwgIzszO0JlpUq1UC38fzPMrlEnJcmGxubXHz5m12d3YQQhd2lmVRqVYPXEbhaKQDFNG290azwTdeexWEoNVqYpkmjuviex6lchnP1iJa07KwLZuiKPA8j0qlwt5em3Z7T3NTTIs0S7l48RLnzr2F73vMzc5y5MhhHnjoAZ586klGoxFrK6tcuniZ8xcucPP6DUajEbZjjTtLY+u/bVOt13Fsm6AUUCmXqFQqNJsNlg4tMj01jeM6DHp9trY22d7aZq/XJU5TSqUqGAa94Yj1rW329/cZjoYM+n2SJCEbgzv/tOsvdHFiRC6u40EMovAxwxgvGdAQBQtOzkLTZr5WxncE4oB6IPUcd4zULVRxwH8wTRNhCExLczkUkBcSlevRTZLoYsNQikJK3dodj3ikgjQtSNKIJEnI82Jc0AhwXKTnkwQVtmtN+icfwZhZwLt1g9qn/hPO+m2yzo4e+WQZjm1RKfm4nqchbYaBZVnjQiXQFa9tY45PBQqtA5AKkGNdgpL61FTo7yMKIwaDAXEcMRiMNBkxKGNaDroPi+4E2SZbrWVGvoefhFhZSprlZEmMKaAwDAoJuZTkUpEnGcKKcRwX19M8DUNoNLawTMgy0uSdi0m/x7Nw/BpvvPQqsiiYmWhRqTdxgxKGMHn4sUe5e3OFRx96FGUYZKmBXwmYnZ0HMsKOx+e+fJZ+lFCpTNNoToHlcvaNV2m3d6mXbN79UB3HNLlz4y6D3S77Gzc4fP9pMCQ7N29QKteYW5xECqEfaqZJEo8Y9EbcXu/TCw0MPyBLQ3KlYXbH72thWw4Li/M89sy7Gex3+cVfew3brbJzXf9b+jttHGDl1nWqpRLt7h7Xrlxle3uDNMuZn51mam6RM/OLBK6L5bjsbm0S1Bo89cH38W4vwFESR7yKF8yzsy05/fDDJMM2v/Lzv4ThSqIwJo9S9rfv8tU//BqWMYuhPITyEEYFZQYU8ixXik1kNslE4xFQJlE45OvPf5rH3/dd5FnBH/z2L7N86JhOga3WOHbqPl780hcYDXpE0Tv3UAJdZBSFGhcb40+6lMRJfECwFWMtQp7r76VWayILSX+wrzuepQphniEM8ByXVr3JwsIhjp84w9zcEpVyDccJtB5D6PFlvRLQaJUIAleL7gsIRwW9nk4Nfls0b2CZJrZr4wcC7WrOGIUJtqWTYQsUWSGJh5LBMMRyBc2JEuW6TzjM2N3p0d0fasZEkZOmuhtrKKWdXYYglwWDcKAPXIZEYiAM7cAJghrVSoPDh49hWrbOoRGCUaRF++FwyN7uDuFwRK/fIxzza+I4JI4ikjHp1DC0kBKlCEd93U1WOhYAwDZt5LjoKwotrLUscyxQ/d/POfmTLttxKVV0TEKW6sDD4XDIcDQiHI3o7PcQhkGr2eTo0aPMzc0SxRFb29vs7XWwLJPFxUUa9Rp3V1a5eOkynufx5FNPUippVogQxsG4z/M8gsBHSUWn3WFza4vt7V2KsWXWGu/dcpxZlY/TpPd2d1laWsZxNZp/dnaWNNFjHMe2KZU1E8hxbLI0JTZN7aax7QMpgULhuC6TU5NUqxX6/QGDQR8FTEy0yPOcOI65cvU6Z988h+95HFpe5viJYywuLXH8vpN853d/F9vb21y5dIWLFy+yvrExthH7oKDX7ZLl+Xi9g18q43s+vudh2xaObVFv1FheXuSBRx6kFJTI0ox+b0Cv12OvvUe708ZzHZK0QZqmY6dowtde/NP5aH+hixO1v48rC8qmZDowWWoJ5uoGDc/HNRnjpiUyzym4l7Cpc2lM08R2bN06My2EMMjzAsPQeORCQiGltgSOBaVK6XGGKQxs9Fgpy1IGYUya5aTjEY+BZpMYjodwA0aez9bUPIP7H8WeWcK7+hb2r/48zt3rqHBw4IO3LZNWvYbn6WRkncpp4LoOtWqNoBRgmaa2mZo6GVSIewPeexuGPgXFSTYuUHIGw5A4jkiThGFfw3uCUklvTkqNR1WAIUhNn83KPFmuqLR3EVLqsYwQ3FPUCVOMN3woMnmgDk/TFCEEWaawTP0eO66LHIzesTVgGAbhoKDIEh49PYewfSZbDZRhcuzUCbxKGaTF737y9+nsrvFb/+kXMGTE/OEjzM/P8uT738/Fl77CV7/yAg+eOsSRE8+w3VVEYcrRQ0eRUZ8H73+M1BzyrqcPs7bZZqPTY+3aRaana5QfepzgzMNMzy3SXjnPfj+mNHMIa+0SWS5YX+3w+c+cxVAF672cDz17lHZviOv53Dp7gVEYsrN1l72tw5goAtvCKntkowEvfeGX+f6/9BwTxiGkWsYxLTY317GsgDA+xNbONvff/xDf9f1/hdWrr7Ozs0aRK+LZKofPPMDLX/xtRknKzPQUJx+Yxy+NGPZDsjRCiFXuXr0CykcYgT7JCY80DnUCtQDD8sdWd0EoAWVzeP4YozwiLVJsBDJLWF+5wQMPvwthGNQbjXHUggBhkqQ6eqFS/vZA2P631oFh3OuBoP87TtSVahz6J7QWy7ZdbMtGCIug5DMzM89ks8Xs/DxTE7M06y2CcgUlDUZhzGgU0dmPGA0KqrWcyakmCwtNJltVhDAZDnI6O8mYV8SYZyRRBuMTshq39gt8wyDw/fEDffz7hSLLc4p7Oo/x83vYTxh0Q0xH0JqocvzkNFnW5OaNDe7c3WQwGGJiArqzaRh6z4rTiCwvSJKENL9nGZaYhkEuC5QsyIrxOHrMXVKqQAgDYVpUKhVarSaOZY+hk5IsLxhFKf1Bl35/f3wKjsiSmDRLyMaOj0IWmomkTP01DUGRZwx67bE75J3ror704stYtk2a6m5TnuuDUZbnTE5M8sgjD3Py1AlUIVlbX+OFF26QpAme53Py5AmazQZ37tzlxo2blEoB8/NzOI6D49h4ngeKsXsJSkFApVzGtm329/fZ2Nzkzu277O/vk2YZ5VKJ48ePMb8wrwszKalWKlQrVRqNJnmeYY1zjmr1KvV6jc2tLSzLYsaYgSAgjhLdkRxzQQzGnX3LQqbaYWVbFrguzZZNpVo+CLYsioJev4fv+3TaHXZ393jxpZd49fXXaDZbHFpe4v4H7ufw4cMsH1rmve97L+12hzu3b3Pt2nW2t7epNRvUKhV836c/GNDt9kjTVHcnldTcFaDXH/LmuYtYpqBeq9Ns1mlNTPDA3P1j/YouyLa3t9nd3aPX3f+W7udf6OLksSBmuekzWXbxbXR3xJAIUooCDMmBb19/8ExsR1NaHcc58MMXUpLlWoQkC0maZshxUqnGWkt98jJNPR4Zt6bSXIPHsnsUPEOgLBfTD8D1iRyfreY0+/c/gjO3TOnWFdz/8nOoG5coeh1GY/W+EAYl36VS1lkOwjJxPAdr7AgKSiVcV88ELWGMyYyabokyxiFjxrg1m5PECRiQ5RmDQUicJqRJwmgwxDCMsXhL48X1g8QYsxlAKpP5tTu0untM3roAMj84jeoNtdAjGwlgUKgxZTaOsYcj3TkxDJQUWJiAgeP579gasG0LZcBDR32+430nyTITzxGY7jSV6SWkWUbYAR/9aMbnPvMZHntgmVKpxPWb68wvTPP1z3+OUW+X7Ts38R2TdGqCD7//w1y6dJ65yRKNykNMT0/S6/lsb+xglZp4o5TMFDSnZwjjlKuXL3I0zhlu71KILpaQbKxt02qWqc8dxS+7CFFQLWxGiQEFKMPg9uU3GfX7jAZ9Xvi9X+GD3/ejFG4L267iO5vMTNW49MY3uHL+MtMzDT740e/iPc+9lyvnXuXcpZt84N33c+zIIV54/g+5/sKv8uBRk+ZMBXfuO3npD36DUqnGg+/+bgbtTZLtqzQX5hkNd+ht9RjuXqVedplZWqBcr7KxtsnersETDz/E/fc/zJvfeAVpxkTpiGeffT+/8evP41klZo+arK8OyLMIq1zDMm2mp2ewhF5LruNpYFmWkd2D9wnz28AF/d++XM/TrB/HwfcDPK+E63q4joOUBQqwTJtKpUat1mByaoqp6Wnq1RqWsAlHCb39Lu3uLleu3STLtFXftVya9RbzC7McP7LIwtIUjmvTbcds3B2QpsWBDk2PMN42DtyDwQnDwLB0NpZjCVxHaBeEbSIERElKEmcU3MPqKz0KHtv/07Bg5fYeOxs9JmYqnD59iIcfPsKtW2u8cfYiV2/eZjAcIITWNViWhet6elQNRHFEUWQHoyqlJG8T7hVpliCLTPOYpMbsZ7nWRsixW8f3fXw/wA9KzM/PoebnyfKCrCjI05QiT0gTnR9zD6OQ5TlZNiaJprH+tTRmd/v2O7IGLl+6jOM6471M0mq1ePSxx3jgwfsp+T4bmxt84+VvsN/tkSQJzUaDxx57lMmpCe7eXeHNs+c0Bbek3XOeqx025rizlWUZsijwgwDPcxFC0O/3uXP3LpcvXWFjYxOFolQqMTs7w8LCAq7rkhcZYNBsNrEdh1K5NKaBqwMa6+lTp7hz9y57u3sEvo9tmVi2pYMkDxyT8qD4tSydvca9eyr18yBXOUmWoJTOx5mfn8ceJzCfv3CBy5evcPXyVY2+f+U1avUaDz/0AI8++iiLiwvMz8/y4EMP0N7rsLq2ztr6GuFoRL1RY35xQVNzHQ1vi6KIXr/P7s4OYRiN8+AMhqMR6xtb4+5lQblUotVq0ZpoMTE5SXuv/S3dz7/Qxcnj8x6eY4GRowqFEiYoRY7uBlimhTEWFNmOq2FQ4/ZuPJ576e5CMf4w6UAkLdwyMUwTZWjcfZ5LiiwlzTLSTAuoNA/EwnBMDMtGWA657bPveOxMzzE6/Yi2nd66jv2ffg7j2hvkg77OK5ESyzRxXYtqOTggMdq2pefLuaLUqIyzcKwxhVJfhVR6JjzeODR1Nicbtw0NpRdFfzAiSXPiOGE4GOjqvVzG8bwD8JLuggiUVEgKrKjPqRtfI8VC5tlYFKhJk0pp2JM1Tu/Mxx8aqQR5XhCG0biQcg7m1cI08d1vPVn0z3qdOHaC1TvXOHp6yI3LF7BEA7fapFo36ex3CXOF6VbY2umDlLz02T/E8H3e88HnyNIho36XXPgcOfUAG9s73Lhwkdb8Cd54/WWyUYhlKHZ3exw6eph6c4mvfPWr7HW7TNfK3Lx+lzfevAMypjk5y87OiJKTkRYFe+0R5YqPsFwevP8UrVLC9kaPT/32a9z/8AmkIXnvBz7AH3zqk1y9doekvw3eJ1HxEqPRKoPNt7CNjK2btwhHMf2dPjdeP8fm+h6OaXHp2k2WmyXevHCbpRNnmPuev8aws4vTqnF1dY9ClNhrd1B5AtvnIUjohFcwbIuaZ/Oh99X54pc3uXXtDUqVEtvbm8wtHaVsd4jbrzA973P7ygVu3Fnnzo0v0xuMcIXB+sY2s9OHtfLI0EAwmaeoQh487AwDijwDpQgCH6lchPFOyqLhzOn7sS3NUUAa5KrAMgStRpPZuVkOLS8xMzen3Ti9Ibs7bdY3Nrhy7i2G8Ygk0RRTYQrtZPDLHF5Y5KEHT3Pq5GFKlRLdzoib13Zp7/TIcm3TRdcjuLaLYep5vTk+COkRsf4/notlm5QCHV1x7/OX5wWjOEbmSuu5lH4I5XkxPhRwYOPNs5zt9S5bG12CwGb5UIsf+sHvptcdcO6tq7x29i3WtrZIi1TvZUrfI9PU6cISNe4EF2MQ5LhQkTqcUBb67xRC4NjWwYlfqYIkjghHI4piY+zmgXtJ6YzHDEg17q6O9WmGgSnAtgSONQ7Ry4P/2u37tlxJotHsx04c5dHHHmN5eYlBv89b595ic2OTNNM036WlRR559GGqlQo3bt7k+vUbOJ5LUAp0gWfbeK47LkokstDddCUV1WqFSrms04mThL29Pe7eXWFndwfDgMAPdGGyuIBlW9+0roqiQBRy3F3Oxnu+Ppzed/oUz3/py4zCETs7OyhgZnyILmRBlmk7uW3fWz/6GafG369h6M6/aarx+5wzGo0YDAZYtk0pCHjfc+/j9H338dWvfo0bt24TRTH7+12uXL7Cb/7W73D61Ene855nOHPmfo4cOcz8whz9/il2tnfY3Npiv7vPfncfIUytS7JtWhNNjhw5TLVSBQUb6xvcunOHvb02Cv1+JWnG2vrGQeDfPbH6n3b9hS5OijRDmuORBMbbkc73Kl7T1puE0ETFLM8RJvpUMHag/P/Y+/NgS6/zvBf7rekb9nimHtGNeWgCIDgABChKpkVFkjUlsa88VlJWnCpXuSy7XKWUnOJNyvT9w3Hynyux47pJxUMqyZWu7pVs60oeSIoSKXMCQIIkZoBAz9PpM+zpm9aUP9Z3ToOWZNESWiLs81YdNM7p3vvsvb/1rfW+z/s8z+vsO4itQvaQdhpX70JyYHQ938Q5lw5dIfEBhDHIvMBJhc9HzEcjrp26l8X7PpSqt5e+Rf5L/wxz8U2olrR9UqIkFEXGeDRgYzrFeYvzAdVDdkWRbI0HRZkQHyEPSV4xpNfXdS6R5IUg9FVKZx1SpOprvljRtB2t7ViuVnSdpSwLsiIlDor0WGJSvISYHMZ99IBA+j4xickX5RCGJqJNlqaVtu0hg9yFiHXJzjjdQGCtR+vbPdo7EXefPsNzLzzPb85WWCvw4QLrayUnTx/njbf3uLW/QsnI+86dY/PuB5hffZNoV/zLX/5XPPn0Y/gwZbmcce7DT7Pz734Fvb5OORrzv/qLf5Gqs9R7+6z29ghacObUFt//Jz7K9eu3OHfuEZRWZOsnefGLz+Pbiid+4Ee48dYLmNDwYucQURCj5QMf/ghD+zz33jvh8UcH7Ncb7Gxv85nPfJXlqsOIjtN3n+b53/z3DNZeQsiMnd1dxiND0JpiOOCuB+5lbTLm0uXXybMpH3nsYc7e9wj/4l9+mt2l49yHHkNlW+xb+NoLv4bJ4cd/6OPcdXqTbvx9XLl8np39K1Szm1TzHbxYcfbECS7d2MN2jhAiRZ6zNp1w8+J5tu59klNn7+fbb1/FVU0vEdUIJRiNxowGox5NTCZi3iUiqugbK852dG2L1Ibl/g718s619gBmt7Y5dvwE9919Hw888CAnT99FWQxo6o7t3R0uXL7Cl597nv393TQd1XZ92ye1e5VSHFvf5NGHH+GDH3ycBx+6l421NdrG8e23rvPKa9/k5s1bh2hC7C3SlVJJxScTKpuZ1Cr2PqC1wai0iedFwXRtQpbJdB9FcMEzW66Yzat+YnGf34m+Su95ctZZlFRpPkrTYjJNVUlu3txjMMh48P6T/MAzT/InPvYU5y9e4evfeJlvvfwKF69conNdIs0LgTZZ38Lp29W97DfNzvL44Pp7nrQnOdfzZlJCk/BToHdeDT2impxY/eG05EPLe5Ivjo+9xLjfo+9U/ORP/RRPfeQprLW89dZb/Oqv/hp1VRNCwBjNI488zEeeegohBS9+60W2t28xHA0Zj0dpYnJvE3GgPFFSJWv6/lAdDga9rLekbhp2dnZ46+23uXrlKiDY3Nxka2uTu+++m83NTYiRrkc2RqPRoTrKdmk/jT1vMcbIxuYmx08c5+2332Y2n2OMoSzLxGnsOSdSCJxwGGPSvt9nuAfDKw+Mz3TPb1K9iZvtLDM7p6oqxpMJP/lTP8lbb73F1772AlevXUPI5JL9W1/4Ip//7S9y16lTPPnkh/joR5/hoYce4tjWFvc/cB+3bu1w/vx53nrrbc6/faXnVrpD4vGxrS0eefghfvKnfpzRaMT+/j6XL1/lxvXrbG9vE3sX8a69A/b132shlEjzMoRAaoXWWZLVyjTwKsSId542JEMZ5wM+HgwiCoiYNlPbT9zVWoEQqV1ju95dMaESzve8E63RuSFmGlUOWWYF++N1rt5/jtX95yg6y8bXvoR+9vPIKxdRrk7Qp3UoQT/3ZsD62pSyzFmumh7aS3K+wWDAaDg4JOgmDlnqL/aocf9aAjKKlDw51ztEAggWq1Ua5te1rJZL2rolywyj0TC52R7I+mRigAsp6axDKANSHHoUiES15WDpH0gGo0i96QP41PWj4UNQNG3DyKeplCF4nHvn4LJ3P7QK/OD3P82xbIdsOGX/xi2+8MKbuKv7TMuMH/lTH+cDT/0AJ+86y4uvX+bqNz5HKWryseT1l17jwx/9Yf5nP/anKTdO84XPfZ7JesGqvsXly/tsnT6JHhdsDE/x/Fe+SD4s+dbXX+BDTzyKiC1f+80vI8bH2Lrrfrb3V8y/9Q26akXb1DzwoR/lxuVv8OL/9xcYra2zMV1nOCjY3Tfs3JoR/t3n0gymGFm1jhc+92V+6Id/lKc/9hFe+MqLXL54CeEsG+sT1jam/Oj//McwxRr3L77Nq6/d4luvnqcLEa/h4ttv8/KrL5MbxdbmCU4eP4Gvt1nNlnz6X/wia5MBG2sjlBlx76OPsbZ1mtWsYrmY88r5/47ZosKGdFBd2m749utXeaI4TTncYDAYMVrfwl5+G+VdWo8i3SciRoSI1Kua6FxaI+l2xLYNu9s3DmXtByTzOxV/57/+JBtbx7mxfYtXX32dX/vX/4arVy5RNaveUj2FVGkyrzaa0pTcdeoMDz34II89+j7e98iDbGyNCT5y69aKZ587zxvfvsi1G1dp2xZIVuiyb4MOBmOUNOgsQ0SRjBaLgrwoGA7SwSL6REQKyXhcUpYJGY0ByjI/HIa2qCrqpqZpm6Ty6P2RdK+IU0phugJCRHYc+nisGsOyarhydcbdZ45z6vhJHv7pe/ipP/UJXnn9PF969lleee0V9uZ71PUiiQFC4pooIfoECIiRtm8zH9i+p+QkOWE7lwi+kNrg9PtSMnp0qbbrOS+CxHE5HLjYW8knVMjdsTUgROSXf/mXmc3myR5BawZlweOPPcaHPvxBfPA899zzXL50hbX1dTa3Ng+H4B1IjZVSh1LotnXUTY3WmrXplPF4TJZlLJdLbu3u8uab3+btt96maRryPKMsSzY2NhiNRslbyro0l0mkuTfOuTTPRqkkrxYctt5MZjh37mEunD9P13bs788wWUaeZalgVgpRpha8c+6QNxl7krHSqucP9a24SC+kSErM0CNys/19jMm47/77eOihh7hw8SJf+uKXOX/hAiEEVsslr7/5Bq++9hr/4l/+Kg89+ADPPP0RnnzqKe65717OnLmLJ97/fq5eu8qbb77FKy+/zMVLl6mqFeffPs83v/lN1qZrnDh5ggcffIB777mHe++9m9Vyxf5sxnK1Ym/3v4C2jlRJVklvrSyVul3J+4j1CbpMlZ3HwyG5VUnZH8yCsiiTRrtraZuEYljrcP24dCFUYghmBlkUhKwk5AO2p2tce+j9rM49jqlbNn/7c0yf/zz++iVi1xCdw8aIj4FMKUbDgtFocChBW1U1CJnMb7KMyWiUZuH0kPBBa0T08KkPiVAmBBAijXd4l/xLCAGtFXWdzHc656hXFV3ToU1ygD2oEEWflBz4uIQILkZEDMQgbldEIdndi0hyxe15BVIqZP+4ECLBppvlAI62tkOK1MoJPSflTsUnfuLHqZcrXvnSv6brKlat5K4TW+iBJngYT9YJMfL53/wMr795ieu7FSPd0XURQeD6tYt8+/U3OHNujJUln/ni82y9+hZFXrBcrSiLjK6zFEazu1fx6hsXuX5rzom77uHB9z3Dxn2Pc9f95xhO04h1iWfvxlWUElyeDKndsxidMes8izZSZFu8feUCtXiWar6gaS2//e+/TtNY/vW//S0+8xtf4MSxu/BC8+qFbYL33HPPaWaVZLV7k9/6t1/h4rWbDCdj3jh/geF0zEMP3cvpkyeYDAd8/Zuv8fIbF9kYKb74lS9z/yMPUXeeb795he0rF8nV84w2N1GTjNOnTrG5ucV8lSq/EDzzVcXOfoUNMBlOkCrn+vVrVPWKSZYTvKNeLfGuI5KGqNm6wxzcez4pVBLx1KC1SS1JdQcNLoD/5z//58xmC1b1KpHShTicKSWFRMjExRiUA+45ey+PP/ooH3z/+7n/3rOMRgWewGy/4sVvXuLytR2uXL7OfDWnaSukiGitUEozHg0ZDIZ9YaTJTZ5aJyIdFnmuQXi6rqZaLYHEdSnyHK1TiwMSAqmkQCtBnivW1iYcyzcTqfwdMn0fA7ZrCc6l+Tm9uaJAYnSa0RJDYLFa8ca3r3DjxoD19SHHjk144vGH+dATj7C7O+f1b7/FN19+mZdfe5kbN66lNm0I4B22R0YPJqE77w6JvAevNfWA0+9VfVshRgEKoqMvZgSi3zMl4lAue9D+Sbxk8Tsv3rsUn/70Zw+RD6M0Tz/1YZ756NN0bctXn32WixcuoY1mMp0gZfJzKcukfPTe0zhLZjJijHS9o7FSisl4zHg8RmtNVdXs7Ozw5rff4vz58+zv71MWJZNJMqKcrk0ZDMpkPe/THKHOduRZUkUeJG1106T5aYefMpw7d47PfDqN+nDOsb+3lxQ/ffJEhCIWh4IIpXXPi1SIEMhMGrp4kEgmZIVeRh37xDRQ1RXWWpSSnD59ij/35/8sL3z9Gzz77LNcvXaVuFzQhZbFYs7zX/s6L3zzW6z90v/IuXMP88zTz/Dkkx/m3LlzPPjgg3zgicd58cWXeOWVV7lw8SL7+zNm8wWXLl/m619/gaIo2NraZGtjk9F4RF4UPbr6+8d7OjkxeZ78RRAgk8TV44nRH2brrT1IMGTff1XIw5sObOdxrknJiEueJDb0UmGlkNogswxZlgSTUSnF/toWu+eeoHv4/eSt4/hvfY7suc8jrpzH1ctkBBWSnNZoRWEMmU68EaU0jfO0iwqtJWWRMx6Pe+OdxI5XPVQeSSZGSfLcwxm98iDEeOh8KBAIqbAuTcZM0rW2z9qT/TDxoELiwPQxoSQh4HuPk4SApETP9nM4XA83KyFAxEQ0PuDkHKAsMXFPrA9Im+SNeWYON6w72NXhtZe/xeaJs/yL3/gavmtAK6z1aSqphK+88CZVnQbeffhDH2JeOxYhst+kanr24rf5zBe/wWA4QZKg9u3d/UREC4EQByANx4+f4cQDD3P6sSfZ3DrOvQ8/hirGSJ2cMZezW7SZgWCxwdF5x/H7HuLsQ48Q8BgUQWh0IXnf9/8IN69e5cql85y85358CLzx8jfZ2dlGCEnVXqVazbm1t0+RGerX3ub//H/5B0QlkVFSrSoGixUmeF545XVefvUNNkYlQUh2ZjVbJ04gvWe+rPnqL/1PHNva5EMf+gDlXQ+zt7PDS69eRHjPYvkCVReYTJOkeblYYIxmMBhx/foOb56/wt5yj84m6BalsbalKEeUgyFCCoSWVLYFneBlG3zio8SIEYC3qfqOd9DrBrhw6SJZUSTSqckREUyWbLsHgxGnT97FBx7/AO97+H2cvesuiqxAK8FqseJLX/06X/zKl7l45TKd6/DOp3tHQpGXPalesTHdZDgcYUyO9+l9StF7IMXb95yUqieop3ZCURSUgwk/sf6DKLYOT6Mr16/zhec+z3K1QolEJM/znODBhzSJOPmJgFYqFR39wL4sK1Ba0XUt3joQkaof2pabgqIcsr4+4bGH7+MDTzzMRz/yYZ780AdZLpa89vobfO2b3+Dl11/m+vb1Q7TAh9TmTv414ZAbEPtiLrpA6PdWKWR6//2+Za07JHemPSUcolWx58BFeYDF3pmwXcdDDz7In/j4D/DIuUfYvrnNZz/zG1y9eg2EZDweHTp7Zybri7mkYtQmff5N2/Z7niDLc0bD0SESUlUV+/v7vPntb/PWW2+zmC+A3hBzPOb4sWNMJhOKskiou7UIIVgtV4e8EN+j3quq6lGT23LzkyeOc/fZs1y8fBltDE3TMp/PD+34J5NxP1pAktpptlepJSTP98M2E++JQwm7EILQpRZSrwJJkt4u9kRWxdm7z3Dy5HFeeukVXvjGN9jeTtYWzlqctdzcvsn1Gzf4rc//NpPphEfPPcIP/eAP8vRHP8qP/fiP8dHv+yhvvP4G3/rWi7z66mtcvnKld8ntePPNN1FSUpbJWbb4LmcmvaeTE6WSdj7EiLV9x7uHD0O/CIRIJLXYa/Gtu23S5Gzy+nfugByWXFCCEJiyICqDHpT4rGQlNVcnE2aPP0l85P3kixXj3/484+c+j756Hl8vDqXEB2y3vOeVDIoM78IhqiOFYDQsGY1GZMb0mbDue8E9EgJonQziOp8mfWqZqi7nktFSJFUoB33Lum7oen5M19qegCSIoUGSHAml8igO1BPpsb5XVBwM+jtY4NG7Q0JsiAGHRPYkMRCIngsTDlwXpcJ7T9t1ZNaQG51uvjuo1fgffvlf8dBDj1B1juWiIiLY3JhyfHOTMs+5euMm1f4K2o7nn3uezjmazpFnGmsdzfVbIKBuLD/yU/8Vd509gwiC4VqynM6ygsFogtYZUSZlkNaabDACBJKYGPKLloWtqZf7GCJKC2zXMZ/v471jfetkQpt8S/QdZSF4+MEH8YDOMp748JPE4HAucOXCRX7rN36dZx5+H5cuXEDnOevHtmiqlmpvn6qqyUzO25eu4kPkyo1dLl9Pn/GgHLA7ewOjE7Gz7SxXrt3g2o1Pp/EEMdK1XVKFScHG2hYPvu/DPKIMBEfTLMjuG7M+OcbUdRg9YTzcJETL/u4Fjp95BNt0aT0pxWg4SdOuSciBrVapbQH9bBOfkubl8o6tAQBn07Rv3ysjhoMhJ06f5ckPPsP7H/sgp46dpCgKTKHwnePS5Ss8+/Vn+do3vsa17Wu9I2oiLg6KIZPx5JBHoqUiNxmt7Wjb+rA4ECLS2dQOU1Jhu5aiKLDWkeUZTdtgeg+kZz7yNI89ck/vUwFE6FzLtRtXEQg21rdomhrb1lRtw2Aw7H1aWoblgOVq2cP2HWVeUNcLMpNT1au+MLBJZWMdWVawulbhnOW5r3+ZzX+3zgfe/xjf99STnDx2kmc+8iQf+fCH2Z8tePHlV/jaN57nxddeZGfvVn/wpXa4D562aXribiJkHhyM0HP+fDg8AA8QK+u6Q9XRwbDAg/04+DuXnHzyv/7fc8+99/DsV57j//Z//Ye0bcdoPGYwGFAUKfkY9U7bMURWqyo5f+d5Qql6oq8xBm0Mg8GA6XSC1mmy8/5sxoULF7hw/iLzeRIYDAcDNjc32NzaYjqdUJZpHEFdNyyXK0yWMZmMyXtr+xDSZOeD2TUHiCURtDE89vhjXLp8heFgmIay9q2hq1eu4v0JlExWEgfCjgPFaQzxkMx70PoRUiL6oY7JEdn19hi32z5SyUM0BeCR9z3MmbN38eKLL/Laa6+zu7tL29SIAFpLiJH5bMa//9KX+dJXvsrmxgZPPPF+fvDjH+fJp57iyaee4vr167z00ss8+9VneeXVV9NAxuWCvf39wzPuu4n3dHLinOv7nBHrQr9hCJTo/QlFaoD7EPHBppkFXZeIWyGx4621EHt2fQ9BB2WIgxEiHzLPNNdHU26+73F46DHKa9dY++VfIHvpa5jd68SmouranumemNfJaKlkNCiht483Wvds7oLhcMCgLA7bLOm92D7J6NGdPsm1Lm22QqS+YQiRrrc/TtwaBSH0/epEuLXOUdepZRRCQCiJzrJkQGbd4TTUGBN/xfuA0Pq2HDpEfIg4l167FDGhLyHgvUhoDiTegVLJR8YHlPJ4L2maluGgxMuIkKEnw92Z2N3d5zc/9zmEiIc+NrmU7O/vs+M9q6pGS4n1Hh8FDz3wMHVTMVnfYDSesLaxhckKxpMNNu46k2z8BQipUZlGhIATCqky8mLQc4gjtveRCTaRgIUU5FnOZOMYRTEgiIi3lunJe9AqcXyKwZByNCF4x2r3Ojcuv5Wez7UYrYnRYDLBA+ce4uy9fxVvu+RJIiJCC5oqMNvfScqDuuHGzWscO3mK+e4uje1QSlHVLT5Gus7jVWRYDnuJq0DLhHY546jbCu8jp88+zEc//ieZzRZ0VcP+7k1CqJhM17BNx2g6YDCeYm3gwYfPsHnPB7h2/i3adpvdvevc+8BDLOczrlx6g9PHj3F8cyt9fjGpdkLwtG3Haj7//S/mHyK8t5R5wX0PnOPxJz7MB594klMnzmBURqYVhMje7oxX33yZLz37Bd6+8CarepkcZGNKpERvHxCDp21rxqM1lFIMy2E6bG1DlilCDMzne5SDAQLJcjFHa4NA0DUNy9WKQVGCkmxunuDBB85x/z1nKIvevqAHQLXWRO/Y3r5B16YCYjRaSy0go5mMpvgQmU7HzGYLtFFs37jWDwAEkyW78+1bN3C239cIVNUcEBgtca7jxs1r/E//9iKf//df4OGHHuD7P/IMjz7yKOvrE77/maf52DMfYW+24K0L53n+G8/ztRee48rVi1jXkWUmmTPGxGXwLtn6x56r4noJK0IQY6Bp6p4P4/pDMfZFWUpiDuGUOxDf+MY3+Cf/9J9RVw3T6drhrBtiIMvy1G4RgmqVDuJk2Z6OwGpV0XUdWmvKQdk7sI6QKsmFb+3scO3adS5futwfsqnVNxwO2djYYH1tSpbnSazQdjhraZrEJzx79kz6PRE6aw8TNu9vS7sBhBfcd9+9CfnQiulgkkaE9B5SVy5fwVmLzgwhZIQejdH6YNyBQOk0pVoKiRC+t8pInlm35cvy0KfERH24byYuUmQwHPCxj32Mhx96mFdffZXXXnuN5WqZ3pd3ZFKmSffes729zWc+81k+97nf5NixYzz99NN84hM/yFNPPcn3fd9HuXjxEi+++CIvvfQSr776Kjdu3GCx+O4Klfd0ctK0yWskhOSQKqTqN0WBj6ni995hXZotk+RY6fAOMfXgTJYhVbKpj8pAUeKUYaUK9o+fZO/RJ+juf4hi+yaj/+H/x/ClryF3byBs0xvSpPHQAtGPvc4pywKjFK7r0EqiVeoNl0VOUeTJPdaHtDnFwIH9c+iz3xgCNkZC7Im0KqkiOusP2zlaSbyPvS9Lx7KqkhFc19E0DZCmmUqp0k2YGYSQh9UzJGJrDAfGVRJHpJZZzzFxSOkPPVCkVPTea6n9LCUy6RTSc8WAsx4pFM552s6mA9fHJDO9Q1FVaXz8xuYmo+GQpmlRWUZZDCjKgqLIybOMQTmgyBWnTp/CqAKERA/XUOUImeUonSGiJ9qGbjXDNi1Rgson6GKEay1NtUQbk6ZBk27w5H3gwIOTguATGTRBookMh4ToHKv5PhAYr61z15l7ePSp72cwShbvN69ehuBAKcaTdUyRI1WaLt1US5q6YeIdx/E89LhLxDfvaJuO1XzGcjVHK0meF9TVIvWYpcS2DU1v1921bZKrylRFEQUCzYvP/zaXL7zV8xn6w8dHhBKYLH1+UQSKPOPSlVcpshEnTx7j5MljyAjD4ZTLFy/y7fNvI5RBSIkPkdnePA3QjJH5Yv+OrQGAn/rxP8v3PfNx7rrrHoxMJEchBIvFklevnOebLz3LS698k2s3rqGUQEqNkooQktReSklZDiny5MnjXMf2zlVOnTzLqpon7kqE+Wwf5zyIyN7OihA8TVMznW6yqlaMR1PW19aJEdY3tlL7RejUsj08nNP9lxmdJoKPxviuxQm4cfPqoVfLcr6PMTnXrl0gxtSeMlnGlSuXKcuMQTlKwyqLNDwyhpj2ia4jCiiLAXVT0dTpHpkvF7zwrW/y7PPPct899/P9z3wfH/nAh5lOp6xPp3zo/U/wxOPv5y/86T/Hm2+9xee/9AW+9o1n2dm50bfIArFrQZme+yaIpHZOci0V/T4hUai+nZfawAdosryDw3U+/enfYHNri/FkTAgeIzSj8ZjxZIKUom/hdBhjWF9fwwfPYpFaM1VVMxgkV25jMtbXpiilmM3m7O7scOnyFa5fv87e7h7OWoqiYHNri82Ndcbj8aHE92Dy7ny+6Nf9guFoSFGWCbnv+XfWWXw/lDX0LXchBMePH2dzY526rhkOh+lMEKIfxFezvX2LvChYX19nMEjJVQh94hdjL2EXhwRZqQS+S4lEPGzf+17un5IVrTVt23EA661WCY3LioyHH3mEjc1Nzr/9NlevXqWukwN61LoXPCSZs/eOq1eu8iu/8iv82q/9GqdPneLppz7Cn/zBj/NjP/an+Imf+HGuXr3Kc889z3PPPs9bb735e1/IPt7TyUndWYrMoKTCH+KliQFdtw3WJ6TBxdhLIXvTsL5qkVLjhEJlOZ00UI5YmYK9YyfZ/+AzxPsfJLt+nem/+mXKr/024tYVQtskNMN7fIyoHhrTyjAcDygHBbL/fbo370kbSNnDn5LhoDx0do0+Egj9XJ9UEcUYDpOnLOuheOcJPs3OOJDqCSFou5bFYkFrLdZamjqhJ4GEKBVlhpBpLo9SGm0Sr0VqkyC+mObkIBVtNuTN0b3I4FBdzenlFUw/ep3+xlMmwdSQiK6JBZ7khqpI3BZnLa6zhCI77MnfqQjeMxiNePLpZ9jYWCcrBgzHI4qsINgO52qCi2TDNTbueYThcMp8/xbLvVsgJdZ22P19XFsT+xHzSufkozVMOUFI06sMfEoyQiRG15MG+xaetwihCF6ijIYYkFL017+/ZkoxWltHInHB8tbrr/Hy17+KiIHx+jobJ+5ltHEMrTPqqmK+c43gG4pcY7sOoweowRDfD6bUvftoHiLDLcd6WxOcw3Ut+XBMcDW+q+lkYGAifqyIrkhEzCjoQmrDaZ0jtGR9fC8ipnUQPXTOUtU1Iog0QdtFhM4JzrK/WNLYJpmruR20krRdy9bWCRarmrIcsn7sNMGUjDdOc9okePzylct3bB386A//NINyiAiKriftvvTqt/jcFz7NhUuvs1rN01A4kyHIqKoZRVESvE9mbXmJlIrFcpY2ZpPswp2zXL12keNbJ3suSUAbTaYHDApB065SNZll/fiJFqmnzPb2yIuSk8fPsrG10SN7t1/vgQKjtan1J5VkUA4xWcbZs2fxrWdRL6jrGiUFTduQG8NsPktKPm1ou5bpoECKAZPJGkIka34XIvPlnN3dm9T1ihg8eZbmc6UK2vHGW29w89Y2/+Y3Ps1TH3ySj33kGU6eOI5WGaPhgCcefz/nHn2MWzt/njdff5UvfPELfOOl5wlxjnU2IU3Q/053SNoXB/YG3qdDsEd9Rc9RuZOxtjZNh63SFGWyWVc9YqFUapGjkgChrlMBMZvN+6JywGA4ZG06ZX19ivdpttT+/j7Xr13n2rVrrFarxCORksFgwPp6MvMrigJtDM4nrlJV18wX80Nfj0SGVn1xnIi4dZVa8MlLJvbIelJ83XXXXYfqGeccZVHgnKVtWoQQzGbJht/0PBmjNQdyqaSViD1PSBG1oSwEne1omrbnMSaJcYiR2BeSWt82e1NKpmR2Nu9JwwX3PXA/a2trnD//Nrdu7aSzQCqESNfeOYGUSTLetR1vvf02b58/z7/6tV/j/vvu5fuefpoPPflhfuAHPsZTTz7JP/1n/6/f93q+p5MTemLmgcWvEGmKYjrMU8WWdPYJtqWvYk2efAhUUaCLAVZrmmLEza2T3Dz3AcT9DzK4fo3Bf//PKV/4CmrnGrGt02yALsGEkAaLKa0pypzhcEBeFAD9hpcQmcyYw6+UGIjkJRKTpDeJmVM7SMvkqGptRwiRLNP4EGh7w57Q9w+BhAY5x/5s1iuLXHKt7Vs7zof+8EkL2HmfoGeVVAtJ3nu7RdN5x+XjZ3n93o8Su4ZRtcfmqzeRAVT/uSp6xZCICZsmHZAh9uZx4cDvQFLVDYPhgMyovk99Z+JHf/SHWd/YpCjTQWPrFduzXZSCk2fvZ7J+N/s3L1Otdlm99GV87P0BeimkCGnyrM5ziskWpphgTE6kfy+uSRCuyUFKAhFv22Th7NoeOYpAqh5Eq/rHHrh93obBpUwImtEZg9Ea441NnO1oljMuvf4t6nqB0oa1Y2cYb5xCFxPme1d44TO/DCFw4sx95OMxZTnBDMeorEhIhVB9ZRoT2pMNUFmBysdk47Tso7c427cfvUNUC5yr8cHhW9ujcH0r0DlCFORG4LqaTAUyPDFW5BrWNjRSTUHlKJPj25rFXsc0H2G7jo3BOiE22P1LiAhrowIR76wJ22y+ACRXrlzgua9/kW+++Dw7uzfougatVSJ524627Qhlie3a3iguJd1t26CkxnqHVhobO9oDaa8QtG2NNgUx2NQSs3uE4FmsFkklIQQnjp0hzzOapmM0GlMUA44fO0GeZxhzkJkctEQjSkuuXb1IWRRs37qJUooTW6e4fv0aWxtbDAcjZosZbZsQ2GVdkZmCoBXz2R4QCD5N1u26hrvuugdnHS4cuJiWDIoBbVuxWC4oi5I8K2iqinq1pGlqpJBcv3GVz3/xtzl96jTnHn6Qj3zoaU6cOEmmJWdObnH6xPfz5Ief4eqNG3zjG8/xpa98gRdf+Qa2n1HEOyTJzgWiTAgODkL0hy1XepTgToX3nhMnTqbWpU1tKNX/vrqu0UpRlGUa6bFYJGt7a1lbX2M0GjKdjBkOBjS94nE+m3OtT0xms9mh8mUwHLK5tcl0MqYo0gR6f1A8OkdVVdRVGjDZtR3DwYA8y1Pb3Kd9u6or6qpiNB4l077DmT2BRx55mG+/laYHJ98cw2g0pqpqvHPM9meH3bGkDhocGvWhdSIkhyScOEDrtFKUZZFm9TRtasv1CbIRhvagC3CgEFUyuajHA0NA2NjcwHtPXpTcuH6dpmluS5VDSAIIKVAqFefOe1arJd/81ot881svMvyFX0y2+Y899l1dz/d0chJ86I3HZJr625sGWe+JiCR1FQdujBKkwCiDRSKKHJuXLPIBN0+cYfbBZ3Bn78Vcv8L4X/4io69/EX3zEr6pqTqbYLEePpNCpOopN4xHI4oijRs/sJvOjIJemZPlBUWe9YlIItJpkYyYXAhJWiciRIkNydUxEMkz03NOPBJxW7+eSA90nT2UhHVdMmHztiNGT9dZlNaURda7Q/YcAJk4JxGBSFyslLwowartePuuc1y5+x5ECGzevET3skdbm7pOB+x8IdBaIkQ8hM6D93QhUBZ5yr5VpLOWqm6QoryjnJOyKGjqJYu9WxBTiy14RzEaY13GykpEscXyxgWa5S4El6SGeTLpy8oheriBGYxRSuNsS90uICSbfqlzpE7oieva1G7zlhg8sYdHpUhzRIT0CYUSguDThNZEznb9WKJk9icQSG0wRoNInhuhLChVpF3uc/Ptb3Hj7W+gsgFZPuTUQx9gsnmM8cZJXNdy+bUXkHu3KIcTfLBkZoApS6RMBGRl8iQRbyPRO1zb9olWQsFiBJEN0NIQgsPbBqMi3rVY26SEOSQr8wOlhlCqT6MPJOURqAlNhRKC9Y01ppMhMtKrR/q2YexnuVjPi3dsFcBXn/8CL736dd5+6zXaroZeIaKUwnYHqpPQq2nS/QQwGo5wrmNVLQ+JesPBGOu61JZslqkf7z3KZHRNfYjCtk2FkopsutlXnR4hNceObzAcTDhx4hTbu7e468wJjm+MODRZ6zEEKVPSNF/M6LqWrc3jRAF1veLV168TgPvufpAiH4GIXL16kTxvUVrTdQ0xRBaLOZ21gOfatYsMhmMW8xmD4ZD9vVuMxhPaumZ37ybj0ZSb21fp2oZVtYJekeK9x9k3eOXVgn/3Gcupk2f4wPs/yJ/46J/koYfOMSyHFIXmgXvv4p57TvGJT/wQly9d5LmvP8ezz32ZC5ffZrGcHbasrO0QXvatBtHz/m4PArxTMRqNaNsmSf+LHKVS4lDXyatEZhmr5Yqqqg/Rno2NdQaDNHF3MBhivWN/b5+dnR1u3Nzm1vY2+/v71HXNYDBgMpkwnUzY3NhkOBr1Css0riHGeDs5qatEqNaacVkmc9DstrW+bTuc82RZslxIDuApQTl79gxGa6qqwmcZ1jmm0wmj0YimbZF1fajQKcqi57PEvsWT9q0DlC6S9vjDT91kdNb2vi46nRs+mexJIZInV/+zPM9om1400qODW8e2mK5NeeTcI8xncy68fZ7rN66nFnLXEYNNBPGetHsweDZ4z3K54MWXXuLFl176rq7nezo5sT2JlOgIQNc5bI+iyH7wnBAS3ScLaE3UGULnrMoJ26fOsvuBjyDuvpfy4puM//t/SvHCl8hvXcXWNXXvHhv7vl9SUyoyk1EOSsbjAUbpfqvp5/ccTCzNMwZlgvtSRplaPFpJCKklJHp5sJaJvxCR6WVKlab+HkCjfZvH9+2BGGBVV4mg5JIaom0a6KWAiRilDhMpIug+2REyJXJKJnhPK0VEUEWYrW3iVSLKBmcJTY0AvAtIk4aoOefTY3sS1cHwqeAdkWTp75xDG0PdtgwGJfYOmrDt3bxONiiYbp7izP2PY4oBIXqq2R43r75FV+1jRCTLNdPRMCUTxZRsMEblQ3QxQpsMqQxSSvKSXoqdUASli77KMDhvkdGTBtTHBBkLbnt4CFAyS+TTGBJfqK+qg+twbdW7QipUVhBtc1gBSSnIyxFZPugdOx3BNwTbIWTH6tYVbL1ivHWGh5/+UcrhGCEl9XLG7MZldrfP08530AryfIQuh+h8gNQlmAGuSShJ8BHvOgguTZiNnuhbgnd9gnsw1iF55xideFtC9BLGGBNHSyWUL2bxkMQdvQNvUcb3d0ToFQISKe6sz8l/94v/bUryQujn+cjb/69kShBFmiTcdWn2iCDNnanqKvFqehWaDx7vkwFZWQwIMVA3K2KVpnl3dUuMgSIvKMth38aDK9cucOb0vUynG8mHQknGoxHTcYkx8jvIoCLSGysmRAdACqjqGq0kWZazs3OT2WKfnb1bbK4dYzgcIyJU1ZIDjhpCUOQZZTFkWc3Z270FMbK7s2SxnHFr5zrr68fJTcZ8vpccPUkEfGMynO3IspymXh22IC9dPs/582/yq7/+K9x370P8yCd+nI9/38c5dvw4znkGpuB9j5zj4Yce4s//uZ/m0vlL/MbnPsvnvvib7Oxu04X6kAeR0MmEnCS32TuHoM17Z9U8z7Fd2tMGwyHD4QCtDbaz3Lp1ixBSK3ttbY28KHvfqZyu61itVty6dYvrN24cckzapiHvXcfLMrl3D0dDjNGHrRApJD6kCfeEA9M5j1YmcYukJCAO22HOOepqRWZOp+TNOQ4Kl9EoyZdXq+Sq7J2jWlVMJhPqGzcOEyClJGVZJgFFP/tNCdlLuZM5WxJppCTJC4GUkfFoRNM2WGsxwuCF7JOJpLiqqpq2afDOJ2+XukZKyWq1Okw2onWsra8zmUw4fuMEF86fZ3dvF+UUbdO8QyDSF7A98n8g2Phu4j2dnLgArksHuAv9nIieGBvpZ+v033uhoBjTjtaZHT/J9Seepr3rHtauvs3w//2P4Ftfxt+8gasrmv7D8728mJgGdhljEsEyz5mOh0gl+moyVWWyt7MeDMrb/I4+hfUx9IqMmDKDEBAkZnXb2cM5DlnvpOm866tW8D61Tw4OhGW1oq57DboPVFWdEh7n8S6Q5bq31JZ9P1P2DrhZ8qY40L77gBeegGBVjllNN8kkRK0puhYte4mkc+jY180iPWdUCYkKJJO5GCLOR7QGJUgmP1rRdWmexZ2Kh554mnwwxgVPVS9pdq6ng8VbtLDoUc5osok0OUhD6usNkcMNTFFi8gFCSYzOUrUfIyIEBuMTifcTIfb22xn0/fN4uK5CjAmx6Ackap0TfFLy5Eqnz8t7nOswZbphlRAIrYguDUyLbYUWCmXytKHQW4b3VWZwLb6rid6z2rvMfPsyUmiK0YTR+kk2T93L1l0P0DVz6mqf5e4NFrcu0Vz/NsIlBdYBeiVlet1aa6SWKGUICKI0CAlByVTdusSxoW/nOdsgjUFpg5Sx/0rE18Q1EEnpJTUekPRmfhoIAoK9Y2sAIARL29hD58zQu2V2PXpycCgqJdM1UKlPX7f+8Gf9AqBp+gGWkLx9nE8y5B7CHg9H1F06sJq2ITMZmclw3rNYzZmsKkBx9fo2d50+g04Mc7idw4KALDM8+sgThBgZT6a89fbr7O3vEkXk5q1rtF3HtauXCNEzk5rReB1JpO4a2qZibbJFt9xDSEVnOxbLGd45ynKYXHmlwgtJ2yY34MQbSw63SqlEqG5b6qbq90rRz81Ja9BayxtvvMi333qVX/zl/w8/8H2f4M/+L/8sp7ZOEp0gOHBWcer4vfyF/+p/wyc+8ZN85guf59tvv8Kbr7/IfLmHd4kwfkColerOHTnWWrJ37LlCCpx3tF3HfL5gf2+PECPGaEajDdbW13s0ZJw8j2b77O/PuHbtGjdv3mR3Z5e6rjA6tVYGwyGbx7ZYW1vv0bd0P9OvnRgDbdOwWlWJNBojktQ68cHTNF3irok0kmC+v5dusegPlQZSJv7Wsa0tLl++jHMuIUJdy6qqEuG2s4zHI5xzNE3N3m5M7t+kREaptO8eIIepgkqtnYPhgcZkvQCjX5MizQ8i9uNbYmTZy/8Pkv0sy/rWUnrfi8UcKSSj0YiHH3mEmzdvsr29zf7eXhKiWHuYDB8oUw+GY3438Z5MTg5mtexVDT5EWu+JSHRPQhQ9IlDXbT/AL8MNJ9TTu2iffIr2gQcZ3bzGyV/8fyBe+ArdrevUsxnBdSkhESmDjf0hrnR6Pq1TBioFLJar1OfrteZKK0aDIcWwTE6OJMMdfzA+Pabpo8QE4hiler+EZFbkezZ76GdRpCwz9h4kkuDS4bJYLVkua9p+4mvXdkSfEJ7gXRrDHcWhe6v3ERmSf0tEkCgWaQR6lhla62is48bkFJ336GZBCBJ2r9PWFcpZiB7RpUo4cV88tpciCwTOJuZ+ggdToqKNwK9qjNKIflDguzlj5+C5ZDGkshbvHUYbyuka6VR1KQGMAVkMQA6RWZnaMRGCNNgAuIAI4IPlgNEnRZKmhj7hTFJIhesSIU1nhugjiNDvKalVIoVIXKeQ2oit9fhge0ltRAiN6NEW5x0hKLyTiHydqJpD8u3BZnIg0RTeIV1DDImwa9uEks2Xu1y//DpdVWHKkiJLlXw2WmP99Dmqek63WmLbJW6xS1OtCNYRQtcnrwn1MmWBKYZInSFlv0CFTAlRTB4iIYYkx5YWqXVChKRAmIIIfb9a9OtMgklOkKH34einOb2ra+Cdz+dd1yeJERdvV+30KrIDflUIPTfCdj3s7DBZzoFRo5QioZtEtNF4bynyxGdy/fqYjMZ0tqXrWqbTjUQMlpLBcJJk5DFSFDknjm1CtEhlWa4WySoAEt+JyGK5oGo6go8Y03L/fedo64rrt7YpshHzxT533/0g8/kMIWA4nBB84van9QABAABJREFUS9blnDx5ihgiTbekqVasb55hvtxFEtnc2EiGfj0iu5jP+rwrtVacTQaLSil0byKYjMckIThiSOjRwesUtuPmjUv86q/9Iv/+S7/F9z39cf7c/+LPMRgM8N6jjKSuHYNByU/8yI8S5Y9w4fJFfvtLX+bixTe4eukNqtXiUNXzbq+D22vA0XYt2hiyPI0GcNayu6qYz+fEEMjynK2t46xvbDAclOSZpmtb9vcrrl27zt7uLtdv3EwGYj2iNRikeToHk4i7rmW1TOi0kirNReoJwW3TMpvt0zQNdV3juiGzqkIoRWcd1WpF2yWl53yxSGhETPy2RFZVBO85feokzz7ncM6m1kx//qQEIlLXCYkfjUapLec6RqNRWovxgGcW+uIpFSfGZAeLj86lCctt26bxLUolE9LO0tkkhe66gzlMaZxB27Z4H6jrGmOSwif0aKyQ/TRncwolBfPZ7NBmP42BcT2Sc7AOf/81IOKdnMp2h+Ktt97igQce+ON+GUfxnxiXLl3izJkz78pzHa2B92a8m2sAjtbBezWO9oKj+P3WwHsSOdnY2ADg4sWLTKfTP+ZX896P+XzO2bNnuXTpEpPJ5F1//gQBLjh9+vS79pxHa+Ddjzu5Du7EGoCjdfBux9FecBTfK2vgPZmcHEhTp9PpHfnw/kuNyWRyxz7Pd3vTOFoDdy7u1Dq4EwfH0Tq4M3G0FxzFH/cauHNMxaM4iqM4iqM4iqM4ij9AHCUnR3EUR3EUR3EUR/E9Fe/J5CTPcz71qU+Rf5ejl4/iPx7vxc/zvfiav9fjvfiZvhdf8/dyvBc/z/fia/5eju+Vz/M9qdY5iqM4iqM4iqM4iv984z2JnBzFURzFURzFURzFf75xlJwcxVEcxVEcxVEcxfdUHCUnR3EUR3EUR3EUR/E9FUfJyVEcxVEcxVEcxVF8T8VRcnIUR3EUR3EUR3EU31Pxx5ac/KN/9I+49957KYqCZ555hq9+9at/JI/9LyX+7t/9u4fThw++zp07d/j3TdPwsz/7s2xubjIajfjpn/5pbty48R3PcfHiRX7yJ3+SwWDA8ePH+fmf//nDKZPvVvxBr+XRGvju4r2wDo7WwJ2N98IagKN1cCfjvbIGviPiH0P8wi/8QsyyLP6Tf/JP4ksvvRT/6l/9q3FtbS3euHHjjj72v6T41Kc+FR977LF47dq1w6/t7e3Dv/9rf+2vxbNnz8bPfvaz8bnnnosf/ehH48c+9rHDv3fOxccffzz+8A//cPz6178ef/3Xfz1ubW3FT37yk+/aa/yDXsujNfDdx/f6OjhaA3c+vtfXQIxH6+BOx3thDfyH8ceSnDz99NPxZ3/2Zw+/997H06dPx7//9//+HX3sf0nxqU99Kn7gAx/4Xf9uf38/GmPiL/3SLx3+7JVXXolA/NKXvhRjjPHXf/3Xo5QyXr9+/fDf/ON//I/jZDKJbdu+K6/xD3otj9bAdx/f6+vgaA3c+fheXwMxHq2DOx3vhTXwH8Yf+eC/rut4/vnn+eQnP3n4MyklP/zDP8yXvvSl3/UxbdvSti1d1/Hcc8/xN//m3+Stt95ic3MTIQQf//jH+fznP89f/+t//Y/qbXzPR9u2vP7665w8eZKiKHj66af51Kc+xdmzZ/n85z+PtZann36a+XwOwOnTpzlz5gyf+9znePTRR/nN3/xNHn30UcqyPPw3H/vYx5jP53zlK1/hAx/4wHf9WuI7plAeDOn6T10HR2vgDxbfK+vg3VgDB+9nsVjw3HPP8bf+1t9if3+f3d1dNjc3j9bA7xHfK2sAjvaCP674Xl8Dv9c//CONK1euRCB+8Ytf/I6f//zP/3x8+umnf9fHfOpTn4rA0dd7/OvSpUt/4HVwtAb+8/j6w6yBo3Xwn8/X0V5w9PXONfC7xR85cvIHiU9+8pP83M/9HNeuXePcuXP8yq/8Cn/mz/wZ/o8/+xcpihwRA8KtkPhDso+UAiEFSkqUFEghEKSfSwFCyP7fAv2fQqa/P6AJKxRCSBCRSEagRIgMITVCa5AZQmWgMoTKiUIihQBAxIgPnkiAGNHSoIwhEhAAURCjJ0YQSiKlRiqFFCp9rxRaZ0ilCDFCjITg8d7hnSU6i/cWKYDg8fU+0S7xrkai0msODVqVCCmIvkNKSSBAdhwxOIXOMspyAAK6rsZai7MtvrP4GAkRnO3w3qfPTmui8zhvCT4glYQQcM7jvcd5DzEQYyRGT/CB4CNVveK/+Qf/kPF4/K6vgcmjn0BmBS4EhIgUgxFCCTKlsNbR2Q4vNTIGWu/IyylCKcZGUy+X5GWB0jnTzTVUV3Fsc4x1lnlreeD0OuvDASFCFBCFSO8NiAgEIIDQv+cQQ/p8AxA5vPYhBGJwEEFEiCL2fw/EkL5CIHqf/uyvdyQQfew/03D7d4eQvrwnhkCIIT33wZOmdm3/Z/id35P+Tf8C3vF18L/veA399/Tv9SAikaUHFxUEUP3nMzQGGyJSChZVRwyWcWFYrSq+9pUv/qHWwME6+Et/6S9x7tw5Pv3pT/PII49w9913Y37mBxFdC6uWKAQED5lOe0ETkEWOOXOKvChQOzu4GHBr64isxI5Kht98FVHNiadO0q4NaIcZfjGDuoPZkigUZmMTP1sS37iIqBvivEHkGn1yHbE2QW2uYZ1DXLkF45LYduiypNubE51HIok39lGnN3GzJdF6isceJBYaaS2utcTZEqYFbneOtBExKhDjkhACoigQxhD29hA7C+KxKWJrgreOeP4q8dac2FlYdYjjE+IwRxYlWhtUmRMXDXGcI1RGGGbE2T4IBd4RrCMS0/dX9ohKwKKCUU6sWri1goGC9QFyaxNRZoTtXbhwK90bJyYwHSGlJM5WxDe2Cc5CF8AGKGV/s0Cs/B3ZC+79i38FN9CsTEvQEelI94XR4Bx+b4bUBgTp/Q0HiLrD7C7x60N8YaAo0HmOahyi7bChgzwjSEEIERUlhQvEAEpqdNQoqZEBdFEQoifYDhk9SAnB4TtLCBaUwtcVwXb4zuGDowsW2Xa4+SLd/0IgkagsQ03XEMMhcn2DWGRgHeOVZLMccGp9ypoR5KHF+I5cCDQRRbx9BgmJVBKrFF9Zzvjmag9VjFG6xNhIFkABvt+zZGcJ1mFloJWBLGgykxNExIYWZSXCRfLpNJ2rbXqPQghkTGdDkJGV3Sf4yLCYoqUkeAfe44NDDwc0qzkv/9P/9vddA3/kycnW1hZKqd/BBL5x4wYnT578XR+T5zl5nlMUBUopqqoCIPoOIyRaCqQqkJKUiCiBOExKJFKSkhMhUEIgJSkZEaJPUgABUqr+3wFCpsNHCBAgREQIixIWgUoLT2R4MSJKQRSWKAwBRRAZPniUhMwM06EhPOrwYEsHgZAGIRRSG4RUaGUgBoSUSKVRSiOUQkiJEDIdgN4TQn+IeYuQkkjENSO6ZtEfgukwkr4m+gqtFJIyvUkRCNLgjUQoRRARgUKZEqTBZAMYBIL3WNvhrcUHD1EglaHrWkz0iBjpjzmC7Wi6BulFfzAHXACkhkymw/Pgs/wDroPfaw0MyiHBlBRFTjvbR2UDJpMBuVHMHbCcEzpHcC3aR8rxJm1b45Ukm65RjNaAyGAyplBjtqYZmQp01pJpiQsCbST1qsHkiiigtQJPRKs+2ZUSZz1SgUalzS9GYhD4EBBEhFDpz/76R9EnBBH6tCIlP0LQZwSkrCgcJhiiTxhEf31vJ0ni8LkOPuEoRPo9/d/SP2/k4Pm5/Wf6pk9CIiKq/vkPnlMS4fB5BBCEwHiFRhKdI0SBlgKkYFoYGusYlIamiRTjEUbpP/QaOFgH9913H0oplssl0+kUAD2d4re3keMBflpCiGiZIdamCNehNtbIO0t+c5dw6TJ6WaFyQzh1DJkNGO+tsDf2qO86TTMaELsGdeEWrGp812FOnkSNJ7hLV2FRpfehFWprDfXIPYTJCJDIVY08uUWoW0To8HtLpA2I3BBtJJuukW9sseo84vgQq0B6j9QamRXIsiTszwm3VsgQEDYQa4uSgrgmIAsIFxEnNxD3n8E3NWJ2i9A5hFaIEImZRziPUBpKjdAGh0cZgRaKMMkJizlRgSQQlEQMR0ihcG2D3BoiI8RjI+LejCgjcr0EowgeQltDoRDjErU1xktQ6xvE4QAkyCAIxT7xVnt7WXURoSXR37m9IIhAwCPHBawqpFQwGaaCwAeywQjtIgpBu5gRoyBMRvi1CUEK5GIFIhKkRww1MhOYmOGVIjY1ZjDEikitDTKCChIGazhbo6IClUGfYBhpCLZDeEvhHM1qSSSisgJvWwqdIWKkrle4/T2k0bi6gc6iRmOy9SnZxiYhy8lQnFCGR9bH3FPmjDKJ9I4YHMErQsj7z1QiEITgEUJiy4L9QcHnrl/h7XaGWVvHxIyMAqMUpYvIkApRjcDbCFmJLAqcbcl0gZIa7136fPI+0QjgqoosL4lEbGMJAWSWQS7JzTpaaJQLuLZGmYygBSIzCAWmb+W8cw38bvFHnpxkWcaTTz7JZz/7Wf70n/7TAIQQ+OxnP8vf+Bt/47t67G/91m8B8D/+1teYjoYcXxtz/+ktTm1NGQ1LhDpIQATiMBFJqIaQB8iK6pOP+B3yKik1yqzD4BjetcToQRhi7BChAWERaoyTJUIXyHyYKpfgkEKmig2JDJ4QHAJBlCBdILolUkmkTCiL94Eg0iGjtCRqgUASQiCElhg8wksiAqVNSkRier1RCpQqUhIChKxEC0n0rq+sPcQCaRUEB9ogzQgbBD5AiJFMKaKP1PWcpm0ghvQehDis0J23eO8JIeD9iuD9IQoQiMiYkB5tCiIdHo+zAR8E0ScExYX4e17L/9R18B+ugUEGnYzYukVEQXANduEYTIds5QNiucWqtQTvqBYLqnqBkgoXPMfXRuQDzbINCCEZ54Kd/Tmn1gcYIdmfVfhYMcoL9mZLRLCo4ZC9lQUk00FGjJ7ReMiisgy1p8wFzkWsC7jO07SWIpPkuUCEPnvoEQvnHUpG8LFHPwLR9yhJ6JOSA5TkEMmIxJCQkvSzQAy3kY/bt3v/b/skRrwjEQm3Mw0gpvsDgZCaAxRFxP4xfWIppe7RRQVIFJG1CLUXdEKiQkBphYgw79zh9VRaI1BI8zu3mj/sGvjsZz/LD/3QDwGQz2vi6VN0d22iigxdtci9JdILRFmiBhnyxVdxb15CTEqyXOOaGvPCK8go6QZjqjPrhEEJUhEXS0LdIOc1an1MNp0iUDid4YYZobXIuzaJ9x7HG4UMgmgdKi8Jmxlidx+URvpA3JvjhURsjpBmRL03I0yHmMkkoToCgg6oHKLUBAlyY4yIEdUG3PYScWyCaBx+Vaf73wVoGkLTAAGOTaFu4cI2MjeQa4T1KbGsOtSwIA4ktoS4nCOHQ/xikZ4vQpxIYm4QThAai84McXcF2ytECMRJCeMCFQGhCdf3kVriRYC8xBcavEXYANamJOQd972IQCZg9TsPpHdrL/DeIrxCWoFwAozArlbobIAIIPIMaSSx6VBZjq87TDHE2Q6hBCIvECrDaYU3hgyPvLqNH2XI8YhYN2gpU2GKQGqBr3aQeyvseITbmBJcRHWeEAQDkZInhCcbZ0iRippgWwipyMiG68TJBsvZTZpqhdKGYn0dqRWTqHh0tM7jJ7YYBotta2KwhDbg+71EIFBKI3sEA8BkA24NSn5teY2r29doO4sejZGVQ3UOJTxSaCIpocOnYtKVhkzphN7FiDeSzi7JsjwhTzHitASZzgbb1tj5HIZDGA2RmSJKgbCasKqItUXkmhAdnvS6sRHZ/c7z4HeLP5a2zs/93M/xMz/zMzz11FM8/fTT/IN/8A9YrVb8lb/yV76rx/7lv/yXAdhZLJnVDVf3Znzr/BXGZc6pYxucPbHFsfUJm2sjpoO0QJRS6QLKHhlBka5uTIexkCAUDkPtclzlkLrA5CVKKWLweGdRSqJ0jlQZAoF3FiEVSqpUqfaHSvSeYBs6aZFCEAlolRFEahFIZTDa0FmbntvWCQlREq0zIqmlgkjVaAgutZN6hEcImQ6Kw8MjQ6iIkJroHcFblC6Qg0lKOKQGJLFpiM4R+4NGKsVgNMJkGc45nLPp0BPphQolkdZhXZcSE9/hfYsIkihMggS9x0kQUSCEQukE86F8+hy8eVfXwTvXwLL1dHaFEIbxKMcIj2ta9tsVJ08eY319wrfmS+rlChkjqjRkGoZKkQmHdDWlEIhql/2Vo2k7lO/YmAyRMRK9Zbl01FVLpiOznTm1A+kd+BF121FVLSEG2mDZXB8wW3Z0HlZ1h+sck0KyPikgBJQCFxLqsmwspQoYkW7WGFIydztBid/x52FyctCOOUhQ+M6b/RB8OfxewAHUS0IRkWn9HCbmB5vbwVfwh7iLQKSkWhlQEpA9eueRUZC7wHJ/lpIRY3Bthz88nCJXL19hOBq+62vgZ37mZ3jssccAGBzbwhhJcJK46shdwJ44jphMECHS7NxAjQbIqklJ5rJDxABS0hmDffJx0BJ/790ot0KsryHvj8j9FfrUSeJ4jOgcSmv8MEdMCtTaGvHYMfRojF+s0KMBIstQu/u4ymHWpvjlCltmaKUICNp2CaUkVBY/X6Kkwu4uUaOcMC5SaxhJEIKwtyB2nugjYWdO2INQaPRkADtz5NnjqCwnGk0wijhbpmIoBHSWExtH2J4hWg95hsg0GIkY58R2ltCVIkMMS/CCYDJkrAmrjiAVMdNweg3ZurTfRN23LyM6CtzOMiUdqxVRStAGsbeE/SXC93vIwdoUEiUUvhTEhX9X18HBXjAYTIi5wXYrMAakQLYt1CuCAOECIcuJRhJEjswNsarJHLhcpVa9jRjhsZ2jyzOyu45jli3x1hw/zJBa45ynGI4QIhKkxd+zSTCaYCRSZQQU6kaFD4JgFDpKdDHAOUuQElUOkc4SXZOQHp2Tqw3kqCBXkrPZiAfGEx4/excnJyOa+T6zeZXufdF3A1SPPvRwafSp7R+B2LacKEs+NjzGy85wLbbUTYPApzMieryRLAwEAcV+TT0usUYwmteIeoUROV2zwCiNDx3NfBe9tkYwAkuLzAy+cTAt8VtjvAAZLdiA8I48eBCkDoIx+FVNdB4RBTL8Ry7oO+KPJTn5C3/hL7C9vc3f+Tt/h+vXr/PBD36Qf/Nv/g0nTpz4rh578eJF/vbf/tsgFBGBD5FgDHvWMr92kzeu3UAKyI1iOhxyanOdB8+c4u5TJ1mbjjEqR8QeZO834ygUQmq8EAkS9hUiCKKrsEIQY0psolJ41xGlTgd+JPUJjUlITJ+YxBiROrsNukuJ6/kkwUekl0ihkcogJKn1IiXaaJQ2gKDrEiwa+krZ+5SsqJgq/RB8X/FKdNbfONbiRQcx4ONB+0ijTU6IgXw4SH3FvgdobYPqE5csKxCAc64/3AJaaqSRSKFQQqGioI2+51l4An2LyUZCXykdnoUxHiJX7+Y6eOcacEj0YIjGc2yaY1RgZxXouo5r23tc2dllb7EkBIfUOW41Q5cDbJZT15pM5QgZUIUmU6kvfmN7B2sdMXiGmaSuWlzjQIPRhsoGpIgslhVdiNjVEhEtIkJbt1Q2IITAu0hjG7xNSSjRMx4UzOqO49MMYS0ieBw9kBHfkYwcoCUc8EX6dlCPoMBhR6jnRR20IdNnJCM9GhNTUq4UQqm0sWmDKEroOUT4viWgFFJppFQpgY0xtS6yrG93ypTEREFnW7xzuKrF+gZMQaYFMgacUpRFjrOWru3o6prg7bu+Bra3t/l7f+/vAeAna2SXL1O2ljgeErsObUG3jqIYo82ITpX4ckxW7UOpEEHjNgd4laOaDqsFYjYjrnaQZQkmR63lKAxh2eL29vGLJbosCblCD0rY2CBEEM4RfYVdzpH7S1QM2GvbSBvQpcKFiAwRcHjnCM4TC0G0HgpFUBFxbYcI6PUxdrGCVQtKI6ajxEdQII9NcZlAjXKoaiAQlhVMB4gyR6wNEU0HtUMZgxzmxK0M6sQnYHtOXBrkIEduTPCbY4IQiFmNqhv8MCM+eAwWNViBmnui0ojTm6latxFWy8RD2a0TJ6VtEYUiSElc1MS9KnGluJ0kCyFS8aJ/d3XGu7EXSKVxEWht2iu1BpfQZ2JEtB4nK3RmUJkBk4EEFSzYSKwbyDUOQZZn4GLi9WUayimhMIkaUFfEYPFdh2o7/PVt9Ilj2GEELDEfEqcjGgtBRpR1KAImKzFSY2SB8g5n5zjbQl1TiIwTa1POKThTDji9tcl9Z8/y0re+ge7bxkb3rX7A9/vD4b6hIj7cRk6XO7c4g+S+bEBcW+cWgRt4rgvPNdtx065otSR2Hjtew8mIms9ZjiE7vs4032TkFEYo2rZhwjGqPKNtViA8oihAJgTftjWZUFjnCCKC0ngjQEa0UXQRBAUGBTbQ7e//R6/pQYgYv6Px/J6I+XzOdDrl+JmtRAjVGpkZYteR6jqBMjlSp8NGiojWilGZc3xzg0fuvYf33fsAk9EUELgYEvdDGqRWGG1QsUPGLrX9Y4LxIKDSE4LM8CItGhsjEok2BpXlEMHajhg9CtBSEaNHSk0UAudTNSSkRGsDIrVTisGQYjCg6zpsaxECvE+kWa3TjeGDTQeOkN9RESMSJyQiEgEzevK8SJudNpSDAW3TYJ0leI93jtgfaM1yQds2CU0JEd8nXKk11L8GIq6zWG+JPcLifA/f+0jXdbiQCMlIQWEyjEqvsW0t/7u/+98wm82YTCbv6hrYeOyHKNfWiD6wMTY4F6idpChzgovsLnYJQmL7qoNmhYsOpMSYkvXJBviWgQSTZfiY2nIIGA9y7jsx5frNOcFHrPeMJ0O2ZxUiQGs9QSkMgaA0Xd0kAiIx8Z2Co/GgsgIdHYVKJOLGRdaHGo2jVD0P5R08kAO+x8HPDgvQnhwlpAAh+/+XoFRquyh1+O8PyLKxT2Sl0SidIXRa4yidyLTeE13XryGJUBKlE0wcBf1nkdaYRBCsRUrFfLFACknXNDhraesGV9eUhUZLRdc05JkBKbG2o1ot+eJn/u27ugbeuQ62/k8/y6BpkXszjBC4gUGGgKwatM7o7j3LcjTGNy2Df/WryIvXiBsDOgQ+SsJTH6aZFphyiH3j9cQRuv9upI+YvQV2uSJUNbFpwKSiSG6uJU5LFLhbO4hcp2syrwnXtkEKRBcQg5IgAR/xWwUi08gokFmGbCyhs0TbEedVus4hEqxFuUicNakgspagQQwLxGiAufsEfpQTbA1VTdhbIrpAnNcIJSnyEhUF/tgQMSqxV7fxbUdc1QhjUJtTolQwHhBtJN7YIQpBODZCmgy5OyfuLAhaEAcK4UFoTYgRsWpg2SJdgMribuwjpiUxT4dPtA5qS6xsau2GiDIKPchwMeDnzR3ZC+7+X/9vYVhQ+5rQ1AQZiZkCIdDCkEWdEB3vQcnEtdEpMQydQ7YOhhpJwFmHURmuNMTM4Jua2HbIskgotu1QQiIajwkGMSqwOhByjUQjPGRSE7VCD4b4RUtuCkQUDMopRpUI53C+QRDRvmGgBY/ZlhOZZphnPPbYOa5dusTVa9forEMrhZISk2mMMUgpe1RcICL4GAiHaGtCLiOx5yuC0galNUFpFjEwD455jOx7z9I2NG2Nk4lP9oHRJvcVE3Ip8UoSEKxcxCKRgwLyAXt1y416ycWdm9y0S9pcErTGRkdQAiccUghCjCgX0Z1A1xa1rHnrH/7ff9818J5Q6/xeEeo2kQyVJNYCkeeQJTUNSqceJBGCx3aWWV2z2F9w8fJVvv7K63z48Sc4d//D5FmBRIJUCDQ2SCxZWmQikUgPVBkdAikMShmUNhjl0JCSD2QiYQFCZjhrk7olBJTShBgQCLTSBJl6zQLbw/MpE57t7aYKR4DWGSH6lAi4lMjE4NMh0ScB6Xelqta5jihkr5qJ+NjDaEpR1yvapklJjJAJHQkRpMB2DV3bpMXcE4Wl0j30Lw8PT51rhM+IJmCix0dH9KnXawYFxKSOgpj61L2KBPm7V83vRgiToXwHwjNbtIRocHWFa0q8ysjzMZNSsbdc4RA4XSJtg4sQ2pZq/xZllnrKnRN0PlLIgJOS+XzJXqExWjKrKmKIuLpiKCNNBBVa8CBMTus1XhfItiNIyFT63KP3CCLROxrniEhaL4jec2yc1koiwx6UmADyHYozna6B0khjkErfJkgfPPgdPJaDSuOQGBvjIbpyuJEJ0W9eHlxKNg8VOn2y4xGg0saeSONpXTlrEVITrEPlmqwnwaoyw4nIYjZnOCywzjEZj+lsTZ5leFfesTUA4Oa7zB+4BzPMmF64TnASLyGOB+mg3d4maoge2q0tcIHmiUdR8x38xhrx7D2EqiG0DSLThPkSOZ8TrKPdXyBmFbFuIZPI8QBx110E4VMbdVUhokdUjtB24ALBOZSLqb1QtyiliUYQGk+Wl6AkflYRmg7vLP7WDG0UIVNJ+aENQXlC9Piqg0wgAjCrkOtj5PH1xC/rGvyigTYgfEAUBpTAjXPMdErXNri3r8KqSaqVtSEyKxB5gR9nyJVF+kiYlClBqipiu8C3HjaHxHGBkBG5sMSbCzQRYQNu0SaFT5f2ERkBI6HteS5JhZCq+0jaq3KNjBFPc0fWQDACSUIt9WiIHRm09TCrQQVctOTlILV4fERWDUppWmsTqiUirmnJbMAEiTIBv9xHaIEalMTWEW2VeCu3ZkgUhVljODwOraMNHbZxhHqODx12VaFMht2YIjbWqW2FiZolM8qBwpgc36uHQjRo23DT1hTCEZzltVdeZevYMc49/gSL5ZL5bJ/VfE7dtCxXNVImvonSCq00WqtUIKtUuMQQcDYVo4JI8C4pL2XHUEjGUnKXkKAEKpvCZB1lTGrBKY0iUtdLqnnNalXhnEMhUSqdRSeLnLuLko9sTvDmGDMiF9qaN5czLs/2WLqKzgiiUXRE0BlhokF9d32d93RyIkYZyigU8oDaBwhi2xJle7jZRpOqvyAlsbNE77laX+X61Wu8cOqbfOj9H+Tu02cZD0dkJku8EqXTxhM9UQhEVKBVQkFIVbh1juA6Qkh8DCEE0h7wW0yCwrOUUITo0AeQeQj9ge/xPuCcBdErO0Q63GOIOG8RAQIBJQUueJRWh5BeUlMkPkAMoExiVtvOpjOra5JEWUvS2sgxeZlkwFrjXEfX1On3Ko2XiZQZQsC7FhAoqVO7RqTsPMsNUmog4IMneIe1huCTqic6h3f+HXgufQV+ZyLGQNtL9cq8oDAKkY0YDTNcFOwtGmTIU3LQtqgecVCmQERPQFChES5DFSVKdLiuRguJbZK0OgRBZx2+a1FYtFZIH8i0pG4samBwjcc5Ty7BiIhH0bYtUmWo0BGjJSiDkBm57DBKILVC5jolgkIQYkAqlRKuLDtUxgghe2KdOOQzxb7tlMixv7Pdc8B3jWnPJRI56PSL/nM7lCMfcFxiwEUQUhJcSvpVr7JRSuNDSIm6kgQPXeMTZUtrZBCIMjCKQ9q6AQSrqkZnms46ZrPFnVsEgH3125jNdWrhEfecRK6tEwdjWilQqwqrIeQ5weSoH/0hZGexgwKZlYTVHH/jOqrrcBfehMUiqV8uX0PsrIijguAc5qGz1K4it6BDpLUthA5RNem65ZpQV4S2Q41KaB1Bp4Nazi1qbYrWBrczJ/qkuokC5DjHzQR+XiGMxjVduv6LOh38g5xYpvtQGg1GE1YNvq4RdYuSmjhR0HTEuk3ti+UOtQAxGqBHg0Qu2K8JRYYbZ0gibm+GVgY1axDTkuBCojpbTxAh7a2DEucDIliiiESlEPstLFqCd0QFTDOCdchaEV2fjLhIlBIh+7XmPLG10BdvdyJUZgjGoAArPUiB1hl6nOGDS4kggVgW+OiRxTApznbr9L0Q6OmA0K7I85KgFXp3n+gtbtgmBSUCoTSdzCnUBOMz4mqFFR6fOwgWJTWqGGKjgEWFi5aw2kdlIzAZNrRYu4+QY7xvkDFgpKbCUhc5lRDc7VrifElVpeS+KAumkxEnjx1PCqW6Yndvl9lsjm1bvK+RIikHs8yQZTlFWZANknLNWdsXpCHxwaLv27RJ3UqMBBepq2Qp4X1AKYXJMoblkBPHTiT0va64eOECXVvRtTViPku/V0gyqXhflvP+Ykh9bMyV4Hi7WfHG/jbLtsaWDlfkt5Ha3yfe08kJURCCJCh6gpBARpB5L1v0IfFEDspJpRClTMQcrQid5crVa9zY22M4XWM8GDIqh4zKglNbxzm+scl4NGQ0HJKbEiFSsiMPBJpS9FBaOCQXSiEJMbVtIrGXMiuMyhAytVyQEmUK8nKAD5FmNcdWS9q2QiqTniP4BNn3BF4HyJAUIAAhuCTrIlW2Sutespu+jz2ykqpsnbxbpCbEpFRCSIxUCKHIy9vtoxgCbZvIV1pqYs9dcK4jBoe3kaB88mSRiSAnlQdU2ryETj3aSCL7OU+7qu/YEiilpyhL8nzI+tqIosy5ub1LmRuCkHRNzapa0DmPiJKARGcyseaJ5GVJYy2rdsVQeAZlwSpq2maBCCnxGQ8MMnZUdYWRBcN8yGJlQWk622GrFh8zjNbk2iMPyKudxcmIwxy2vkajDBEcple9SF0yXJ+SFcmrJaEVCTkJwaXEIRwoeXwiO3cdoa+IQvS9ArivRg4hk/4/kZShvJO/cnj/HHiwhENOSwgRR5LhuzYk358epfFCoghIk9G0llxEnLM9T0Vi25pqWdG2lvFkzN5shtSpVRZ+H9ngHza6C1dR918n5prmgfuQgwFamkTs9Ra/s42UCqUz0IY4nqKrCodIHBwvCEoQiLCzIq5a4t05Tjpk16U2jlLIYkJUBjsdEeceP58TfEp6/YVtQl0jsoxoPVFKQt2ixyO8crCyhLznaAEm04hMYm/twyy1DeKyITYWr5qU+I1yQqHJ7j2Lq1uysyfxkwKR5+gdEkKcZZgsA8Be34bYoIcD3P4SFUWPYijk6Q1oWkTjCdUCnedEGQgy4n1AqAyxqImdRxeGsGgIMt3nsq/ERZERytQOkRpCa4m1S4rCyQiExs1XqRVoBAQJOiKURm2u4Y2BveUdWQOx6pB5RJt0HSVpT2aYgUlS/qB6EUFMiHZoID++hbUNQQS8CKjNCaGNqVV69gxuto+qKqKWqUXlYZiPKeQQqo5gu8QbigLpFLIssKMCuzVAVUuk0QSTE8scPx3i25qw2IX5NtE2aCFoAK0KXLFBpxRVFMSmZdNGuq6lrivms32ElJR5ztbxY3z/D/wAv/3532ZVrei6tifLJ76dc56u68iLPknJc2Tv/XS7gPSp+A0CJRUm0xR5DmJA3TTUVU1dVdR1zWx/RlbkfOjDH2ZQDHj51Vfw3gMRj8D7pDTsrIOqQkrBGa25P8/5wZP3sIiRqyFwQ0S+3d3ite/ier6nk5MQQMSICGkxiggieUIlYzYp0k0ZItEFBJ4gQ/Ib8QclpcB1HfO9PZb7e0mCTOQlqdF5RmYytja2eN8DD3Pm1GlGgzF5lvdt+NgTDtWhDW8UgFApI+1lEyH6dDj2MJswGUYqpEtVKELROYftOmJsSIdIr/iJvkf6BRLVS78gRH9YIssoQUmU0RiZQW/iJqXC0972SmmqVEkLdeATlh6f3A6IIfmoONsRY8QLSyBBsyEkeWCkSzI9BM4lmXAk9RVdiHQ2tS+WVcP2bI+re/vc3N+7Y2sgL0ocGc2ipnOArDFSsLeo6XxKELqmZWs8BqFZ1nUiLUvBqmqYtQuEychCi8cy8xZVDPHWIGNge3dB9CWDwpCrIVoKnLNoJWh9QBtDOcxQraX1IHWODNBZRzkosQFMZqgqj84zQDIYJaY/KqeyEVV35EWJyUxCRxDpWoTYq50c0SXELzibEhPneln3beJs6t/wjmSE24jKOxKUFIKDZCUcEm5TAhG9oxOSpu3IM50qLxRWKHKtCE1EhIgUHVpI6rom+IC1Dp1lFFrTti1CKrz3NHWT0ME7GFGAvX4TlRfIE6dgOMFmAquHKNEjnvNZKhrqObFpEm9rtg/DCZSauLMPuwvifoUYZjAdEbOEJMTKErISM8yJSuKrJbhA7Dxhd463lnhtl9h0xCwVGJQFShn8zoKgBPFmRRiahPgWOcRAt78g3JohKotfNQijEGsFMcsQtUuoVOcI2zsIF/DWI88eh7zFX99BDQr0sCQuVrj5AqENYt3g2xbpFP7qLeQDJ5PUGIkKkbBaIXxOFAExHCQptMkQtxZJTWg7vEwcIzlrDnl0QmjcfkWwFjKJcBCrKrXVfcDenKGnQ9R0iCoL6jcup/XnIwwE6sQxolDAxTuyBmyZoTODxyKLArKC2HQJPSfig0UYhURD5zFBYlzEqIR0uLqlMAfS1yoVoUIiNjfQ6xPcckWsGkKM5EIjkYgAzlosFrExRGQGxgVt7rGjIT7TFF3AaJ1eQ1cT9neJyxVUFX65JBhDkZf4dh+2FMFk7ISKbW0Y+kCIDoNBo5J/igChFFevXUs8PykxJktKS+973km6z7XXOOuQmUTKHoEliSzCAYM29vu3S2hKVuRsrK+xGwKL5QpIxFfXWWazffZns94gNJ0X3nuS6edtE8oYwDtH13UopZlkGVtGI7RiNVrn//BdXM/3dnLSOERPLJVKIEzyr1DKJMKfKQlCJhJXSJUuvfRKBgfeQucS4N3zLYKUSSJGxHlPJxuqZsWVm1fIspw8KxJUaAxKZgwGQzbHU0ZFydb6BqPBAJOZ1A+USZ0jpCSTqZeH1OACdj5ntZz3BqEHpMT0XkJMeX+QEYLokwiZeBIhopRCiAKtNEImvbyQKkGoJDlvUvt4vE8QXe08txYLbq0qKutpRcQ7j3Md3iY0Js+HSXpcTrAxstrfR5ic0WSd0DXIZoZrWoRvaNoWLzNWXYefbNI2HU2zx2pvh6pdEYLAuxbVRqTM79gaaPQALw2T3DApNbNVS1U7qraia1eMhgMm4yFZlq7FeDAGBPPKpnZVDAitaLoWL01KZBd7qe8qNcLk3Nqv2BgPqLt0kGeFRhqNER6NxNUVvnMMyxKNQ4rIMBOsjUuquksmfXkyvNOhYVKOkDq1cnwUWBfomhqdZZgstU+8T7yF4DzB21SdeZd+1qMmsfefeaduWCSGS0JuDpCT/0Dlc/vfQkD0KquDpmhCR4QQqedctYwHBba1GOlxNuKFQUVPzCStDZgsRwqBcR4kNFVD1zlCiBSjIcfXNvC++66qpT9oCARyfwWqRaxWyKoi7s4Q5YAgDVFpwtZJ6F2Z462bxN1biM6iTkRYn+Lf/nYyhx7lxGVNeOUyZBqmgyTtX84R63fhqxq1aJCdx7r0WcVVA51LxFEbEJlENA6Xk0j0y47gHNJ1hNDS7c2SIdpsBdYTnEfkJh2egzLJfjuPcAE1yBEnN4hSpCQigrtyE6UkYlDiG4u0EdVEKERqNa9W4BzaGLJ8QC0VcmdBXFSIMrlOi+kQ37QA+GqFzBVx2ben18bIziOWDaJyxDpxqaRQhKWH1hMLhdwYggvQOpRSDE4cw3Ydsug5RgdeJz4gvUOtqju2BhoRyYdZMlfzFikCotAEFxLHxHuka0AblAvINqDqgFLJ6kFFQa5zXBPwruct2gBDRU1Er0/SzxBYqdEikd3DzRranmQbki+U6iL65gw3yGiLkiIroGlQu/voRYtvI7FVyNYwMlOKMGY8GnFqcoo1HbHbb7EWkxxXqYwsK8iLnLIckOU5O/tzrl6/edji96EvLnv+oogS3SP5QiSFaIxpzz90/Jb9Hd8bjx4U3CnhSOdmCBGlZUJepOLG9ZssZmm2zqFKvDePFMTe7Nof2hmIfi/zzmGNITca5X+nlPx3i/d0ciKLIkkgEaAFQUlkSBdAZAqhDcmyMHEkQowIbfAx4H2HHheJANq1adG65K56YNYdA4iiRJgMGaANOXOXo7oGYp2IX7u7+HAekAzGxxmWE3SmGeQDynKI1BnFYMggL4m+IxMBhUf1CyEXkMmIFAEJfcKRFlWiN/bunFKnpISY+rcxELEkMF7iTdLfQ8R3DXMXqNWAG3WLjYraRVpXYFsJtqHeuYhs9rHNIvFegDYGgpCIPCcIibMVwiedOl5A7/AojcSLAkdOayu6S68Q2ha8gyjJsjUyMcGYIcJk+DtYNYemYjodIQEbBWujnHl0xCAxXrGaz6jaBmMy6tWCoijJhlPKLGPQ84FGoyEujKh9xEeFdB3O1VidpZZRZpAqorNIUIbWJ9a80h110yF6ZU+eCbquQWtDlhnGZQbO0frIftOQZxmDUcH+qsWHlqLMElweI0YJWLUMB1mvyvLJCp2YZL0+VUXRufQ5O38oWX8Hy4QD1sl3qH/6P78jiRG9MASFF0mhEHyHFBGERHpLaVKrdF63qaosB8i8H9MQUvLuvCeQVAIheBAaoTRZnhORmHyADZH2u2sz/8FDatiYQJETiWgXEqn18k2s1iAVem2daJuENgmJtwcjGCKcv4SaJ0v6ZP5QEveWqT16a4lYH+OjRVUrRN0SFhWx9cTFAuoWYSPRaMgBo5PE3yu01njvkQGikMTWoTKDyBT+5rxXR+WIIiG4uAA35lBkmNNb6FObuK5Fjnr32B4hlpvD1IJbLJG7K2QAd2MftMLpiGga5DiZNMZVQyEGeB/xIhC0TM7Qe3PksiMMMtAaYSPCBWIUqJ0KUXUJGT51jFi0qBgJUiSb9qohzCssgdi0xNbhtae+dCPtx5sgtEpmbIJk3LU5QW5KeOnNO7IEYrWkUxE9LjFFmVCyzkEXMcIAGukg1inZN0ESK4swqVXvfIsUBcoJbOURhUm8QwFiWmKlQmiQdYsT0HmHVoaoNToqvIAoPSzm+LpC+4iY5MTNDWLnEIsaWVtKOSATAwZDw2jNcO/xk5yYjtgoFGMdqfZ3Wfo1lFJkxqB7tAMhaLuOqq5xNknSnbPEEPHe9Td/4i1qpTFZhtIm8RxjxHufeIIh4eayJ9bLniSv+mQFoK4bnPOsr6+zubXFrZ1dqqqi2dlLe1IMqeUfQs9HjEn9KWM/giPtCaIXFoaYLCogYq37rq7nezo5ESK5kAqToC6ls35uSUgZZF2jigEEi4gCDqS+QiDUECuT3W/MS7RUiBCQISQWvOugnkHbEn1EjjeJqiDmQ6TJ0+yEEJKNe7vE7u6w6m5yY7BHtDWyWTEoRmT5CJWXZDLHFAV5PsBHiTQlo+GETCqQHi8ihRpS2wqfDZDlBp3oL3IELXUyPBOC4DxNtZ9aM8N1gh4R7AqFxKiIvXIds34MMx7QNS5tzGZCWQ4YjAQ+tAyGx/E7l2mW26Aymskmg7UTxBioFrsEZykE6C7g7Io4muByhQnQznepLqU6OFJgRJH8ApRBKAPO422Ha/eSl8sdJMGVKqCDQ+U5Ra4xIjAsFEOVUfe/dtWsqOoVWmUYZSiznEIrPOCcZTwaUhaGZe24Na8pJ2NWqxVKwNbWGvWqomkqApHhYMC8dknJ6wVr0wFIhRLxHTN2PELmCCSrugGVfEKMlrQuUHWJEN0FQWc7hoMSawOZkdTLJWV/wC6qhslIIXzsrapTchKdT2jbO/1PCGmN807EJF2h70BPDn5624CC4JP1fkQmhZmQaUOMkCuB0jl1SJNNMwFWGbomyQ7TXCiFNJKmbpmOymRlrTXLVU3nBYRUOd3JEELgqwp9fBPfebrdXYRIcmK2txN0fWsXxiMY5ZDlqOMniLe2iU2NfestdBUJ0wnB1sRFjSgNqigRRqHuOQknjkMQuLZCSohdQzQS6Q2ZzAiTUZo54z1+f4mKGl+1iEFGnGjkbAVaQWURVqLXxjAskTYQXAdaIBsProU8I2YKL9IBGy/sINZGOByytsjJCL9cwawCBEEowqpO3pL9XDGZF8RFRbi1SO0qo/t1AqqJxGWX5L+FRpiC2FWwqBL6emqKKQaJ62Qkwvc8Mq0RQeACZE7QXdvt12Oq3I8/8yj13py21Igb2wgloG9fyxBSAnuHQi4rIBKaFS7P0YMRwgtU0OQyw6Bo6gUCgV21mKxMM8FCmw5xD/V8P6EAw4ygwUaXZNy7LVIaICKWDb7M8FKjHJBLMq+xrcO2C7q9bbRQmGyIWAiyYc4gCtbNFifHA84e22JrOGBqJDp0RNfhXEXoIq4JZEqyPp0ezitLRp3pHk9od5qxdlCchH6WlZQSrQzaGLTJMCZLrf3eOsIf+G/J5ESenjElo1qkkSx5nrO5tUk5HHDhwiVc57h8+SrOu0P01fd7jxASH0Lvtt4jJweEeh96x9qEyIaDsQU+ebR8N/GeTk46UyZZnFTEbkXsHLrIwXXYVY0sp0QKoktmV2Y4xIeY2jbeH7KUhYp0SIQp0gIUEt1VOB+QqiDoHLIJKi8x2RBMGvDkXUvsWqKvceUYMSjQgwkyG0Pb0vqKrl0S57fQscEojYx533+U3BKKmA3RCFoPZlDgkQwfeJKAJriIJ1khK5Fc6IVL1svOKqLvoFsQ3C72+nns7ArlxhbDckp3eZfY1AhvMKMNYrmOM8lkSwnouhWd6/DDdTpUqsKqGUHkRDkiFpF6tU27ukhsGiYbH4TpKdrlPk2skZN7wHnoqjTUyigcHkQgaAfCoULEV7fwzZ0hwAG01uKXFSMh6STszRcEZzFK0lhPVg4YDEfMl8lC3BOZLWdU2qClZFCMQOUIrRgUkU1RcGxryu6OxreOdrkC+P+T92extmXpXS/4G92cc3V77eb0TfSRkZ2dbrBxGi7XV0Z2leC+YF4oAUZCKl1X2ldgHhAIqQpUYMEL9WKg6lYVD3VlIVGCQjIgFXCNfW3SpLFNOruIzOgyutPsdrWzGV09fGOtE4ldOG3yPKSYtpQR5+zYe681xxrzG9/3///+GOdIXmENzGzAx0SOLSM3Z9NHtNUMfWQ0mUgeke9oW0Xb9vS5F1FpCASlOBxXrFdr6QQbTew6thgGPWJeWdpuwMfEeisZHJVOT/QlKe3Kjydwu6z2nZFd4s43FifyLzvH8Y6hIt9D/tkPsXxpkg2nEE1RmUpnBmMwBVBoiqurqRsGH+m6HuMclTPEIN23HDyzyYTFtmPwQfRfT/FS8wp1viTbR6jnHf7RGe7ZZ8l1TTpbkJ0t2R4aNR2hmjFUNYxmxNP3Sc4QVo/JbU92htx5jDEkpahOjqmeuUPUjnB6htp2Ak/btvJQsw0htqILWnp07TCzCWk7gMqoVphFVBVq04KVgE9dVeRqhNpsCFlByDCIe0pdnxEdxMUK3Qf8ektyQtzM2hCvFiJWPZxKh2PVywk1BpQHM6qxTcWQPNEk+VmDR8cExL0jKD5aYFxDzElGUieHwmSZjMhZ4x+dYzYdSiuq56/DwQHq/TPC1YKQCp7ce3k0+cjVm1/H3jgR67JR6EldwhghbzeYunlqa8BkJUGNXYY+En0mWg3NATFmjMo415CCxzrH0HXkGOQ1KPlcJSNRAskMDNsNua7IQ0ZvB3RsMVWN9oqkI6ZyxK4n1QrbJ5pOMQkTjg9GnMxPeObGNW4fzrk+P2BSIR3zFPBDR9+e061j6ZymwqYSYbJEhQRSFh1HDIGYEikGUtwdgDK6MI+s0VhbLMXWYl2FsVJM7rhWTwI/2bsvM2C0pq4qbl67zgsvvcTtu/foh55//7nPcXm1LEBOkQ6IDdmANpIbpHaMpqJ7U7JfKIRCHcufl5xTmWjwze8D39bFiW4m4hDpFuS+JU6vEZrb6LFGHShButc1WlkwkLVDZU3Islma0QmKRArrokeB7Lcw9GzWK+z4NkxO0NVIZmk54IPDupHcEFWhRyfo+QuM3EhYECli6pHUpVZm+HFY0j9+lcyapp6y3VwxbC8kXEt5jKlwuRHxUF2xeOdV+hRQZkTIiWp+DTWeY7TB+FaCljZXpK6F+ljazbM5elqRxzO6lMm+Qc+vY5KibdfkzSNi6HC2IkXI9YgwPULVMzy5VLY7b/yGzfCQvL6kosbNbxG3nrR+F99u8H2HaWZEYyAdgO9IWRw8arkUhPfkGmSLbxeodgFf+fxTWQPN4QmNc4S+52TUMHIOY+QD+/CDhyStsdpQuZpuGBg1U7qhwyhNPZpwcnwNawybbqBpHC/fv4HREIeei/5C0mhVYtw4fK7RVUW/2jCdjrm66LlarGnGo2IHjnRBkZNkn2z7NZtetCzjyuKsZdRU+BJ54H0k6grbVEQSahhY4zBZOnq9qgnKUVdgUtwXKLsiQhKJd0GAH8rheVKZyENj9zW7U0z5G4IEOBqjia4iRlkHyWl8TtRWwG4+JqJRDNulpD1v1kwPpliniSmyWHdcvzHBGcUwZFT2UkAPAyp4rFYsr56uldjkjJuMRQw4DNg718ntBqoKPRuD1ejpDEYjrG0IPmLCmtRLYqo6OiJcLOHRVRHPIw+2wROVIr50T8jOm1Y6Bz5AbSFmsnPge/I2Cga+HbDNCNqEUlYOR0MkbVrMZEScGNS4gstesmhmDWaAXNfkYYEaW9HCpQTOCr3zzjHxg0uoLNkoodI6R9AKF7VA0YyVjm9lyTMndFNr0dmg14Pc+XEtTjyrydaUkLwBs+wkqOpggm4suktiv50Y9LZoaaqa5vCQ4cElbjwmdAt0ZcnjSooqn2nPL5nfu4l20tLPRhVRLML9eHqNE6L3kBR2XMsnYBjIPjEYg3ITfN+hiw5COQtZMbJTMlniORqLshA2S/KiQwdPdDK+V8kwdhN0q3C2okoVR80R9cRycnDA/aMj7hxOmFaGRmd0Cugc2WzWtJuHbBdC1f6wRizJXEQ6/anICZJkbkmBEveC011OliRPaBHxGlOYIxZr7RNjhlKloJEux66ASCkVyqwYJJq64fbN23z8k5/k7jPPsN1s+MJvfZ5XX32V1WotI9uY9oceCZ4twbKo/RlIl9eidrPiUjyllDF6J0+QoiQlQXN8M9e3dXESAd130HbyYbVjajdC64qkBbmuTeEMKIu2BmMc1hpC36LxYKAyU4Z2SQo9Q3tJ5cbo8VxEqH2PSQZn5aGiK83QbjGmQrkpyVlUNSLXDdo6rNES5EXGWIs1lswUN5uijcJlTZ0jYXXFsHlE6jckEvbkBnl8hHUjWUD9lro+QFuLwRKBxfoUHyM2ejSa8bXnaJ79LmIe6JaXhPaUrjsj+zU+tahVZDSekZ2iqacoNWHdrkgW8qRCjca40YG0eVOg685Ybt8jxw5XNaiDKbGN1KMDSJmYBhld1CO89nTpAbFfkwjYoHF6Thp1whCpWoJtiAeHEH7nXJVvxeX7XvImtGHwmfnBmPF8zna14uT6NTZty9nFJX3fQ87MT06wqwXaCEfEFA6FSpaTowkH8ynddsvBbMzF41PGThOHgegzm01PPZ2AsthaMps26xXPvHCfs7MrLldbAgZnpRi2KBIGN5pACmgD680GnxRWG2zqSdkK3l0l9OyQ1ZA5GVl8iGTT4E2NntZoA9EP+2BHkhSTaC1FSoolqA/p0mj2+TkgrrZUWsExZRFnAjEGVIzkoLC1woeITxBRqKowd+oaZz1GZdZXS8K2Y/CR0cEMyFRVJTPwaAgx44whhkA7BLZDwGopBJ/m5S+W2Nsj1MgQVkuUj9h6hK7HmMkIf7mErLGblny5Qo8qkhEOkalHpL5Djxqik2Rfpcr7eromdhHareSnGMmZT0lJ0F7r0ZUnti2mEm1LThBrS+4ANLgGNcqYcU0OCb0eUMdzwrMjTNSog4mE9D1aSgJ43aCchKgllSAk4nZAWdGyxKLxUFkAV1E5sTurJIXCSJMccLEmrVvUwUwYNwrs8QHbboWpDXS9aEJshBAxrSavBtTxAc5WhMUVtXPSTThfEF99j9VXHxDPLjHO0i/Xwi7xSYTDQ8Q1NX61wlsKyyWJVq0LxPMF8ST/Z+/jf8llk0LHTKaHaSMP+GHApMhwAFXKMnJMipFroBZ4me97SIHgMwSFbgdMUKRtYjwaUbmGo4Mjbh9e4/rhlGdunXBtPqO2EiVCCAzthm75kC5GNimWsNRYQlyfdEZUUYrGXZFSDha7jsnO3h9jFEpzzgLZLCwvWwI0tdI4J0BGrcWdSXFNpiKUT7nkcCnJYxOqrKJ2NXfv3uWT3/Gd3HnmGdrNht/4tc/x6quvcbVYEMoIaPc9dmq2ncQAYBcy+A1lRim6YvzQa/3wVxVabAz/FYx1UlWh+hbjRuiDm5iju6Ar0j6KWCyzCkVA7I8YRQoBunOG80uqgzvoek7uW7YX75CGDnXzPtianAUXryvDYA1qNCdj0MbhtUIbJBQwB6JvSdljkyMWUFUOAe0mMkqxcyAz+A6aKfHwhJH5OLVx9CHInE7JQsspMR9ERBe9pzaOdy/epktLKiLHB8dMzYQPuhXr01+nVjXZjMmjObPJHQg9q9Vj0rAi6UTUkSu/YlARPdK4ENicfQU7PqIaH8ticYlx0/DynZcYH55grGXRrui3C5yu8L3Hp0hse7LRpH7DeuOZHj9HZRuaRsZenR/I2dD3LQ/bt8lpjf6d4zS+JVfjNF23xSjD47OW0wctk8MDEpqhH0gpUbkKPTWsV0suLk5FmzR0zEdjaqeoxxWzg0PiMNBuOmZHh6SYcVpzeXbBrTu3qGxmudiQ+p7xqKGpK3yG0fSA02XHxXJLjp56JGRgZzSh7UjDAAr6FGn1GFPVNJVj2G5w1qDwGKWpalvmypll22NdRdKKfidQLKnUyYtjB11carY4wrJCObcnx+Yy/92TZ0sBI5oVT+w91hhxXaWMlawExmTWqy3d0BN0RdM0tN3AQePwdsrQe5ySePScM7PJiGHwBJ8Yho6oDdPaMqQkCdhoVDak/HStxGozkGpN6lty3xMfX6Jv3YJbd9DXrwkBdDxhePAQi0H3FbmxqNQQHj8iLi4kFHPWoGuxVCajyOuOuNySfutN1I0j8rUpeRhgu0V1PSy2RN2irCaGQcZXIZPjEj0dixW1rogEshN7eh47TBdRKZOOJpimRvuBOKlhXKOuTYljSWWzTYM/vSB3vWjimoacPIRI2gySVO5qopH4ClUp1LolL9ZkNKaWQhkrrsFEwiaNQjo6WWlU1pjpGLIGv8F1EWM9adlLYZ49ZlyRBg8qkWcNsRvIJKg1eRv3D6KoE2poCWfbAl9L5PWAaiz69gGZp6c/s9phm5rBbyU1unboGFHbHjOKxF6AddbUUpxnJGOsD1gUI1vxzO37GN8x0prnb9/izskRh02NI2GSJ8eBtu9oz95j64dSZJSOQEoi+szFpls6mKloLHYcqlRiQUIIpWhJ+86ItXZPh9ZGqM65dEtMOWhIl6QUB0rtf4YUEqq4dyKg9vbhylnGozH3793jY5/4JDfv3mW9XPFrn/0sX/vqV1kslyJwD4GUBA4qv/PvEK/BkxExZSxFYZ2kXYQJJVB0998qtf8e32xizrd1caLMBHM0k67I0W2ybdCmZkfbTIWYZwqQbIdPg0QMR2g3J0/n+NEEDo8Y3XoGU9fkeoTOBozYsZS21Eaw0LvReaWyIKmVFqy4s2hrcVVN1EaEYDrtw/CyMRRuK5WWTSr6SK8MQzltkTMqglOOs8UD2uUZsV1Qq8RJo7njHLfqMY6eUT3muVzzevY89h1jnxhdv89myGxoaEY3WLZXdJsrxuNDCApbO05uvYQmMV1fcTg9JinDrBmjjSDaD+oRl9sV2VqSskyP74OCtFxIDoTNWKW5ees2y6sFWWl6bUnTE7wvCZuqpgsevVnjZsf4bvPU1oDfrEA5mklF2wehJS7XmKahGTVMqgpFxitL33W0V1c0tYiT7agm14754ZhpM+J8SLTbnpSW6KxR1jE7rLGV49a9G2w2A7ka0a5XTI0TANlowuPHp9RkySvqWiqrieuNEGC1Yuh7nDWEIBbTLgSyq9HWkrstTdOAdaw2K2qtUaMJSimcytgsfXCtlGToIJkgu9CvfYGSKUnTO9SJAqP3uhTprpROi9HkkPCDx6AJaYCsaDdbrDVF9J9o246+78nKEJxh2PY4owiVwypQxrLZtIymU6IfoEyUUzkFhsGTosIrJQ6jp3ipo7GMM7wXhkxMhMdnuFu3yZMJ9tln6R+coquG1HX4XJwWCmK3QefEcLkgLzbSbi/vN1rGX+1r72DalmSuo7sAiw2VkYOQuyE237De4jedMJasEJvVwZQ4ePLaY01D8j3kSHSGvFxLns6kJV0M6FmFujYlaYVBk3pPiq10yQY5yWofoYsQM+pghPYZOtEFZCsjwbSJ5KFD3zgQ5kTIxJFwtM2QYNFjKkXcJGxdEYMEm6blEmsydqpQEcK1CU4foMcVrg8QFPQ9frsitb3YiiuFnSsiAVNL3EbatKjtgPoQb4OY0E0FT3Gs47SEt2rnCP2WHDymadBDoPYKekU1GjFnxsQ6RpXj+GDGzfkB16cNJ/MJR9MGmyOhbxm6lnZ7ztV5JwLUlAv8sug+Utx3QFJKMsZK4oFThagt7hjpOjwpRmR9qQ9ZeG2JpaAUKFkpNKX4KN0RkHgQgXnKiGdX+OzwRiiKA8dgjaGuHEfzQz7yykd54SOvMJvPOT99zC/+wv/C22++xXq9IcZA2KHtS7SF4gn/KCGdRHIxoWQphIyWzJ6M7C8o2Y9EWq/34tsQylgoyQj5mxVFf1sXJ5Obn8CMJoLYNgaQU+Su/ZSUkGOVMlirJfhMybmyun0Xaw1RKTlF7MLUTAlSo5xWjdAynRLaYFKQLDhXkXfZJ6aQYlXCF0GhVeBTROVArY3M3mOm0pahXQNaci+SYIJzDIShw+ZM265oz99hQs9zkwOeG9VMtCGniAkdeTSmXy8Zp8SnjOXKOV5dP+T1V19liDA5eo7Z6BYHx8/g9HNMm7EQJbUWYac2DOMe7zv6lBmCCLu2vabNiZQ0UwXjsYMciBmevXGDFDOL9Yqh7+h8Yjw5ZGQrTrcbRr7HZyB7Yja45pA7N76Hi8dvkJ/ig+nk1iFa15yfXhH6nsl8StcOxM0GHSOV1nS9J/QdWmuG6PGDp9tu6VNiNXQczz9G1w/0JHQCnTK+bem3W47u3EVbQ9tndN0wZINxNds+4H0kIV83nU+oDFinJexKCQ1Y5yjcB1VhRsd0g2e7XaONw1biJll88IA0nlG5mtnMcdknahWYu8TxpEb5LT5sy+w5QvxQbpESDP6OKgsKU1WYuka7ClBClQ1+r0lJPqBTIiICPKdFHOecod+0ZCWbyNAPaGWo6pp+02KtwU0alleBxeWC6dEhMWW26y3Giqg6q0zlhH7rfSD7ngio/BSfSoC5fkQaVWQfsFmTj8aScbPaoKImRdns82xKqi1qJh2QHALKalKIsOhgiDB2xXug4PoELrfCf7l7LCdJH4hXa2KWKAmXE9lVDDpCheTbJFCzWro5KaHGVjoPYYC+hxhJQw85EbVG2SiJrkqhsyFvPHm5JZ4vRLg4naDGNXk7YHBkJG1XKY1yGuUc9Y1raKVYpXfQXZYRU22wVUV0RgoKN8I0kpau6xpz+wR8ID48g9SRtGYYWsbP3icvzsE0pOlYCk2f0cuMfZyIEdR4BG1LMMK3IGZyOwAGc+OI8PhM6LEpg0+kty7I6um1UXUfhb9TNzRNw8Fkxtg5DqqaZ27d5cbBlPl0zNFszPG0wZLwuyJks6E/v+TBAy+fLaVEgLpjDqVQIMzpQ5qKVCYZuRQJsmp2glaFRJLsChdyLsRu6YrsOiGZRE5FS2KL9rF8N22EN2Kt3Rf9AhAtw5acis6ksL6UwhpDUzfcv3ePlz7yCveeew5rHe+/+w6/8su/yHvvvk/bdTKKTSVh/sPjJ4RsHpNkwaF2otfyOxUx7b54yalQzRMhRYGRlziWnFXp4u5AKh8itv8u17d1cSLBdhGdBNeeC91Vpjoa66yk/mpbkPF2D4jRWmh1OieMFYsYtsK4Gsg46/biIqUhG72/EYOKDGEgZOGKJKAyhnFVSbhejKAtOkRchtitWJ6/SxoGRqMTbFVhUVw8eptNf4nKgRh7nFIcKM296Yz7h1NO7JwaCQhMyZNTQluHmU0ZVo8AsBmOUuTTzYTvmp/w+fOHvP7+51mrL9M5zWh8ncYd0owOmc+voZ2wPHJSKN2QVGblB7R21NOxRHyrhmg1fV/ES0PmatlSa4XRNV3SxJAxWXExLGg3V8SjGxyNJjzoPUpDMAYzOWZ2uyJtLlg8pTXw3d/9ccYHE87ON2xWa8Lg2W57Hrz/mG695nIYMFbyjprxlKk7whjLenklY7Plmvc+OOXOrRMuLhZUORE6h2kqxuMxWWnaLqCuVrR9EFcDmiF4xrMD+u0aR2YIgelkREyZZjISkmuGqBIZRXNwBLamvXyMdYboexFadmtiVtgMtw9Ge10SKWELEwcfieRCg5VgNQqSQJU/lzZvYReQUKE4KLQi9R057gImCy1ZgSuBYanMyK2ztAqcdTRNTVcN+L5HJwHBKQ3j2YgYM9vFEj8MNM2Y7balUTXWCtxr23txUfnAZGTZrLakp2vWIT1eSndmNiYte3TtyD6iugGjvfBD2pZcN+SDI9J8ImBB35MXELsO1Wjy1QB9gLkkemsP7voR5qP3CRqqpPBdQE1r/NUWpQzdYkm6iKTBo7OCqiJve0LS5MaVtSAPPB0G6b5mCYMkRtiKMDItVgJ8cxq19uRuQAWBBKYYyV2PDSKGpanRTYPBiZ5oUjGMGipn4Y0o3TEiuqqITqE6j6rdPpAvLFvc9SOiFqE/I4OajFBVhbp5TOp6nKqIqw06Q1yu0Leuo3oL5d5a52DS4C83corfiuU1KIMdBtKyE9TDrj2w6uHG0VNbA9/x/MucXLvO3ZvXuHYw5ng6YlxbnMoQBjbrJd12gT8748HDUDJmdi6ZuI9yiDHid2F5OZduyBPXG1A6AsIWiTGKliLGPdBspxbNGWzpduQPFyd6lyoPKINRurhwRB8ixUzad0iDl3GLYBlUKXhKAV3GJ6Om4eT4hHv37vPiyy9z/dZtunbLG1/7Kq99+Ss8evyIvh/ElRTTnnkiQtcPh4bq8lKVEM+LbVgr9r/jTnESUxmB7uzB+9eoUQgLSezFxWycUhk5/e7Xt3VxYpsxph6RtRQnSiHiRiMjGZQmqow2sqkDGGsENGUyykDtKrG5pcige6ICbRRdHqBPJK3QpV+mE4J1LjNBl6EqrBTdD3Snpwy+wyZD1gadNX3OeN+j8wRtHN3qgvXVB/TdGp8HjFMcVzV3T454bnbENeVIfUcKg0xnizK/9wOVc8QYiFoLYrq0/nTWhBRQ7ZY/fHidP3D9Jl969C5fu3zI5mzBlbYoN+L0fEpVH1NXJ6iqwVYN1XiOUYqpa8jltKioWPcRHSyeTIVm8B5PxKhMpKa2De12ic8NdnoHrRoWXWbk5vJeGcVytUS7Mck8vWydtvMcHlWM3UA9HeOT4t79EceHcz744DHT6Ziuk2Klvbrg+u3b9N6jjIgXn3v+WVIKvPPO+4Su5/DWNTKKzXKFrhygcE3Dar2m63p8u8WNR6gwMPQdKQSq0Yh6NGGxWnI8PxARNvJwUCqjnQOjmU1H5H7KeDYmxsTl2QW+HlO5MTeOxswmJVxvG9gkw635CKul+xf38edO0rOtK63hctpGFxvfkxMKOZGTgiKWzanslor93Hu76SRJuqRP13WNSpHlYolxlXy9thibwGg2yzUpRCaHBwxdTyyBYuRaHC4pywkuQ2Ol2xdTZOif3hoAUHePpDOx3MIqCMMjZ2I9JXY99ugadn6EaUbERsYrqRqT260IiIdBWuMKAZGhoR1IW4+9dwd16wbp0QNYdeTFBj1uJC9o0RLOl0JztQY9n1I9e5O8aiWxW4MaPDpnOTzVVvQQu/iJkEgqkJethPpVipwi9AM6K1JVRI8B8uBBOwnWs4ZkpOOrgjgj7LZjSEnGKYOXgEbtyZURrHpIqMtWcny0FueOUeTKkGYNblyhRyM4HDN89QPcNuPXkjOkjEY/PCc/uiKPrSAV+ogKsj5TFJqprgxoUMWarsppHqNxz92mV9+cGPL3c/34j/4go9rSbtZsNku6x49Y72IecsIXK6uMMeSQyr5jIB0PoxUpJtlPi35j16WUz2Ei+iAOlP3nTAoT0aJrTKF86/04hpJR9aRCl6an/J2Md3QBlon0wGiNojBK8hNoWohxb7QQrolhVDfcvXOXj33yE9y5/wyuqri6OOdXf/mX+OpXv8Z6s5HvU9w/uxFLTJJ4Ly9Fl0JjV1yVDslOVLsb85Rnzk7XJnlyilC6uVpJCG3WuTh4Sko9T/Qn/1V0TvIuNh6577lUkDorOcEUhHwuamatMrWlVLCSeWKsJVsBKTUkXEZGLBGs0pisiED2ntVmQe5aqQ5dQ46Bjd9irMP7ji5sUEZT2ykhS4vbh57cDxhtGNolw9VDnPdcn8+4f3yTeycnHOUKhp5+vaWNsqit1Xt9yzAMBQcswgLjqtJ+E9eGKgCeHANX54/JKfPx8QGfevEOy+h5++qcd69OuVw8pFMPaIMmYjDNAdX0GkpZunpOt12gbU01OcaYisY1WFeRbcXIOUEaR48hk73kqmgsMWSCEngdfkNKoj/I7YYhBWL39JDV56eXZFURh15sdyEynY05OTlEa8VyscYaw/3nbrNZHtD2A810wjDI7B8y0Q9Mx2Oqg4l0LpoJRmUeP37MwfRI3mttMCqx6Xu27ZbDa9cxKtPFANay7DqicUStaapKugzNhOQ9V1crCIl+20pycVUxbCUDaDQacf3Wde4eNzS15fR8Sz1kusWK7dCQ5w3GKVTKBKWxRvBJZqcyVlngayJAkc9FacWmrMopTbQTOz1IjFFgYl4ItDEEBh9klOM9Tivqpma1WBNjwPZCIk610GuXi1UJpdQMPtL3PbYeyetparRVNJVlu27xsbjmnqYqGghffR9zMpWwvZElX24xowbaDu0T2DX68Bpq22EHTwICjlg37D2RVrqpGC0FSh/FidI41BAEc5mjxAgsB/Ky3RMySRHVJ+Jyjf/qu6imQR+Myb1HNZbsKnTRKpijMWndom0FXpcHRCZ3vnBO5AGi+oBtRuTZVB4alxvUZEJYr+QzOHh5AMSEipEIpNVKCs0yks4polcdWYt9XedBkPWzhtB16GdvE6+WODNFTx12PsX2mXw0Jy3O0UNC60TMAX3ZkQePOZoS+oH+6pyw7SV7SGWU0ySf5OE8SI4NZFIv6yycL0lHo6e2Br76ld+iruu9A0YcbEVvlcu6z+ALUMyUB2cMUQqPGPEfwsHvAlhjkg6JMeYbRjl6p0lCoYyhsrZ0GRRGaSH5Gl32armM/k/0Yrtg2vLsSmU/jynvl+VOn5KLu9AaQ9PU3LpxkxdfeInnXnqJ+dExwQ98/e23+NIXv8DDh4/o+04yr3ZE8V0XJsS9XmXHVjGliNyRyffk6fJad0XFrvsDu0Kj2JVLQbOLzwjpwxA2tX9dWpv9c+13u769i5MYpG2YhS9ASQ1WKkHIaGfQ2aJ1RTMS6qaOiW27LWmqIo7Nu5NJTJA8KUq0tqosuQ/i9ImRYeiYjA6Zzm5AVkSlcGaCqcYo1TIMW7b+gi5fAqBTxA9rTNujneX29IDnP/ZR7jYTXJRTSXd2xSo+uXGmCJl2C1UC1ST5NRPJRrHUNY2zDJ0kaaqocEXljVLEHFkuF7C4wlrHJ+dH/MHbz3EZB752+gHvnp1yvl4Rhha/fkw0lkE3eL/F2JoUchFmNaAM1jYoN6EazdFK431P7RqGoSWFSIgDzhrqqkH5gWF1jh9aVC6FofomS+Xfx/XowRmLxZbptEFZTSW9JDbrNbZyTGZT5pUgqG/cuc5mvWEyGvHG65mL8yuMyoxPjvA+cHg0w/eB7WbL4bU57fKApq44e/gBQTt8kvakDgl8S20zaz+grGO1XJGMwSlFMxph6opt1zMej2hmiqQNl5dXZD8Q+oEUA/ODCcfXjpjOK6zRxCGgrabWHXeOa04vl2SlOZhPcESs9kxri7ZKGoNP+rCySRab4m4WrIgoDLloDMigSdgEQ0gk26K0wWawjZwgfaHRRh+YzMZs1hu6zQZjNMYaQgLXNCwuFlRNI5EMVQ0pUTWVdNh6BXEgZmGqCNfg6RYn+aoV3dl8RGw3qD4Qgf7qitHxCWq1EnvoukXNRpjJiNxB8lu0azCHc2J7DpManCEtW+mANZbw8IL05gfo2pKOJxLhEAoDIn6IK6NA5URqB7SzxK5H9Z50uYJxRSpk4OhktJJ9RDUWW1WkE43eBuLlRkYAEVSQqAoZLyAJy2s5ACWjyV5AkhkpSnLKqOCBhJ468vEI5QNp3WJsgzmcwnIjLsLKoo8n6PEYNQTqyZjswJ5v4asP6K8WqEmDGk1IIRJDYnR8QNpa6hfv4K+u0H6LmTfEBwtU25N9hpTlfVIajJLQPxTZJ9E9LZ6e9qjdrEnB79NyU4x7dwnsxKrlPgFD8k9O/j4QCg5+v6YypTNZioqiHRHNiAXEGgsyIt0XETuHy+4hrNTe8quUdGaMMWVMq3bPfzIFdJakg621fH9jLNZZaue4dnTM88+/wHMvvMC1W7cw1rK8uuI3fv3f89WvvMbZ2TmD93vRaSouvZR2XdWdiHb3vuwV9PtCavde7V5LLqPjlDPWVfscn50yxhgDORNiAk3R2RQhfylkkrRT9sXRN3N9WxcnaXNB9iuMcfuKTxtJnTRGwaBow5rOb3GuQVmL046YIv3QYozBuVrGGYXEl3WmMo7aNZhQodyYjMFUCm82DL5lffkBrhrhtKPrF+T+EkVCZ4/uNsS+pbEV10YT7ty4w43plGM3QrWe9XLJ+nRBRrQLGOnuaG2lQ4hUoiIoCgyDL6dU6QgF4PGd29x5+6uovnw4ciQEMMaioLQEpXXvw8D52WPOT09xleMTRyd8/70XaWPkrUcP+Nr773KxXeFzR1XVRN/R9xtSjvghgNH4qkZj6fQYbSr8sMVQSXHoB1JuIXg50bsGlaFrl9gE2o72trencT1/94B2sWF9teHg6JhsFOuLC97/+geM5wccnRwyP5mz2mzp+4EYIpPpiJdffo7X4ht0gwfnGVUO33XUrmLVbbl6PBATXF0tqJox3bZnvdnSVBXWqrLvSkje4UxOg31MtMsl7fwAZRx141hcXKGMw1U1KQzk6Hnna1+jmYy5dfMafdtiK0vsPCjNdtsxrTVVpRiiZTMErG64UWfGqsc5RaUBJB8GY8A6VFXLeNP36HYjOhTA5g/NyrUhYehdQ0em7RVt2OIIxD7jUVhbETsZa3SrLc1ojNGW5dUlmS2T+YxmPCEryzAMdP2Armpwjm0rWUOuGZF9JAExJGIq3ZyneRkImw49duWBWDZVlegWl9RuSn68QCmDGrYoP2FYLuVh2hiq0ZTBLUjTRnDxOcvYRkE4vZSv22hUYzFj4ZAkgGUr1mGt0E0lXBJrpCBbblHOomdj9MGY1PbkTUdadZiJ6LrovdweI/qg3CU5YMUsh6WRIXZtwdoHSJDqipwDWhtS24HW4EoBqOU15xixK0+8WErO2DgRVyvS+Uoeeg/OIWfMczdJJ2PiZYc9GwjnG3I/wIs3oAsoZaHtqHwgLrdkm+n7LdFE7OEMte7hYEQqsQpKgbKW5IN0VHwsMfGAFbv707o2m7UUfwUUtiOs7sSlZRBBDGH/QE3FdaOVJoRQDBNlL1WUkNUPOWtKQSIPbrH1phQx2hB2XbTSPTBaChZTDs1SzMjvuuuW7LoPu2HXbtyz+9njqubk6Ji7d+/y/Esvcvf+M9SjEUPX8e7bb/KVL3+ZD95/wHq7JqeML/k1+2iLnZ0G9pbfndtm9xpAfpedfTjvuzclJFMbtBFdXC5YeqULagkpNnaslR2aflf07UjUOQmvZUec/Waub+viZHP6GtbVwnJwDmMqsAaLQdUVrmpotyu5+bajqickG4kkqqpmMr1OVU/IyRNiQGVN5Sq5KcHjgyf0LWRR1vthhc9bKq0ZnEEZR2Ig+0ClFGOjefH4iJevfwc3pweowbM8P2d1tuS0OyvzPski0MYUkdFusSQMYuMMQQi2wzDIjK84P4YsN3175w53vue7ePDZz5F9EEFSlpOJUnq/4HYiJllkiaGPnD78gMcPPsC5mvtHR3z0u76PZA2PlyvefvCQB8sL2mzxyeNtIKdYTgeJmFtS3KJ1QCGZECkK30OnROw7Qf4XvLFPGesa4lNkGzTjEfVohF33WA0XZ+e8/8ZbHF2/QSxCxOXViscPT1mv1ty9c52DqYQy/uB/e0L0QdqeZKrK0bc9082aRw9OMcbSDy2jyYR+tYCcafuWo8NDhq4VHH3KbH0Um7iB/mpJu2kxZKp6BKMpytWEnDBK44eOOHQwnbLadsytZnNxRUwJHxO4ijhEZodTKbC3a7gypANHM6+lG5I12VjseIquajkdIRH3yVbkOkEYUAW0prTBWEcyjsGMCUNmdbWi3WYGDy4m4hBJWtxormrIfUdC0W5bTOUYzw5YnV+IZV4NxKAwRhFjpNt2+GwldydE9NDvC/7gB1L03/Sc+fd75TagG0euFPpgAl2SJN3ek5PH20y86qhmUxRRRKpXC+K2RY9HZJvJQxRezHQkJ+5lJ0nBMclIR0s3NirIlxv585wlSfjFGzS3bxKu1sSzpeTNaIuuK0yAuO7I3ksLfNbgVUGQr/uS+6XITkOthcbqHNoqoi32TZXBKgl+TA7dBwlZq8xeS6S0hhDFbr7uCEPEKINSwtBR24HcDeAsuQ2YO3OyzbirFWGxpooO98IMb+aYNmAeb+VnugZ/sSK3G3KEZDXq9gxML783iTxIsjtKwcZjlWiQy7Fc7pFT5MnTK1JTiHRdS85JCoPM3nkzeEmeNMYWfYiMM3VxuYlgGVxVSYexnPhllCMn/VyKDh8i1ukiSBVzRcrFDqzYjz3EvSJjLpWle2CMJSGj+7i37FIstpm6lp8/Ho+5d/cuH//EJ3nm+ecYjaeknFicn/Fbv/EfeO211zg9PS8htrK/xyidOXHMyPustd4zUEKI+44NiD5s10XKe2uy3MPd11it5dmod/yk8rXImMcUjefO6UMRCJMzyhp5r6yhqgqDKQSs/eaeB9/WxcmomeNsJbNUW2HdiGpyQNVURIXMz5trxdggD/kYB2pX4+oJcYhsuwXaOpRK2ErjQ0/brkjR03WXaALETONqKjxWQ04dVdJM68S9oxOev3Wbm9NDdB/oFkvOz8544/W3ihoa4RZosXpp5XZnug/ro2RxIUpplTPD4PEhYK37hob4ECLnlaWdH4mNWSeGoccaEU+hUpmP6hIIJVV6CH6v8EbBMLQ8+mDDDvxzeHjED33sFdxowuW25Y33P+Ddhw9YblZs+w1ZJ1LsGVKQADETpNDTVnD4MZCyQQ+i4VBOo4ZIHIb9h/VpXCFpqvGI42Ys7qKrDdY51qsVsxx57QuPZDasDLduH3Ht+JDTR5dcLrfcfeYOlVU4Z6lGTZmYaqZHR+QEl+cX5M2SzrfUlVB6TRCh9eAHnK1wVUUiEwbP/PAA1Q90yysOjo5Yx0yHQfceFXsqrTD1CKM0sRqxXG1QSnMwHbFpB2a1osITRw3dkEFpqmZcdg9JKa6sJmmDGU3RxoleVVly4TpoV5GbCXiDrkDZCmwlOTkZgocYWkbOsOo2JO9JBmIOhFAsxCEyrsTR5b3HaSsFsjZ0246qGZOUiHK1bbEJ/NATjSVn6LoORZZxXmYPdnqal5pVqIMalTWsOtRsLCOarUe1ntRuYDsIFG6I6DwWcNvlirTckCkjlmsHxFkFWgI202aQBN/DCmcr+WE6C1yvD9BYzMGY+tYN6biMauy1OWmxIV6uyDGTJiPyNpIWLahMOhABqYpFJLs7bW89JkGuDaqxsAmoIZINCJsgQmOx8yl5JYnh9miO71rReSy2xCyHCa21FEiN3Dt2GPTyf8133kd/xwvE5UY6Ss4QjMcsMnY6RR/PCe9fkB61MGTicin7UM7kiyVpsRYXWfBSVAmUgxwzYdthJ43sb1aRfRFObgL55vyprYGdC0Up6PoOWxDv3nuctXRDXzQckKJov6QwkZGHsZLea7TZO1k0yP6Rnwg8q0o6IloL2E5EtmWMknMZ9T1x6SSSOJARLcxOGCr7v8ZYMNowmzTcvnWLF158kRde/ggHR0cYK+P7r732Fb78xS/y3nvv0bUdvuiUJHhPC4cls9e3ZK1LOnDej56MVvtiTSkpdK0pCABEz7hz1cRilbZOi8CaUiSnjDEGrRSD98ScMeQ93VYphdnB43LGWuk8xZQxRoq7vbPnd7m+rYsT5WZEDbZqsPWIpAwZQ9sHCeYjo5AbFIaNzNRCh6nnGOUYujU5iqo9E8CI4jj4DTl5NFECAzEY03F9MuOZm3d47tYNro9npMGzvFxw8fVTXl28zhAGckzCidAWlEYZjS3CJ3KZgwJYu19IWqn9wtnBfUIMOOckP0HpfTswKlho+PLn/yPH6y3KyofL79tluwZ6+QCVDg3kfVZCKhoXZ21RbAdOTx9xevpYPiTzOa/cuMmnP/oyPmUenp/y6ltv8s7pY1o/lJTLRE6WmBRg8dmjao2qNSZ6YvRgIipC9k9Pob9ctIyjZrPZsLxc0fcdo/GYFANtO7BdrqknY4Z+ywcxcnm2waM4vHmdPnom04N98RSDkBFDkPWj8kAzrLhxeIv3eo1ylm6zYdhu8P1At9mgMviuZ358REZjKkvykcvzc4aqETFqTNgiNtu2HUymDJsNRycn+OB5eLVmXDu0dQzKsmgTSWc2Q8Y2NaMqlnsq7V+jpOWaQmlYK0UOvbT9VUaT0Nqh6hGpbCgCi5J/3i43DL1HhY6wWkHl6Lwva9AR48AmAM6gk6Fdb7CjBl3VdJsNMRm6IMFfISF0WT8Uq7uGkBm2a4yBmErqcfWUt5o2khYdehNhELS7vnlEWkjRljee3EVAEwaPSQG13qI6T7aZ5Ae0d+TKoJ0qGSAgAVjA6ZZYBfSkIU0q1HxE3nQoBGg3vPmBiF/nY3JI4L3wU5Yt1e1r+NpS3Tlm2JSxSe+FFttoEhG1HsBncmOFY5GK8+NoTiITV+sClLToxpImM+q71yU7LEaGBw/hsEKPK+Jbj+G8RQc5Oaso+qTsC0q+98LVeO19wgdnqFszCR189hrD2Ypmqhl+8w3COxdUBw19rVDPH6E8cDxDdwPxt76OX3WoSSUuo72wI6Otxs1H9FdreS/kuYcZ18Q3zp/aEvC+jGeKDXiIw35/TTHuc15yytR1XUbn8ovbyom4M4QnGhGKPkPt3CZF35OS7M1lbJPJVHW171zsXC9xJ3xFFXtt0VSX98law6iumR/Meemll3n5I69wcvMGVS35R+vVkrde/xpf+uKXePDwEd4LgyWW0Y0qxMUQwpMxEkpiVkAOBjsrL7uJU3kO7bopURxM3vsCeBMRcy4C4H7wexFvTk9GNEPRsaQsKck7JylFqyIF35ORsrWWwQ9759M3c31bFydGLDdYV0n16Du62IOSG9UPHbqqsMqSdcJUNbFfkvolffbE2JPxwglgIPmIzhELTFzF3fk1nrtzi/s3bnB9eoAdEo8fPeb9N97j65eX9P1Q/OhyM1UhclojLSylC5AriyIcpYQqm+RGB+SDo4wR/YmSRdP1vVT92mDUrgWWGfxAsBZvHeHaIfFrb0Mo7fyiTJfqX8ZEKovFS2mNdRUoz5C8nBxCFLs00uoE+QAPUQqV87MzlFK4quL2zVv88Hd/D7qqWG62vPPgMW+89x5nyyvW3UY+hLpCx55EJCmwrkJVhug7qBL9U1oDz330I5AVF6ennNy4jnOai/NLLs8XrJZrqrpmPBqxaTtJENWGNinWD0+5duME0Gy3PSTp8my3W5TK1JMx8f0Ns1Gi79ckb1isMtODCbltsUYzm85Zr9al+PVyWkFjbYJOhKKt72VzrhwpBMLQY2uHq0ZoFF05ZZlqxDJbos9Uo4bRuGE478hKMz2YMD6oBChoEsoochj2kjZxqWURIGYZ8FA3ZITNk2Mk+YG+HxiSIvmeq9NH+K6n7zs6L+JVkzLGSX7PoOX0U41Eq9Wut2V0YPARQlbkviNrQ1YZW48J3YZsKilMtczwta2AjNVPeaupLGwDaW4xjSP7QP7gnHy2ltOgEd7IsI5YbYmrLc45sZIiScBp68mzKAGCjSO1HhadFCmVsEZ0SBjtiL4l+6LtmDSErketOnQ7SDr6M9fANeTWM6yW4CrhIo0rctvKM4IsbBYfKS1Z8DJa0iaRRk6It9ainUU5Sz4Yi/X3+pi2W6G6NdQ15tohabEgrdfo2uFuj0hXa+z1Of70ktwPxFVLdeOAsGwJXz8ln67Rt2ak9Rb1Pffpqsz4nZb2sw/oo6e6WbM9X0PnsesGfTBiuFqRVz36sJZQxE0HqmQAlROxb3tYbFBGUbYbuUYWniKML/gBrXKJFNnpTGRUY5QmkbHG7jsnKI1zBR4WCihSyVjCWVeOeQIQ+7DbzBZuUoix6AX1HpC2E7zqUggpxT6Uj+K4VFlzND/imWef4aWXX+bes88ymc5QShP8wOnDB3ztK1/hC1/6EleL5Z4Gu+uMpJiE8VV+v1S6GTEGMnrPUsk574FpEgCodi+RMvNiVyuI1EDTD55RU5f/VmMN++6MwOLy3t5srCuYDeiHgZ2754lOX95BUw7i0sBL/3VoTlIasDGxWV9I8qfSVPWEiJzUcvQM64GgjfBCoiXFjWwGvSwUY4VjctCMuXV8jZfv3+Njd5/lxmzGdrPm4QePefylN/nq1SXDMHwDvEZaezKysc5JO7W0zHZq8UhGa1mcCl3Qx4kdiEfLLiVWtxAYhn7vf9/NTEOMsohyxseAd47Hn/4B5l98HbVckshiGVQKFRWJvP+gGG3YBVCJgMuRkiYQUDHjgy+F006IpSAlYhLVug89b7295c2330ArzWQ84fbtm3zvf/MDNLMDHi+WvPb2O3ztvXd5fHnOarsgREUyBtWMcKPJU7USv//2+xxfO+Tm3ZuFXaDIxqJczZ37d3jw4DHb1RatNP22o297NssFo/kR77w5pltvuFq3PH//JsN2Q7vaAKkQwxVLxhhb0S43HMyPqCoHztCeihVYKTg4nNNFVfQHNe2qZTI/YrANE2D98D1Mc51hsyxjnYqqrtl28j2O5jMmszEXlwt6L6erTTcAmiFG3r4MVIfXmTcWawK2BCHkHCUbxTnJWoleLKT1SDapMo+Ovid5T/ae0PUk3+J9ZJsgoklth2nGaCeoeecUvh+wlaUbBkLMhJzQypDrCW3v0SqK3qUkafc+opVh2G5RKTI5nrNeSr5LDohF9yleeuRIywC7h0TKpC7AdkBfO8C88Ax10LgAZt0RVlsp5q5N6GNP0ho1rdGHI/qLlcRPpAzTCj2tSVcbzCahhiBdiHENIZG7QkDd9lB0HtZZ/KsfoK7PUFbB+Rp140gcNhdb2HopRkhQBJeAgPP6RB6JqDcNPdmJLTVXklScLCgHXG4geeh61LjBV4bq8AAznqAO5F4ppRha0WDkbhBsQszYpsFoRbhaE2JHnjfY8yX6bI1/84p8aDCHI6LKmPGM/PaCuNpINyiIRos2oA/HqN6QlwNqKJRYRDSZvTgp91eG2HnyN+nU+P1cVSWFsNYi7DZG1pxA0uQBm3IS+ncZyfTDgEJG26GwSpyTkFidDSFI58AUCuuOexJjQmlTRKRqDxbbPch3glZjRBztXMV8OuXe3Tu88OJL3H/uecbTWQn3S7SbNW997Wt8+Utf5MHDh2w7ye35sONoR2KldEnSTuyu1N4eHOKA1kaeO0bvnTEpSRK1WHrN3hZsrSu2a0BpJuPxHjegrNiXrZGfJfyVImrdj4kFTLnrruy+364i3ZFntVb4EKSJkJ/CWOdnfuZn+Cf/5J/w6quvMhqN+MEf/EH+9t/+27zyyiv7r+m6jr/0l/4S/+gf/SP6vudHf/RH+Xt/7+9x8+bN/de88847/MRP/AS/8Au/wHQ65cd//Mf5mZ/5Gaz9vdVK3l+R9YiUvMDE6hpSxipPzAPGJkzOWJWJBHQaUJXGYTgcTbl3dMLLzz/Lc7dvcTieEDYt7379Xb702f/Ar1yKSDHt1NQlthpkdqeMkRNZGZ3s7GPAk0RJisuzeOHl/2UxGS3OGpQu6O8kxU+SgkkVwVRGEb1Ha4tRimwN3WjEe8/d4u7BAePFSlDI1sopsCxWdosnRAkjy8VrX1qWpkB8tDbE4GXkk2QmrZXeycmLklzahjFnPvfrX+DhowdsNmuMsdy8cZP//n/7x/lT/90fRtmKd89O+dKbr/PZX/g3XD38gJwT9vDot927b9UauHHzkOnRIRmFs4aUYTafM56MpWtF5hGnzI/n1LUjxszj03Nu3L7JZrnija+9KenCRyNOjg5QWXgkm3YD2tCnipODY9oPLhkdW7ZtS87gQ2JxtSRXI1Y0+HZBNRoT0fTtFtOMGQKkfivAr2Fg6D2To2Mm4zHNaMRiecVoNsHVlk3bsWoDA4axDkxnU1brLUkpuq3i9GLJwTMn4BzJ1LLuyFKUOwcOOcUU/WGKQSyg0QumPUeUSqRQOBpKU9BtZCsdBFs3TGwmJQHxgcJrhyJhTIUPgVRw2puHb7K5eMTQim6mns45uPE89XRKGhKhG3CV4/TNV2kXp8UpgLBjDg6+5esgVTJaUFtPtgbGNfb4kPG129y6dZ9nRyfM28A4JWbjKYcnR5xenfPO5TmPbk55NEpctWeE03O42JDXPcoq9Es3YD2QztaoyoKPpFNJD85XWwGmXSVUG4SLYhXBKjSGtNiiQzkpOo1KDbq24HRJ0tagDOp4RPIeVQ3kVU+2FvqEHiDZQLQKKotNQnpNF2eowZNntTzsg9i7adcknQjvn2GrBuUTelQR05a0GdBjsXwrY6SLM7XooxHm9hHqZIa/WqOuj9GbSB4ZYuwJPpPvTeHREqwjvruWvWVk6S9WhLO1vO70oUIkKWJXTtK7/l7OdG88gua3u3W+VWsAREjqg9+PFkCKlrB7MMZINkZAnTnT1DVai2bEaoU1lmHwRBX31tucIfFEJGq0EdMC0hWJBXOfEYGotUa61dYyGU+4e+cOr3z0Y9x/9jmms1lJEM74YeDBo4e89pUv8+brb3B2ekZGBK2ACHaLllAp6Y4nJYnmu7GMLuLVnHdjHsUumi/4gC5k850AVysFCJ5i1DRkpYi+WItT3OdJGYzoRArtlfIatREzRyrEWmM1Q+cliTxlhmGgqt1e56iQIi2E0o3Ku6fi7379nu7+L/7iL/KZz3yG7/u+7yOEwF/9q3+VH/mRH+HLX/4yk4lEov/Fv/gX+ef//J/zj//xP2Y+n/OTP/mT/Ik/8Sf4lV/5FXnDY+SP/bE/xq1bt/h3/+7f8eDBA/7sn/2zOOf4W3/rb/1efh1SWBK1qN3DtsdvMtqASoq6lnm/qQw1hqODQ56/cZuPPHeP5+/eZWwd54/P+Ppbb/MbX/ksq9VSFmUpQnJpe6WyqeoyXxRFtgiHdlfc6z12SZLSwtPlROS9l38u/4ku4Ui7KjN4z6bdimi2LL7gAwGZMdZWoGveB7wZE6xjsIbYjDHOEXyPRdTpFMuWUlLV7kRq8sGUro2McXLpHFkSWXQMu5lp8MQQSqWu9q89pcT5+Rn37t5nPpsDmdff+Br/z//XP+QH/+AfYjyacXh8zIMv/xZsVvwfPvM/cr7Z8M//P/9vVh+6b9/KNVCNmhKYVdqTQCodI4CTayfMphOqWvJSfAgcHc9JKTObjHHOsbg4Z3G+2MPHmqZmejgmx8BrX3qVw+vXSTGgDTTjmuXVFpRh2G6w02NAEX0gjixt0pj5ddq2Y3Y8Y728QCvF9vIM5UYoZcpoL3I0P2TbbzlrPZvthsEnTm5cZzqdkKLn5GDCw/MlbnzA4mrL6mRGM69ETFnEdsranYS+zJPllCS6oKFwL544OZQskcJPECthbLdEV6FS4Gg+ZrHtCDESiwsUBfV4ROp6htUGkzPbq3Om1+7iRjNi37J4+DZnb32e+5/4NGhLu1qxPH2HbnXJjWc/StcPXL3/Vf70n/7T/Oqv/uq3fB0op+FoJIeB2Yzx7fvcOLzNM95w7TIyXV2gc2Z+MOPuzWM2Z+fYR4+50Xsmq571rYbLCphMyC9cJ39wikqRsFjB2YZcuqBq20kWiclAghDJWw99ERpaJV2DPqK6MiowSqiy1qAOJ+ijmYTI+SDps+MGHWty2BAX4rKicqiDSsisRnhLJAXLFj0k1I0DAaPNRmQU+fESnMU+cx3qmny5JT93TbppVYHgzWr08zdQZAwJro+xXpMOanIbSccT2GRMrwg+os8HlLXEOkNTExcteWSgi+R1T7rY4K5NMfMR3auPRF8CQCYNESojv3OU4syejImL/hskB9/KNZChFCElvLI8B4Wq6sqhUQ6VwizRZeQhCIoUkyTIm1Q0F5oc8358uitWYircGR/KAVNEs7tiajYec+fuXT7ykVe4/8yzzI+PZKxOxvuB88cPefP1r/H6629wdnFB13ZSgCCl3K4Y0VryraxzeD/s7cyRJ8j4lJ84i3a/5c6BFApIbtj/t+rJ80xJ9k0oWpwdcXZnRd7dJNGk7IofeX+tFWqxHwaUrbjYeG4WfWSMA333RNMI8vxzzrFjoeyei7/bpfI3OwD6Ha7T01Nu3LjBL/7iL/JH/sgfYbFYcP36dX7u536OP/kn/yQAr776Kh/72Mf47Gc/yw/8wA/wL//lv+SP//E/zgcffLDvpvyDf/AP+Mt/+S9zenpaWnP/+Wu5XDKfz5l/xyewoxGmakQs5hwuaeracn1+wAu3b/PyM/e4f/0mlTZcXVzx1tvv8MEHH7C6Wu5FpDsoDTlLy6ksaqWk+tUFipaL+LDIrQHKw96URa/3o5QQw35ko80TVTdKUTmJm3fOEkNgvV5hrS2eek1V12IjLgJXo0UTknNiPZnyr/9P/0fsnSM+9X/5n7j3+d8iRflaaww5RnHvWFtekyarXOxfxeZVfv/dnNEYS4ie4D2+VMSUjlEMuxECezHYTm2eUqQfBn7ls7/Ep77zezg+PCGmwP/6K/+WT3zsU9y/e48bN25Qj2v+b//T3+df/+t/zQ//8A9/S9fA//B//tuMppPS4lTld01yCtidKPjwHHR3sijFpIIYM6TM8uqKhx884nB+wGRasVqu+c1//xsc37rDoCsm126wWS3olgvai1OGxSWz5z7OkDIMPYNxaKNxOdOfPmT+7HO0548xvmNxdoo5uEYzPcQ6wYk71+B9h82JfruhHk2ZHM6xSjGdVPiY6PrEOjWYquLurUNeeuYIQwErBY+tKox15BhRrpLxoPdSLMcB/aHXPwyRRxcrrs4uWFxtGLpe6MO+R7ualD23jg5o+0C/7UhlTq9MxVBm2KFrib5QUruVdOSSdGMevflbHN99ifHsAKMVX//yr3Nw8znq8QFKKR6/+XmAp7IX2O+8QW4cZjSmnlzjTnOXZ1Nm0rYczQ9wdUPwgWv37vD93/8H+I+//Kust1vW2w3btqU9nPOF6xM+6B/RX74nWo4YyY8X0A7kTY9RFi471LQmjxypHcgXLSru2usI76TYK82kIYUg71GG6pkbmI8/Sx56THlItucXsNrCkEntAJ0nX7bo6Yg0q9HXD9F9Qnn5jOerrXS5fuCjMlpatuSYiBcL1KYT2vV2AGMEdzCy6Mcr0nvnmOMp1clMVv6QSJVGjwxJK2xd4bct+mREblvoEsZaQgyYpAnvX5EbTX68ReWMGtek7SD019riz9fE/knAp57VpJGBx1txHqWMu31A9hn/wdVT2Qv+x//hf89oPCo4heKYKdbhECNNXZf/Qva2nc1WKYWxdp/sveN9wI5zArnQlneQtp0ORGtBz08mY27fus0LL7zIyx/5CCc3bpTMNtkr2+2ad99+m6+9+irvvPMuy9UKH8NeG5LTLsE3MPiByWQqh4hi4/XDIFwua+n67klxEhNVJewupU35HcOT14YUJArhu7haUtqDF2LwzoUUU8JVTh4ZxWKcUnmm5CeRLakA2GKWTn9OGescOUW6YaCuKoHMWbNnj6WYsM6IGQCF9wP/1//7/4PFYvENXdT/9Pov0pwsFgsAjo+PAfj1X/91vPf80T/6R/df89GPfpRnnnlmvyF99rOf5Tu+4zu+Yczzoz/6o/zET/wEX/rSl/ju7/7u3/Zz+r6n759IKpfLJQBuNqWqRhyNptw9POIjz9znEy+8wLWjOX4YePedd3n7y2/w6w//HZttt7dx7R7QwXuhQBbxz65aNc7uF681QhcNZSEpdHkIygPOmZIimaWDYsopfheotstNoCDGVVGEm0Lj6/te2mOmLsKmjPe+2L1koYTy7zlDxJC1RWnF8mQuX5vF8pa1VPnW2v0C0uw+cLJx6AJoizkR/YBO0qXZtQL3RL/yu7uqFnJiCcZKH3rgU8BFAFZbQghcLS7J5YS6Wa94e7Pezz0/97nP8cM//MPf0jVQOQdZFQy0KuJmBUqDfXKKUOUm7f43I75/H0TUZhvD9du3OTg6IsfIdrNmCAnjKq7OzzH3XuGyVVTRoKsp/fpt/ODZxkgeIikrsjHkoAjbC6EPK002jqFvJcuorgjRo53YdbuwRfketOLOnZtse0/sOq7dOERbjQ7ymroeUvRUNkIWVo5S4jAgl7m0zHKe3JssSPNdty74RNtFeh/JGKrxmLasPTLFVqhYrjekrPAh0ueArWqxw8q7Sl05grb03uIUGJ2IfcvVmQRRGuuIIRDLxjyeHOBDQBlZV/fv338qe0GaTnD3n2HWXOMlX3M/AJsNh8cnXL95g67rMVrzye/7XsaTCW485XA2g4tzJuMJaMXocuArx8/z+u1r9O9+gZTOySMnb6FPpI3HOC28DqsESz9x0AYJU3QaM6klVyZkGQtZEbWSMtn35MUS5hOGxRq16sUhGBPpagu1EWvxtBY69dWGVFnMbIadTPFvPgRAHU1IFvJqg/VR7sz1A+LtQ7hakc5WMj4ZW3HLHTTw0s39aMBcO0A1DjWu0Brs9RnxrXOcUwyhQ/cRtfLkQbRK2lXSkT3rJFBwamFaYw4aTDcw+B61UHxY9a6tdIcTxSodErlPqLvH8MHVU9kLlFJ4L/v07oHtY6CyDmuF72GMJHiHGGQMUx6+svdayaDKsXRjs0Q87JDzBTUvQaKy91y/do0XXniBl17+CLfu3aNunuD5Q/CcP37E1157jddee43z8wsR35ZniQhpYxm3ywjeWEetS6I3on8Z+qG4jYR9ZbRh07ZUzqKKiSIjbkPjLLvMG2G67OzCaX8YVkqMEjpTuh1iA+67HmvEdaO0km6HAlvs2LBjwkRiCFL4SWgCuzTk3WFfJUXMicpZhhgKnE0xbmoWw/Db7unvdP2+i5OUEn/hL/wF/tAf+kN88pOfBODhw4dUVcXh4eE3fO3Nmzd5+PDh/ms+vBB3f7/7u9/p+pmf+Rn++l//67/tz//UD/4Qr7zwAoezCf12y3vvf8Cv/ernOH10xnq9lhPdbkSzGx6yEy0VS1WQICVjdxoMWZSpVNchhb3QEiV5glqJk8FYs7/xO8W0VjuF964yL2f28pDYdUisMSzXKzabNaOmKe14cfSQPEbbfcci5ohKoLSDuobKkQF/6xrj2YxucSlV/K6Vp/W+KldKZo/WOmIqIVgpF7RyltMCT8ZXu/dIaS0nslzcPgBGZq2xfMBI8PobX+XgYF7U5gUgVwRgYeiLPkNOG48ePfqWr4H33n3I0cmcg6NDnJOZZggBjN1nyuhC2M2pPLCTzE+t0jhnZYwWIlrDeDaVkfrBhBgz68sLotLMXhiTkqbXI7Gh2pqYW7rtlpQUuqrRVYPTmtA7dI50m3VJE5XTSbeRTB5rJLPJ6UhPwtqKdr0mK8t4PCLmzHLRYozGZ4Nxhkolxg60yqiySey6o3nf1s0llCvLTF3VoCUcLqRO3GkR+rYjVY1wW5Tk6VQHIzSJ1XorJ6QAqqpKPHsumyBYnTCxp9q5zKJHa023PMPWI4aup1uvkQUr1FNXVWVzg+vXrz+VveD6j/zveJYDXjx9xHh5SYwDJ3fvcXhyRD8M1K7i+PYtPv2HPs3n/r+/gDOWbGRk6RqDc45RThz1gfrGi3yx0WwuP0+eLdFnG1k/WoHP6PmYpI0E4sVWDiMF3KZdQzaJvGkhZtSoknye6FE+o7MmRsBa9J0ZeehIKWKbCn+xRoWSLF05zKoT7HvX0b+1IF2tca/cJD9/DWUN+XLJ0A7SuZmM0IczSRu/d524XJOUQnkvJ1hroQuER1fkRYc5GGP+8MtQKZKP5Dsj1MrgHg/EXg5aiYi7NoIAKkkooR6ikGwfr4mxjJC3wzeMarQWZssT/kGSbKeUsduBgaezF2QoD2WDD6HYhYVcOvSDCFiLfjAEQTVkSmdbqb1WZdcxdmUUo0p3BKVoGsfJ8THP3n+Gl195hbv37zMaT9h9GHPObDcr3nn7Lb78xS/x1ltvlUOQ38PyspKMq5xiybwqHd8kzx3YjZAUfT8Iw0bJSFqErYamFoeqH7xgAKSNQwoRW3SEMclh1BjDMPQi0NVitbbW7DH6H4bGySVfF8uhMhD2epRUeC3iCoUcs3Sei9szeI91ju12y2x2UMbDkcyOwhtx7psrO37fxclnPvMZvvjFL/LLv/zLv99v8U1ff+Wv/BV++qd/ev/vy+WS+/fvw7rll/6XX+Ts7Jyuk1NgznnP79iNJnaCLFvsXDuxqCB3pVjYqaJ3m6hSkLUpgnpL5ZzM7lClxaWxpY2mlSZmUe3r0kmJpUq31pY5f96bzb33rFYrtu2mgIC00GhDoCrfc28Ny9IWE3V2YtCObDQJWM3nLDYbJtaxbTclX0fTd8M3FBySFCmLYwjDHskcYwYjbTZTYDzWWIGoKSXU0bLQd8Jg1JMwudde+xKbzZrv+q7vKxod9sLHXGynscDfntYaeO3xmvHjS27fOOLwYEJTN0wP57J5J7nve4Fvlg88ypT0UNGo5BTRJFRKJO8JwZNRaCsfbD/IKcb7gAqBkDShGqPcFmst7WqJUgYbPS54QhyIvicurvaE1KQ0yliu+oG78xNUSgxtR20MOnliNkxnoiFq24APgVHVoMNAjJpmVJfUIFXuKbA70e0ns4XPYKqyxVWoXObwaKazhtVqQfADvuvBBxHf5UzXdUKsHPx+/m7qRs6+2kkWldKkMEAcUN7TD6KlunjvdULfcnD9WabzQ6L3bFcXkKFbLcUh9l+8Av7z6+CHWsvJ1XvYFLDTKaO65vDwUIrwBG405mOfeIWxgtXVgrqW92g+O4AccU7+fZQiP9BuMTc+zpcazRWfh20AnwRqpiRqQPkehoSqLVlTQFuJvNkWgTzgNKnrUUkKSlLGLxek7UYYMsaRLtaoTfmMqKIfGDnyyYx0PEFdrMithFqq545JsxomFTH0qMqickLNJ4Suxz6+hNMVSYMaVejOk8+XorUImeSEYJpDYLhY0Jyu4MYcPRkT704Jb51jfUYHUPMG/XiFf3+Fipl0rUZfiS5Co1E3ZqTWF0SDwl+2ZQWKM0uJUuHJjcsZGkOw35ze4PezBnb7ptaapm6AYl1NMmZAKXHllAODsyJ+lcwYuxeNpuKmjDGijcE4y+H8kPt37vLSSy/y7PMvcHB4WJggcgU/cHH2mDe/9jpf+fJXeHR2JgnyMZT9R/ZGjewjRhtSUQjElIQTQiwC27Tfg2II6LoueTVJnifFzamVaESMdSitJPfGe4KXA3eMkhp+tVmTyYyLLpQsuhZr5Zm2e8+ctQyF4LozdaQkzp3KSScqlOdkVPLzza6YyyKWtc6RUmIymeJcxXqzwpZDrXMFbvdNCkl+X8XJT/7kT/LzP//z/NIv/RL37t3b//mtW7cYhoGrq6tv6J48evSIW7du7b/mc5/73Dd8v10Vvfua//Sq61rSJv+T65d++Vdk3rWbq5f/jb6IAAvWfUf4o7SdTFFL5wTG7YRFiRjyPoCPkmpZlepb2lUZrTPNaIwfBmlXl5FBTJHJeMKOorezTCktVkBixDlX2A8i2KqrGudcAf/ovSgKVAGBif7FWVvI0Jp1SgQl1XZ7fESbEmMymh2lUMS6WmmcdgxDL797Fj6D2qmvS+uvG/oigo3yXqLKzDbKPBVJZS4O43136dUvfZ7zizM+9Z1/YF/Y7NqmOWe6tiudJANIwbc7EX0r18B2SDKDrT3vfPAu3eKcT3zsJWbzGbPr19DWkvxAaFv6doNVShKMg3RPUoj48h6EvqNt5b5GU+F3FFQsabtF4QgJUt+JoLQeyYfaVbjKgO+wkwm1vY4/fU9aqPJOQzOGeoJKicfnlxidmWgDKRCAaiSF09XlAgXcvnFAThJC6EPL4eQaKQwCh1MKpe2+y0XpfmXynvKU9mM8AzFircb3PdNJzWQy5uLskjj0WGdRkwn90JN8gDAw9AnrnAQCuooE2Jwge6w1bNY9MUWiH7g6fY9uu+Tk/itUVYU2jr7r0bYGMvV4Rhxaopff5/T09KnsBUenDxlPRozqKa5yzCcTtBUWhR1rxnXNpz7+US7e/QANHM4mMiOvj4ghUNUVSovG5tBHjnLN/Pkf5gvXn+P0K/8rPr8lRUgnJ3AuAmpTYFjOkr3g71P0JC1FYlhusdem6HlD3gaUsajZpIAaFf70nLzpICbi1UbEtFFBpYhDh3a1FNnzBmUgTSuYOHSCvO5ktFRXpIdLOS2fLUqejyMPkbzaoBaS75N7L+TZozH57iHmeIYfG9SmpVIZGyz62glm3GPvXGO73ZApY9upxWyCuLtGlnzUgJeDig6R7XsX0iGeV6iAHASPJqRHS+kIFKFsaj1KdU9tL6gq0VOkFGnbllEz3mvktBLReo7SAXDOMviAj4GmEq5HiIJ3r6qaqqox1nDz2nVeeeWjPPfC89y4dRv7oWygnCPtZs0H777Lq1/5Cm+//Tar5Qq/w8OHIPumEs1Hzpl+JzhVVsIdjdhzu74XIa8XaYDW0mUwWssoxxjqqpJDrJdYDuuEcGv3TBXRzgx9RwoeV9VPDsxF/xiSdHGslZGNRrSQ4sTRuHLgoehFjBH2Sohqv68orXHW7YNH+6GHEsWigLpuZD0WzQs5Uzl59uQQnw4hNufMT/3UT/FP/+k/5d/+23/L888//w1//73f+7045/g3/+bf8GM/9mMAvPbaa7zzzjt8+tOfBuDTn/40f/Nv/k0eP37MjRs3APhX/+pfcXBwwMc//vHfy69TUiTDXh9hivq6qsSZoQ1FA5Jxrtq3wSGXvBoRj2bYK613/vGdS0XeblV83uCctKhTGR8opLOilaLvu5LQmulLNs94NCaRBAs+9FxdXWGdQylwxtJ3PU3T4IOnaRoR0mqZi6YUsbYixySwrMHT3X1O6LIohsM5adIwXCzovcfYJ8wEX9prkpWQqW1N1xeGSpYH5u7BRTkl+BjkQ2kMbduXD3vpnqSIKe3PL37ptzg9fcynPvW9NI04JMTmBpOxxLtfXJ1zfChOltV6DcD3f//3f8vXgD4+JJ0FltsW33a0Q+at8y31suXGak1tDf3qith1qBRI2hIK8yVnUE5shmQw0mpBZU3rE34nfDYWFT0qB5SpUDmSh54wtKgkVu2IJNWGOKbvWoxrGFsHKbJeLjAxovD0MTL4Dj20dNrQ1COmszEhwenDR4QYqZzhnXfWOGtpnGVkNN3ynH7iGNoWV1USLJd3wjYRYArMT5GSiDAVSrKRfE+/2eCzYug6KpOpR5b1WorIWMZvaEVCEeuJpOpqQ+gHsSzHgTR0DDkThg5tHeuz9+k3C26//ClySPiuwysva7ueAIrt6pK6GZfGNbz77rtPZS+Yzw6YzWY4a5mMG+q6IkbJljG15u7tG9y8cYMPvv4elXM0zsrGnxKqtMitLaPUBmYqMt+uuXnrD/Ibdz/Fw6s3uHr4H4mvfgH1+gcoAil7ec70kLY9RAHkoSGbLA6imDHakXRC3ZhiDg8gRPzVmni+RvkATvRRZI22hvjWBXpUw/GUfPMQtelIl1spVGpHWmzQdYPebgkAlSQc6+MJ5pX7+O0WdbZCbzeY61OYjGRtHE+JNyaYwyl51aFuHtDXmmQc1caTrcarTFiuUPMpzLfQj1HrQN4GeGYibo6+R8VEWnv82wtS53Enkl6MkUNhNhJ0Jx9SJY6dmMgl4+Zp7AXr7ZZrJ8dy6i/01BiCdMXKB74f/BO0Q+mCZy0PXuccdQnae+65Z/joK69w+5lnqZvmyWspYtJHH7zH1998kzdef53T03N8IW3vXI47Gbr3cW8rtq7aH4RDihIGmoTBYkuqvGhSUnGDipvSdxJPImPUQFHVkYJQnbUWfZvRipByOQRLN0665I6c494FNGpGMmoNgVS681IEiVvVGDkou6K9RKl9gWSKLEEElAJfy1nwGikncf0oyejqeznECPhOxsdWm9I8+N2v31Nx8pnPfIaf+7mf45/9s3/GbDbbzwTn8zmj0Yj5fM6f//N/np/+6Z/m+PiYg4MDfuqnfopPf/rT/MAP/AAAP/IjP8LHP/5x/syf+TP8nb/zd3j48CF/7a/9NT7zmc/8jtXwf+7aCVrLtI+YwhOSXxEE7YAwe9CRFgtVLjNEpaU1pbWWmV/RbJg9eEa+ly7WqKGIeUTBXHzlBdudsnBeKldRVZXM7YrtMw5+B1CUMUKpLLWR05rgfxO9F3fMZDTau35I0HU91jncZIR1ogFJoxH9uKHe9sQc6buOqmkYQqHehlgEk4loLeRUBKC6YJtlVDMMnqpy5PBkZigBUSVPooRFGW34wpf+Ix88eJfv/I7vwdkaH3ajLl0gbVNuXr/F1999a1/YvPv+OwB83/d937d+DfQdZn5E23WsLq4YzY84O1+gVeS9N9/m1p2bTA0kazC2xrsKYsanhDY1HkfnRFnuCBz4NX1UtCmTuy0Rhe97ujCQ+4A9qPGlsNE545dXKOtg6EXU1rfUCnRODEOH94HYbkl1xbBZoVCooUVZi5keMJtOGTcN2mhGTU1KAZsjQ9cxqnUJ0tuwuhqo84BenYr9VMnpKg4eZQz1ZMxoPpd1FT270WXftmyXK9arNclYchJ7oM2ZpGTGraxFp0SyFj0ao3xGGRGBm5zJyeOqhiEGchiYzOY8fvtV2uUFN1/4OKAZho7k5T2woznaWCbza2wvH8LBDXag4+///u9/KnvBdDphPBoxHokVPJTckKw0xmieeelFslZcLpcYramK3iD2A6bg13fkz/LJoM4DP3T5gPvXnuFLd36QN46e5/3ZbdY3P0966x3caU/ctqT3ziBqVA/ETHU4xa825BzILpI6D9Ma7xSpb9FNTVYJxg69zaimIulM7qOMWg/GsBrQfSKtOlj1qJDQ12bQOMK6JceArRq0BaoKuh7tHMka7OSYdLXF3LlGPlvgjg7I71/BkcaeHBLHFepwTJo0mLomjixDukCfLzCrDVpbwuUVdANGWVQYSPcmqIMafdkRUydp5e8uidsBdzTCHDXEs42crltP6pYCmktJxMJakYdE2myf2l4wHY2KTqKk8xYU/c6ulnOmrirRzIUg5FhTMRqNcVXNC88/x4svvsRzzz/PbH4gh7dy5ZzYrJa89pUv8/U33uTr775LDHHPhwq7WJIy7khFAErOxbas2CcFpwwkkhErb9tuGTUNTV0zlN9NhLtyNG5qcdGkIA/6bd8Xp1BhoODxRhAFroxhQJ6POYuY3jq31+Q1TcNmsyk6S5E07ES61gqSwhgrhZUSLYpRqiAzIJuIL2Ofpq7Zth0pBClcXEXtnBQthatirEFl0FFcq9U3eV9/T8XJ3//7fx+AH/qhH/qGP/+H//Af8uf+3J8D4O/+3b+L1pof+7Ef+wYI2+4yxvDzP//z/MRP/ASf/vSnmUwm/PiP/zh/42/8jd/LrwIgzoeSJKy0xipN1rsUhHKaZ1cMSCW/UxWLUEqUzbksJGN0qWirPVl1p1cJPrDDBSuEtKq1wRXAj5y4C7457DQcCeOcLM4MXbthGDoB/9iKjIyIhr5DFcubKxX0zr4cuh6yFEZKa7CGErhJrmu2kzHLN95BG0WMgW6zxbiSxxMjXdfjnOPqaoGrnGzYKJTK+y5QVVUIJTChiERVAHCqiHRTCbdKgXfeeQuA3/jNb2zFfuQjH+f68TWGnHjxhZfhLcUbb79BzonZZPYNX/utXAPt2Sn24IhqPKU5vk4kEbdbTBR0+tXWszm5wbQy2DyQgAEIRkZYWRmSErxyqCaECKEeEb3HlVNP6tbY6PG+g+ixRuOVQtUNtqkhieaoco6jcYOzhouzx/TbLTEBoSc4C12LsQ5TNai6xlQ1fgjEKnF4OKGpa95793264EXlHgJtNOiYqMY1vTJsY6ZJCatAaZmnpxhp/UC7uJJOIRCyhI35EOiGQAoeHxJog8+aLsK4qUkx4UOg3Wyg85ClKwIOY6XtbF3N0Et2j7GOtu1YncvB5MHrX/iG+zE7uQvaUY2mTK/dJwGbqwfsiAX/8//8Pz+VdWCNYTyqmU4mxBSprIxQRcyrOL52QhcG+iCWy1Da3U0FsQj8lJKixVjpbKYyyvquq3eZr+cc37rNrU/+cR688F28d+/fsXn1CxiUFBkpkR8vyJcb9Ms3MauWfLHCjGuyAXXQoEYONR8TtgOqFqdVHgI4hZ7UUCeIYLMiakjJo7YdelThvSsPWo0+mMEwEEMGbUnDgNp2qLtz6AaSH2BUYUYOrk/Jd09Qt2aom8eYZ26iJmNy6PAjh7YVpu/xsaXaSBctVp687MgPlujKwO0JVYB0lRhOB1j2YDVxKY4Zf9HiL9onN0NLF0hZhaqMjJhSJq471KyWwMSnsAZ24+pcxpyiKxR6qlhciwOmqqjrhtl0QtM0fMd3fooXP/IRrt+4UUSwuysTY+Di9JTXX3uNL3/py1xcXBCKtnEXTRJiKF06TVaUEVFiVNciNndV6ZCw79Jo2BsGmsoVCKeXUUrp9ueUGJKQl2N8cmis64Zh6Ev2mhUI2+Dp2hY3GZOLNiVrAWdOJjNiFshaCp71WrqyfpDvuQv722y3jOoRMYV95wfk2WONK4Jh6YwZYwuYVAq3qpKCo+9agvfFTSWfeT/4/b3uuo7t9psjhv+exzq/29U0DT/7sz/Lz/7sz/7//Zpnn32Wf/Ev/sXv5Uf/jpfR0maCIhQswsedajuUomRH1JNuiNictGFf9e5svcZZXCG3xgKw6bpOkOUZqkZGHtvthhwCWhcvvTV4H3DWYaxh2I1PFCTv8SESotwg5yqhvVqLcRbvxZLlYxQR7a7Dk2HbtqgyPspK0/tAbzUzoAMGa9hMx0xnU4zKbLbb0jHSbLZbmmYkIJxiVpK2nkYhgiuBwElRY4zZFytx6KU1mVLR34iASyn43/zIf49zjpSh71u8L92qLJV6iAFy5vlnX+T5Z18GEm275T9+4defyhrQyRMuHjE7OIbRmNXZQ6pqRDCG5sYdhuBpQ0aN59QKUnsG2w3G1dLuJKAskDND39ErR1JOBI9Ko0czzOoKNWzJSTF0G8nvmEzFkZIT48qx2XSkbNgmMNkR7AhopaOtFIaMOzgklPUZh0DszxmfXKPPmQeXa2rTUk9mDENPUopNNzAdN1jt2XSex+05925cw44tzW7DU2Lt1ntjhOgZYoakDdFC8QMCls7UdEmRBgnpCldXRC8bqzIabS0xeOg9KXRUTU2FxTaWbTAMg8dUE+596r+DGBg2S8iBrC156IVImwJD32Gritn1ZxlNrxP6Dcuzr/82Z8a3ah2MmprpSGycdnfizRJMlpLk2rl6zHQ2Y3O5IO6SWLUiDr5s6I5h8NRKU9cVSonrQ+fAi8MFtx92PJrMeHh4n4ff86d48xP/De8t3uPxR7+CX56jzi6wKZKPJugYMYsBzheEyyXq/hH+7jFmfoj5+in5vXMJQ5wZ/GaDHaSrlUgEV6FiAb15Txgb9L1jGSEZRe69kGpbLzyU1Vr2wa4l+wgpYu4ckq3DXjskTx3mhVuY67fwYSAursgpU03npPUSBi/ZR7cnpIuEWrXoPhOenYlja0gErUkzi3rxAP1gQX64ZvSRa6TgyUajZzVx2RHeWkpnICaULZTsEgZpj0aowwnD6vFTWQO9HzBuhI+BUTMqwXUDwXuGEDi+dn2vK3nu/n1eevkjvPiRl5gdHH6IXyUP22675eF77/HaV77C62++yWq9FpFqyhirS8J9obQWQ8VOryhOQMXB/EC62AoUmnboxamnDUobhq7DWcNoPGXoe1LMewGt0qogIWQP7odOYI6bLVUZt/T9wHg8wg8DldU48+SgDOytyhQtWgyiudGAcW7vMNLa0nUdTVVhrWWzEiDoZDKh6zrImTb0TCZjEfgXJ2ozGtH1g9iPi2DXaI0i01QO7z0hJSGqK6jLNOGbYdfAt3m2zo5cujMLJ5JsslCcOoXaqJ8k9Foti6NpRvs3NKe497KHEAg+MMTAbDLdF2SyGOSkIIFI8taF4PeAtW4YOJoey0M6eHLMKKMIYcD7oTA3ZNQTU4Sgiq7EEoZhr2nJGdZtS/RDKSw0VeGN4CpcVrQgeSC3T1h+dsWoaQqFT1qFlbWkEEr0dRQPPxlT5pOVciWJ0tB1Az6o8poylauKmIk9iXS72ZTTR2Sz2QjxMCPVfZDiJRedzq4Lk7MIdHcwoqdxLd78CvXhCXF7j023xA8bqvk1wsUDVu+8iqlHpBRonhuRJkdU45voUYbo8YBK8uFV0eNSFIdBvybbQIiK6mDO6sE70Hc42zBsLsnTQ5IGUzWk5YJgDEFpbMq0Q4+xtYDZjCO1KwmfrEciotWWNLQl3yJx2faw3nB8cMCtezdwxnB6BT4mjMkcuEhMiss+SNuWzOADGyVaEIUiFwFzLu4CrwxdPSLUFh8EJe+HjE9iY00+oL3kNGEdrgSO5ZRJ/UDq1uiqwhhHHgY2sYWSL5K1AWepKodfr9HOEfooc+QkQj+sxdiKFJIE1hkrrIyneI1cvddGaWMwSslJNQs06u233ubWvbtcu32Lh+8/3AuiY0lVHfpWBIHW0W62VJVjPB6J7bHYYMfDhvvdhhvnD/iO8YTN8TGfndb85keP2aoNq7RmU2XSdoVqO7n/l2fk2pCtI6aOzmjUQU11PELfneP/zRcwfSa5iLIatfZwYIiN8E5YeWnnz8ZU0wl+25LaLdo5lLMyeqkc7u4J+eEC3Qfy0UysyM/fJKCw24RZtfTVgk4HbM6iXzk/Qz8+lT2ub1GTijwxqPGUdCtCiLD0giDICa1n6KRhEOdbJMFRhUbG4HGQzrEyQqVOPopoN8vDMQ8Rc/B7G9X8Xq6u76mqmhQSISRsVeGcjG3q0YiqbvjUR17h45/8ODdu3sL9Jw/JHGV08/brX+M//Nqv8ej0DL/nOxW6ckxkhLKtFHTbDmXUfpShlMI66cQ+Pj3bj2i0NoyKDkq6nZnxeERKkoSOMmR8ydqBYRDNn7PS6R6PRgyDp2lqrJUOhPeeGBx+lymWMs4aQhntaCO6xc12K8BN8l5oG7yg5YMXV5AtGqGu74pDsWfwFXXT4KxluVwy+IHNek1TVShrWK5WWG0kkLaEIFaTiQQI9j0+hm9A1m+2G5q6ZrPZfFP389u6ODF6B4V5YnHNOcsGpfW+MDF25+gRI1yIQjaNKTEej2jbQOj7Im41mKpC92IrrouSO2dpHYtysHwvpbBGbrBzFSoPdNuNFBsh0vsBG2UW2G239DEyGk8wxkmlnDtJtSwqayh2M23Q4uNlPJpwubjEFfW4HU3FvlV+i/7wWL4HUjxNJxNyHmg7oQgqVUKrkCp/27YYK9boQkjCFaFWjJFxM6Lte/zQo40VfUOB0fV9/2Tc5AeMecJsyaVQsQUaFEKQ1qEPewDc07jm916mj4H16Qe0V2cw9PSn7xNTT7d4hBnNaU7ustquORwfEn1k8AMpBiIJ5RqMChgtQq64WdO1VyRtca6ibqbk4PHdlvraHLceSItzUr9FRw/OQj1hPJrTdR2pXRPSkuQHTFWRWikspweHDMEzDB5djySyXocCjzNsVivefTeTlPACxpVhWimGbWI5RHwzAyJXW8nfaUaZWw3UKopTKwTJAqomdHVN1AraAfpMThINn2PGD72IJ5Og15Mv8erGksKW5AO2rvdAKxpDMLUECqZIygEdAj6DrsfonCU/JrUkJT/LKIuyFSkrefjbRjReT/GqKun4SHClgMliDMU2mvjaF7/C7fv3eOaZeyzPznnn9bfkxBsKTjEnhs4TtATkdV3Her2mqWtGYxEQpiwOP6cyftFTnT3m+5XhowczHh3d5qvTwDvOc3HYsZlsCHg4OEBL7jE2bMgpkKoaPx7Bswnz3hnh197A3DiSB/jjx5g7U+LdA9SjDbhMbjR60sC0wZx2sE3kWw56j56OyQcNSRvoI+YTz5CuHVANmT4l1PERww3DsLqU/WYbUdZgxhXqdEG0GXXQkGJG+QSuZtCQlxsBwU0SVRwRM5L6PHjUUUN6f4GZNeSJRjWOoIH3ssgs0s49WW5O0Z9mDeFy/dTWwKhuRIxdSbDmZDJj6Fru3bvD9/yB7+OZZ0r6r/7GtRiDZ7W44s2vfo3f/M3f4NHj09JhKVbaorfbPfBV6Zr0pcM8a8Sl6YoIXUS3Zu8SEgmAcEp83+OqGt8Pe6ilUgNKSWfaF3G+s44wBPzgSSk/WYNFzG+sOHC2bVsMFYGmkcLPh1iKEDE4DN7ju5bJZMLgh6KPFCu1jokEpeM/oLVmZC2juqLtRV+ptaYpWp3xqJH3BEWKAVPXVMlROUsznqCNpWtlbKOVki5wysSYGE9GYmE231wI6Ld1cZJyxiqNYWd9rVHFs55TIua8L17GzahgeiMpJoISNfN6JfNDHwbGoxEpZXzfU8TS9H0vMB8jn7CiZoFC63OVE0BVjFhXlfmaxEurIpCVFtgYYx2uqtmsl2hjcUZIfSLec6w2KzmtGQno2vaRduhp6kY6LdaSx2OClroiAdvDY7Z9z6R22II/DmV8E2PEaMhFtGu1QTnpLIUQxT5cCKNVLbqCtmula6KKvkYpYmFc5JTpfU8uYDalJGV5V7VTQF07aF1KsvHvZo5P4/LVBFM5utN3sQqiUfjcywcnAd2G7cV7EDpihvnkGKUNaVjTXpyK3qhqcLM52mrGsxnjpqa/usD0HUFp6vkx29MHVNfvomeHqOUl3eISfTBHN1OqZiKFWO+J2qDbLXmzEKZMMwYUqy5QjxpmdUO7uKTvW6KrCJsV1jUEa1l3PZPGcVApRkaKhw7LZZf5/7H338G6Z2d9L/hZ6ZfetNOJ3X06qZNyQgKJaGQMFnAZ42sMtoW519geo6mZSw1UMVW2bk2Nx547Ux7fW8b2+No4YGxsATZZGAQWAmWpW0gd1Gp1ODns+IZfWmn+WL+9z2kFu4E+SI3PU7VP2Hu/73737/e8az3reb7B6JAo3SHNsw/6jkKUHM8DXghcXuJ0gc8LXN/j2x7RdViV4QceuFEaYTQ+CqLrEUogQ0Lp67yA6PEChNSDRsVQvIxnOJWjEYS+x60WZMUIF5K3h5MGFETpk3pxOcUJiY+SKBSxrwc31ZsXXdsSiyIB9wbGUtv2172yrOUDv/l+3v5/+A5e8bpXQYxcPHeBCCg/6EI4h+1dEuQbDgCrukYvFslzKS/IsjzJAwDjTFOGyPhgj83dPc5ow6VZyeWtMTujGedYclnU2NBjcXiliCrglSeWntj3yG94A/rMaRhlxIuXiZ1DHltDlGOCXcE4T50ILXBNjcoE2bF1wn0nCPNFUm7VGnZXyFeeJhyb0p1cRzSeaB1e9iAMaIMYjSB3hGBpd69Q1o5YZgSRRkXOO7zwKK+IXU9sPUFpXJ7GEmHR4ouIOrCo01Oc7RG7LUJnkAkwSRdKHDJFZUz/dgMQtPPEKy/s1PwHCakNWVaQZxnHjm/x4EMv5/7772fr+PHB2+aGiMnn5uqF8zz6e5/imWeeYWdvH+sdeZGj1eFI5LA7nNgrh5Lxh4WF0kmWXQjouy6ZemZ5Iid5z7LryAcZCTXogNRNgxk6LcRImeeEGMjygrZtUo4JwXgypm0ShsMLgRFJ5qFpVjjnqMoShlGk0ZpuKCaETB5vRqSOPIDJDO7QkDZGrE1yCnqwvrC9IytSJyd4T2/TcxqjWS6XBGdx1mFMTgg9EUtmDPUqFZsyy6m7jlIn9dhDAoUApFEczA9o6pg8+K7TZv+L8ZIuTg6leRkkyiF1E1Z1zWg0QiOPtE66vj8CKx1uuofGdkm9LxnwWefJ85yqGg1t7vZIYU+TbmzT1uR5jjEZWhvapkkiTM6RFQWuS5LkIUaWqyWz6YwY0gIqZcJ2HJ4wyqLAW0vve8wgECSFTVSv5YJClmmMkuXoPGelS+aC4QZH+mObjNanBOuZL5cURYmUgtl0Sr1a4ZynKEv6tjlCcSdtskjTrJC9IjNpxBNIQF8z4FOcTawPISTdoPIaBzG2NLpKp/ZIQJs8KdT2PZnWw6aQuk15dvPGOr0C2fWordPodkFz8SyubcA5ZBBY3yKKAhkDbVsznhzDZDndqqbvOvqdS4S8RChDFi1BCEqjKNe2yPsF+/vb5FuncF2DiAGlM3w1QYRAt7uN2RDs7VxG64xMREK3wgHB9hSzNdqDXWQ1xWRJ7r1vE4NHFhqtNQY1yEZLRlpRiECpdBovuJ692pHLwMYoSdmvlwLdRpq+xzlNPxvh8hwHxD7gmz6NZlwqFLxU0Pco74mxR+kMRBwWz0RLDMER+g4TobUelWdIko269RZ77TzKGHy5BjEt2rbvCKbAdy1IRVBpvCpNSZ+P8YkohhYSWWa47uZtSkBSyTQGoSQiJqGrRKe8LsR4cG2b9/3W+/iT3/o2Xv66V3Ewn7N77dqRu7hSKuV1b48olEk0sadtW1Z6RWYMeVFQFAVkWWJZ5QbjPKZvGF1acNclcHnBlSLnyVnB1fEa12LDUjs6FXDRJoEsDfHOnHj8WDqg3H83/quWcGkPuVsTHyAB4LsuSc0LibtnjTgqyDfWwZzEuRakhq6jHxdgckLT4IUitA1xVuFdiwyO2K/wbY3OcoQR+K2KYB1KZQiR4VyLKAzeWryO6EImAb15g1pbg0yi24A6qLE6InuNKAyhtai1MZRf5H0uRdplIglIJ1/YxvQHielkyj33voxXveqVvOy+e6nG46F7fL2Lc4gnee6Zpzn77HN8+tOfput7etsPh6hI36cDqRDyyDw1BEfXByRpFF+WJU2bqjCdGXrrAMGyadDKoIxhIUtqLRkZT6YVTdsilSI3aRRjtME7y7JpcM4yE4KqqIBIlJJ2GPWrzCDKkn4+T9g+58iGTp4amKUuXDfU6/ouqQwLjtzqiyynt/1wHVK3XCtFP4x1yjKJ1oko6K0l+MBoPML7QK41TkDX9RR5jnCpOC+qim5vD5PnhHyMcH0C3fokyeAHTylIHZeEdxS0zQ3g6f9CvKSLk8igvEpEikODotQSs9YlwRyRKl/HQK9ygx6IC4OnAAPQKZBnebKRjgwtrkSBsn0/UHk9eV5QFQVu2LyVTBbSeZYlXrdLP7dt24SulvJI/8QfntC8Q0uJDY62bREcWk3nZCajbWs6q5hNJoP0fEJG7+zPOSg3aIHBd5O+ylkEz8ZoRNs1FHnCniybBqUTXsR2bQLVAoKk3GqtpapGRwkKqZAI3tPajul0lqiqznOwXDAqq0F1F9I5SpAZkzowPhCcTRues4NteCp44hHn/+aEszVVPqUsSnyzSNiO+T6BQMwLsI5ge0K7wmULrl09x2jzNqwu8OPN9HmdEQL41RKXFdjRmLFwEDyZ0vS2w/Y9zXJO1CWx65DVBL9zkdC2CO9xtkeORgnzMd/FFCXeOkLXEvMC4WwCEHctxajEKI1rOzIjiFqhoocoaYKg7z2h6WnbHucd66WmMAWjyRQyw8RkTFQGWtEe4q36PhlAYhBZgSiStERcHCBd0ncBOQgEKqLyKJuo66HvIEQWq0Q3FlLg6wbb1IjxLDGO2pqVKBLwVhdYUxJ0RRyNUhXiHG60lvAHtklg4qokNEtC0EReWCv3DxrBpxPfkTx5SNirEONRd09KOP/Us3z2yad4+Sse5FWvfRVXLl/lkY98PEkKmAwTI8ImjNhhgX0IlPS2p28lq1VSYzZZkgzQWUaeZ+Rakan0numamlMHB2xeFfRlxWI8YT5b52Ay5qzouRbmLFVHHTRBGGIVccKjxhuQrxNPWWTfELsmdeJiIAiPmyhiZfC+RViFHo+SrURZJdDzqka1Ld6TmDZRJDyJ0FDXqOCISkNncd6ick1sasLePiKXZOMNbL1AdD0qCOLSQesJIuJNRn7QovtAqwK61AgJYqaJGyVyUhzdjziMcoSW0AcOnX1lYQirF+at8vuNv/iO7+fMXWeONKsOi5JEp02MtOc+9xSPfvpT7O7ts7d/wKqpk3jYQGDIixLXd/j0oGR8KiW9dZRlMZjYGfwg5mltjwAyqYhFkd6LA4NO0DPCYrsed2gFFJN2iYyQ5RnBGPQgaHg4ikEIzABLUFlOJBKaJPzY9/1ASEi/mBoKkGBtMvEUAjsoN1dlmQ7tUtF2HWVVslouBhFHSdtZiBGTKZyzeJfYqb115LlhvlhilMZozf7ubpLR9z1FZtAmdWIO3wMydiybJd1AnEgGuMlvzVpLppOkPUKyvrH+gu7nS7o4kUMllnwU9PUbL2QCAzlPQFIU1cBFTwJnZqBFlUWFMgmYWORl2kyHUYT3Lhkp6UPsiqDMiwTAjWmMYX1PXhb4PhxVs03b0AxFy2oxTxSxgb2T5YauXiWOusmSfsSgnZJcJzVeR8pyhI9p47CdIwRHVY7onKdtPSJeH+v0sxlNnjGfz48q/Qh0bZ0Q61JhBzZCUvzT9NYymYypV0nE6bD1LQcxNi0VV69cYVSNmM2mNG1N27aJ++7skUqiD/7IJsDaRIOT8hDwG7F9jzbJUflmRdi/hlvXzFd7qNUqjficJYp08o06R4xmxLyCtsFGzWKxT752HMYz3EGBL0dIlWh5/WpB53psWWGCotQZuqxw9QK3PECtFSilydeP4bsVZvM2RDOnaxv6tkGbHHewizl2Gl1UdKYA75EmQxUJLJYXZQJgIwedHUmwFmUK2hBYNh2ZgGpUorKM9RNbmLUxvUqjh9j3iZXhEghWdJYQBa7vEBpUpnBtQ1iuIDqcUqBAekf0HUoa0AonBL5tBgAzUIww3kHbJsaBkvh2iVQ5FDOCyJEyEEab9CJDhDhYPERULojZiGgdISuIWuN8j8orRN+9aPL1Xyps3xPydABwziVjy5AYZ4fg7uTU7PnUJz7Jy1/5coL3jGcj7nvFAzz5qSeAJMSVCvjkW9L3PWGweT9U/hRC0LUterCnSArBhizPhva9RBtFKSHzntAumdVL/PZVfFHx0HiNa9WYi6OKK/kmCxNZxJaVamlDQz9dTyf0Zp/olxADSkS8cYjVfhrJ5QXSC2IbiJmEXCYNkdaiszGhWRK9hdqDdUneuW3RRUZYNATvkeMxvmuR+3OkC1Al+XPReeLC4hYWLZKwn5/XCQ+1vyA6D1ONkxK574idI88y+sHcMRESAA/RhYSf8wMe5VAP5CbE1vGtQTgs/T8Oh6X97at85rHH+dxTn2Nnb5e9g33y4bDVdx3VeJxO+zGyWi7Jsoy+banKCisgOEem1aCrlf5WMTHjimo0SDBEvE1CZ8lLypHTJuqtktRNw6go8MHhvSDPctq2IeoSbUoqo+maBh8T+/O6z1rKWz8oq6Y8y49G5XYwJhQisWecdYxGJlmd2ATGLaqKdigM/KCxYmQqSGIM1PWKsiwHzyGfdI9MhnA1ZZ6zWCxYX19Pe5RIgN2rV67ifGB9bUbfdWTGIIUkKwqapk73PU+sN4ZadDKdpg7k6oXhjl7SxQnDXFgOynpKK5xPyOpcFyitCN6xWi1SNaqHas8YtJI07QrVDSwEPwj3CJE27qbDGDUYGE0w2tA7T4xJrdXoxE1fLZdkOqOpV0mYBsFoPObgYJ96VVMM9OOkJQJRRIwypAFUwNmBIz+AhEII2N4jjKbv0+hhOhnRdi15OSKMS2Ji7iavlTxnPwRmTcO4LIgI6qYeiizB/v4ea7MZfd9TFAVaG4pKYfs2OR4HR9+3gBwcfgEpjqSSz1+8iNapoCmUTp2WrkNphR+klgPyOugtRlwIgCfLzGCodxPxBr6nvvosWTUFM6DhdWrvRyFR01ni+Pc9Qo3AJopsc7BN1BlxPEtsLyFw2uDLgkiksYnNI5sWVYzIN47TH+ySF2OCKekOtomuJ47XUEpTicjy6gX6doXKS7K1Y+gsp92/hshL1NpxZAjYtqZtWnSeocoRdnWQJM+D42BvF1+UFHnOdG2DYm0dWRRkZZbYOG1LrJskMz94NkEkKJNUb7VJFOI2dWiCEAhTpMWmWSFsj9YKQbIVCEqSjyZJf6Bu6JuWYC35eJz0UEJMv6MRWFVANkG4miANAY0sxwSpUyt3oCsGZQgqQ0aH8TVBZkjpEOXo5uUAHLm9XmdXBLwLg8tsEhNEpr+vXrjAs597hntedg+PPfwIy4M5RD90CuMgIkRiXcRI33WDq2qyto+DrYR3FttLOtEmATdjyIzB5FmSFh/A5IcCj9F7wnKfcr7PHUJxW1bQVWMW61vsFxMe85orQrPvDSrXtGj6YBBaooTGxRYxmeHiiui7QUxPocuKtlsiGg9NjzIS0UMsDSCRPiIWK1SWJzuJuiYzBq3GdDh0WSKiwgcHdYPcXiGaSFhZqBS+zIi9RwdFzHPa8eG1dIRjJarKcLkaNsmhazJEGvumakEoiOrmHVQSIWJYg/qOnatXeO7pz/HYE0/w3PkLKCFQgzbIcj5HGkNZVanj7ZM4pdHJ0ywzJtliCInSYlAOH/RTDuXiY8KZXHeyT+qvdVMnsoBMwFMhkliZzHK0FHR9j3UWY3Jc3xB8y2IAppdllbr53h3RlKVSuJDgBnVTo7PsSME16W8lanFeJMVZKRSKNH5N9OMVSkpWqyVZZuitHfYkc9Sxb2NI+i865bZtW+JAHFFK4bpu0P+CVd0QhWA6nRBCpCgLsrxIdOtVoCjTgWxV15RVRZHntG1L2/fYATrxQuIlXZxIIYiH0r+DA3CICYdyWOX6GAbDv/SmOKxKbd/jY6AsysTeiCR5dpIaa9e1BKex1tJ1PWVRJhU9aY4EcpRMrbND5bwsy8hMllxkswyjFLv7e0zHkwQ6zTJMlrO/t02MUJWJquhCYH1jxsHBftpEkeA6cmOoF3OWtSAEyEdrhGp61DUBiHmOP3UMe3mHVd0cqf6ZLM3Rq6JguarThtt1TEzGzs4OZZ6ljofrBy2TOAgB9fgmiVhFIaiq8kjDxA9g2zwv6fqW3GSDt0zi4QsREWFoTcZIpnPy3LB8gZXyHyREiMSuIxpH1IboHYGIzDOC0uA9sV4iRhuQlUl6vu0QKk+GbFIhmiVRl9hqSsCl1rcU2H6VgGgezGSN9tpjqPXjaF0QlwfEvoPFDqoo8HnC3NhmgTIFshwRmgVhdQDjGd4HhIiJCeNsGoP4Bcr1yOhZtR0hK1FFhdk6hZ6tofOciAfviH0LARyaODAGopDJSMxbgg34KAkiGYgFaRDdEg341YI8zwhlhTAZsetQWYbJNG2Ys5ofpKGnlPi8wusKKyy+WEuLve9BZgiVEPuIHCk1qBwh9SBVHhHNEp9XRCDrHULkiDgAedXNBcQKkmXDoZz2oRt4HLomwfvkzEvC5nz8gx/irpfdzYnTp5itr/G6r3ojD3/oI1y5ePlI+tuFxKYyw5j2UHQqHWcPRwbpe3onoG1RSpJlZmDEZSitMSYJNiopUsc0xtRZ7GpMs2Rt+zJTqTmuc9zGFueKMZeDYkdUdPo4bajp+pbOK1xZ0JgML2qkicSuASvRokIYjQgZLvTgLKKXEG2SyJcKyhLfLhBaEeYrXOuRRkFjcYsVclwQ9heo/RY1qxBFASYDPGGxJC9K1Ik1Om+JzRIZ0+8ipMYvamSpkJlGbBTEQsHcIk5PCOcPkF3qTAQbv8Qd/MNHCIG2qbl88QKfefwzPPvsMzRtQ13XtPUqsV36nuB9UmO1lqbvE/V8YH4qbbBti9YZODfIyg/TbJ/YOElhO7kzayUJAVarmnFVovqezrl0mAhxsDaBiGKxWBBioCpKsjJjtVoxKovUvclzokhmq/2gum0G5qORSeU4xkCmzZCHgSzPB5Zl0sdqm2bo8oMSiXEWSKq41qY12fk4eDulERZD16XtenyAsUweXII0LpovDijzanA5T4VfVZWsra/hnCcrcqL3XL16Fa0Uo/GYuk6GqJPxCB8iWZ6jTcbO7g55XrBY7b2g+/mSLk4SLlQctfFCcGgpBtpwpO3a1JqOEWNyYgyJNuuT7L0f2l74VC2HEHBKHxn6eZ86A33XYgbQ0ao+YDwep43IWhaLZcKrlBVKSObzOc7ZI5v2siiBSNe16caOJmiTYaRKXPAQqeuaPMuO3jB5UVC3NTYGpqMxNniMUfTBE0vDULenN4xU9ErSeYeRGcvlghPHjiU3TiHxgQHUBUQ3sHbE0Wt2DYyrKrlZOktve6qyStW5cwloNVxn5xxFntMN81EfA0oomrbBHvo8iGT8J6Wktx1KmSMU+c2ImJWDj4sk2A5b74NKDKNQL1PnQCroWoi7xGKcOI1BpXl+hDA5DuHQcRW066E5IEiB1wUhk+i1zSTjvzrA9x1qPEWub+GunSO//3XE6BGZQWQlqhqhlBwWizQ2FH2Nq+e4epEKUh8pJyPaJtD2Fm1y/HiGzUfkSqXrKTxGhDSisakj0PlkSimJCC2QyuBcINqOYD3eZHgBlojKC4JNgG6nDbIcJTqkH4T2fAAfsLpIkvwZuFE1CGtVhGodZXuCziAIaFdQTvHVFNF7RPBEaSA4RAShNGq1D1lJtD0SkdyMqzVEf/MKVOA66D0eAmDjoGqcrpUPHjxHJp5Xzp3n0nPPcduZO/jk7/4uQmlWizl935PnedKi6P0RDd4YQx9C2pQGOqcYfq5zSUtIG01A4tvUkldDR8UYk8zQTBJpTBucQBiJdMkhtu9rTL1AHlzjXqm4L69YVBXns5KrUdHnY0I2o1lFDsKSA90QjMXpnuAcsmuJCLx0oEooHDIKyDNC5kE1kBXI3iIygT41wbkO0Xuy0Rpt3SGQqKJAvmyNcGGXKMHPhnFd29Keu4Lu1hBKoUZ5Gp1bi4yCOHfIPEPeNSU7tY4+sYnfWyb9nD6g6jD4zjiYtzclBz7z2GOcP3+eK1eusL+fGHHB+xs60+JI9dtHUldiMMqMcOS8K4U4kkpYLFcURU4/5JYZ1mkfk+CYHUY5UhuCzlAxkSiiSKO9Q8IFwKgqk9P7wKSUQuCGEbiUEe8jQqQX42NI7ByZtEqKoqC3LnXu256yyGnqmkOH4t7aoUsnYDgs+KFDEULCx9RNkzqCSlLPl1Sj5Ick8Mx0whv2XY93LgFhC8PadIY2GcvFgnpVU1UlbVOzt7NLNRqxmM8T0cRaZFXR95au7ehoyYscgUjSFM7TtB0xi5RV9YLu50u6OGltR1VUCXTpBiGamDbHQFowJYnuarGYPEsW8SFVtbnJk9mezkgMntSmM3mBFIKmbVKSDvDTGEk4Dq0hRIxQmMxwsL+LcpagDUrqdFUFjIYWXd81KXGUJESfCpZBC8AjmFRj6tUqaSHIpCfStw078wMmkwlKZxilWVlPL5MnSBgWXyUUfth08knBeDKmbjsWB3scO3aC6fo67WrFwcEuSijaNrUcsyxjsZhjMoO1fcKfDO1M7zx9v0qmTVonwJ1Lnj9FWRIGRHvwYQAhp9OElpK6bZmMJ4QYaZuGGC1ZdvPSTCJAGWLb4lfzdMqPkdindqqwfZq364CQZsBIJGXXuLxG1AXBgPIdIq8QQRB9khQVxYjaehKPqSQ7didu7zKy8sjZFnK6jt29Qpxvo03CGwkpcMsD7HKBc/1wpO/o967i2xoRAmqyji5HdPNdWmvRWY5RCp8XSCK2qQnR4xuL0obad8nh2oek9IhHoVCqxK3mCAJhOU9aCTEVDZiSVmqyvEqGh1EQVgtkcMiYwKNOT7FrW/Srhtjs4ZWBajMJNBUlXmaQW2RX46NHZjm2StLpMUhEDIjQYhAI3xP7NhWyXcKxKASZEOB7CDdP6wZSuz3RiJN7+KFglhSJJEIMEBPFP3iPs5KdSxe5++67qZctn/y9R5MyboDxdJxm8OE6LVKINOaJMeIZALhDh2YQF0gijXawxxhYFL0TyLal7Tq01kilMNokvQypB50LgRSQGXkE6PWrfar5NvdFwb0qpy0q9scbrDZO0Vd3cBA8nQh0tsXKiJcdVzhgxRVc7JGTGURH6GugJ05mCK/Ilcd3LXHR4dsFZjTCEZCTCvIclkvC0qIWgbBVEbukQIwNyEoni4OpInQ9WVbipSE2PXpWIdcNbBWIOiKB7N6T1M9cwmsJOiKMIb//FPXFx25KDvzme9+btG0G595DCxHvPFJrOmtp64ayLLFD8ZH0sNLafjjuMFk2KLNKJpMJWkuEiDR1i3eWNkaqqsJZR15UdO0Kj2DZW1TboHWGNjphnZTEyDTaP9jfpxpVRwBtrVQCsQ7Hot62TGezxJy0lqZpkihnCLRdGuMZrRkZw5FgmtEDI7IEIei7PnV/BgBs3yc9lSzLE2kgpFFn1yctKxeSWd9qtUQOuBWvPW1TY3uL95EQEgv00Mm4LEuEkGijWS4XrK2vc1DXLBdLskFrRUmJ7XryLOPa1WtMpslHLCLob4Z8/VdaVEU5jCTSJumDo7c9QkjKIgF8vPNpBhp8EsAZHIGD91RVxWq1pGlaijLJAAsEB4sF08mUGCPTyQwf3IDqlqnV1rTEAXDX9Wl+r4Qg9B2L5SL5/Eg1zKcjy7pmPJqwt7fHcrkiEpmMJ+l0FmN6nq6jqg5VXgV5XiJngslowrKtExB1WhJH2eBJmUzbvJTEk6cQCK5ubzOZTOjahtnaGleuXGHz+DHyoiDsQzUa4Z1lVa+SYZ8QRJKJXFKATABjpRUiBHJTEp2jaVuKskIrRde2NE2ThN0E2L5jPJoQ2uS0mWUmjcQGGvHhbPVmhet66Dpkltqi0iY9mCCT10a0DpHlxCwnZiWy7xDZiBhcopkrgwoWRLIrEC7glARjkCiiiNjlHviQ1Ga1gWqE3DpJcB6ZFfQHOwgBfnmAkgIzmqbOTbtK+gB1jcgqzHiarnXf0TcNoavJxxNMUSDaFj20Wksjkd0ijR/zguB6GGbQEQWSJMu+mKNEGselAlsg2hqflTgKoihwsSUGgS2qJLbW1UQj6c2MZb5JbBpscw3lQFYjrNBoJYiqSFlme4ipsHMAQiPDoOUjkn5IjAHhukFQLhK7GimBfIwJAbfcHfx6bl643iNzdSSd7klGaVKI9D5xaSSjZBJhFNays70LAh56zas4c+9drJ04we+85zd47unnMGVBmadDRNM0gzS3IuoIzg14rTAcWsJAYpMJKzBsbCpEpBzwCn1/pCBqhlHPoYdPemjShNBC4KRIoxc5dD3tiqxbcny+Q7j8LK4oabIJfrZJO55xEUWfzchExnbjmB9cI1YCHy1qtI7FpuK9qPA6J+IQbo4ui5QvgF90iP2OTGnc7j4UCqxHRUFYLMBkRGVRW1N806OcIAhP7B2y98jpGOUFYWdFPJazrGvMokMdn8JBTb5ZUOuAPzG7aTmwv79DZjK6vrveNVMKHyJiYHNpo1Lh4DwiGVQlIL8QOJ+sRGKMSK3puy79P6Tu/Ghc4ZxP99k62r5DD3mBs6iQaLlhkJx3ISY2phCYLGc8GeODpxpV2L6naxLWJRukJZSSNHWSfMgzk8Y5Q3fG9h1KCnyMuBho2o6iTG7249E4dbKHQsy5BGmI1iURUSlAptyUQqXuDBFtFL4LtLZnOpuymC8GNdkE1BfDnmCMSV4+WaIDa22Ibce8rsnyAu8Co8k0jfOlwOjrLNfeOqqqZDqdslwu097xAtWiX9LFiXOeLNcDSyWp8pmhVdb1ffLUwQ9t1ESZzfOcAJhMYnSGsy5ZTdsEGO36VO05Z7F9R1mWECTROzySyXRCUZSsFotEJ+47RuMRbdeRZzlV5YeK07O/mBN8YH1tfUCJtcTgyfIizQ1DoCirBHbNC5q2Iy8r+q4nyzOaeom1duhEBFxeIkZZ0ikZ4JAecGuzYZGLaCUZb6xhrWM8GdE1LflaEiZqmxVaG0ZlwXyxZDydsVwldHo6vSUAX9f3uBDIRUQgadsGbItRBqkNVVUlkTdrEcawWA5MoWCJIWFvgrVHyrwJcHtzIpuuI4h0O5cRbWpboosj0S+hIXYNIiwRxQxcDytBbPYgL1HBgbV43+KzMajkLq2yIrXvJVAUsJqD0YjxlGgMfrVM4LNyhJqs0+9dYbR5LC1qZKAkbrGPKkcUJ28nWoddHKSujIB8fQNTrSdvFyImRsosQ2lBFi1ET103VCEkzZE+zY+FzBBSQ5Zho6IndSZCnk4zMSywqqAlhz6Sy4w4PkHUGUFoukJincN1PWFZw3IXHQK+nEIxIfSOaEw6yy13UKrEtzWYESKvCFEisgq6LuVg9AhvCdGjSRYRUUdEjEgRh1NriSluLpU4LcwuMXQGyfoYAkGKAX+SRpkBBsxY5Ny583S9Zev0SRaP72KU4hWveRVnnznLcrmkKkuyYbzZtkkmQKnkuplID4cChGJgvIUEOI0ROyjTaqUJIh45SccYsV2fRLKMQWo1eK0kW41IEtESURwdFKQSRyqb0neIRYuMO7D9HEWUZKbETjbZKzJK1zC3hn4ZWZkcK3OqfEbT71EXI3wfUfkG3hSoMideehYlI4gaYTvC/hKlCoQkUWkRxHEJWqDGU2JvwUdEm1r/Mkud1f7aDqF1aATxWkBtjvFVgagdbq3EjQxUBeIm2hgE53HCkpuM3tpBQNKhddJair1jVfesVRXdIP+esBwcHRKjSC7k2iTJhxg8kOFD0ouK9GhtWK2WWJsM8vquYzJKowqhJavlEqTEZNmRGuoh+yZ6T9c2xAh5ntG1HUoqFssEVg3eo1UqDjRxAMVKdFRDkWNQIjFH5dDB721PsglJTCXbJwbPuCzZW6yo9YSZSOaHQsjUTYlQ1w15nlHoInkCxZgYN0YTPEhpaLv03JPpjOVyRdvUSaROQtNbpFbY4PGDFxke8rJAKsX6xjq7u3tY69jb3UvXAMFy+d8AWycEP3jWiFRERBJSWqoje2gtdUKhI5BSDLSpihgivbV0fapeR1VF33YUeY7zgb5L1Nm2aXDOMSpH1M2K1WLBarkkDrSztdkaXe8IPrBYLOhsRz6Is6WZo0SSNE1m0zWkFFTjMQTP/v4eq6amqkYobVgc7CVapkrKskomDIvue9Y31rk2n+NMAkEO2oWAwK6tI6RkUa+wtkNJyfGtY5TlmHq1ZPvaNTKTI4RFaT34KcD8YJ8iz/DOMxmVrOpm0INQYHvwitZ26ZRuY9J0CZ6+94myHCJt3wy0uCVFOULIOPhHxESVG4SCblZ0184jg08gT6mIxQgxPY6v50mUqG+Itk8GZsvtYRgWkONN9HgLt9hJ4592RdAmMVu8JfqkfCnynNgKaGpsuyL2HXLALcW+QVQTvDEInSGLCru3Q6TBz/cIzqKrKfXlSxBSa9mMx5RbJxMmpV8lRVAhEdGTRU8lIoVrWCxWuK4jGIUUgTD4FEWpwFvCqqPVY5AZvrXIoEFpkBVClsggkNUUr3Oc1ESRGFfOdfh6SVztIm2DkCbplWCg68iFJjYryCNK54QAopgRdQlKY6xLGg5CILxDaAPeJiHEzOAFaF2kcVsEIQNCZsji5nrrxOAhqvTeCMkjS0TwNgyFe9LmOfQ2cRGuXLjEc08/zQMvf4jlquYX/rd/SIjQ90n23jt/JBtuncP1luDTWgIJY+/9odAUMChQC5EKC9tbvHAIqY5sII7UlB30fY/Syd5CD1YQiLROiUFYUgxiHZIIctDsiAMLiYAJjllnkXbFphDcXY3opps0kynnRc+2c3Teo3yJubBC1hafLVEhMTLaYhMZIjErCW4HMfYg1+hNhohzZNmD0YQL5zEmR0RJVGPkmkKOS7rFPq5vkbpATSF2HgXYUZ7GAEYib9skjjOEjMTFzVOL1pnB9gngr3QSMuwGvRrrAt47yiJnuViQ5wVRpeIyeE8cxiyHh8ambamK8sjMVCJpVjVIie2btBaaJNCXGU29WpEVOVU5RrXXXeGlVEn7adC38j51aHvrUsFT5ICgLPLUxQk+bfjW4pwjRKiqkjzLkxZJSB1qiSDYJDKoByf7ECJRQJFlrJqaWkgyJQn9PsZURwUwMaZxJ3GQKHLUTcKmbWxusLe7N7h6J2ymILAcfHSm4xG9SxieUZk64gcBRiZDkfA1nXPI4X3Sdh1lntNZR/CJUJG9wO3gJV2cZEMVLoisVsskuWsMZVYedUkOmSNiwEXEmMBrMUS6th1AQolKakx2BN40WuOCTyeo0Wiwi07mSPVqRV4kMba6WaGUwRiNdX0yRSIpS6YCQxEyQd+3WOeoqhF7+/uMywqTFywHUZzDDXxnd5eNtVlymjQZIcJqdUA1HrN+5t4kFU0CbiY6ccTOJuwvV0yKgrXZGm3fYX2gni/QWtL3zTDCWpEPHSSlJEonWl09Tzodq3rF5voG3jumsxkigBjwJn6Q5w8+CbElenHPZDQhqchC09YYbRAqsZzioGsgzE1s6Xc1RHHdGZR0YhbFmGi7ZOpYjolKIGNAKIUoSmQ1TXoRCLwyxGqE6BqgTAVVOcYpTVzto5pFKjSCT667fQeqRZoCPVrDzXewXYOQI6z3RNsTlnOkyXBtgwgBOVlHjSZgcmzvaZpdss1Ngl2QDTgok5dQTuh393BdnYSzdAI1h6xAhASXcXpMNDnWK0Q5Q1QbCMAR0VnO+mTEbh+Zd0kJNliH8JZ+vk3s6jROiKTnF5oYNdIL8A5RFmksFgROpq6kiBn0HcYvCdywaTKQ4AbVz2xcEp2lzCqCkNi2Q5ZJ98PfZPn64FNL2w9U4hgCQoqhYAiEEAexLXF9DNx6Hv7IR7nv/vu554H7+e3ffD+7e/NUaJFOoCHWFHkykEsdWZsYDkO7G5G8TJKwVaLj+kEPJQlaWULoQEq0Ukfu3uJQBiEEtPJ4lUZQybsqrR9y+EAOphmR4ecIVPo1QDH8fgM75KClmu8yy0ru3thAbR5nXpRctB2X3Io9Mcc3lpgV7NYtLlMIJQl6iihGxMWlgbmliXGKXLUgBWp2L94EJC2GQJaVoBWBAlNFQuPo6x3EzOCaJdqMoLVEoxGFIiqJrxdcr+Re/GiahqrICd4RSPfaDftAGp8YxMC0sX13JAchhvHJYrkkNxptDMH2tE1ypLcukRRWy1UygjzsEA7966Zesba+jrU9XdtgspxMa5x3ONsNTsbJUqUoSlyfhNsONajEIALnvWc6nbIYPJ20NkRi0m7xYZCoTyQDfahAvlimDp3JYMjz1KmDtmsoi5JcxFTQhsHBXCVmqyfgQ0tVjWm6FiUkV65cI8uG0diwh82mUw72D6gmU7bnC6rM0DV1YiASkwWKybAhptF/Uw+jIJtAwCFijEmS/V1Hvdx/QffzJV2cdF2XFCAHV2GtNWVekpmcECLL5SKBV2MkxhZtEhNHap38dbynKquEkfAOmaUZXp4ngZyyrJLBU12z1zRsHTsGQ0utdw4xVIajSqNNRllGREjc9KZr0EpRFhVNl2SLjUqzuK3NLQ729pKXzqhKnYvxhJ3tbTY2Nmm7lq7rWFtbp97ZZn1tE2s9V6/sI3zahFIIggB3/Di2KHBtjcoyZmXFfD5HSsHO7g7FwEEv8pzlYj7gSxJYrLEN48kIowxVWaCkZlyW7M8X+BBYLOfMpjPyoqQoR+xuXz1y2jQmY7FaUeQFy3pFiJHM5EOrsUVIyagcHWm43IyIPiCygtgkZk6wPdp1hL4FbxFSo6oJvplDOUaYjKAVYnAKRYAoMsKqg/FW8iCpd/DNHGESa8N3SUUySIMarSOUwtcrgkigMbvYJvYr5GSNyZ330W5fot/fJsa06OSnzxDH68S2STLY0SNtxyjLaInMZhPqZYusV8lJ2kqq9WOIokKXZRJbUxrrPJ0LBF0SdZEWm3KMD46675Kom1KE3nHQeVofEVFA30FviW09gCQd4tBN23UJw6KTgFgxrgjK0C3mSA+uH4p72+Jdg1AlyrfIoiJmSe8kugadl9imQ2lJh8LkJaPJhL7v6Xqw9uYxtiAJCfakDkrqLniCHxzLB5p8GLonQqQTIwKefPwprl3b5vip47zhq97Ar/3qr+MDaKWx3qFD2lSMSRR9IdyAO0ggViEkmU7vyRADIaa+ZtJW4cjt3A8gzSgEYhBDPDyUOKmOTCClUoN7uTgCmh86g8tDHQ/BAKJkKMDE4ESbQMcCiMHRXTiAc8+gdc5dkzXuP36c/thpLrQt5xYLhHXopk+jSyUIxZSDCfRZAmaH0OP1BnJ1gPIRVjV9lhGko122CD3C+DwpITuBkCOcSbLvwWXIiUQ2Da5t0zgnJrfimxZCJvVjSBhAIlmWqLwqy1K3ordJ1l0mAT1rUzfC9n1idnpPUY3SyFqm7rqIEec8ZVnR9x2RSLBhANQKyiqJXQqdOu0mL1jVdSqOvEtZZxM9fbFYEAeiQZJ8yBIxYiie93b3Ej5EJyxK0yYAb29rvE/mrlkORuXE4AdtL09RaZbLFeWhwKNPhUIy2tM4m4Q+x9MpoFhbX8N7T9v1dLYnM4bgk0ZJU9eMxqM0mpVpbFVWJR2gRhNC3w7GhiKNzGQSJtVC4r1jtraGEopr29ewfZK8r5uOqiyIIVKN/ltg63QN09k6XZMoVUkiPrBX7w0nGksYMB7Wpbm4OhQS84H80J9AZxAD3g/ttxASOGmVMBpSC5TJcD6QSYWPqWvTO8vm1nG8czR1YrvU9YqqrFJV2zSU5YjxaJIkwZ2ncy5hOgZ3xtzkrPpVOvGRFD9zrbFGs33tGk1bMyrSad7pgmATJe7G8EVJvr6BPzdnb3cbrTQHizl3nrkb17fs7++jtGY0GhNiZDadsb+/R1mNkFmOFElpUArFcrViGSPzAdhb5Dl1vUqzTJvwNF1X40NkMp6ihGDVJDS3UqmiLsqKUTVGKsWoGrNqbqLZl8kSIHP4OwmxdQiSoZ/IR8l8ebKBMDnCO6gXiGyWpNqrEhEdAo/oe4TSCTwbVWLH7F9DuMG5d7QGtk2Yj3qFMlUCgmoDaoqMUI7XkdKkE4zt0dUEJSKqW4Dr0EORWpy+gzKrcCfuAJOxtlUiTZFGM96hGNxJM0mWF5jMDIBYQQzptE6Erl0xP9hhf2+HLgrC5h3sZgVRKETfJA2YpkUEn9hKxoDtkbZNlF9AZxphFNJobIj0XZt8XGxHbJPzqnY1MXREkxNdh4slom2RxRg1GiHKMgmZKYXKc3wU7DZdonGXBf5mCvGRRh3Jmzv92/tkH2+tTfTKQUArijhgP5Iq7mK+4FMff4S3vf1beM2b38gH3/8BrmxvE1TCYaXOhz+SFYcBABsPrTMYLAGS0m8Mw1gzbWGpiFESUMMIKJ1ureuSkqzSBJmMOqUUCJuuk1KpBX84ClJKHhUth15AMVUp6QSfGiwDgyhgvR+EWKCzlvnyAH/hWaTUzKYzTm6ewK5tcK6znN/bZy4tdfSMzBgdJDZYkAUOQ8w3CH2NiklQLtARO0f0eSpaPchuiRIKISR2koNt8E3SxFER4jKxWELXcbPKVEkiKRiTNER8jJRFTtf3dH06dBqtkkSC7en6jkNVca0UcuhKt02d7s2AqwsxkiuF1DpJzg+K2iF4RDS44JNNSJ8AuF3XYrKc4D35YOJ32GlU0mN9AjorPWhjFQV92w7eZ5Fi+BlOuDROHAqMejlPoF2TSAfOJyB2VRZJFn5tjeVqRabzoUMnCMESiASXxrF72zvkRY4xGmUMxIBziRbd255OkNR+244YAvPFAmOyNH40kdPrG2xfrdFaIa1LRbZMul5KG5y1Cc/SroYclgPNOTKbTrm2s005Hr+g+/mSLk4mk9mRDHAIgdVqSVWOKYuSrq1xzjOajclMwlUg0kmjGXxvtM64tnOVyXiKEIqmXiGVYmPzGPt7NU1ds1jNGY2mHNs8jvOOcjqjoU6Fir6ugOpDAsMJBMvVKukeaMN8MU9MVmMwWtJ3PWtra4lq23ZEuSDPcg4ODpjN1lktV4n2VY5Y1DWzyYxV0yCMIYzGhDWVRhc3FCi+zFDTEWvTJNBW1/XA01dU1YQYBL1NIyZhJMu6Ofq+pm1Ym0xY1U0yuwKkSgtYIJKbjPniACHA+S4J6ig1iHFJylGF6tukKaAC1vYczA+AmBQN6xXdTTw1B5GAWwiJcD2YhP3ItCHIPKmkDr4pPkTkADAV0RKdAx9wtiUGEGRICqjWUDFgrz2LLMbIg22kMsmvJysggty4DYJH2RpdbIFtkEpi59vo4Flbm5EphdI5Umn0eA1VTTDlCHQBUoKIaEinvcONh4h1ILoFLi8SGFYEfCBpyBAQBHKd1DjzrGI8Kjhx7Bi2t7RR08Ykr974lqCh1pHeRaQRRN8lk8qyQiIRRUUQAoTFBQ1dwkgYIWj6FhUc3nVE3xBVoumTT5Omg5ZJc6ccI6LH1TVmbQ0XJXWbjBKFt8TlPs7fPKwBJKt5KYe8jANNPwwjnjiAYYPHA61Phw8pJUJJHv3k7/HWb/o6RtMJb3jTG/iFn/1FZDHgPoj0XmIHgS5IrXHv/dHXU7GSwIsxphOrHToEh2q1+MEw0/mhkxvTDJ7+CAuQrAwSeN/ZwZ9E6bRRapWYdVwvTg43oEhM4ltD/oSB2+x8OMJ/+UFBNwRYLueE8+dQUjMaTXjd5nGacso1EdmLkmXTs0JiQ8TnChU1y95ivUdbQVQ5vUpMLREUKkqCGBFMTO/B+QJhV8S5RZ28I2l1uA7pIqG/eZRy5yOlNvTOIZUkOk8UEus6XFYSs4K1TNHt7WIGNV83OK5LKdN9GoTGpFAEYsoTk3B6RkpcTKanfdcNwE9JYTSL+TwRAULqbjifFFersqBrWvo+YQGllORlkcbEUtG2LVEkMGuIgWo0QqrklBhCpCoK8I7e+aR9NOAg06gqIIfxjoyBvg9kxrCaz1O+hOR4vFytsNYyP5gzXV9PkIOmRfQWIRVtk+TrtdbE6AlB0HU91jom0ylCJOaNUfJIyr9tWoRRYB15ldPUDdDhgmcymdA0Hda6BK6NkY3NTfYWc7z3lC9QkPElXZy0bUNvbWrBCUkUCduRFzk+ePIB7FlNR8yXi6TxIQVlWbE42Gcll/jgEzhxGBFpkUYh42qM0TllVTGdrtGsatbXktKnddcl8A/mB1SDv0KRF1RVYu60XUvTNtx51z1cvXaFK1cuUo1GVEXFzvY21nmq8ZiizGmbhtVqwbW9HY5tbjGZTHj27LNMRmOGioq6rjFaIlyCdCYo7BBZxm70LC9fZjadkBvDqdlp1tfXePTi+SSEhKDe22U6mZBpgywqCpMlLQZrB4XYyHS6Nmg5JPdO7xxGZ1SjpBK4Wi7TdXaW6aiiaeskT9zURJWwPXmeUxRlmpMPmiI3K6TUKKPx1oNJaoVVNUYKybKzKJEa4LGzsNpBTtaJ3Qo/v4bevB1fL9B9g6/WU3eh3kM0BvBUJIMrfeoutAAtIStHSapcaSQk4TmV4YOkFYq+d9DXFKMRppol514hcEAfIlZECjxiaPvHIBDCI1S6r0IIXBC0FozomZuSyvbk3mKUTq67Uh0tqBEQKqDznFxIRohh1Jn0PTyR3gVsTAZ4wTt8hM55nBvMAX3Ee0uPQvQtzguiydEiEOjJcomvA5gqtcSPnyR0HbhAlBLhe+g7JIFubxeqEcJZjEydHfzN1TiBASg6FCYhJD2Y6Ib/DxvOodOwkOl7I0mP48qVK5x99jkeeMVDvOHr38qHP/Axbj9zkjN338b+9g7v+60PgcnJDkc5ww/0Po0IGH724fgIYhImE5IQHWL4txQCY9IDfPBEn9Q9/SGIU0r8AKY9xKXIQQZdazWMlcQw4pF44Qcn2vSifAwDXiUdwmSUWO+T0NfAZHLOH73WGDtWzYrdq5cICHQ+4fj6JltbJ1lWM0KR43tHKZOk/o6sMXlGQ8+ldh8yUDGtuXJ0PN0I36LUOuh9RD+HtsDJAp2XsNxBz47ftBxwISaM4DBmcaFjcXCAUgpN6n62fVqL3HA9jDHUTT3g+5KHktZqEMbrKcriSN3bdh3SaBhGRkqk91rXNsTgaeuaCORZng6sg66KyZJzPYrBtC9hT2yfRquE5KNmTIYQUNergTmZaM8IifcJ/FpWiWzRtG2Sm88ylnWd9E2MSd0772hcR1mUtF3qZGysz1ASrvYZounI/YrpdILzqSCarM1Y7O8TY6BtU1dvtjYlhkDX9cmmxWTMF0uUVKjxJJFLREyFihQYLYhecXBwMFg3iEHXR1OvapbzJblW/23I13PILJH6SDvEe0/bdoSY3ImDd1y+dplMG6qyIssy9ucHrK1tJIBonpNlOW444ZjMIFygGVp7kBT9rLdc3dnBDzOz+WKOkJIqLxJSO09eNHXTUBUFo9GIxWKBtT2TyZS2aRAitbaausG7nphpus7inKcYjSiqEVmWE4d5Xl3XTGfTpEiqNIvZOnGmByAsKJL4k8wyxPqMqsoY5Uli3HvPJz/5CJubx6hXy/Q72pam7WDYBFerxDoaj6dcvnyJzWMnktiPdSijqZsEcO1tT7/fY4eR0+EbkJBa2m2XtGW6Ns0inbd0bYvSmq5Lf9+0sElzBucSYybLcH1DVk5RKiCdS6DcvEKKmATKrEVLiWznSAH5bIYpcsajEVonirnRKjGudIYUaeELhzmXdg6EUFgPCwc7naQxYxAtRTYb6N0CPbiLiBjQKkJ0dIjEXICh+Z82mMDhyTfSFVNEs0dQBdsxp3ItZWzRMrVgjVIIlWwbDtkdUqSxxSEeYSDOUhpJGQEt8EEM2hzmaGwgiXhB0lAYQKUxBNg6lU75gPMe6wUugJWCXiqsMIggaNsaUeSEpif2PewuoSiRmSYsdtDVBHcTR3vAILKWKMLJxC0MLqvXFTcTqPRGYOyg8Godjz7yae576EFG0xkPPPQgV7b3OX7Hg5x5meDhj/weVw+WSKrUdRPpcTGEo45FjAEfwxFdUgx/CiESFiUMphMh4oIfxjt+wEkMFGPnUlFyyHQSoJQf3GoVSh2yftQw5hFHs/+YUpI4aHCEYXyUbA4STiUcdnh80ldy1qUiJST8XVyuYOcq8eknCaaCtS3s2jGYHoeqwGiJdACeTb2OlJJK5SzFnJqA8A5rSSqpGPxoA7xGdC1BlKjidNLcuEmR1HgTaUEZQ2gTajjTWRqZW4cuSlDqaCS3XC3TAXQ2o2saurbFuwSYTbpPIKWkbpIcgu8GQcQY6fvk7MyQc7bvE/5EpS6M0ZqubQaIgcP5lC9aa3ofUdrQNzV101DmOUrJwUQyIzcZ223PqnGE+oDjkxFVmXR3YgjkOlHa/XD4SwDbQWPFaAppWK1qpBTJ9M8lE0vVtYzHFZmeJqarUihpONjdx9kO6x1r01SUuL6n67rU0RsUZrOyTJ0e11OKmIpnlSxLosiQMlAWOYvFchhppuK66zq0Epg8Z7V8YWvBS7I4iUNirZZLlNYURY7WOTGK4U3Xs1guUEqnRVwIzGRC3axSO04b2qbFe0dRlIO2SZFstdskzW57S1UVeOvouo7FakFhCnpnaZuarMhRUtCJJHO/WvaYPEerpCMBUFUjDvb2k47I0O511tH1CQGflxXz/T0i6WujUcWoHOH6fjApdFy6fJWtzU1qH3Enz8B8ATEVJkVaw5Ls8HSCG/xErly9yr333IPEs717jSIrECLgPIkabXvKcgQCgrfU9QrvHb1NnhJd27JczQkxsaACSW6b4OgdlEXBfLlgWS8RiDSGGk/o9naoipyqTGI9i+USpWWied9w317MHMAO4xlIZn+rmm7vGmKyPrTKFdVkhDYStTGlGFXok6lwyLRBiAEYKyHXyQMlCYwBweE7i2Nwoh5+thcJ6NhFyTJolkFTY/DOIVwkaoWzfTphCYFM0mnpFI9H+nCERxASAoeGZYl9lW6jYBU12fwartxk12uUc5R2Th46dGbQWqNVQsELqVIrd2DFxBs/hj9SRyzteiFGnB++IUQYBNSSgk5C9suhK5BORTDSDFRsjzcMCzNYE9EyJA2VViTfIilRCqzewFpL7SJXXuQcuDEPmqZJaq4cqrcG4tCxuT5ySUWWjIddieRZ4q3jiU9/ikuXvpbRdMrtL7ubzz71mzz5uedYW5ty3+vfzIX/9F6WYUlZFHjXD52X5LFzeIjpbcK1ieH++UOmkA/JDDOEYcTij/AFScDtem4djqTiUBRKIdAqGVlKBpCsUkc/85D1IdThWOc67sY6j9BqEHnsj4qREMLQRUn0aBv8gIMZNlAEgn3C1QtEoZDVmDjdIt52J/b4JqooKaTEB5u0QqIi9w7b+4RXESAp8fUBZBmYjCDypBti/fPu24uZA8F7Wu9YrhrqrscohSZ1U7I8rd1Nk4gO/UARFkPurBYLlFJJKbZL5AnhoW1aRpMxEI+ovTEErHfpfntPmec0TT1gWTqyoiAIQZkl+fbFfDGYn4YEHh7ou0rJo65WR2JA7q32cSEwmqzTywxBwsU42xFcT5kXLFcLyiynd5ZuOU+q5iYjrGqkVvRtA6QiyPY9p0+dYNW0jKoK0SR5h872uMFXqB9c60NMnbhl3dDVdXJCjoPonHOoroeha7fa3weVXIeLakRTtziX/H5sSEBb7/2gIh6QCFZNQ71qBnn9/3oOiPhirxZ/BPH0009z7733frlfxq34fca5c+e4/fbbX5TnupUDL814MXMAbuXBSzVurQW34r+WAy/JzsnGxgYAZ8+eZTabfZlfzUs/5vM5d9xxB+fOnWM6nb7ozx9jZLFYcPr06RftOW/lwIsfNzMPbkYOwK08eLHj1lpwK75ScuAlWZzIgZY4m81uysX7bzWm0+lNu54v9qJxKwduXtysPLgZG8etPLg5cWstuBVf7hy4ueIDt+JW3IpbcStuxa24Fb/PuFWc3IpbcStuxa24FbfiKypeksVJnue8613vIs/zL/dL+WMRL8Xr+VJ8zV/p8VK8pi/F1/yVHC/F6/lSfM1fyfGVcj1fkmydW3ErbsWtuBW34lb88Y2XZOfkVtyKW3ErbsWtuBV/fONWcXIrbsWtuBW34lbciq+ouFWc3IpbcStuxa24FbfiKypuFSe34lbciltxK27FrfiKipdkcfLjP/7j3HXXXRRFwZvf/GY+8pGPfLlf0ldc/M//8/+cvDZu+HjwwQePvt62LT/0Qz/E5uYm4/GY7/7u7+bKlSvPe46zZ8/y9re/naqqOH78OD/yIz+CczffYfaFxK0ceGHxxzkPbuXAC4s/zjkAt/LghcRLMgfilyn+wT/4B/HOO++MeZ7HN73pTfHDH/7wC3rcT//0T8csy+JP/MRPxEcffTT+4A/+YFxbW4tXrly5ya/4pRXvete74ite8Yp46dKlo49r164dff2v//W/Hu+444743ve+N37sYx+LX/3VXx3f8pa3HH3dORdf+cpXxre97W3x4Ycfjr/yK78St7a24o/92I+9qK/zD5IHt3LghcdLIQ9u5cDNjZdCDsR4Kw9uZrxUcuDG+LIUJ3+YhHrTm94Uf+iHfujo/977ePr06fh3/s7fuZkv+SUX73rXu+JrXvOaL/q1/f39aIyJ7373u48+9/jjj0cgfvCDH4wxxvgrv/IrUUoZL1++fPQ9/+gf/aM4nU5j13Uvymv8g+bBrRx44fGVnge3cuDmx1d6DsR4Kw9udrwUcuDz48tSnPxBE6rruqiUiv/hP/yH533+He94R/zO7/zOm/FSX7Lxrne9K1ZVFU+dOhXvvvvu+H3f933xueeeizHG+N73vjcCcW9v73mPOXPmTPx7f+/vxRhj/Jt/829+QTI//fTTEYif+MQnXpTX+AfJg1s58PuLr/Q8uJUDNz++0nMgxlt5cLPjpZADnx9/5MZ/fd/z8Y9/nB/7sR87+pyUkre97W188IMf/KKP6bqOruu4dOkS3nuqquLpp59mc3MTIQRra2s8+uijzOfzP6pf4ys+XvWqV/EP/+E/5L777uPy5cv83b/7d3nrW9/Khz70IZ5++mmMMUgpn3fNtra2eO6555jP55w9e5bNzc3nfb0sS+D3b1Eeb3ChPDTp+v3mwa0c+IPFV0oevBg5ACkPnn32Wbz3jMdj9vf32d3dZXNz81YOfIn4SskBuLUWfLniKz0HvtQ3/pHGhQsXIhA/8IEPPO/zP/IjPxLf9KY3fdHHvOtd74rArY+X+Me5c+f+wHlwKwf+eHz8YXLgVh788fm4tRbc+rgxB75Y/JF3Tv4g8WM/9mP88A//MH3fc+LECf7xP/7H/NW/+le5x2iMhswJ1v7yX6HSFZ/+Z/9fAAoXUEIw/qY/SXfgGL3hm5nefxfr6yv0px/GtS0HO2PCM79M/cq3sffun+L0m76Zzz33LLe99Xu49Kn3801/7jv4Uw+d4Frf8bHf+Ai/9RM/zubXfD07165y/9v/Bst6wSw+h336Sf7yj/woH/mFf0q865vBHoCTXNldcPLuM1z53Z9i86nfZe0tX8/tL/96Vk4Q85NMxmOOb62jpSYvS05sbTCpJkQEiHQHr0f8YpfmC78nQiTC4EoQg+cX/+1P8O/++U/yjd/7Ot7wXccIQjPfnSPt2/nZD2sOLlzk9lMVj/7Gr7K/EBizZLXdoNYrTr/9z/P6b/8aPvsff4m9s5eZZZ7++Ks5/7P/iFd9wzdw57f9KdjZ5rd/6f18x9aH+IX3XuStf/9foWfHUNLz+C/+GtnyGu/9x3+PyWTyoufAP/tn/wzvPQD3vuxenHUYYwgh0LYNTdPS9z2j0QjvPXVdU69q6rpmsVhwcHCA856yLOi7nizPWV9bQxvNarlCSsm1a9eIMXL69GkmkwnL1ZK93T22t7fx3vOKV7yca9e22dnZRSnJ3v4eXdvRdT2RyO2334Z3np2dHUIIaK2JEZbLBWVZcfr0SU6dOs3td9xO17acPXuOvf195gcHzA/m7O7tIYTAGI0xBm0MW1tbCAH7ewfsbG/TW0uMARCMxyNCiFhr2dzcYDyesLu7C0SUUhRFybFjW2RZjpSCrutYLpeEkB6vtWJza4utrU2881y9dpW9vT1sb3Heo6QkyzMArPVIIXDeIRAopVBaorVB6/R6lVT0fce/+Jf/4g+VA4d58M53vpMTJ07wkz/5k3zd130dZ86c4X/6P/9P3HnnnfzkT/4rqtGI3/3dD3DXnXfyl3/gHbz1a78O7x0f+sAHyIuS48c2WCxWWOv4J/+/f8Kp06f57JNPpWsqJXW95G//P/7vXLx4ifliwUMvf4itzU3uu/9+YoQQw3CtvjBuNAMRAoQQh//j6J83/v/w/Xr0GEGM8YbHHT5vHFgWEobHCQGPfuqT/Mav/wbHjh9jsX9AVY35wAc/xMcfeYTv+u++kyIv2d/f4+rVa3zkYx+lrmtG1Yhv+Za38eBDDzEejfnlX/4V3vYtb+PsM8/w8U88zOb6Bhub6wiRTtIXLl5guVzSdS0P3H8/29u7PP3Ms2zvbHP/y17GdDblZffeS5YZPvihj/K5p5/GB0+eZbz5jW+g7jp+6J1/g1/9lffwy7/8q6zq5U1ZC9buvhfvPIR4wzVNaylIpAAjQRJxIRJjQEjF2snb+HM/+Ff4H77r7Uy0Zmd+wLJpyXLDu3/m3/D+//w7PPvsRZaLmoghCokiEJwjKonPM8RsE7FYIYRGjdfoDw6YTmes9hoiY8yJU/h6jptfQaDQ403WpiXL/Uvc+x3fwfTkfXz6Z/8N/cVnELY9evXXM+OG3+coJ65/5sZ9QNzwiBv/ff0B4sZnGZLphieNDmJHpgKFhkJLIoLagvcBhafKFS4IGhvx0aOVoNRQZppV64ghoowa3i/gYyCGlMdKRM4+++x/NQf+yIuTra0tlFJfQFO6cuUKJ0+e/KKPyfP8yITojW98Ix/72McAmH3Nd6GkpNnpiLN7IC7IXcRH0MMbucDSPfzb7D75Uez3/g22Xn4fm+unCLRcM/din3ma0ksuoxC+Q86voC9/CLe4DOPjaKMYyRl6bcpGlVPMThAvXGTv0d9G3PdVnBhtsr1WINbXePMbX8WTq4ydgx514gQySHRZURmDkIFMGcyJM5idXUQ5QihFXowwmaLMMooyZzIZfYniJEU8+lMMSfl55Ul8/j+c77h09gIPvvGVvP6bXsXt9+egS4xb56lHNilUw7xesao2QWUY5em7CqFh7au/hdd/95/k6kc/xvzjv0t19+so80CYrIHWqFJTzKbQdphyhjIFJiuRa2ts3n6KxaVrXN6u2f61nwN43oL7+82DL5UD3nvyLMcYjVaaru0YjUfMplOuXrmKtQ4hhk1TKbTWSCkZj8ecPHWSxWLB7u4eRmuEFGRZRpZlw8aa4ZzjtDG0bcvO7i5aa7zzjMYjirJAIMiLgq5PP3c0qijLkgsXLjJbW6MsC06eOMH29g77+/s463B4ZrMpGxvrVFXFyZMnOX36FH1vefbZ59je3ubg4IAYAjFGijxHKoXWKl2LLGc8HtPUTbquUlJVFZDa4VtbW4QQWNUryrKkKHI2NjYQQpBlhrW1NbIsw4eA7e3RRhtCJMsMp06dZGNjA+ccq9WKvb19nPNIpSiGYuP6iuiIkK6rkCitqcoCYzKMMWSZQUhJ32V/6By4MQ/e+MY38sEPfpBv//ZvB+Dxx5/gscce48TJE3jnMTo97/t/53f52q/7OhBw/wMPEEMk4mmaFmcdGxsbFHlBJOKDQ6KAQBRw6rbTLD7zJABr6+tMZzPCcE/i8zbA63HD+n9E2bzxa59Xc3C4Kwgx/HH4BF/0mw8LHDHcazDGsLGxwf0PPMjmxiZFVbG3mPPI7/0e99//AK99zatZLpc8/PDDzNambG5tMR2POX36NCbLCDGwPpvxyMc/xsmTp9g8tsXdZ85w/OQpIHD1ylWyPOfKpYtIpTh77gKut2iV3i8bm5uMxyPW1te46647KauKV7zy5bznPb/GeDTi2s4OeVlw/PhxXvva1/Lrv/4brOqbsxasnT5JW3fUB3OidUBMq+RwzSLggEIJSgPOB1zwLLev8PP/7t1sHD/B9//pb+auyYTPPvssbdfzP/yV/yNrmxv8u3/7H6ifuYSLmiAkwluEEcToUVmJ1wbGI+JiwZnXvJZnfud91Pt7oAzZ7Bg+KEQxRgZP6BZk44JOGXxnOfjMo4yP3YNQGXIomFIuDKWDgKPd4IaU+8KC5IZyJN5YxtwY1/eOlHeHjYzDtEvFiUJhlMSoSFVm9M4jXMTISJlptDa0rSdgKZSkKiS50XS9RwiJ0hCiIMTD55QoASYThOCGn/3FX+Fh/JEXJ1mW8YY3vIH3vve9fNd3fRcAIQTe+9738s53vvO/+vgf/uEf5h3veAcAVz/yqyhpcBuvYJydIkSN2rqdeHCN4Lq0zETwCILtyURg9fo/gWsaNncuIXcuEYvbGa2vY07cj+09Pkrc6gC3e4Hda3ucvfNujpcZZuMEbJ5EViOEFuRdzeryo1y8+9XojVcj2o6L7QRZGaKRrJ76DKqYsmwWNE5DjDz1+LOI40+xefoMwhT0bU3wnhA1USpWdcv6dCg/vrBQvqEwSX/HG74Qn5dgw4JHJPrIsnHsXbjKI//pk6jiHrL1dYKAnf0xOh+jvCU+9RGMmxN7g3Ce8f338+B3fRuLs0+z/NQTGJlRmoJMO2yMaEBGCVLRSgXaYI2CCF3f4euGdt4QY4ZUX5hmf5g8uDEHNjc3qMqKxXJJ0zSsr68fzZ6rqmK1qo+eO8aAQKTug9bkQ5ckyzL6vqfve4iwXK7o+56yLFBSsl/XQKSpG3Z3d9nY2KCqKi5dusTu3h57e3s451jfWGcymaCkZLY249jWFmVVMpvNOH/+AiFEqtEIYzSnTp1iOp1y6tRJnHN4H3jiic/wzDNPE0Kg7y3eO0KImCwjM4YQIyEEjh3bYjad0rXtEfbCWYs2hjzP2NhYJ4RIWRZIpRiNRlRVhZSSLMuIMekaRNK839rrBcb6+hqbm5v0vcW5nnPnzrFcrdBKobVBIHDB4kNACIG1FiklRV6Q5Rl5nlOVJXmeMxqNcENXazadvug58P3f//284hWvAODEsWMsF/u4CK9+5at59NHHuHTpEh/4wAf5+f/489x+xx1451itaubzAwSC226/jW9+29t42X0vQ/605Omnn0bKQNt2zPfnbGxukmc51qWNDg4X1FQ4xPh5i/oQN2pJ3BhffC2+/kZPz3xDW+R5j/38B0cEEikVp2+7g7PPPccnPvYxMpPziY9+nMViyc/+zM/y0EMPMJqM+cZv+gbufdm9vPLVr2I8HtN3lk9+8hHqukYZhdaS9Y11vvnMN9G1LXsHB+zv7fLRj36coih55csf4qMf+xhXr17lda95LfUTTwDQ9T13bZ1hY3OTixcucf+DD3D3y+7lve/9Tc7ccYZPfupTvOy+e/A+YLSmyL7Q6fbFWgsiitnJ4xRrUxbX9ugWS+JQeB9evQA0PpJLSZ5plBc459h99in+/b/4V1RVxZ/7hq/h3rvu4tOffZKL5y/y3/+Z78Uj+Wf/+0+xfW2BLgp8F1FOILQiKijzHGcd0ze9nrMf/wjHT93N9pULKBnpFucQ1QnUxmlGD70Kf/Us43aH7WefRMeeg888yuSO+zHjDTqdo2x9mBKI4bUPS/rQWRv+HSPXS4sbey1fLNFuyM8bChRxVNYcVkLp0UqCFFDk+qggViJiDGitWLY9vQ1ICUUu2ZyW7M4bUBp11OUDGUjfJ6AsNFJC03zxKcDnx5dlrHO4sLzxjW/kTW96E3//7/99VqsVP/ADP/Bffez3fM/3cPbsWX70R3+UvKuREWJ+HlxLr0fEO19PbgRitQ9XnkKJBLiJ3uG8pVwdcPVn/jX1mZdx5o2vY/+ERlx+Ak6+CX3cI5YVNu6CEFQhcrlesr/fMW8l/rXfxWRrjWA+jotgfAfXHmax3WKdppZr1DqjXJ8hraVrI3nn8LXDLSMnXj9lNhljo0QLsM7S+YBvGrSW1O2KrfUZxuRE0ilYPC/RrhcuNxygPq8wufH7IsvVirNPP80r33ofb/zmuzl2t+HZnR2eeeIpqnicNs7okJQPvx8b1rCtQ2+tc9f3fg/rp2Z89P/549x17/3MZYYclUTRMRplGG3QMaIAZSMaQewE0Vs+/m9/jjP3PsAD3/LNxPV1YjZ+UfPgxhxYLJZsbGyS5RllWbF1bIs8LxDA5tYmdV0zXyxouw4pxFHnBMBai8gyNtbXWd0w5tkdRjZlWTIejXDOpU3cWcqyZDJN7cgQAn3X0XcdW8e2KPIinWQ3N6lGIzKTYZ1NLU6lGY9HKKkIMaK15u577qaqKrq25fKVK1y8eJHFYomUguADzruh45MhlESGyNr6GqdOnUIIgfeBGAJSSrQxFEXBbDbl+PHjxKGQcc5RFCVSCpbLJYvlEttb8jx1h5x1SCnTaTTL2NzcJM9zuq7j3LnzLBZLrLN4qRBCIoSgtz0yHfUJPpBnOdWoIssyZrMZa7MZeVEAkb63jEYVxZewX//D5MC1a9f423/7bwMwGpdkRrI3n3P7HXdw4sRx+q5jfz7nt37zt/jf/sH/ijGGixcukuUZezu7PPrY4/zZ7/4zNG2LFBJjDGVVcezYFpPpBK01J06dRCtF1/U3/HQBIp3KU1Hy/MX2ixUmN3ZUrn/uC8c3X9gvvXGzEV/wFW00n/vcU9x++2lOnz7NAw8+xCcefhjnLEKC0RptNJ954glGZcVyseDy5cusliuIkaapsc4hdc7W1iYbm1v84i/8EpcvXea5s+c4fnyLM3fczmc/9zme/OxTjKqKz3z2SQ7mc4iCIs84duwYx44dYzKdcu7ceX7pF38ZKSUvf8XL+fSjj2K0ASDLc8SXAEC+GGvBancPpTOK2YTx+hqL7T0OLm/juvboPonhcnYuEhFUmUFJ6G3PhUcf4V/+k3+K7Xu+721fz8tfdj8ff/xTPPbkk3z3f/dnubi3z7/7l/+evu9ReYmPK6TJMLfdgYoKZ3uCViAd+5efRmcZblUjhcG1+6xvPsRyf5vJHXey+xufQLoGspJ+ucQ+9yhbd7yOY5tTzv3OexAxcLSUixsLC653LcUNh9B4/TvEkGifN9y6/lTii5Uvgkgg4lFEFAIjQUlJjCCFwKhIaRS9D3TeE4XACIGWgv1VSx8EwTmkiFRFRm89vU9j3yKXRCKdDV8yBz4/vizFyeHC8rf+1t/i8uXLvPa1r+U973kPJ06ceEGP/2t/7a/xoz/6o/gTdyJsR/ANwtUIU7F87ilcs40wGqk1x8sZUUmU99D2xOUej/3Mv+J13/pGLuwtccXd3H77/dy38XqaC58mXNtEFZ9CKE0kILKczVHFY0/9Bs/8+rs5+Y7/C/d81bfQn32UGC1jobFuRd1YLjz3HCfvu4/GRcr1GavGIISh9ZHMRRahZuU9mZJooLE9uTaAp60bXHBcunoFLXNMZtjcWB/e2CnNBNcLkxtqkC+I66e4yJXLV/E2wF7NB/7jo7y2vI+f+hdPsP/Ji/SrRzGvewfLgyWjQkIt0EZw7/f+Be55zT08858/hg4ak68hhCIXGR6LDIEoBEiBUAWTtRmRSL/okdWM+dzTWUcmJboqoVp/0fPgMAcuXrjIqVOnmEwnZCYbNoxAiAlzofQwzglps09jkgIENE3DcrkESKd859jd2R2665H9vYQdAQjBU5YlJ0+dRErJzvYOVVVRViVKaba2ttBaQ0zPK4U86i447xiNKlarJRHY2FxnMp2Q5znGGJxz7O8fEILHB4+1Hu8TrkGIVFzkWQ5EjDGMx+Pru5wQSCWZTicordnc2mI2m6G0wvapwwEMRdcuzqWCJ8syiKTukFaMx2OqsmI8HmOdZWcnjaH6vifGcLS4O2eJISC0BgSjUcV0OqMoC/I8Z2N9ndFohJACrTSzqaYoi+d1Fl6sHHjnO9/JO97xDmazGQ888ADnz51jWTeMqpITJ47zbX/qW/n5X/h5yrJgb2eXru958MEH8SEVVE888QTVqKJuarI8dc+2jh3j1KmTjCdTMmPo+o7e2i9YzG8sKkK4/rulA8Xz4/qB4Uu1scUR1uTzI20M3PDYeNTyB4g+8NBDD7Kxsc7p07dx9uxzHOwfUGQ5t99+O6PJhN3dPX7u5/4jd95xhvP/5t9y++23UVUV29e2+eBHPop3luMnTqAQfPQTn6DMC+658y42XrsBwbOzc8C5s+e4/bbbOHfhPKumZjqZsFgucS7wG+/9LV5+6RLf/p3fyYkTJ/iZf/+zTCYTNjbWyTLDZDJBSpk6eV+ilf9irAXtco63PVWzRT6bMdraYLQ+Y355m8XOLt72R9dYELHe0/SRcZ4hpaXrW8598qP86//d0XQdf+nbvpnXPfRKPvTJR/jwpz7F93zP9/H05Yu872f/E7mY4nUGXYfQmo23fh2qb3juZ97NqKyoY4exEVyHUBqjNdcefxidjfCmIJoRUUrGJ+9kde4x5s89xqnb7mXfuTSv83EoMoYi+OjuXx9VHR1Sv6DaOPzs0I2Lh7n3hbOe6933oXjDI0VEiICUAkJEZwrrHFUmqXLFfL8hRlCk4roPEH0EJFqmMZB1AecCEJEKfIiEmLp93n9xvNbnx5cNEPvOd77zBY1x/ktRnLqTIsuQ25cQ7S7lmXs49o0/QLv7LPXTDxMXlxFrZ2jWXo46eIrgW7TJEdIgTMRfeJyz/+n/Q/F9/z1Lex+TyTGk7lF6jTwvCBEaL2ikZ2Q0WVuz/+TH2N3d4dVf+6dposXaS6Ajo60TZCpy9dnz5K6GyZgmGCoJIgbq7cjZ39onn+5w29opEJJmsSIrMpxtWS6W9H3NmVPHmYwnyBhwXYPtarK8QGvzvK7IF0T8Il+JEFxgY3PEyTMbtA4+8XO/xzO/9gRVv2LHjpnWgWY/0IZIi+T0t30H937167j82x+ku7CNykaITGOKCqMynF8hlSaoCjk7Rq9VaguPc66099Dye1S3n2btzV/NZ37jffRnn0UqddPy4OzZswmwOOAs2q7FWkvf9ywWC6x1KCVRqqDrOpxzlGWJlJK+61gsFpih63Cwf8C1a9eom4a2aei6njzPj7Aqa2trVGXFI5/8JM5aiqJAirToKqUQwHy5YH9vnyzPmE4mdF3H9s4ufd8jhGQ6m3LnmdQG11rTti2XL19m+9o1Vqt6KAbiEU4myzPyIp1q67qhqiqm0ylN0wzPKRiPxpw5cwfj8RghJVprhJR03ZL9gwPatqVtmoQbkRIhJc77o8au0YY8y5FSUjc129e2uXDhAk3TEIIfcininEdpRZ7nSKlQWrG+vk5ZlmRZRlmWjMZj8ixDKklRFEcjtL7rbloOAEymUza2NvnABz+M95719TXuvOsM9z1wP/t7e0RgNBqnaxuhbRpWqxqlDFppiiKNb5qmYbFYcO78Oe65+27yPKdtO/Ii/zz8SLwOLByKhSPcyBdAFOGLdT2uP1/CsNz4tfSIoQMjbixMrj+dEAlv9OlPf4r7XnYfddPw3DPP0jtHURbcc/c9mCzj2WefwUhNs2rQShFCYLFY0PaWermk63s2NjYZj8acOn6Cb/iGb+D8+fO89a1vobeWp556mqvbV3j88Scoi4LXvvrVXN2+xuWrVwnBc/vpU0xGFc46Tp48wXQ6ZTyq2NzcYjSqmM2mREjdxCz7kvfwD50HMeL6juXli/TLJf1snXwyZu3MKar1KbsXrtAulhB9ygMi1geWrWVcaiotaOqOi489zL//546re3v89e/+Dt746tfymx/5EB995JN8z/f9JT790UfYe/YqZn2LYBTdk09i7zoD5Ro6zwnBocYF/fYcISRBesazGWF7Hx9rNs+cJh48xPzZR+mbFUiNW8yRlx6nm2fE4G4oSK8P+45uPEMtcdhR+ZL4kuc1WI4Ot/F5X7zxmwNagJYCKVIhJJXAh4APnvVphvfQu4ACpJBIpQghkhsNBNanFV3rabwlElFKYLRCKkXT9ljv+RLnlC+IlwRb50tF/cj7kEoQo0B3c/zlRzj4tR+nuvN+Tjz4cqJ+C3L9HrVXuo0AAQAASURBVJanTqH5edaCRqCJSiOVpfWOtbhE1Vd59j/8FHe++Vswx1+L2HozxdnH0Eaiz32YtpoS8pJMRITzxJ2zXHnqYcYPvZHTx+6m3V6xcIED1zErC1arHrf7HK2sCHfdTe88vgUxGtFmgWa5w3S6RYiCvcWcjVJTVSNs39DZnqd+5z089+QjmGJKiIHNE3fxtm//LowuSLXoEM+7yUfT6hu6foL7H7qfv/h//b/xs//qJxivVTz2Hx/hzGzMxYseVa3TUdL0Pbu7Dn/XXbzsO76VvfOX8FeukeUVjSoIUhBVQS8j3kdOnJoxfdlDbG+dQni4JypcPecjv/E+RHA89E1fxW2vuovH3v8+Nk5vYp/9QrzBixWr1YrzF85z7Ngx1tZmxBCx3iKEQEqZRh7DKd9ZS2ste3t7R9iIsqyQUhyxd+qmwfb90LVI2AwQHDu+xfHjx/DesZgvgMhyuaSqSgSCpm7obSqInHNUVcVyucI6ixCwsb7OdDplbTZjOp1hjGG1WnHlylUeffRR9nYTbkUIQVmUCRfQ92ijmYxTl0UIyT13343SajiJlgghuPvuuzh27Bh5nnMwP6BpGpq2ZX9/n7quCSHN+6WURyOqvusQQqC1YTSqWCwWqVs06IZ0XZc6P1JCjEcbZVVWqRslFdWoYjwakeU5RmumkwlFkeOdR8h0/YWQeO+xzt60HAB432+/n7f/6W+jqirOXzjPyZOnKKuKjfV1pBC8/nWv48qVK1RVhckyFssFWiXc0XgyIctztFL0fU/X9Xzuqc9xx+23HU3knfMcnkUj4XCykxZwIdPnGEY6fCEw/fO3j+A9n/70p1kul0fz+TgwSEIMEFIXphpXHNs6zm23336U0xDT3xE+8fGH+chHPs7Jk6e4fPkqH/nwR9nd3eVrvvqreeDBB3ju7FmqquQbv+kb8M7zzLNP01uXcEYh8PpXv5rd/X1e+epXcXCwj3WO4yeO88RnnkAowayasTad0vc9Z+64gzN33EZeFEy6CYKEU3LO8773/y6veM1ruP2O21lbS6PF6XRKURTkeYbzlitXrrK7t3cTsyCd/iORbnGArWtcs05wG1TrE049eA+La3scXLqGa1ti9ECk97BoPbOxYmNdcbDsufLEJ/mln9znwsVL/J/e8b28+avexPs++mE+9egTvP7rvpFff+7f4uua8rbbWdgFlz/8EV779j9N8ZbX8dzvfBRaD4QEDs1n1AcHUIyIoePsh38XGSB6S79zFZNX2L7m4NxT1HYDuX6SuHcZOazmN2bQ9U7I9d/4+QWGuPErz4sjcHA87MSLlMPDE4sYUJLUNRERoxVaCuqup8wEk0pzbb8lUwK4XpgkGJZnY1LgA8xXLQFJptP660Kk6ywRgZLieYX4fyle0sWJEmkmFlwgug5hE9smfuoKB4/+LqEckX3fj1FMKrrtNRAatMFsnGJ59hp9vo4Qmtha8q6B5S7LT/4DVm94C6Pb70QXGVvjOdooYlEwNhJGU5TQrC6dp1ZjTr7tm+G0RNuWPAg8krXNY/TFCBNKvAcRJG4AIaoqbTrRQxSSixevMLnvLtY31lg1ByyWc7avnOPy+efYOH4SYUqeeOIzvPnrF2xs3DC3/7zC5PlF8PXEy5TmFfc/wAde90a2Lz9Faz31+SscLDqKM/cQ+h7THhDKdR78c99DXDXs/N5nyCUYITBSE5xGmRykQAVPc+FZurLiyZ/+KbY/9D7u/UvfD7qgPH6auL/L7kFHfP+nOPHGr2L7Z95N/ewjNy0HTpw8gZJqqPIVTd1Q1zVFUeC9xxiN9z5hL4aOSdf3iVJbltx9910sFgsuXbpEb3smkzGL+SJRcZ1LbKCiGPAkGdeubTOZjLHWslyt6K27gdWyx3w+Z21tjYP9A1zwZMZw7NgxHnzwAbq2o2maI2Bp3dTsbG+zs71D27ZorRlVI06ePMmZM3dw/tx56qahGlVMZ1O890xnU+yAE9nY2AAio+FE2luLd56+76lXNcSIVgob0mZmnaNuGrquQyDI84QxgYSfOWQJdV0qzqQcFkYhyAaG0OEoKi9yqqqiKstUnJjEylmtEv26UMUNzyOfN/q4GfHud7+bM2fOcOLYcZaLBW95y1uYrq2xubnB6dOnGY3HmL1d2rY9KkB2dnY4mO/TdV1idUnJwcGc0ajCWsv8YM50OiXLDIvFgu1rVxOzSSS69XS2NlB7IyIqjk64Q+fred2VYRM4fJ/2fc8//6c/wYWLFxNQWwiKLMd6lwpmIWi7Dob7dOedZzDG8Nav/Vp++7ffx6tf/Wq++8/+WZxzPPmZz/J7n/wkr37NaxhPRhhjuP3M7bRNy7lz53juuee47dQp1jY2OH3qNhaLOV3XEnzgrjvPcPbsOcbjMfP9fd72zX+C2WzKQw8+SPCBtmkxuaEsS87ccceQV92R4VvXtRR5zmQ0IvqIkpJRVXHixAnGkxF5nhFCTI8T4ktSsF+MuA4MTdc8BEu9u023WNAtNhkf32TrzEnWT2xw7exFFld3ic6BCFgX2V04tqaGk5sl+wcdi/NP86Gf/3kuX7nC//j938vrXvMGtpuaX/ul9zBa26TZ28PtHXDq9a9m79xnefw//ye+7wd/kP2zF9h//CmK8Yiu79DjGao8he/mNPs1WsHx++7n7LXzZNMN1u96gN2Hf5l6uSQbz9h67Ru58NvvQQR3NM6/4RdMHbPD/17HsT7vSjyvfDnCVw+9UiEI8bCQu8761CqNECWRItOMi7R2ChHZnJbsLXqEFJRa44XA+ggECi3IjMC6QNM7fIhoFYlR0PTpwJVeZMLaxReYAy/p4kRKQdAQHEhvic4hACcgyIgKPbgd7rzHoV7+raitEqcz1l/+Zrx4hvzY67lyaclW3+KIaOFRzuIuPcWFs2e567Vfzbmrz7J1x5T2+P20Z95Mv3YvnOgIYUEhJJc//gGufebTdN/+DUBOiAYBZLNNtucN4yAIvU0Axabj2ueepbj7JKuuRmWSLAY+/cTjfPWbvgbbWYq8YHn1AFsvUPI4CM21nR3OXjjLaLo2nJ7UF8Bkj7q98fqbNArwQ0LceeI4H/rpf03TdizmLdMTpyhf+Q0gRxxc9Kzf/ypO3Hc35z/8KUZS4vuIKDREQR8DOssQUSHXTrFz9jn8Zx9m1uxT2XWObczIq4p6ehJ2r3Lwq7/A8T/xbRBzWK6QN/HUnJmMq1ev8vhjj3PPPfcMc+4M79MII8YBBzD0NqvxiCqOMFnSQjlscc8XC7quQ0lFURSJtitytNapO5AZzp07x7nz53HOsbW1ydpsNuBYAk3bsL+/z97+Pjs7OwgEJ06eZOvMJnfeeSfj0Zi+t0NxcMBsNoMYWa1WOJewMForyqrkzJk72BzGPqu6ZjIZo3Wi5RZFge0tVkq2tjbTqMp7ur4/2jAiYIwmxoD3nhAC1jq6tqNe1TjnkFJw7PgxIFE2265LOibO09s+LWLSoFQCVFZlmcY0maGqqiMGUJ5nKHX9ZyklB3wMeO8QApRS/2UlyBchurbjf/l//S9MxmO+6U98I3Xb8Bf+wl+kKgvufdn9zOdz2rbjzjtPIbVitaqpRiNsbynLiqosaLsW5zx13aC15umnn+F1r3st0/GEzzzxBO/55V+i65N2zZkzd/L9f/kHMAN258bjwedhGFPc2Fon4n2gbVvyzKS8U4oQPX3f8a3f+qdYn035rd96Hzt7qZP13HPPobXikUce4aMf/Tgvf8VD7O3ucXCwz7f8yT9BUZT88i//CleuXmW1WnHu3Hnuu+8+7rv/fna2d7h46SJ333sPx7a2ePzRR9k6tsXG1jHe++u/yacfe5T77n8Z99x1F5ubW8QQma2vkRcF21evMR6PyLMMYzRFnnPi+HF2dneHPDOcueMODg72E85IG4qy5MSJEyipuXptB+cf4xMf/wTPPPvcl8QevXgx4C1k+neM4GzL4solmv09mmNbbN11ijtefhf1sTWunb3I6mAJIeB95OpBTyDj+EbFqLbsHFzhqf/8Xv7fFy/x9j//3bzlLV/Dq97was596tNMNjZYHmxTP3eWP/3n/xLv+8Wf4+d++qeZnrwb7QTxc09TZIZm/0lUP0dGwHccu//17F3eRfgO216lXayDUkRnifUBzbWLxNAhUMgEd02/izhc2Yci47DrMUT8vKuQRlfwvM3ixq8PVXMqUSJKgBCR3CgyHZESOhdYn5Usmp6mtUyrgqV0OBeQIqBlkuxYdZHMe5zzGCPJjaFziR0ZQ1rbUrEeUfpLj/lvjJd2cbK+hspz3M4+vlnSXAtIlRJTASIE2DvH8pf+V/pyzOTP/I8E8bW4tVM4MSGfbdCsvxI5O6Cb3oYXgMlSYgdovGPtG76P3lSs/v/k/We0Zed53wn+3p3DyeGem++tHAAUChmMAMEsmqRNBasV27LbatqaaXvcHnt5vjislsYeec3qsUdtj+yWWqQkBokSA0AwgiRCAVUooHKuujnfk8/ZOcyHfeoClDRj2lZ94PK7FlbVqjqoqrPPe/Z+3uf5/3//125TevKDJFIeX24hawa6ImNaebQ4QXL6RKvn8eceI223McYmCVOJkKxYChGInE7OVvHDANd3iJEpjTU4+51vcf+x+xkOXWRVJ0oEy+stiuNTmOUCPTdmeXGFRmMaO1/ANN562PJnW3xvr5lHQqgwiVlZvE1neTVjNCCoHDpKWhrHcwJiL6TQGGf1zZvISYAsq6SpSiJ0JAJSWUMq1fAVhdQbsLm4Srh1E/no00y/970UdJWxcrZpRWOKyfEx1EqFVFcgXyXVzHu2BwbDAWIo2G02mZgYR1bqGKZJFEZZ0dHLxiyFkZV1OByyvLSMoqqomkKv22N9bR3P9/D9AFmSss6CEGgjsWocx2xsbjHoDwjDzHKcJgmlcib4C4KAVqtNt9slDALCMKRYLFGrVanXRgXA9jYb6xt0Ol1UTcG2rGzEMtKuaJqGYRhZ8RGGuK6LqqpMTkwQhhn87C7fQZIkgl6w99BXFIUkiUnimCiOCEeFih8EJGmKYRgMBkMcJ9O0ZDwXnZxtkyQJcZwQBAHRXX2OJCPJEpqqoWrqnmvJsu1MV2JntuRMyZ85PtIUNE3FNHMjPURWREPmkPpPIA3+q5ehaXhhwNAZEoUh/W4vczLJCq7ngJAIw5C1tVUKhTz9Xg9NUZCEYNDvI0kS9VoN286hKJk7Z2dnG9d1yOfz5HI5uv0+cRQTRSFJnHWWflhd8pZr4i9ioGSjMbh14yYvv/QySRzvuYSy0ZuGbCv0ul2iMETVVCrlMoHvs9hsksvlWVhcIoxCeu0u3/vuC0hKxrhZWl7l8uXL9IdDjhw+TK1W5+DBQwwGA8rVMnEaU6lWMEyLq9eu0e60abe7DJwhvX4fgIMHDmEYBvlikWvXrzM1OcXM3Bxf+fKXUWQZ07R46ORJAj/gwqVLmcYjjknSlCDIilshBGEUsbO7w8TkBEmcsLa2zuc/9wVOnHiAX/zFn+O3/t2/vzebIJVHj9ns1C5LAlkWpHEGzos8l97aGm6nQ21uitpEhULJYnd5i+21bcIwIElSdrsBcZQwXtYwdJmd9pDtC2/wh5vbnHvjArOPnqRx4j6aF69THKvQWV3g9a8/z0/97C/wx3/4+2zcukHu6FHcpQU0BEI1cZ0W5tQ+EilgZ3UJc/woyuQ+os4SiilR2HeEeOkiuhzRvfEalpIQxfIPd04QewXHXa3T3d+LSUdatdGl+CEdytsEs3/GvpOOTrMpGR9MkyU0OUZXJYIgQtdkTC3jR8kCdE1FFj6GLCDNChMvTDIQYxRSKRpEcYobJERxQjzCN5CmSAKEkAh+yPn2/3v9WBcn5EtgWsidLkLVSYtVYkUmQaDGMXfxdEGSQK9F2lpBsgyOvf9puutrhBvbaMR4YRmtdpTUNFHyY6i5HIqVQ7iw+/ofMnbso+gLF1j7wmfZ99N/FzExg6IfJBbbVGsF9IqFXKzwxGNHuaRMYQxNOq0OQT8g0iYRmfiayA14+UtfZ+bdjxHrU1iyjEhBSSQG3S7VShVFFuiaRTWXQ9U0wljgCxlfsymUa2iK9OdIk/yQ3/2HN2YcR7SbLU595TkUVSaMdWQloDQ2gW8Aco6YCNnt4Q8cDNsgCX0SSQJVItVUjHKZ9UsXcV/4U+RancBuoOg25vwcaaKxvb5BJZdne/4B3J07DBGMWTZxEKKoCpLyF9tI/zKWbdnk8rmMptrrZw9CxJ749W7n4O54AWBtbY2VlRUgc9YgBOVyeU9zMBgOgYy/oI0Kgn6/TxxHozanhGmZ6JpGnMQM+gOGwyGu5+3pTQrFwkgnIhj0B/T6PVqt1kjDAQsLCwAM+gPyhTylYnHv36oqKmmaYlkWxVIRZ+jgBz66rmfvKYqRZAlZyQSzkpTxZTzfz3QuQUAQhgz6fYQkUchn/xZlpFWRFZlGo7H3miRNRk6jlDhJUFUFXTewbAvTMMjl81iWRT6fR1WUrBMTRUSRDz4kaYoksvEDZJA4Rc1ed1dMvLS0dM/2AEC9XuPEgw/x6muvkCQx3//BS/zKr/wKjzz8MI7jYBo6W1ubPPLIY3u8E9f3UFSNTqebjc8sC1VV0FSNJE4o2DbbW1sUCgUsy0LTDVI9E9R2ej3a7TamaTF0hhQLRTRN3/vi/dkOgRAiE4anKSvLywS+xyf+2ieRZQkQeyNHSZL2+BUHDx8mCAJ2dnb5zd/816PC4wj1Wo3p6Uk++OEPMTU1SbFQ4F//5r/m/IULFAp5Cvk8SZpi53K02k3GqlXarSbXr13n5ZdPsb6xQSGX477j9/PgiRNcvnKFgwcPcuKhB1hbWeUbz5+j1Wzyzne+k2vXrnHh4iUK+TxxFLGwsDByuKUISSIMIhYXl2h3emxsbuD5AZubW7iuw82btygWC0xMTPKe976bRx97lOFgANyb4iRBHmmCUkQqSOIUKc0EnrIQ2WgxSQiGfTav38Jt1Zg+NM30kVmK9SKrt1fot/ukcUJ7GOHFKRNFlamGycCJ2d5Z5vyzLU5/9ZtUHrqfmYceZOX8BSYm6mzevsjX/sDjnU89zXe/9id4l86jlm3c3TZCLSCVagSehiSrqGaNoNfCnpph0F/G2VzEKpYJRYoceZR0ODIWs9RU2RnIezf2NE0zl+Rbv3B3dzFqFO21Uu7qovb23+jHt3ov7Dl+sp9mhY4qZ2yTMMoKNMuQiMIYRZLoeQ6mrmUunjQlEYJUZE0ATUoZq+WQZZndtovrR5mkQQhURUJTZNI0yazFyo92UvmxLk7chQUSVUaVJBJNRjMtVEUmTlNElFWSRCP6JQIpiXGaO+y88MdUDxxEmpljbnweZesORmWHRJZQ8/tJzQBF32HoJRQLdYzYQZBiRiHx+jWG1y4x+6lfI7DuR0qWyWkKLSTGQ49cpUQQhMh5iaS9BUOPyINhKiFkQeHAJLEAkS/T2VzFS2Luf/AYPddDU2PCJEGxFfYdO4ZWHMP1IyQhsXD7FneOn+TAeDn7oP/c1Xhb30S8VaBIQuB7LiKFwsmP0Xz9OfL5ADVvoRRNwo6LaSjokkYwcqakfoyQDGIJpFKD9q2r1IoKW8UKyb4H0ZMQ/06eXMlm7sgMli0gn0fu3iF68Utw/Ah2OU/Y7mS2uHvY0q9UK1kXo1Si0+nQ7/fJ5fIYpkEQBFi2hW1ZGKbJcDDEMAzq9Tp37twZuVGSkWhPHxFNtaybkCSYprk3crlLVJWkzIara/oeNj+OY4IwO00rikKpWKJWrVKpVDKnjO8ThWH22YxEpnGcoOkaM7MzVMplhICFhcXsga5kepi7RYGqqjiOs+d8kSQJ13WJogjP87NTiSRlKP4oQlNV4iRGURRkOUPHx0mCqmlUawa5XI5qpbI3UmJkr+56PnEcZafnfJ5CsUixkBU2xsiR5PuZmDaMIqSRjVmS5BGPJXuw64a+N1aTJJnVlRV+8IMf3LM9ANCYGOd//of/M//9L/8S7XaX7Z0d/tk//+f89m//+6x74rpUq1VkWcJ1fDY3si5W1hkpEEcRzWZz1Bmy8X2PODYYDgb0+wMsw0BT1D3GTRzFfPELXyRv2ywtL/PQQyd53/s/gGlZP8QvuVukZNyZGInscFEs5sjbJsVSCcO0s26Z5+F7Lghpb7yYxBkGvlatEccJ4+MNmrstxica2KNOVpqmtFotioUivUGPaq2axRIEPpIkY+ZynD93gdOnz2JbFvOzs5w48QAHDx9maWkJVVHI5XKsLK9i2zbjE+MUigVW19bI5WzKpSIgMn1fkozcX96ogLbZHcUyDIZDHGeIZZr0+wOOHj3KM888Q6lYwrKtjI30/8e591+7FKNEFAeQRKRkYtckgXDUUVBkgZAy63cax3Q2t3F6fSb2TzMxO0ahkmd9cYP1hU2iwMfzYjbihHpJY/+EQcnWWNgagtuj/eqrqA+d5IEnn+TWxQtUyhXa60tcPv0qBw8e5MrrZ1AMHWOsRKIbmJWj9O9sY1ZUpKpFunqTYDCkNG4x3Gnh7LYxCwXi7iaGISjnMg1Hc5ih4++ORN5m0NmbHb69wLjbERHirUPrnqQ2/fM+Mklk6AUAXZEomKDJCV6YYpkyuqFBFKNKgkreQCZjK93t2sRJgiwl2UTADwnjkDBO9gDHiirQZIk0ybQoMoJU+m9grBPKKlHhSSQxjaU+iFLJoew7CZ1Nkn4HwohI1ka2qOxCxk6PlS/9B6pPn6BrPkLHtTjw5DuoPbmfdPcikuii5DoIdQl0iUeO6FQKl7miSMgiBSTUJKR76iv0xw9xfaZONJQ4mgiWwjKRkUcxHYhjlEoFqVAkl8vRMnXiICHo9Mg3plE0HQeJ67fu8OB9h0n8IaqkEyUpThQT6ha2USCIu0iKQXNzne2tNWw5ZrpRz6pX2BNE3V17M8q3bdI4ipl89IPcPPs69FroJYv1zQEDeUjqtvEBhIRIBZKkEAUxkmng+S79hRt4To+T7zwJxntYOfUdEjvH2E//Co37j6JZFl/8N/+GQSIxLbWQtQRZUkmQSHWdBAlJ3LviRNc0LMui3c6EjZ7r7ll8FVWhoOX3uh+e6+E4Dlvb21lGhKJgjcYpiiyPRl5kAC5ZQdUy4aofZO1eQ7/r1RfEcYymafT6PRzXpVQskrNtJFlm3755KuUKmq7R62Ut81zOJk1Tho6DJAnm5mbRdY04zjo6/X6fOElQFBVVHek6RlRXSWRk17vC0iiKGDoOnXaHwXC4B2KL44zFYpoWcRxTrWWEU8/L7NWGYTA2VsfQdeI42bNah2FImrp77ymXy1MoFijk8ygjoWsQBIRBmGX4jG5Osqqiqtoe8r9QKGCNOgApKbqms7O7w9mzZ1levLedk1q1gmFomKaRsWckiVdOvco//If/V/4v/+AfsP/AfvL5PGmaYBgmx+87zrk3z3Hj2g3uf/AEY42xUcEXg8gEq82dFjPT0/T7fSqVChOTExQLhewEGIRcunSZ2dlpiqUiiIyF82eLkh9aIzHK0uIy3/zGN5iYaHDf/fcRRSmvnHqVJE2Io2gEOIMnn3ycUqlIv9fHtm2GzjAbRUmCOMoypMRIHamqKoVCgV6/l3XHZJk0SZiamWFxYZGZmVmazV2OHz9OPp/nyLGjrK6u89qp1wijkKWlZY4fv4+V1TUajQZbW9ucPXuW97z7PRiGSRJFFAp5JEXi2PGjXLt+Hcg6swCu4/L9F77PxfMXOXz4ME899V5M08LOWTByepGmBGF0z/aApFqY+Rpx5BO7Q9LAI2WUOZVClMYIKXsgixQSUjzHZenyHXq7XeaOzXLgxAHqE3VuXLpFv9XFCxK2Wj45XaGQVyjbEpHno6cOzfNvIt93P+96x7s4feY1apUym3eu41THKVYbOE6PwlyDwtQEQ8fAWY+RykUkEWPkLCIlRCYgP5Yj7TZRU5B0DU2OcJ2Y8XLKza0UNxZ7o5E/L34Ve86xH9pmd3/vLxwv3hXTZv/jXQ+abQgUJdPeWIZKmiQEno8hJUiyRBSNDjyKIIoz/L8QULR0ZCkT2d7dj7Is0ORspBuHIYosI0RCnDAa9/6n1491caIV6/Sl9+H0DqM7RaT+GtHkUZTDT6AoBmmcIhnZxUrJWAJCUlAkGakQY7bWGb7wpxhzf4ulrz6PNP0QlGdg8j5MTyORdAatNVStSGoX0UwNTANJUZHSBDP2kOMhHd/B6bc5f3GRabmGKmK0KEbRFGKRYOgyEycOo4zP0moPMa0icRxRrjc4//JpipUS+2fGCdyQOIZeP+Lq+avc94iKXSwi6QOCwKeSt/Fdd1TpvtU9ubvZsh+TbBPfBe+kKZVaDaIBnWuvceTINCtrA9odn7jgIwsVz3FIpBQvVckjgwxud4fW7SsoQmPmqWdwGBLe+R7J8iX0h9/H9Hsep1awUaMQWbcYvPEChaMpvi4hy6AgUCUpuxH8BV+Qv8wlSTITE+NoI7Kp5/n4vsfO9g7lcpliSSKOYjzPY3V1lTjMRi/lcok0SfFGtlld09EtDdPKNCtBGBCPuiGFQn7khomI4ghVUUeW3ADSlEZjDHmE6Z+cmERWZDqdDpIkZRqNUVvfNM29roI/siynozbXXaFprZYRSjVNyzQkYbjHPUmSLLzQ8zwc180eqGFEuVwin89j52xkWSaXy4itSZqSz+WIkwTf89F0HddxuHXrOru7uziOQ0qKPOoI2baNnbPJ5wvZQ9r3R8VLukedlaWMYWJZFrIsUygUKBQKIyCdvNdRsiyLS5cu8fIrr5IbZf/cq3Vg/wGuXL6S6SpG9lXP9/nas1/HzuX51//6NxFAq9kaRb1n1zwMg9F3ij13TBKnuJ7H/sMHabaaSKPO1fy+OTTNGO1pQbVWIwwC8sUCUZidDN/uqEj/gpMqwPh4gwceuB/d0CkWCqysrbO2ukp9bIzZ2Vkm4ghVlgm9gGF/yPz8PFeuXCOfszFMk7n5WcqlMmtra0iSxNTUFPlCganJCWamJxkfn8D1PMrVGrduXqff62AaGrZlMtYYwxk6fP2557l18xbbOzvZfhQZUG97J2F8Ypxbt24Sj4TTpDH5fI7DRw7T6nQ4febsqGOXFWRxHGPnc3z0ox/hwQdPUCwWMS1rL/up3++Rz+Wz7sqgf8/2gD/sgesiNAXDKqKWxgm9IcGgg4i9zOydvHWqF6NDU5LENDd36LY6zB6YZf/9czzy3pPcub7E+u01fD/k1obLeGAQhQmqBGkaU8ClfeUCV1SZv/bXPsVzzz5LqZSnt71NYXyS8eNH6CddarP7qbdSmuImaaIgFB177jD+cIBwd6lMjGF31pHWbiDsFNMUhM4O1UmfsbzMSjd9WzHBXhcFQNztzP2ZjXZ3wpMVYXdf/tYcR+wNctg7zEZRjCrLJGmCIMUPQnI5HUnKxLKDBPKmRt8JCZKESl4fBYHe5aJII6eOhKJkf34QxUiSjB/GJKmAVCKJfrQC9ce6OFEeeJqy2MFYvYmiP44YeAzOfIco8oiTiFQ22PfBv0okFGQRE6QRKpDIMmHskYhsJkkSIHU3UPJFOld+QKk1z3Bo09UFSeFhhD3JlrqFP/su7NohjGoLVIGQJWwjR0uWyJVKHDo+z7WVO+RFjAgiQnLYk+MMgxRDMpByNkmrQ65aJk0SWsPMzdDtD7h65SoH5g8SRClSKji4f5ycbYCSQ0526XfbOL6DzF1x6Q9PETN1dvZjlMQsL95hbu4ASZpy7twlzn3j6xhSQqzpdIMusd9DtK8RBUOU1EFKVVTDRJJTeqs32F24Q+Xkw5QPHaZ19jQL3/ky2u5tEiVHaXwO3bTQVQ1JV4kL00iySq6q0FQUJJESpxKaJBGlaWanukcrTVMGgz7VahVVVQnDkObuLp1uBzESY0ZRjCxlD9ZqpZIJ9ySBruuEYYRlZ2OfXM7eY0n4nr/XjcgsySpRHDHoD1BVlZTsdA2gj2zGpVKJyclJNE2j2WoSBiGqpu0JV4MwyjoOI23Lnq1SCEzT5PjxYyRJsgeqStKEZESKTQFFyfQdSZzs6WkEAsu2aIw3CPyA4WBIZZQ3FMeZrVjVNKwRWTaOY7qdDp1OG8cZjsL+NDQ9K0wq5XIWamhkYzFJBmkEmMvshgp2zs50MaTU6/VMr6Moo2udEWgtK+vgRGHE+Fh9r2C5VytJ4ZVXXhuB1hI+8P738+KLL7Gzu8uZ02e4ePES169do1gqMjU5yeryCqura0xOTTE5M42iKExNTqGoalZIjiIBut0uhmlx5/ad7LraOSRZoV6tM7ztoGoaKyurlEolbty4wcEDB8kX8n/OnSTEW/TYVmsX3/XxPYd0eoowiHA9l5/6yU/xzAc/wI3r11ldWSUOA3q9LsVymWarReAHKIrC7Tt32Dc3y6unX+PTn/5V9s3Po8gy5UqZBx64DyErvHLqVTY213Fdl3arRbVaYWysgapqOMMd1pZXiKOYh06eZG19Ddfz6HY79Ls9Ou02hq7huS6D4YCjR46QpCnffeH7tDtdVtdWaXc6QMpuc5cHHzjB1NQEH//4X0GM3qPjuty4eYNTp16FFD7xyY9z89ZtXvjuC/duDxglpMQnCXxcb4gnFFSzgFWbgTjG7e2QRH1S4r1uStY5IBP3+gELV27T3Nzh8EOHOXriMGOTY9y8eJvuVouVLRdNSrEUsBVBGiWoicvO+TP8QJX5H3/t7/CFz36WNIkI+ru4m0UmHj/BRGWCM2dOI2IXq6zz8FMPc/GVNyjMHcOwNGZmGuRlB/POGYKlS5i1Mq2zL6PJLnMNg5Yj4YSCZK8wuWsKfuvne86dkcg1c+6nb3VVhPgLC+W7f1ImWE0xVIlEkrANCU+OkRUJTUowtZQ4lAnjBJCQpRRZkfCCEFXOiCxZBpVAksj0SGHm3ouTlCgRiFSgKBJJ8KO5N3+sixP5xc+jSjKxEJjvaCAXj6HMPoqWs5CFTOL08IxZurM/idE5S16zSTSDSK2zcDWlMi3whELQbOGFKUaaICcpsusS3b5KUsqzvF5GK+QJhhdx1y7CiQfIH38cze0gWwaJDrKcsC1kvCTFQqFSryLpJXqOhFotksoykUgAhXY3Ruma+F0PzR0w/8ABxkoKt87fYXZyX7YBBTheSFnWUFQFocn4YcDqygIH5w8D2Qc96pO8zRmQNf2WNzq8fm6N8fokaBrXLl+j39ymPj+HouqoxTL+1hJyYRZ55jHiXo9QVpDklLULpxk6PhOf/Ouolsn6Sy/jbXWQJk+Sy6nUx/ajVqogBL4QKJKEiONMKe9BqkASQ5RmvR3Jd8k8S/dmWbbN7du3WVvfoFgsoqoKQkgoikytViMMw4wBEkUMBoNsRqrIWLZNMuKg6IZBqVQkn8/vIe2HzhBl1AkRkiCKsyRbSZZ/yNFjWhbFUQ7LWGOMqekp1tfWcRyHMAyxczkkkY1jPM8jDIK3xI+ytKdzse2MT+F7/l6bPuMRZBbdKM5OsXGckJJiGHpm8dT1kcsks/a6ros90gFEYYhlW7RaLXRdp9fr0+t1WbizQBCEe0LPNAXD0KnVa9TrdWQp636EYUicxKPuTiYQLpWKaKqG4zoUi0XK5XI2Qkiz9ydLmR3azuXwXI8HHzzB+uoqz3/jm/dsDwCUSmU67TaVcpUg8jl05DDr6+tEUUYL9j2fWrXGzs4OF89fpNFoZPqHNOXLf/plLly4yMbmJrVaDcs0CIKQwPcpFAu02x1u3rzN+vpadn1kmY99/K/Q6/ZQNTUT3Xs+znDAmdOvMjsa69VrddLRQ+GunT1NU0rlCkKW0HSdSrVKKkn8nU//Kvv2zXP92nXa7TaKqhB4TqYl6nQJAp9isYiuaTz93vdkRfilS/h+gB+GzM3PceToEdbW1rl48RI526bb7nDpwkU0VaVWq6LpOsvLKxw5coTxyQk21jeQhIwQgq2NDbqdLqsrq0xOTjI2Nka1UmVpcZnxySn+6I/+mMFwyO7OLpVKhZxlcePmTQzD5H3PvI9SsYBpGIRx1tm7fesWv/s7v8fS0hKlUpGrV69hWVkBfvbs6/dkD9jv+Cv468uEa7eQ3BZpHOIP2gTDLqqZwyg3EGKCsNcicNuINBhpU95+1EvotDq88f03mTowy9FHDvPk+yrcunKbpetL+F5InKrIKkyOKQx7HoET4l4/zx98UfDzP//LfOf5r3Br8QZxfx3nRp6xo/dTHyuysxRRLskcOzjHQNIJQoN9M9McrpocthL0o/vptZ/C85oshQMGt19jvgHLmzF+rBCndzsob+uMACIVb7MFZ8WIeJs4di/tYDQTukuJFSJDyydRjBARJAmu5zNTN5mbtrlyNURRIsan8rS3euRsjYQs6C9OUrp9b6/DghBYhoqVMxi6EVGcHaLcICJJRRYgOCqA5LuShP/E+rEuTtI4o/ApqYAoxO+tE1/8KoGAWFaRNJPigRMEwRhS7jF8cz+RahNZRwhNlaR2gLQ2RT+2GWJhoiBLAjfKTqrCMmnn9nPa209eeRlruEuy+Aa9xcsYVgEmH0AuzaEkEnZ7B0dEuJ6PUE08ScLDobfeI0nADyICc5Lt+97DYk9hYlfiaLJC0vY5cuwIyCau74FI6IcRG0t3mNi/D0nVEanAMnPsr1TJW0Z2k+NtsU5/RneycPUyK5df4Oq4wf7j9yEpEsW5/fi9JlRrVCbnMOxpWp2ElALEsLmwiLvuMf7eJzm4/wCtjVVu/+kfYI4dQyklKEIwffIncJwYWVFRNneINBlH15GMArKsEqYOSTzSbiQJSRojouAudOCerKywKLG6ukYQBhQLBQqFImNjYzTGG5SKJdI0pdls4jgOztAhDEIMQ2c4GKKqKvl8LgvTQ+C5HlEY7eXkKIqCZWVQrijMiqxSqUS32yWfzxOEAYZuoKgKmqrS6/XYbTbp9foYRsZJkWSJQbdHtJfgqyMrMqqi7gHMDCNz4siKPLLeij2Ymud56Lq+5+ZRFJVarUatWsN13cz2rGWhdbZlsbGxydbWNjOzM8iSYHVlFdfzCPyAKArJ5bL3WywWECOLbbFUolIpo8gKvu/jei4p7BUmhqFTr9exTIswCsnnc3tdIUavU1U1szsbOp12h8/83mf4+Cf+CseOH+fc+fOsb67fs32gKBLVeg27mOPalSvIssRYo0GSJCwtr7C2sU6jXmdnZ4cbN26ytblFMBLB/smf/Cny6H0HQcihgwdIkgTX86jW68iKy8LC0p7ep1Kt4roOu7s7dLs9Hnn0EXRd5zOf+Szdbo8kTTh44AC//uv/C4qadZiyh0LK7s4O7VaLbCaS0h8McYYOW9s71MfG+cqXv4ymqFnIpG6QK9jkC0XW1ta5fuMWDz14gldefY0D++YxdJ0XXnghixCwLF599TUuXbxIr9tna3ubTqtNr9/n8OFD9IdDTMukXC7juA7tdpvqKCQzTeHg4UOUy2UOHz5It91mdX2dhx8+SRQGaKpCHMUYhs6RI4colUosLi4hRqMg0zLJFfJIsozvOHzrW9/is5/5fcIgJJezOXDgAM+87ykqlQr5fJ4vfPGL92QPPPRLP8Xy9U02vvolxPJlYrdPEvuQBkRuh9DtICk6ZrGObRVw+03wB6QiBhGP3DDZSCOOQpavL9LabHHf48c49vAxxmcmuPbGdZobu7RdCTunkrMV1NhlbkYjHt7mDz/zGX7qJ3+KYqnA2vIVWitXee2POjz67g+ys3SbSr2Iljp88L55CorNdMHENmRmdBWZMs7kGN1BDzFo8eb1U1RzMY2SoO1LRIkgBiK9gF6skDbXEHF0txLZK1oQIKUZF+XtxUycxgRJnuLkg4S+h99bIQpbaFaZxN1F0wSlgkq9YuAPPeanTcpliyCQ6IohigxRKhELgaYpSGGYjUajiKnxErKiMHR9wiDOAJZRNlMSJJDECBlMXSFOf7Sy48e6OBEim7kJII4ChOshAyogRT5RHCBLXXIn6ihqjfzBGUgkMGukqUMkmwSleeJiHXXmAcJagULoIBkqeqmCkc/R21qGrVWC1jqmoSB0C6s6hqUZ+KqCCCJaWxKeI1GeP0ov3UCEIZLvEzohoaQTpBCHCWvrEl57Bcl1GZQexpUFIhrS6fsgy7gpBEGS3QgKY8SpSSgAy8I0Znnj6jWkGwsUPlakWim/VQHD2/zwgkJO5z0ffA83b6wwf/gY5QPHII7RttdR7j/K9Ds/xmY8ydq//79TmLoPL+nj9hWe+NX/CWu8zLUvf53drTbJxhKRyJP2u7jbQ3r1+0l1ExGU2L4oSMKUJPVoreZBSokSHUlOSdKseDISmVjRUDTjnu0BWc4yb4bDIZIsoxsGmpZZcX3Pxzd8XMdlZ2eHIAjwfJ80TTOQ2air0mg0qFQq7Gzv7I1V7uonhsNRaqsskcvn9hJ88/l8JjI1DUrF4t4IqNPpkKZJJiZVlCzwbzBkMBxmQLdcJpq17RymMcrkkTJypiQkZE3O3DxRhO/7DAYDkjTdGw2pipolEOtZ4RMnMeFovBTHCds7O+zuNimVijjDIZubm7iOi6qplMvlTBA70mRoWqbLuMszkSQp6+5EYRbsJUuoqoVtW9SqtZGgNN1D0SejYMO7JF5dN1AUBcMwOPfGm9SqFf7gM7/PocOH+PBHPsQb5968h/tAxfN8Xj99hnwuR87OUyqXieOYVqtNv9/Dtixa7TblSglFztgrtbExfv7nfo7BYMBg0MdzfcbGxtjZbVKpVvds6Iois7SyTGOszrNfe444zuzIiqIgSxK9bo9eb2Q3jyLarSau41AsFUlGIvU0Sbh+/Sq6obJv3z52mztcv34dVVWoVEoEvsvYWD1jzGgahq5TLVcYOC5zszPk83nyuTy2bZHL2VSrVZq7TTqtJm+efYMoiSkUSvh+RL1e5yMf/hBnz55FABcvXmbf/DwHDxxkbGwMVdEQIhN7S5LANAzW1tbY3d3h8cefYHJqkpWVFfbPzaOaOmEUMjk1kWkcUvb2nOs4vH76DO945zuYm5un025z88ZNHjp5klarSS6X4xOf/CSzc7P0up1RHMS9WbWGwZ2VPGFxEqvqoA12iP0BkdcliV2kOCANHYY7q8iqiVmqIyoThE6fcNiFJEAQZmMfElIE/d6AMy+8wdTcBEceOco7PvJubl9b4vrZG9zZcikYKbamUCjoHDhSprXTpyzd5ud+7lO8dmqCs6e/x83V27z6Enzkfe8nd2CO6VyJq6trzO0/xANlm1YUoikKJiPOSF5ipVRFzhcI3D5TjSK7A4Gn2MSRROXQcQ7cd5hLf/olEjciU3vsNUZ4a+jzljkiFZAmZER0EmJ/SBJECEoEwzhLZo4iVFmlXivSXt9k38Eyuzsuze029ZrGYBCz3goJowQ5jTFVCccPKOZM4jjAc32CKB6NmVIgQZVBVUBVpSxqRkAS/mgaxB/r4gQlm4WrCUihD76PJUEqZTCkOAFp5zzpqTOEkkKQ+xWSZ97Jff/DL5BEPl6vR/FEirBNUCSUSDDwY2pGDm+4jlyfZLZiU9MdtJsl7iQSiVTEafbQZ8cIZI1QhZLYRY5jzn3ld5HKhxhIgsAN6Q89GgeP4Ok622qFzdwDyLe+hyJ8vHaPBasM7U1ur0YcV4rcefF1Jic+RsuDU9d9utWEJ3IxgZegmTK3by1y9JHH6AxdquXS6CLcnS9mLUkBpHI22lndXuRK0+Hs1fMYdy5DkpI0DpHUZnC/9T10u0LsNoGEQw8doyIFfP+zzzK8cwWhGvg9h1RcZnDrMqH3bl6+8iQIPesLJqP2oJAxyweZmJFAM4gqNpJQCBIJjcyBr+v3rjh555OPc+bM61kEvADLtNCNLCgxiiLa7TaDwQBn6Iw6OtkJybZtGo0x4rcxUO7qLqI4QpBpQ6IwHLlYMhuvfzfATmRdlSz0T6Hb7QKCOImxRuJPRc66Lo7jUsjnkZVMPJpZME1UVc3+jijKCpCRTiEMQoLAp9vNcnJSMrfPXS1DkiSomrqnTXHIohFW19bY2d6lUMjjeR79Xj+jfZaKzM3NUalWsC2beBTmFwRBxtoRIkOVe1nXKEPjZ1lApmkiSzJBGDAYDgjD7GaoaRqmYWQF06hjcvd9C2B8YpzlxUX6/QEXLl7co8beq/XAgyfotLu88MJ3mJ6aYnpqim6nQ+B5VCsV1lbWuH71egaaUxSKpRKtdosDB/azf/8+mru7yKqCaVksLy6yub1NMBrLhVFIkiY0xsbwfZ+NrU3OvXmeifEGv/jLv0SSJtTqNZI4g/1FUYiuG2xtbFAqFt9ChwuBKsvoisrVlVsksc+1q1eYnJxi34GDzO87wAc//BF6/f7IeWUhSxKvn32D/6E+xoH9+7lz6zb/++/8R+4sLPDUe9/NeKPBxPQ0hWKRarWMadl87avP4bgupm0SxgkLS7eJwpBjx44yNjZGmqY0xht0Wm0WFhbxPI+UlHc/9R6WFxZHeqoQZ+hQbYzR6/ao12uUS2VMw6BYLNLptLl24waKovCBD32QSxcvsLq+xnDg8MlPfgJDN1hZXcGyLCanJknThCiKGY4YQvdiPf+bXyVyA9LmJk4QofsRspDRjBKQJ/KHRKGDiAOi0KW/uwaShp7LY9SnUVQdv9MmGLRI8YAMIxBHCUsLa2xttjh4/yFqc3M4gcnt85fpOYNMNKyooAimpgx21i9QGyvw8z/116mXy/DcV+j0tnjhm1/m53/l0xiSyrXbK7R3A7wnHqRmqWilzPaPkDA0nerYPgpjc/Rvn6bSKFLekhgcfZD83H6al29y53svEPsugrtum7vjmx/G/42mPSRAkqgkUULk+0RoCBRkwyBVZFJnJ4PVRT795jZTMyaDdp9ey2GsbtLvDEjDmFJBpeuEI5FrBGlC4LooKKi6giDF8yIsGfKmgpAlErJDdximCElg/IhVx491cSIdPpGND/oOktBIJJOwVEf4A0TgoaQJuqUhhx4izmzEvdYWG5//N5Tn9yE1DhFLFoztQ3/qb6ErMemBVRRtgLLSRtEkVte3CSspkmXgIZPXLXRNR1VNFFnCEiGSAoEvkdMsomKV2Bmi5grMzJSIZRNd0umLOnG3i4xE5Ackm3foHjpEbO4nXg8RjTr99VV+57uXWXKLdOQyb676HDmiESUBndUO5mCXlXKRnUOHmJ8YQ8jyD8m0BYJud8DK+g6VRonecsidZof17Q0iPyRUVfy4T+t//3/gPvAJjKMSaRQiJJXFKzdYDl8ilVXk/gJisINJGyM3S881EexnevIMmuXSmKvjDdaRg122trrE008gfBUnrKLla8RpShQmNMl4IVK+es/2gK4o1Op1XC/jLrw9bK7X6xHHCUkSj5wryUiEmrUjC8Uig8FgLxsnKwoyy6ydy2HbFnczcOIowhvpTNIkxfd9LMui3x+wurqGGIHccvkcSRyTJOme8HUP/W0YWJaZ6UbSdIR7l0dgtYgYRhwJnzDMxK2O62Lb9l76bzpirdzt1ERRNupptdojlkclS2X2A2RFZmJsgvHx8UxjMQKjuY5Lf9DHcdwRRVVCkOlbMrvxGLadsTfu5vAEQbCXSVTI57DsTO9yl2xrWRa+7/PKyy9z8cIlTp85w9zsdAa0G0C327lnewAgTRPyuRzVWg0hCa7euM6x48dwXZc4ijLHUhSSr9cYa4zjOkOuXrlK4AcUigXGJydISTENi9s3bgBZzkgYZI6t2dlZ5ufn6fd6zM3MsL62zsT4ePZ5pymu46KoGhlbIxtxRVE4cqplbJMsNTvAC0PcYR8B3Hf/SfwgoFDMNE+KqvD1557jzTfP8dM/9VOkacIf/P5n+fgnPsH21ib5Yo7HHnsU1/WoV6tIiuDShYvIisJg6PLNb36XKIxwhg43b95kfWOdKAyZm5nm6NEjTExN8eL3vs/UzDRhFOKPOhmmYVIqluiVK7xx9izFYgFJlnnz7Js47pBOp8PRo4eplsuUKlXOnTs/EmPb3Lxxk1dffR3HdfjZn/2ZrABKEqanp9H1u1EG8d534F6t4cXXkSIXyW0jpRFROtLkjSzeqpxDzZeJIp/Q75PEISQxXr9NMOihWXlyYzPkp/bhtLbxW+uk8ZB0NPJxhx6XT18lud4mzVdJJo6QyCl9yWMllRhDRlNdFBHy2ovforXV4Zn3/BRTE5N8+1vP8ebVy/wf/9v/i/d86ufwWi4XF64w7Hv81AefYEMNcA0VU5HQSGl2myRGhb6voLg9ymaZ3XyOn/yZj3L51v2c/9rzDHe3EGnyw+WIyEQld/NsBJmtnyQGVCStjJqfAC3CcQPCoIM2Sr7WdYVDR6Y5cayGQcIbr1xloqIyDAJ6g4DJKYNmX0aVUhwvICXB0kHXJHRNhiTCUFNyqiBfVIlQ6LR9wiBBk2SUNEGS5R8Ze/VjXZwkrRaRJIjiFFSTpDyFduRJUFXkwMfdXoRYvOUBFyGS3yG4+C1KcR2vdZjdbz1P/ZMfxf/eadQTT9BJDYKjB1HnTpCqJXa315ksTeGNV+Adn4axEnIYEykRaapzeP9h1s5exVNUkplDeMLATPuEimDL8SkXLGJNJXRDlGsvIkV9EsMmVXWEBGqrR9r3We6Po+TmeG01RblwE2XnJo6scnG1gdjdJXIdgsGQYbuFH0SZLVre01rvVcz9YZ/FtQWM4kG8gUMnjoklmViAH8esf/mPSPUczO6iSxL9MCYNHPKTx6g/MM/u2dN0mksodhEmDpGKFNm+jzSY5CN/M6UxV0UtT7B0+U3m1Td57dlX2XhgnN5pSMIBTqiiqBJOlCK5LvnZGWafepTrP/jaPdkDmqZx9OgRdnZ2aLXa2bxViKxtP+I9SJKcPfxHHQNJynQW7XZ71A0JGA6HWS6MoTNuj2dMksGQ/qC/97CPk3iPHSPLGfRsY2ODKIo5euwIMzPTCElifW2NoeNkqccjTH3ohSRJQuBnItO7OTh3Awrvum/iOMb3/GycMCoWyqVsDKFp2ijBVhD4Abu7TeI4s0VPTIxTLBT20pWFEJimxdT05CjnRKY/6DMYDOj3+/T7gz2Cq5QIQGAYBrVajUKhsMfrUBQly/1RsxGVqmaFlqwoe2JeRZG5ceMGX/zCFzl16lX8wM/ydpIEwzQYbzS4dOneWUgBXnzpRT71qZ9kcnIC13WQ0oRCscD+A/vJ5XIYpoEZWCiKwsb6Br1eh0q1ytrqKpIyS7VaGdmgs7A7Q9MyPk+aoqoKg0EfRVUZDob4vk9/MGB7dwfTNJmcnGJ7extZEhi6Rs62cD0X9txYCWkiRtdbwrJsypUqt25e483vfJf+wOF9T7+Xw/sPMzc3i2XZJHHK6dNnkGWZwWDA6dNnKOZzjE+M88STT2b6Ds9nY32Fg4cO8+zXv0G328EyTWRZotlscvrMG/S7PWq1KoeOHMHK2aiKQqlcZHFxkXNvnmfhzsJeGvbq6iqtVpO5uTk2NtbZ2tpg7P77OX7fES5dvszkxCSGaXL+/AXW19dJSel22tTqWWK3qqpMTExkY67hcATmk/dGY1vbO1QrlXu2B+K5B2G4S9JeRupvI8IhaRqPntcpfuSBLyMrOrpZJxVp1k0JhiRJQDjo0PWGSKqBXqxSmD1KHHoM2+ukbhtERJqGpE4HCkWk2jyiPEZkGNwe0/HtkIflBQ6yRr7kcPPW6ywurfDu9/80P/Mzv4D61c9x8eI6z33298hPHafXi1kLNXxR4MkHZkgElOSEYlljqlThfLxNKCSGTkCpEDHoeySKwicfO4536Sy7ZzWCYTh6vr2lP5TuIsRHBUrW6BaQRgjFxPEFqRuTCgujkKc2VWbr2hZR4tHa2EYcqtBcX+fEiQYbO322V9oUbYFAztKy0wRVSdEVkY1ttIS8HVG0VXRNEAZSZghwPHIiRilrhAk4vgyKQRz7P9Ln+WNdnETbS+gCZEUjSAXsLKK89jX6soQ0guyI+WqmS0khStIsHDBJkDSBloTk0oR44KAP2qj9deLbi7jNN+nfXic8PE/pyBFCK4GFm8S3vktx/mP06kfQ8gNEqDBdr6EUGwwlHc2chjghljRiZGwjRySB19jHYKNPEuwgeauI1iJyHJBOj6MdPERya5Gk3UPaWUXsO0okdKTAQwqHXN1OmHQE5foM8bDNIIgYun6GDOeH/e0CgSqBoqYEroebyPR1BRKFMEmJREIchqDE5HNl2k0XtRARqjL5WpXmme/RXVggUW1Ss0Jc24cmp8RygqopOKQkRh7ZNAgcl63tddRuSGrmMQ4cJz00S/Ehm56bsP2132ezvUvv2il2gx9tM/6XrEQIcrkc9913Hz/4/g8Io2gkKJUwtCy4LvD9bBwjMly953sZoVXzyNk5dD3TW6iaRknXcB2XdjvrRMRxTBRGe70pw9RJ05R+r0+z1cLzfCYnJpibmyOKYzq7TZrNFpI8GtFEUdYidxwcxxlB1rKvnaZpeJ6HEIIojEiStyzCsixjWzYpoGoqrueSpMke8ExRFUojcmexWKBYLNLtdllaXCJOYnL5PPlcjnKpTJIkdDodms0WYRgQRfGoy5TRIZNEZHTX0ahI07TMqTNy7ARBsBdMmJJZnJURn8UPfMIg4N/+m3/LhQsXmZ6e4sC+fZx69XRGGLVt2q0WYXjvHFsAv/e7v8fzzz2fsWVkieNHj9GYGKdardBqtXn/+9/PtatX2d7axg/apGk2dpuamWV3Z4dXXnoJXTd4/InH8XyPWr3GdrOFLEl02h0uXr5Mr99jYnyCwWCYhdzJCju7u/S6PYajQMWtzS2q1Rqaru65vSBz6fi+RxD4KLLEoN8nlyvwiz//83z5q1+jVCoy2RgjTTNnVhSGrKysgiSjqirdTgdvOESWJIaDAdMzsyRpjOt5eJ7LWL2G4wx5+JGHIYFbt29Tr1Z48snHCX2PYBTnsLCwwKlTr7G6ukar1cIwTDRVY3FxkY31dXZ3drEtC1WWePDECWRN4/c++4fcvr1IofAmvV6PKAr3tFu9/gBN16nXa2xtbaEoCq7vM3RcCvlsJKbIMutr63zhC3/ERz78oXu3CeYfI7UkxHCHaGsRaXORZNhE6u0iBX3S1CeNPZLAJQgkJElB03RUu5Lxi8IhceSTRAOiwMNr7iCZJqpdB3uM2G0TD5uIYEi6ch2xu4O87wjWw+/hmQ89zWMTBlevX6AzPENleIOK3KG5scQLX/t/M3P8KX72r/9tnnrXLp9/7pu89uLLqLNHkGeneOn1i0QMkS0T3AHlsM2HnjjC/U98jObNm7hDn4nJiMN5mYfrFeQkpNIoI43C+TKAy90e3VtYibsHViFGykShkoQuitMhV5ukO9wg8gKcjo9Eph+r1UzyJY2D9z3MjbM3uHB1h0pZZnYsz8bWgIJtkTMlJB8sIyVnashSzFhVxtBknO6Q1EuoGKBUNZBsPDfNOiiRQI76kP43wDnxJRVBgpQIAq+LmhvDUVWMOCSORhRLTc+sfCPblYpMKus0OwmIkIFhUUgyzHGaxCRpQuh5kMQEkozXWUUe9IlaXdTl83jnddrrG0SFArPjFZa2dFQrR9EQDKwIU9hsbfr4YZfW4i0Kk9OESZ44FMh+H+Ie2GViVaBsbhDNT6GNTxJVqwjHQQwHpGmMImedDrG9QbswRzL7GJW1W6RuQLfbpd3vUCmWkUahaiIVJIDreGxeX6BeGqPbcVl46QIbZy+iGxqyKuMrKTklgZxNstoETUbIMr4QaGYRw8jj1U3SwMOMfAIy5LOUrLK1laNcNwmClKS7i7q6TOyFJBvXGew2Wd5ZZbC2xtgjj2LMHMYlRsMlktV7tge6/T6pkCgU8lSrVXr9Pooso2oZ1+Mugt4dActURYUee84X13VptloZ0r1aQTeMvRRfgcDQDQSCMAwxLQNSQbfXxXEd0iShVqsyOz9Lp91hc2MTx3H22vp3i8bBYEAcRYSAbqSjlOGMC5LEMZIsE45Q+wC9bm9EOZUJozAL8Rs9XJRRx0KW5Sy5WM2C4nZ2dhgM3soEMgwjc810OyRxwmA4YDgYZqK5EUwtGy1lbAJdz/6x/V427hEiE9jeDbl7O4n0bgdnMOizvb3N5UuXaTab5HI2f+/v/U984+vPj9KaM5hZp9v9i4mpf4nLMMy9QsrzfV459So3bt3in/+Lf8axI4cYH28QhiHjE+PcvrPAt67dYHNrE0VT2LdvFt91qdfrrCytoOs6rutRLJXp93sIWcquvazSarZoddpMNBoospRxaOSEYjlzhRmmkZFi0VBUNeNLCAnPG7C7u0u+UKBaq3P//V0uXbqMZZn0ehmpNxUQJzF52+bDH/kAK0ur3F5axHM9wmCH+fk5rl69xoGDB5CVDcIw5MyZN6lW6gR+wLvf/S5OnHyIKxcvUSgWePDBBzlw6ADdTg/f8xj0+nz1K1/llVOv8q53vZvGWB3LznHu3DmazSarK8tMTU4wNTPD1StXee4b3yKOYjRVY2Nzk+j0mex7ZVlIo8dgmqasLK9Qr9UoFvIIIdje2kZWZC5dusza+jof/ciH8DyPI0cOUywW7tkekPoaul3HODbH1IPHmI12Wet5rK/uMlhdJN5YhNYKqdtGRD5JHOC7PggJRZbRVB0UgySNiaKAOPCzw4njIyk5ZLtCYWYfaTikv3uH1O8Q37lG30n5QZDy0Kc/wcPHHqIXHkL4K0QXvkq6+waWNOD1732G5YUV7n/6U3ziZ38aJxKce+V15OFzBLLC6e8uMf34OygYFjuxRvr8t/mFT32I4+/5EBee/xKmnjLPHYatHbaEyuKtZeQkRs24ZpkdYuTQyUBrb+ElUrLASUmoxGmE37tC5C3iey20YgnfjUjjECEp1OplrJzK2q1VVm+vQBLjB1nhk8tDqmmoEhiaxMSYSTAcYhmCsaJMHHjUGymSImNYKjtbAZ1uCFFCrZFH2XaR5Qg//m+gOLGmZ5HCGDFwSPo9RKIT5W3cNEV4AbrnIRcKqOUSkeshaRqBapPW9uHoKsbYMZTxbZxcAz9fQNZ0lHoNrWgiVltoXpf1RZ983SYUWbJwIsuopChhgJB1tnyZzYXLRP6Q2y+/wOTDT7O1uUOuXsaaO0Q0dFjZakKYIIIuUpJA+w5yf404jknVgECYpKqKrcpEmo6mxMi6jOnvEkY+nnUfu+e36RkP8mCuTyqgGUTYgY+tKNytmqM4ZGV7m16pykqiM/B9glwZ2RpDmTpE5PbRoyF+dR9ROyQNPWQ3RY5c/DjFRBCTEguVOHVAAkXEFCYd4rUX2fxOQOvcGEGq8/jBkJncNkuSCW98I9PW2CndQROxu4ATJ9CYIQ1CouRH87X/l6yN9Q02NjbQVI1qrYrruXsEVoQgiiLyhTzFkb5EEoKVlVVa7RZRmJ1Q+70+vudh5+zMARNnFFRkaY/MmpI5fFrtNt1OB8dxyeVs5ubnMrvq4jKaqo5stpn4FZGNbdIk3XtYG4axV1wAGaci8PdEsa7j4o8KFcvKbLtJnCAkQb6Qp1qp7OlMwihkOByys7NDu90ml8szNT2F7we4joPrepmgd0SHzRKI3+KXxFH2c1mWM2v1iGNRKBZQlaybFEXRnjtHlrKiTwjByvIy62ur5HJ5bt+6PWK/BHz/+z/g2o0bTE9NkaYJnW4XXdNG0K57t/K2Ra1Wp9vtcOjQwczF0m7zx1/4Y+67/zhz+/aj6RrdbogiSayurhCEIRONBnm7wNT0LKViiTAMkEVGFB50OximiVKucPKhh+h0OnQ7HWRFQZFltnZ22d7a4uTDD6GOOmL5XI4oimiMj+P4fqZ5SFN2d3dYWljEtkw2Nzb5wYun6Pd6hH72WQ6HA/qOQ683YG1tg7X1VTqtNp1OlyRJieOQ5559Hs93eemVV/iJn/goSwuLXL16jdnZGRrjY4xPjBMFITvb2yiKSrVe59yb57Atm0KxwO3bC1y+fAWSjJNjW2bGcwkCELBv3z5eP/sm3/v+yxSLWdBfPp9HlmSKhUJ2CCID1EVxJoyGLI06iTP43vbWNp/5zGf5wAee4ca16yiKTBRGNBoNSpUyeTt3z/aA8uYNlAMCxCQf/8g4nz45SSJgpR/y+rrDK3c6XLy8yvqlq/gbd0h6G+B0IOgTJj6h6yMjkGQVRZIRukKaCqIoJY2GBKFH2O0gmSq6OU7gd4hkDTlXw5g9QqBrrDW7/MG/+2OOHZ/gvnf9PPnJdxBdfB53YYPtxRf53h/doXT4A3zkk59gp+2yfG0ZTTNIrBLbK012hsuQuIhggZde+irvffLjrF56iYHfx4zv8Cef+0M2CwcY9oaoUYQiZwfrYDRBTEbKWJG+NVVEZPFmQhYIpUCaGCi6QhKFFA6exJQFu4NV4rhHr+fw/B+fplRMMWyd2ekC/qhz3B/GVK0EXUSEiUToephaSL0gKBsBxTEJKU3wnRBVDQk0j0RTGKoptXkTLXKJghQn+m+AcxJqY2DIoDiYuTooJaL8fgg8wrgJRpGtnkNk2YRpimkViCUFFIh0lUSWSTUDX5jI+SqSaSLXx1CLFomySDyxH5kUJadgx6tIhSKhlJ2GwiRriw/DNAsXlGXy49NIUYBimpi5Ip6WRxcKyU4P3C1iLYen2yjtFDnuodo5pOEQL+gg2k3CMCEaOIhIQU1BibrEm2+S7LZIRZntiUPcWlngmO8xSBOanSY5y87adwJ2mk3Wblwi1FV217aIghAz8GlTpv3Y38LbWkHevEFxvIasK6DLmNUy7sYSSb9PEMeoVg5JVcEDJe4id3agexs1bRNuuXT6TeJ+j/pEDquShVLF4RBTF9gCFK9PPgnoigRh5ImigD070T1Y3W6XXD6HF3uQpui6TpIk1OuZZVaITEuRETvTvZb8XeBZf5BpLzRdJ/B9UttGVZW98YplZ/k2juPguBlzBCGo1zNrretkAXyaplKtVrPI+FGWRBAE5HI5Go0GjjNkZ2eXIAhot9vk8/lRmGCmN7krOpUkiVKpSLVSzSylsUaaQiGfI0kTut0eQRCiKDKKLOMFPqZpUigUyI2SrD3XHY1gUgZhSBgEOI5DEGZgMddzCcPsYaKqKsVSKbNND4YjK3GEoetoukY8KoQkWdqzLp957TTnzp/HcRzyuTzFYoFKpZIVaQsLBCNHU6fbZTAYks/l0EfOonu1cvl81tlC4LlZ4QhQKhWRR4K/UrmEJAmOHb8fESd84Utf4hN/9eMoqsapF1/i+rVrHL3vPhzHw/N8NFWh1dyhUqnxvqef4rvf/S5Li4vs27+PUrGE7/nsbO1kEQhexpu52zXb2Nig3e2y224hywqe72HnLFZXVjFNk33759ne3ObQ0cN878UXCcKQoedx/sJFyuUSt27dQNc19h/cT7vTQVd13nzjDeI4wXEdvvC5L4AQ1KpVLMtidn4u46ckKavLK7SaLf7Vv/xXPProIzz00EPcunWbMAg5sG8fK6srNBpj5PJ5hoPhqAvm8LWvPUe5XGb/vn28fvYsUxMT3Lx1k6eeeu8olDLGcR1mytOkKaysrWbgPVkmiTPI4SuvvIIz6HPz+vXM2r67w26zSW4k9r2XgtiCdw2ubBNftPntP0n4/tFDPPT4BE89VuDDh2x+7kgB98MzXG+e5JXbXV66vMm125v0V9YIN2+SNBeInRbJKDxQAmQho6oasmQjVIU48olCBz9KMh1HnJLsLtJ94wzfbxg8dN8EcaLw4m//MW++cIMjT5/kkSf+No3SEXbf+Bb9tWV2dr6E29/ksY88RZS+zPL1ZYLFZdIBKIaG7Dg4OYnm6k1WZyd57L0/yWvP/R6Dbodzr/8J3bF38Fh+m3c8WETPJ1y91ufSVoQfv82dI0Aa5d3sQdskA3KT1B5+lMGNGyT985i6Rr6Yo6XqpKlgfbVJUY0QQsd1Y3J5lZxsoMkRU2WVmYNVVpeahLsphvCYn4TJGtRrAyqNBFkTiDSARKK8GbK+qNHuSKhRh0oFXC/OOPg/wvqxLk7GPv4LCF2HMMBPBWKzz8QHfwKfEH8wIBn0iUsa2kmdvCIj5QokS7fJHT2CWSzidjqIWg0ZhbhYxdEslGGXqO2iqjry5gpBocRyKhO1+iiFKpKso5oVDMvGjWSSnkSCxECBpJDH6fUgculJKpEsISc+cTBAeDtIgzUkWSZJfWRJMDZb4/jxGb7z+38KiYrWOIDvucibl0iiAZIUo3gO/tgskayhOG2a3W3uXL3I9OwYty6/zuzP/y0EMiIFiYSF68vcru9H3mhRCetsvH6dQX+AdPVVkp1bxL1N+k0FdfZ+8LuEQ5kkCqGziwiHhLcv4G6sE3sOkiZj5ivErRaKqiIbOVShkEsTTCuHqI0T+AskSYAUpcQhI1QxqMUq6vg4nRhGQ9F7smq1GuVyiX5/QHO3iaHr2ex1ZHHt9/tsbGygqmrWqUpSzNGcXR+Bz5IkIQojhJQJXculMrZl0W63aXc6GYAtymyiupaNSgA839vLMDp0+BCGYdDv9xn0B1mqb6GAJGc02WazlQG6khjDMBgOhwRBFkqWaUwUJCGwcha1apVCqZBpFtI0C6yMY3wvyBwSljk6xUqULQtd1/cErEEQEMUR+oiDEoRZd6XTyUICfT/roFiWRaFQIJ+zCcKQzY1NonikRXEcfNNE0zRkOQse1CUdQ9dZXFzkG9/6NkkcUyjkiaIQ13UJg5Bev89wOKTZaiGENCLYaplAVrl3abTwlrA4Z1ucePAEv/Irf4OlxSU21jdQVYULF88zVq+zs73Fk0++E9O2aIyPk8/n6Q8GKKrKxuYmg+GAaq3GWGMM2zTZ2t6i2+vy7W99gwsXr9ButdnY3OL4saPYuTyvvf46+w7up1arEfgBEoIoDChXqiRJzJ2bt5AVlSD06DRbaLqBbeWZHp/gxvXrSEh7MLtup0Mun6NUzpw7p06d4sD+fXR6A15+6RW6vS6mYYDIRndBGDJwhrz22ms0my2uXLnCL/3izzPWaGAv3OH973saRVVZW13lpZdP8dgjD6HpWTG6/8B+Nre2uHDhImEY0ut1kWSJjc0tHn7oIYbDIYoi0xg0sq6T9iKypDM9PZXBthxnlBtl0+12mZycIPBDWs0brK5tkMvlECksr6/hei6WbSMr8p4W616ssinQcxYDZ5O4/TJLrx3g+g90PivlqY41mD88w+NPzPLIoxV+5nCVX318nF0v5vLKkFevNzl7bZPFhWV6W0uE2zdJ2mukYUAaBciECFGgVDxIsTZOEO/S6qzh9Huk7U36rz7Lazfe5MLkPpJURW0cItWmuPSqx/KNWxw5fIATn3yc7bNfYffiKTYvvUL33EUOvvOnCHMVFs9cBzchTmPUIEAfrFM38oT9Ld75zp9he+00114+R9TewhMrfOqXPsz73nGMIAz5t/+3/4WtfsSGQ8aYSkFKM1LLHv9EShFWhdrTT+Nv9AgcF2GXaS3eRpqok8YhIQnLmw4PHrBwA8HGZodSQaFatakfKiA5AxIpJRoGmLLEzJjERM1hcj5i6pBH7bCMltOJwgC/G2OtpShWSG5Ho7vbJldpIIw6iVKBLz7/n/w8f6yLk64+jmLbQIruNBn2t5EfeJQoZxAO2+D20Up2BqySs5ObrFtMzfxtYiGwwgQdcFwH+wOfQpYljIUb+LKMGfw+5tEH0Awzm/uXJpiZO0LYGSD6Lkq1TiQLyFcoPfkMO1u7+NY+dq98l6RQoLp/H5tnz9LrNYlcGSUZIsVdFKdLGgeMTU3wwMkJnrp/hlN/LBhQpOMFaMUcqm4SeSFJ6CILUPw2aFOEep7B7Ps4+/wXGLR3eeLwJMnIgTJwA7qB4KpUwlkf4q9v4PZjOpe/gR60kAIXKwnRAKV6kJzv0V1fJ1k/S+wmRF2bdNgh9lyE64Drk0aCeKyEX1KRYy8TTSk6liLR1eYR1v0MpSZyHBNEMamazTqTMCIcDAmjCD+IULV7N9bRDR1N1SgWC0RhiK7rBGGwxwMpFot73Qx9RGMVQoysnll3xPd9Op0uvu8TBiGDQZ92u4MQItN1KAq2neXNeJ5Hq9UijmN2dnYAKBaKkMJwOKTVapPP56jVqximied5tFttgMwFI4HvBfi+v5cyrKoatm2Rz+cZHx/Hsi3SJM30EyOLdBzH5HI5ZDmb9d+lyGqaNgq0hDDMLNG7zV0kITHoD2g1m+zs7uI6LpIsUSqVMAwDbUQu3dlt4rluZrEeodaFJO0xVDJ6rZE5Xgwjw+wrMk4YICsKf/Wv/VV83+PK5at4vsfQcTK8uW0zdJys+2RZbG1t3bM9ANBuZ6LblCwpN5ezmZmbodvrsby0zLe+9W3CMERVFAqFIsceuJ9vfOfbtNudjIabQr8/wPMCev0htWqZsWqVQW9AtzfA9zzGG2N4rkdzbY12u00QhIzVa7z++hmeed/7aTTGyOcL9Hs9JiYn9pxiURiwsbaO5zrUxxo4nsOZ19/AGTr0Bz1URRmNdjKo2xuvn6Xb6WFbuaywbHdxHAdZkjP+jiSRppmOyPM9FhYWeerpp5iZmUbTdI4eO8Lrb5zlyLGjRFGE57qUinnq9RrdXo8Lly7T+q1/R6PRoF6rZ52T4ZDLl67y1NPvpTpWpbC1Sa/XZW5unomJKXRd59bt29xZWsq6aWlCkqT0+wO2t7bYNz9PqVTCtmxkSSIMo6wg7g+Qxcg1JyTEj+oj/S9Yy1vPobSL2FYeOxdhzYyjpRB5fYb+Ba6ee41Lr+T4D2mefLHKvgNTnHxwjkcfm+GXHpri156ZZdd5iDeXB5y52eTSjQWW11dx1+4QN9eI++s0t87Q3LKx6ocoTp8k1/DZvnMeQodkY4HhzlImRo0DRL9J5eEPo+RneOP7V7n6/CkeePcRZt9/gpsv/Qkb1xdofuOLKIfewcQj97Nx7jqGPUN+rsax4g5Fy6dWrOLKFjMnnmLhjRvk1C5puMNEo4SRC5FDg/HxHMkNJxsVJ5Ak2YEp8+Cl2agnjdHrFbyBz3DlOkJLSDs9FKGws7hIgoSmKAQh9HsuSj7liSfmMU0J33EZdro4mz3mayoHZlW63RRdCjBNQXnapXZMxa4dAHKogGZ7KJaHUShRb9bobOg4joHrBDSHPxqI78e6OElXz4GmIUKPuNQgdBxYvEOixYjIhTAkjCqIJCFVNSRVA9tmuL2LUBVSIdN3PVAloiBE+D5y7BD1eyRJhC5igijLDZAUBTmJ8RWQbAOlmEMpZUwFJT3EUNWRJveRmBZKPk9vc4ulb36J2pH7USmRKysMQh1pGJJKUJdj9O4yZ7/3Bo2ZApKXI9rdQPWHeLqOUA00BdLQIYodlMEScTgkqZZxuz2W3rzEydkxbt5ZxosSXrm2zZkdn5XlTYKlWyTtdTjwYVS9hBp3kQKfFJCFIO51cbe2CIMYu9HAC1rYjQaDhT6iWCN2B/iyj6pLqIfeRdhMSDZ/gBb3ITdG1N2h2VPQBuv09Qax5JDEEUgqqqFmM1ChoKWMxJT3cA8kKVESA4JCsYhphXvdgbui01KptGfXdT03u8kLwXA4JE5iZEkml7MzsiygqlrGLMnlMK0sRZg0a5PeFYT6vk+/3yfwA1zXpdPtYFt21vUo5JEkmX6vt8ckCYIgw32bNpVylpybz+dJkxRtRGuVZQlFeUs8rKoKaZp1RRRFQdezEY/ve2i6TrfT5eLFi4w3xqmP1XEdB9/LCizfy7oVlmWRy+UYHx+nXC5lzp12h2arhe95WTcpzfKDVDl7vWmaWJaFOuKzZOLelCSOqVYrvOfd72ZnZwcrZ/Ohj3yI73z7u9y5s8DAGTLeGENVVPqDAaQptWqVTrdLFN3b4D9d01EUlRSXM6fP8o/+4T9mfX2D3VaL+48dQ0gSxWKWJfSv/uVvcuzYUa7fuMGXv/wVOs0Wly5fptfvUyoWyUc5+prK1NQkpVIRM5dHEYIrN24gK2/ZY1VNRVVVdrd36fV7FAol7ty5Q7VaQVPVEXgu4930egO2tzcZa4wjJMGBgwfYGeHvwyjG90OuXLmCpqj84R9+gTCO+MD7nma8McG168/uCZl1XUdNlNEIKUuKfvSRR5ibm+ell16mUq2Qy+fRDR3TNHEdB8uyqFSqLC4tc/3GTQxN5T3vfhf7D+yn3x+gKAr5Qp6nn34vT7/vGWRJsLG5xQsvfI+f+es/QxjFDB2HdqeDaZo0xsbodNq4bnYYiZOMXyGkTNtQrVbRR9dG13WiKEZImTBYlu5dB01o0yBCeoMusRKzu/MnyLKOoRawczVqYxUUqYwTpUTJBndWr3NtQfD7nzPRlTEaY5Mcf3COB082+O+OjVN5zxxrns8bS13OrHa5eXOJ1q2rBJ1Fgt4a6zcWEHIBKT+LZOeQIo+oswqDdUTs4q2dZn31GmrxMOX73gnld3Pu6+e5rG4y8fA7mHj0QVavvsnw6quk5fuwjxwgXF1mcGOb7Zku4kCFSqmGZZdRrBl6/ZScKag0DMpVQapVgIRCzkJWBVIoiAUgZbgThbe6KGkq6K/fRBITmON1Et8n6GzQ73tUankiuYuctMibKTPzeR66fz9rSxusL3cQSsKxh/Yh1QzsnE0cRGhyhEaAlCZYRQMz9zgSPwvMIlILSdkhVc/RHyzQ3+oy6PpEYczASdhtDX6kz/PHujgJP/PrqEIikiW0v/o3kSIf5ftfw71zBykKQdWofOhpOs9/lyAVGO9+J7njx1n47f9AvlLEjxNEs4N19BDdO4vYcUTjo59k4wffRcsZ7H71s6S6jT17mLS9xsJzz1K/7zBxf0hX0lB/5tMozWWWn/sSh9//cTauX0SVdfSlWwTzGyQ7O4TSJQ498AT5g4e5+uIm5sQJcDvs7u6y8+x3cfo9KvP3Yx2cpmQMCQdNXM0jsGXGxo4Q+AN6Zg2MIq6WJyHFrk3T2H+Q5c0Br56/QbPv8oNrbbZ6AjE0sWOVk489wv3vepRLk4Lbp9okOQXf91AEaOUC8dBCkWSimeOEw0tEtRmKtRlSGazbb2B02gyjPmmxRnj+j1DxSRSZQFHQ8wqa2ITOBj3/MIj9xNLXCNAQQiIVSYZITkGWZZR7SAc1dB1JSARhgO9lwXyaphFF0Z4r5e0JsYV8IcvNIXPshFGEpqoYpkkUZmMWIaQsmE8ShGGE53kZJj7MYGnSiBwLInuYWyaTUxNYlpURRYOQtbU1up0uqqYxNTVJrVZDCIFlmli2jaJkCPu7otO7/2X/5iyKQFU1dD3TzdiWhZAkVtdW+fqzz9Fqtzl44CCLi4t85CMfzmCESTLSuyjIdnYdpqam9izKvV6PjY2NPfBcFGVDaiFJaKqKZVsUCnksy0aWpdF1EEhCQlGzQm9qepr/8dO/ysrKKs9//es8+9VnuXD+PH7goykKzd0WQZhl70xPT5PGCYtLy9i2RbN1z7YBlVqNbqeDHwTYOZtSucLi0jJJEvPU+97LwUOH2N3dxhm4nDlzFsfJXFqXL17C8zyGwyF522Y4yFKnXccjiRP8ICQaDBj2e9y8dRtNVTg8GuFZo+Tmbq/Hd779XSzTwtD0vetkWhaDQcZ32drc5NTLp5iZnsXK2Rw5fowLFy+gGTpCpHi+z9eefZYjhw4zPzvLhcuX2djcZHp2mmeeeYadnc9TLBZZX1/PvmNpgiRlYu2JyQk0TaPf6/L6mbMoSkYsliSJUrmMpirMz8/xh5/7PPv2zfPYo4/w5DvfgaoonH7tNJZpous68/v2oWkqvu9z59YddnZ2cB0HIUv4oxTtarWCaRp0OpkwtlwqU6/VaTWbVCoVjhw9xrnzl/DDgCAMss5k6Gfi6zTCSsz/xCf5X75k7RCSWkASCX40IBUd4rSDH7bpNBdId24gYgkltVHVOrY1jpWvo5csZFXCDfu8ePoiL7zyBmksYegW1UqFw0fGeOz4GO951xO8sf9+NjtbBKHPdF1B1iKW1zosrfQZODHa+EHyfpO0s4a3u4Hv9EmGt9h5/Q6y0BF6gaJps/DcOayJMRoPvo+6CNhuuQwCyD38EAf6l9haaPPiG9vsf8hnn6IyOXMfufEapf6A7dU7fOX/879x/8H9eInMxYUevqShGgpJkGRo9JE7TqQpKQkaMlLk4nfXkCol/N0dUr9LGPn0Bh6K10fWBZam4vsJi9eWcYcDxveVcb2Ara0m7fUOJ56YQMgJxbqgMVmnvq+BWdwHfBQ5+RAizbKaUvkNiNbxmk22VjyuXW2z1QxY3hwS/4in1f+s4uQ3fuM3+NKXvsS1a9cwTZN3vvOd/Mt/+S85cuTI3ms8z+Mf/IN/wOc+9zl83+fDH/4wv/Vbv0Wj0dh7zfLyMp/+9Kd54YUXyOVy/PIv/zK/8Ru/sffQ+FGXmsTIInNzS0JBySVIay5SHKImEaQyqiSQfB/SFDkN0USEEfqIKESKYowogDBEDX2MNCX1Xcw0IZUk5CRFkSTMYhmns5axAjwXKYlh2MHYvIYSechxRBwExG4Psz4DSgGjXkZR1Qy0Zth4oYdm6KiaTXttid7ApWDECC0HukHRkKjXq2xt3aKSK1I+9Djv++iHWLx2k3KljOtHuK5PqZhnYuxvUBmrosoyUipo5focaVTY2mrT74PKBPNjNYrKLuWTM6Tt+xk/eADPS7BzNp3ukNu3IgZel3TtOsLpELa3cNq7xNurqAI27tyiVM0TFNtEvSaBqqAVDXpry6x2h5z7k6uoqkxCRKH4biYOTiLLA+I0IUpiVl75DoMv/AcSd0juL7AP/mXtgVw+R7lSYTgc0m6Rwc1Gez8eydXvwsbuOmTuLsuyMn3KKC02I6imew96IeQRsC1zJigjAamuaaRAeRSU57hZx8KybGRJJlVSKuVKhn6XZQwzI6gqioKu6ciyvIfDlyR55BCKiOIYaSSqlEZtcGUUBJhBtzzOnnmd737nBVbX1qhWKwwdh62tLX75l3+RaOTqGR9vYOdyQEoYRviex8bGButr63S6HXw/GBVtmVDU0DPbsW1blIolDEMnHmUMWaaFqmbhhbpuUCgUKJaK/P4f/CHPPT/iikgSpmHy0MmT7Ozs0hirk6QwNTXJN77xTTa3Nvau+fb2NoXCW/vhL2sfuI5Dkib4vsfJkw/yzDPvp9dtc+Wqh+tmwt0zp15hfWuHeq3C3Nw+zpw9i6br5HJ5LMvi1s2bOEMHQ9cRpRLjk5PEcczly1dod7t4roum5pmYnEKWBIosI8sKFy5eYnNjk5nZGQr5HKurazz4oAuQjRn9jAA7NTXJ5NQUQoJSsTwSPleysV0YUswX6PcH7OzuomkqILh9e5GLFy7g+z7tVosozjADxUKBuN0mTVOWl5fJ53MU8nnOnbvABz74QQr5AoZpcvvWbb7+/PPcd/w4hmGgyDLvfu97GGs0OPXKK2xt7yAkCdd1GGs0yBWKaCOcfZqm/OAHLyJJCuloVNBstmg0GnuZSqvra/w//9f/FU3TOLB/Px/7iY+ytrGBokgUR6nXzz77HFevXiOKIk6cOPHnPru/rD3gdc4hSxaSUkAIE6QckjqPmtdB7ZGELYj7pLFHmPi0oyuk2z5EMoIcisgjCxsz16BQrGGXDOK0z5vn1vj2S22Ggy6KKahPTDGMHba0ImPjJkePHuITP30SI6+yuLLLuR+cYWHQRK3OYo1rEAR4/S7hsAdun9ZwE1XoJNsxw1MhUinP/gcOMZO3ub3RR5s9wUceOcyNN7/P+QubnDjuYys2Bb1EZBUJULmxPuDa6g12/BLtuEJs5dEknaDrEAcSMj10ESADCQlRJEhSGVnVkZUcSn0Wv9NCRC6yMkCIhMFgiFFTqNXyTE2O8YMXLrPcatLedXjmgw+A6ZEfO8Ds8QApZ2EXbAItpb0RYpauoDQeIRUXIN0iCt9gsHOKrTt5+oMJSnWD3d4qhZJG8CM2Uf+zPv3vf//7/N2/+3d57LHHiKKIf/JP/gkf+tCHuHLlCradqeP//t//+zz77LN88YtfpFgs8mu/9mt86lOf4uWXXway0+rHPvYxxsfHeeWVV9jY2OCXfumXUFWVX//1X//P2ox32agJKbEEpiEBMjoQA7IEaRLtjRVEGqNEAVLWI0W5a40jg9dEQBwMqE832O73SUhIAFlVkSSZBIHf65F0eiRDl85nfhvHtIiDiM7F16hWSoQ7awzXV+nevoZdyFGZmWPpzVNoeQPLzKNUZqj3t1CklPlHHqOzdIdKTqV/6RTa9AQPvveD7D9yFMMyIBHUZvYh4pCpqk7ZNsjnbMI4YTD0sUydVnuA64cULJ1jcw16wyxp9vKtZXJqglWf5IM/+/MUbTj7/MtEacSJ4wc5NN9l7coBFieOsu5EGJaBv74FVoUojVHHpukOe2jDDbTIR0kClAj6zoB6uchco4htC76/qNDp/QazlY8gE5Iv91m+tciw3WXuv/s7uN/8fdqtzg99bn+ZeyBJUjRVIzESQjtAkiUkWWY4HI6IrBn9NXOrBEijrshdzYYQYi/OHhglPjPqnEgjnkhlr7C5y+tI0kxEezenJ4s0UEnSZK8gSUe4fGfoQAqmaSAJaY+B4gcBOdtG03R830cjRZYVZFnKqI6jYL27+o9LFy/xpT/+UxzHwXUd1tZcDhzYTxgE3Lx5m7HGWPY+8nmiKGLQ79Pr9/c6SFEcIQkJ0zTJ53JUKhUKxQL5fB5V1QgCnzDMAhFVyMY7poVpm5iGiWHo5AsFbNvmzJnTHDl8mDRN2d7eZXNrg5dPvYJl2oRRRLO5yxvn3iAMw+w9axq+7/ELv/ALvPrqq3/p+0BVsxO/qqoUCkXm5meZnp7ixs3bDPr9UVclorXbZLwxxs7OFoKUTrszIt+qo30UY5gmjuNy8fwFiqUitVqNar1OsVRmY32dQb9HFEbs7O5QLpUYHx9jbmaWhcVF4iBgOHAYDoe4nosiy6wsLbFwZ4FWu8XC4gKu66BpOrfvLNAbOEiS4MSDD3L92nXsXI7Wzg6lQhHPczF0nVwux0989COkScL3vv+DLFV4ZM2Ooohr165jGAaf/OQn6fY6TE6NY+dsVFlmY20dXdV5x7vexf0P3M/qyjKHDh8mCEPOvXGeV155Gd/3MEwTSPEDj8uXL+E6DpqmcevWLZ566r3Mzc1x+85thIDmbpMwzPKGTN3gAx94hsHQYeHOAv/+t38bScrSXhRFZWNri96gz6/+6t/Gsmw+//nP3bN7gZDqJLJEksgQu6TJNnALScggpwhhIqQCkjqGbtYRup4FAjIkjdoQ9IjDLr3hNt2OT3Q7RZE0LKuEWWxQzZeJQ0FvccjA2SaMLrMjx1z6yotISp3a9CSHH53hyYdO8rGPPMHudpNLl+5w5/YOkSij5gVxDIG7hS584kgQxCl6YYx0corLt3dpFCvo9QrytMbj9SL7p2YZRCGlXIl9j78DZ9DmwRMfoji5j2uXF1g610aenMUsFNEljcFaQrC9Ts6/RNEUHCiEBNEA1w3o7Go0JYm0s4nk+8giO4QLEuLIR8gCO6/S7/SRD0yhF3LIksns5AQHHv0wrVdP4atHeHPhKrLiMlXxsO0UbSKhPt0nrQ9ALEI6IAoUPKfCsJ/QabuUSnkCV8bzVdrOPeicPP/8Dytsf/d3f5exsTHOnj3Le9/7XrrdLv/xP/5H/uAP/oBnnnkGgN/5nd/h2LFjvPrqqzz55JN885vf5MqVK3z729+m0Whw8uRJ/sW/+Bf8o3/0j/in//Sf7t2I3778u4TP0er1etlmJOteRUKg+C7J7gZRGIzioUEksHGrizni0kRBZqVEyi5OIknEkiBNElJZRYpDeisrpMMhku/RW14mTZbpL9xhuLuNmSb4q1vIcUIiBF03InZ6xLpK0HPQnvgQ0e4msmZjWAZpd5e5o8dpHD7B2NwcnfV1mjtNvLEp1Mo4pmnQeOxxxidnKVaqWKZJGsdEYUB34EKUYpsqY9UypqaAkGgPPIZBTK1SQNcUWs0eXhThDx0GHQnTkFFlQd2OWV9Zz254hx6jIvtI8wexcxa9MGAQCuQDh5kfP4BkNRCyQu7wSRKvR7/VJlq6QdhrEzgewfQ+kCW82OXYicPYvSb4feI0RZ38PzNY/T+xcHZI6cB+4u4P2N7YYOzR92DPHyHRTOpTFis3b3HmzBne//73/6Xugc9//vPM75tj//w+Dh89gqrIqLJKzrRod9o4Q2ev0FBkZS9/5y7M7C6ePRNTppm4dFSoJEmCrCh7OOi7v56m6ejmqwApsqKQ6plo1dJMKuUy7XaHXr/31hdt9Pfd7aakaYqpG5TLZVRVw/M9ZEkiiuIsgC8KME2LNE3RdJ1Ws8mX//TLHDy4n7Nn39hDgmu6wcz0NGdOn+bhRx5m/4EDJGmSZQXFEYZhMDk1hSJLHD50iKXlJWRZoVAs4LkZCXVqagpFlrFte5Ss3OX27dtZEKJlUywWMEyDarWGABzH4TOf+T1efOllet0e/8fv/C6KpOAmLnEcsbGxThhmfBQxKsZ0NStOXnvttXtyLxgMB5nrSZLfllkUjkIMK3RaTZrNJiuraximzubWFp1ul3whR2NiHJHC5SuXiaKQoTOk7wyRFwUb2ztUK2V8zyclYXJynEq5giTJfP35Je47dpx83sZxHJrNFnGcYJoGjpsJFDVdQ1JkojAbCy4uLHL+3Hm2t3dotztcvnyVarVMQsrk1CTdbp+l1VUkSTC/b46zr58liELWNzZptVqkSYrjuJnoceTamZ+f56/95KdQZJlyucrW5jayLDE2PsHU9CSFYpETJ05w7eplpqenabWabG9v02jUOXzoEC++9DKD4ZBXXn6Z97znKf7db/07Dh86wP75fdy8fYtKpUIQhCMhubaXkK2pGmEYsba2gSwrHD50iG9861sUcnlypRK2beO6Lh/64Ac4fvw4SZLwN//mr/CP//E/uSf3go/8vb9HFCX02216mzsMNnZwWm3cfgvfaxGHfdJ4F9yYoCcQaAhhI8sFJNlAlqrIqo5uyVkXM41IEhc/CQh2N4jSiESkqCKHVTpGGh/CdzvEaOTzB0gGVS59J+CNr10hlZaoTcjMHx/nkYcfQJF0lpc7rNzoIxlFrEILu1FClMpsRwpbHZ/pY1NIvmDHN2jJFY4fHKNuJ/iyhqVaHD76LsLhgPyTf4WJuYO0y6sMvUUO7avwzBMzeEOJC5f6nP/a59DKDxFNH2Z6LuR4dcjN1V1OvbxLKjXwBz2kNCFwdhBxD0lSMOw8JHCnr3Lo4ftY7BSRp47S3O2xtNphZqfHn77WZ98jRW71i9RrOWjeZr9ZotlyyC13sca2aN+6zM6NZXqOTzzscvn8gJ6ZcOChd6Fcs5gq6JQi4PS5P/e5/tn1X6U5yZJYoTLKSzh79ixhGPKBD3xg7zVHjx5ldnaWU6dO8eSTT3Lq1CkeeOCBHxrzfPjDH+bTn/40ly9f5qGHHvpzf89v/MZv8M/+2T/7c7+eoXlBjRMGz30Wohh1cixLjB11Rwizkwlxir/dYlgYEKk6ICMMk7gsEa9vIsUJcQLBwjJZQxXCVi9L6ExTkAQyAt02MYslZNOCyCetjJObmUetzUCcoEQ+tfl9VGfmyVkWpqYhBERhjDU2hV4axzBUcqaBoRtoqoYQMmkSM+z1SKKYNI2RJUHe1CnYepZV4Yb0vADXjzBMAyFSbi9t0HVd3DBiSBZHrUiCoqlSzFeYP1Kg2Grz2uXTXLp2Gj+MiGMAmaDbJnEcJCNP9W/8E4r3n0Qp5FGqZazJWeyDh5Bl6G5s0Ns4jr+5Ra+1SbixjJcv4A0grh3F28w6ZsPdE6iNKVInzIR741PEIiYRCZKUbbPTp0/z/ve//y91D3zxi19EUVSOHzvKL//3v8S7nnwnkiC7vkYDIUns7u6SJMqommU0TpH2ipKsg0JGFYbR72XFSTRqcUsi060IIYiThPTuyCjNuhuSkLBzFlPj4xQKBWq1GlEcs7O9QxAGDIdO5gYbEWiFEIzV68iKguMOicIQz/NxXIcb125w/sJF5udmWVpa5qmnn2J6eppKpcI3nn+epeVl4jgiCEM21td5xxOPE2yGtJotyuUsTTgKPeq1GoqiMDc7kwHUDqjMzM7QbLbodDsoskKpWMIyTfL5PLZtZwjrep2pqcksIkGSSOJ4T/vyu7/7u/zRF/+InJ1ja2uTre0dJCGwbZv+sI/n+T8kgDYNk0qphKKp9AY9ZmZm7sm9IIkSNEUjlCM6nTa3bt4kCBPGGw1kRWfouqiaThTHHDl8mJXlDIJ48fwFZEXl+LHjeEOXeq3K2P+XvT+Pm+w663vR71prTzXXO/c8S+pBsyzZsrFs4wEImYgZYjgknEs4B2IcwAnnxklOnJMbLjm5J5ckF8LNCTgkMUNCgplsIB6wZdmSbM1SS92SenyHfue35j2utc4fa1d1OxcugrjBCu/jT6vd9VbVu2vvp/Z61vP8htk5Nre3mZuf5eLlq6S1Gv3+gCuLV7j3nnvo9PpkScK+vXsIAp/BcMTFixcRUjKKY2ZmZoiHsaOU1/dSbzS49dYTNBo1vvjIF5mensLzPFrNJnESI6Xi+WeeYzgcUq/VmZubZW5mhoMHDxH4AS+cPcvZs2cZDAbU6258k2YZAAcPHODP//k/y6lTp/jFn/8FgiDkPd/wDXz5iS/xn/7Tf2bp6kVuvfUUH/tPv8zp22/nU5/6FPVajX5/yKDX5+WXXybPHUV9eqqN7zstm0ajDgii5YhWq02v158w4MbUemsd2Lda+gt1Ow5UJKSkXqshy27j3n37Jt+3er1x0+4FL/7qw0ztn6e1MMPx03fQeGvIVCMAJdhONMONDjvrqwzX1+mubtLb3mY46JIPY/JklVyPEHEBQmJMhCyaSFvByADf24en6hTWIlEUtSbe7D701Svk6Q6bOy/heXP4lWl01sKM7mSls8Pyy0M8fwm/NY31+vjyEDqT7Kx8mf6lLSrHLPu+7gz77z3OsPCIU8E9R+rMonmhl7OcGt5UK+iYgr233offbpEGTfLCsSDP3H2EO87M864TTRJj0Taiu/4egmyAPXyc29+9wN1NQ2Un4fjMJq8+d5n+qy9S1xu0T58AZXnH2+/lxUc+yforT7M16OPXBJ1+j9/9jKI7jGgfuI2jR+7kltsTGnP78epTxIMtpBphshbLm4b1jUXmjm7w1Jcynv1Cl4NnFmjXpmmc0ehOQV6dJ2nmjAYZne5rc6b+Ixcnxhh++Id/mLe85S3cfvvtAKyurhIEAe12+yueu7CwwOrq6uQ5Nybi+Ofjn/1e8aEPfYgPfvCDk3/3eu4mZxCYclEmSzEWPOEhggpGpPhIbNIhnZlGW0ve6VK8cg4xM8to0Cckwa/WnCLgTIAfRYhOFzPoEd5yG8Lz8f0QEXj40kMGPqpSR1RqpGlKLd6msucg1aBKEHpYT+EfP+5wA1lGkowYFAZjBZ4fYqUh8n0qno+0ApvmpFmGLnJM4dgcUnlUKwH1KCTwPQZJRtId0UkS8txSiXxmp6ssr2wQDxIwljTOSaUjjhkMW4MUudFl31SEkD69tWWWXziPZ6GwtgRJOapZkWTwynMUUY3mwj6yegUjcQVFmtE4eIz2rSchyxmNemxcW2G0tU6sJbzxHej/7Yfw9p8mbB5BtHdI1xsIuUX1+J0onSErETpzcsVjOulXMwdefeUCqgQA5oUTHHvLA28iCh37Ze/evY5RUbaixxLnY7VUrfVkdHKjcqsb2+STQkKjJ3mvSz2QMY7FWktBQb1SpdmoT1xCfd9noZRN/9Vf/TVmpqe597578TzPsRaE5PLly3S7HXq9Pk899STPPPMcKyvXKIqCSlTB9z1eevEcb33719FuN9nY3CLLM6wx+CVmZXFpma3tbVrtNjMzM5x76SVq9TrHTxzn4MGDBEGI1gX9Xg9RSo73e32yLCMIA2ZmZigKR/10n30sge2qOWMsRaFJk4RXX3mVPMt59oJbTH3PZ25+jo3NDYQYO3vAxClbQBBFhIFjIc3Nzd2Ue8H8/Cwg2Hh1C20sp06dLK9VjjWCra1NiiJHKcmhQ4e57dRJFpdXmJqeYs/CHIcOH0QqSaE1m5ubxFnGK6+8SqNe49rqNUTZsVjf2ODq1UWm2m0OHTyAlIKTJ29jfm6Wy5evIIR0natRzPb2Nq12i89/7hHCKOTFl15Cego/CNyxeB5b29tMT09x+PBhnn/+ed78ljexuLjE5uYmTz71JHpcCBjL/OwsWZHzlofeyrVr1+h0u5w8eRIhBE8/+SQvnzvPG+6/z0nEl14+2rgu2jPPPUuaxDz15JO8/e0PsTA/x56Fea5dW2Hl2ipKSU6cOO6unLEOrK2c4m0QBly5cgVjDO1Wi4X5BbqdzgQj5fk+zVaLzz38OY4eOcqg73JrrGlSrVRL6rzAK/Vubsa9YDsbsP2qRlxcQolzFNkGIncCYkG1QlRrIaeOE1abtI5Osf/eaWS9STKyXDm3Q9HLKHb66NEQU2TkaYHNYnSekBcpIs8R5Bg5xF8vULXDGPYiWjN40mCkR65zinyA77UozK3Y1hSeV8drVsniAZnO0ZUIf99Bsnid5OoLbPyHx7n0+AUOvuMMs4cPMlPzeNt8lU5WsDlMEAaWu328IMKbOcaBIGAgBHed2sPcIUvRiMiEoOlLvu5kwIzay15/RD/LuH3K0gwE033DfNWneXqefQ+0eGZtRKebkBSGhy8vk6aQtg8RoWnP72F6T8rCc0vE1woGvS5kt7D83O+QvvtWZsQWebrD3JFZvKqi0WyzublBGo9YXt7Ampjzzy6TW0kvESxtF/z6k79KrI8xSrrkxU0uTt7//vfzwgsv8Mgjj/xR3+I1RxiGE+vtG0O0Ww75qyRFt4uxzjrd378fP4jwggaq3kSFVVQ1IozqSGGhyJ3ImLBE1QpS+iCdqt7gykW6zz7J9J13IbwqeZySa40fVvGEpWotUSAgCqkePoJXqVMUlkJnpGnCaDBC6xxdaLcIBU5eXmCIqs6XIBkOUbWQWqtGtV6j0xtQFD5b3aHr+GSawiT0RwnDJCVLC6wQ1KohC7M1hIVOd0iaF6RFQTdJEdIJsWkhyY0GrRmMMiQpYbXJ7O13kfZ2KPIUm+ToIsfTFjM3R3W0gb10ljxLMY02/lQLr1kj0QWRNQit0Z5HfXoev9Emt7ezs9Xh8j//++jVV9n7Z/4WXS/Am/ZR4m7syhV0vYpYW3L+MK/RhfKPkgMAaZKwsrzCpzodLl68xM/96/+Tg4cOYbSTfytKu3ZggjMpimIy7rnR4G6s9eHk78cOnze0Akq10fKvyY5QlO9thMBYN0vXWYYxlqeefIrPP/wI3/SN7yHLMmamZwC4trbGz/zrnyHPc7a3d1hZWeHSpcvu2Erxs71797C2tsarF15hZmaWPQsL5LljiCzMzxOPRjz22OPOV6jb4Rd/4Rd5+eVX+MY/843cfdddbKxvoEpQ7Wg4JMkyarUq8/Nz7Ox06Pf6PPnkkxjjKMWNRoNKpeKYIJ6H7/lO2TOMkEry3vd+C1ZrXnnllYmH0ZUrlxmOhm627/qZrsApz32v2yGKvjosjd8vDyrVKr1ujzSJGQz69AcDDh8+TH/Q5/FHH2Nl5dqkGDVGI6QrIg4cPMj09Ayh7zM7PUW1XqPdbhMEDij7/HPPkWUZJ2+5lcWVZdbX1pmbnSVLU+fsXGjOnTtHrebGX5ub2xhj2NzcptftYUsdm5WlFTY3t+n3+xzYd4A9C3sZjUZMl2O9MAqx1vDMM8+Sl4Xp2Rdf4h0PPUSj0WSn02V1dRXle+R5zqmTp+h1Orxy8SL33/8G8ixnp7NDlucTlV+sJQojkjim0+ly4pYTnH/5ZTw/JE4TTpw4xnu/7b186YknkFLSaraQyo0qiyKnKLQbUQ0dRgYElUqFLM+RUjklUixxHPP5Rz5Pt9fje/7qX+VnfvYjZFlGGLnr1Gw2scYQp1lZwN6cHMi2X4HIR3gRImwgagoRJOS+orApQ71GuroIdoiwCi+sIosqJjHoJEMXLUyusRoQ02DuQlSn8aKAwgOVDJGrTyHNJv7cLGe+5TC9Tk6yZelcG7G5bUnXVsEfINjBSg85M0O82SUd9PDbHkJ5SE+j76lS1I6SPzdEDtokCzO8fEmzMtjg9IlpLljJ4gBMLAhNgtQjEg1zC9P4yiMG7m23uLVl+bVOn98caN5eD9hbV1ROVIlMQJH0yftr7EgHev/Ot0xxdGofhTT8089e4cVXdghqs2y9kpCvbZOvXaCoaQpzC62m4NihAlEdMEolga/YNx/gK8GB/Ya8I7i6OmR07gL1MKIzGPG2P7tMPuzSaIQIWWe9kBRVn8RqRnEFncSYELzX6LX2RypOfvAHf5Df/M3f5OGHH+bAgQOTx/fs2UOWZXQ6na/onqytrbFnz57Jc770pS99xfuNq+jxc15reHv2EdUb+L5H74VnKQxMv/nPIutthFIIESGlJjQC6xk8a/FsgVOqsaWhWkKejMiSPvlghMk10R334hlFJATVqRaNKKCifIwQWKFICii0Jc4tOu0g4oTc5AglUEaAMASeIgx8aq069XqDKKqQJCOqnuSuU7fQmmpz9domZ89dZGVtgzw3VKohM80KwwK2csMgKUjyAmEFfuDRFIYsTXlucR1jPYKS5inKxdMgEVKgtUQoj6zIMdpn7/GTHLjlNP3hkN4owRRp6VSaII1EaxguXWG2FnH3qX2sDWPOn11GVyuYzGI9iWrU0FJihKBQkpWP/FPi5x5jz9/+SdJPLpMfUQwXlzFBHbSme+EK3qiDCioUsRPdGe+Ivpo5kKaOPlwUhdOMyHKee/FFmtPTiHHxUehSP0RMcCPABAzrear0L9ETKjHu2eV4R0+eP+6auPNsgNw5m/o+0vOIkxSE4Py58zz11FO0mk0+/vFP8OSTT/Lcs8/y5re8mQ/9nb/NhQsXieMRAA8//AgHDux3vjppQhwnE6G4tbV1sjxDScnq6hr79+9jbnYW3/eoVhy7plav0e/3+cVf/A8ASKVIkoRHH3uMsy+cZWlpiUOHDqGU4jve9x3s27eP9tQUM50uw5EbNzmlXDs5J0opV9QobyKz/9uf+G16vR6f/NSnSUun4lHiwJ/VSm2i5zLWhQHn/GusZZQ49srGxsZNuRcUecHKyjWEkMSjmJ/8yX/Je979bvIsY/HKIllREIYBzUaTSq1easZYTp06RbVawQt83vnud9JoNllaWqLfH/LFR7/Ibbfewr79+8gyB+ydm5tlz969dLa3qVZrDOPUKQbbNUI/4PLVJaanp8iLgksXL9GenuKeN9zN4uUZFpeX6ff77D+wH4vBD5yh3mg4ZHFxkSTJuHTxEgcPHmTv3r1IKVlbX2ffvr3ESQIC6tUaD3/+C0RhwKmTJ0s3a4tQrthyZo26FO4zSKlotVoEge88ozyPzs4OnZ0d5hfmaDbagCAvcpIsJYxcJ9APPDrdfolB2mFleQWwBL6PLjSFmw/jeR6XLl9mMBjwwH33OYyIdQaGfsm2abZbzmOnkAyHTuPiZtwLFt713digge4UZMkAVUsRhcaaBDEakSUD7M4WIgsII4NJh+R6CDqDoo8C8AQykChZwQQraL+GkBEKH5unmNoSFD3SfsLiRedy7KkEaS4RaQ/r51BxnWdTxCjRIcsMugDrKWrzTSptzZ47WvRSycbKXmRzimjPDKORRtSrXF63zEYFvVHOICtoK8PZx5/n4G1HuPf4IYZ5ymph2VMJCYA3NasMrOWwUoy0xlRr9OKMjIRrOzscmptnz/QMewBlBUNjuf1Ag/lmhc880WOv3WIrXkQ0JPNTdS6e2+TMHdNEYUCr0cIU61Rr8K1/5ggH5jX5ydvxdUqSJ9QCn+nWLLkZsv/Q7Xz735gnyzT/8l9+iucv9Bj1N+n2YpJ8C50ptIiR9rUVqH+o4sRaywc+8AE+9rGP8dnPfpajR49+xc/vu+8+fN/n05/+NO9973sBOH/+PFevXuXBBx8E4MEHH+THfuzHWF9fZ35+HoBPfvKTNJtNTp8+/Yc5HGbuvBcVVkFnDC68DIMYT4DCLRyKxDF5bAHDEXGeoLOcwhZYayjyDE9aqn7A7OwUU0cPUK9V8FUI0kMbgRaCIjcMtSUrNHnhtDHyuA95AjpHSAVojBEI3yfyAiq1KvVmEz8M8KWgVpHcevgwjUqNK9c2+K2Hn2R9axudpUTVCnvmZmnUK5giZ2u7izZgVIAnPapRQKPmM1P3WVlZI6hU8TyJsoLCQuB7FNa5yAZSElUc9U97HmlmGcQp082QvXOzeN0RvUGCCizVpiEvDAhJU1ji7ojHP/1FFo4c5M4je7m23WFr6QpFY4rRTo/a4X2kxnLlZ/93ei88xvSffT8ibNE7dxEztU31yGGCmTN0fucX3K7t7ofQt9yNXHwZXvlJHnjgga96DmjjbsBKSYyFK1ev8gu/8IsYa3nnO981AQ0ixhbibtVUnsJog9YFutDokm48dusd/31j7o/BtGMhthtHOwB5aXNf5DmbmxtcvHCBF198ifX1dTa3thiOYp548gn+7t/9e+xZWCCMIj7xid8C4OKlS6yvrTu9ED9AKkm1Wi29SGy5G9ZcuXKVhYUFPM+fgAL7q07BtNfrIZXz3Pn4b3wcXRZV1lqefuoZgsBnbm6WP/vn/hx79+1lanqKWr1GUWiyPCNLM/LcdXuyPIMcfM8vKbopZ194gWefe45rZbt9NHIidrMzs9RqNYIgYG1tjSRJ8YXnBO88ie8Hk0JscXHxptwLdjrbjOJ44oSc5wXra+u0p1quw1MJGQ1G3HrLCfbu209np4e1lq3NLTxPsby4zM/9u5/ntltOcObMKQ4dOsSnPvVptrZ2OH7iOC+++BLD0Yit7W2Upwj8MqesYW1tjUa9ztEzR5mdX2BnZ5u5+Xlq9Rory8uEQURRFNRqNaZnpjlw8ADPv/A8a9fWaDYazMxMc8cdd7Kyco2F+XlOnjrJW97ydTz6xS+UHToHvs6Lgm/4hnfz4ksvsbK8wtzsDHv3LpSKsRZrDXmRUWhn6ugKAevECMuC9fLlRW699SS9/oAszSii3GHiCqd4XKk20cblf5o4V97R0Cn9gvMwunZtFa3dPXQ4HJIkMd/2rd/G2uoKSknarSZhFDltH+C5Z57lXe/+emZm53jhuecAbsq94OonekgFCEn7WJtmu0J1PiSsKWYqAusbnvv8gM7SkDNfH7Iw65EjWNo2nH18G/IUrTOEsNjUQmjwGx7EEqNS/CBGNI7h1y1v+sbbeNOZhIsvv0xjj+SJ5wesFW9n8ZyHSDS6UFR9OPRABawi8H1O3aL4ulsle5uCdsXHCsETd9/GsLBUKorudkzNs5y5JeJoQ5JrSawdRm3+rXcz1GCEpQX084K1LKfhe1SFQBlLxQoW45zzOyPunK2SxZLjBw8TBAGJMc47DYGvfAKd8023TXPXoSabl+5EnP4uVs5/iW//C38OFcQkyRqPfH7ApQsxMMX2Vo/OtRhzIkH1tulsrJGrPjL0SQYrWBmzenadLz+1ybNXenzh+R1WtjPyLKEoBBYf5QVopTC8NiG+P1Rx8v73v59f+IVf4Nd+7ddoNBqTmWCr1aJSqdBqtfje7/1ePvjBDzqaYrPJBz7wAR588EHe9KY3AfCe97yH06dP893f/d38k3/yT1hdXeXv/b2/x/vf//7ft23/+0U66MO1RYJ63YGYioJ0/SpSrblZc7Xp3DMLl3BhFFEJA6bCKtONOhVPUqlG+EGEFR65EKSZISkMeebwC06sKifPU/IsRSIwJnemUJ5CBY6FYQpDZgqMNlTbDSrNBpGvmG3VOHn0CFooXr50lSdWXmVne4d+v4+vPPbunWdmukXohxQ6pxOnCKEw5c489D0qUcCdpw9RjGJGo5QgCFGem+/34tIETgqEFUisoz8rRWEMSjpMztYgo6ot7XqVKAhY7wzJC1CeRljnwiCkQCcjll96mY0ry8ztmefuA3Ok1nB+aZ2tzg5rj/waO099jrnv+JvkmSW/skYebeH3MrzwCPU9+5h+8zey819+ntr8HjwvYO2LvwPA/fff/1XPAW6g3EZRSBgGPPHkUzfIqNc5fuKEcxeWkqJk5ygpiSoVhoMh/X5vstu01k7AfuOb9tj4rlqpfAVbAVxXZdJpUIqd7W1+6Rd/ibMvvcT0VJsvf/nLJEkKwh3nc8+9wOXLV7jl+HG2traJ45jhaMRgMKDVbKGUKkcPhk634xaJNGV2doZatUqj3uDlV1+lWqkQBD5CuN2owClwjhezza0tN5qRaiLn3+sb/u2//feMhiN+8AM/SFFo4jih3++TJInz5Sm9hsZYHM8rOye64MjRIywvL/PKK68yHA4odEGz0UQbjSw7FrVajdmZWVqtBsvXrrGxsYGS18/XAw88cFPuBQf2H8AYOH/+Za6tXKNSqTjV1lYb5fsMR7EzbQQGgwG1agVrnXVFv9ej3ZxiNIyJ45gsz51xZCVi7969ZMmYgi7wSvsAUUrI79u3j+mZabI058mnnua+++6j0Wxy5o7bGQ0GbG+5Mc/09DRKSfbs2YNSHutr69x66y10Ox2ura1z5MiR0iogpNFoEoQetVqFra0OS0tLtFptKpUKYaksXK/VePqZZ9m3bx/zC3sIwtAV0/a6uOBoNKISuha61hpduILC8zxmpqfdc+LhuMmFBZJRjDWG4WCAVPDWr3urMxTEjTDzLMNoN7KOkwRjDYcPHHImk4M+21tbDIZDNE4L7JZbbuU//8qvEIQhtWqNXyqpxDfjXhC+/QxerYkUBUVs2MglYkNgVg0iN1jro1VAcGiKZ18W2HPubmmMRXizGARSGGwhyYTCDwNUy0cuKKRWhBb0sMDu7HD24ZyVZ5exwyFvefcZAr2f9MIUe2xAddonaIW02oZ77hVMNwVSQKNSMBdCQ0i8BLxQcP8eRQZgoF+N2FwbcO7JZfKjU2xu99ke5AwyDdUqtx2o0JACbTQHPEnFQmEsm7lhJ7f0k4xnBpbFVPH81RipQ2rbBdImHAzgZCtiphpCUDA1VWMg4Opmly1T4+ThM7z92CyzB86w3TnP2tJFooV5ZnRBng2Zn51HHZREDY8oUAyU5eDe/RiTkftd6pUG292c33p1ji9crNLrt7DaUHgKVW9jhSRKL4Dp44Q7/uD4QxUnP/3TPw3A29/+9q94/N/8m3/D93zP9wDwEz/xE0gpee973/sVImzjUErxm7/5m/zAD/wADz74ILVajb/6V/8q//Af/sM/zKEA0M80wxfP4rdaNOf2METRWVumvu8AUa1Gs92k4QuaYTARz/I8Dys9CnwKK+hoTT4o0PmIPE8waYzNM1fcYKAw5DYHK7BK4gmJFdCo12lMNanV6mxt7dDpDEG51mkU+dx78hgnDh9gaX2bp85eYLuzQ6/bo9PrI7yISr3JoT0zNGtOUS/LcoZJTKEtSB9baEIFoS/YP1ujGQacfeUqG72U3CQEvkelUiXNC7zAd4lgDdpYrLAYa8lKnwVPKQggzS0aTbte5UAUstUvyLIUUxSltbshCH20zUn6XRYH26xevkKt3eDkscMUrTYf+ccfB2D133wlWt42v4lAnaBeqXLiu/8ml3/x/8PVn/lH2CKncdvdJIuv3JQcqNVrKOVN8B/gfHTOvvAiP/q3/hc++MEf5uTJk/iB0/EIjBNbEwgQON2Oep0iz8ubek5RetS4oqdASgeYbTabTE9N0e31SNMMsBMxNd/3ieOY1bVVmo06ly5c5FyWMhrFjhEkBUXuvHy2i4JX7AVmZ2bo9frEcexa9nVHvRxL7XueR55nLCzMMzU1RRRGrK2vc/DgfqpRhV5/wMq1ayRJShSGtFqNiXZKu93GWsvlK1dI06wEI3rkWcozzzzD2bNnue3USWdmGIakaUK/P2A0Gk1UdcdFVxD4KM/j7e94O5/+5KfQ2tGEAbo9x9jb2toC4PSpU+zft58kjqlVamyJLXY6O5Pr9dGPfvSm5MGRo0d57oWzaF2QlOeg2+vx8mc+w3SrxdbWFmEQcvnKFXZ2tlleWUEKwaXLV2i2mviBj/IkYRTSbDQ49+JZtra2ef6FFzh+4gSeJwkCn7179oKUbhSkPKJKlaXlJdIspVavceXqVaan2lSrFabaLRrNFt1Oh1tvvYU33H8fv/5rv46QglMnTzIcDWk06iytrJAkcWnA12EUD9nZ6bLvwAFWVtYZjEbMzsxy3z330O/3iYdDlFJs73TY2ulwz3330my2HHA5L1havFraGGR4AlZWVul2+pOx3XA4ZDAcMDXdnsjJj/2nZCm+NugPqdXrvOnBN/HYo487NSlr8ZQkzVJAuI0fcOnyZS5dvgzA4088xf333cfGxibveNvb+NRnPkOz2eTnfu7nMMZQL/WwbkYONO6aI2w1EBKUAuGBVBarINDgK2cgHxlQHlQ8SxBaCh8K4czTDbbc8Ai8zODllpqw1JShWliEsdRtjVZkmJuZIS3uJUsgmhe87a0CUxfUAkiLgiS2eMqAlyOUpj8qeG4rp9vJWO0WjGJJlnkMdcb8QkQ/zxj112lXBaueoh0I5vc1uGW6wnQtxAslz8YQqBqdLOeJ5ZSNUc7yzoitxQ30yioXe65raLTrEQtt8IQkDH2qtqBaDKmpgnYA0+2IhZkmC40mg6kWy5U95HGDIriP3t7bOTlrOVFohC14xQiyvf8j7XAP/lvvZX+eUxESnaXkRYJAEMqIh9qCY52cnVHBej8lKzRFAnGeEvfWSfoD9HDAzksP/4HX8w891vmDIooifuqnfoqf+qmf+n2fc/jwYT7xiU/8YX717xnC+szc/3bCwKdZr3G8WqEa+kSeJPR8rArQUgEKqQTGCvrGkqWG3KToPEfnKToZYtMRhXaLiEVSFO7LKAVYAUEYOBE3myJyS65Drly9RlFYas0GfiBpt+q84a4zHDtyhI3NLp/6wlNsrW/Q63boDWJkWMWvtqiGPvPtGtXAI88y+sMYiyDLC7QpqZsSAk8yXQ+5/57bePHZc6RpTlZokApP+uS5xpPO6dN6PtoarHFME6wlEO4bNxgOUM7/m8xatjsxjWrAfDukNxT0BzFojUBiTYYV1nnkaEiSHsOVbbbXVqm2WnzjB36MaN8CyTAmyxLOnd8mP7Of7NkrKKuR1uKHEcf+yt/i8Hd90Kmtjvo89cPffFNyIE1TfM+4Frs2JHHiRi6eZTgY8i/+xU/y2c99nr/+Az/AkWNHKKxTTC0KB460OGaK65o407iiKKiUolRjDEa1WqVarYKUpVCaYypEpXuvKH139uzZw8LevczPz7O6ulpqbpQUzHJBl8YQVSK6/S7NZoMwDAiDkFarNSkIwqCFUh579yyQpCmNRo0oqmCsG6NsbGzQ7Xap12vU63UOHTrgun15Tr1Rx/c8FheX3O8rFXDDIGQ4HPG5hz/PufPn+bH/54/x0EMPlZgbv1SxVc5rZwwMVm5kJssiZXpmxmFd2m2kVPieh9YaqZxvihSSc+fPMxgMnZS+51Ot1hBS0Ons/P8wM75aeXD18hWsNszOzrJy7RpWQJqkDAd9FvYs8M53vpOzZ1/k2PFjtNrtCS23yDLe8nVvYXNjkwP79/Pu97yHBx98kHMvvsT//egR5uf3cP7cS4RBwN1330Ov1+WNb3ojh48codPpUqlWeejtb3EqwtYxnYQURFEFXRTE8YhKFLK2tk61VuP++99Ilme8+S1vBgu1apW77rpKu9XkW/7iXyBNMnr9LudeeonlpRV2dnaQnsdgMKShHHj7O7/rO8mzjEce+SKLy8sMhwP27T+ALLuDVy5fZntnh0qlShL6rFxbYxSP2NzYcoyj9Q2KIudTn/wU6+ubJEmCMYa19TVajemyUCnY3u5w8dULXL58CV3eD7MsYzSKSdMUT3nMzcxQrVa45bbbWFle5v777+fq4iJf/46HyLOENMvYu2eB06e/Hc/z6e7s8J9/9VdvSg6kX3iJtOIwb1ZaVKZROgNbuHu3yNEmQ+gCoQqscPxGW1islsgMdGGRGLTRWF2ATUEWCBUjbYYVBkRKeyri1D13sJ5Ng8jIhEJYi6lARWuyYcogHeJ7btNjggY0GshKDdmskocVVCMkqAaE1Qb9ZkCtFfJA6wjHAidV0NOWFQ1nc8v2hiaOU45G8NzSDi8t9hiMEtKtDvn2Fs1sRCXuEG90nLGO9CZjx8xCjmAgHcjek4rI5tDvkvc2KfIRylhU4GwsamFIo12nOT1Fc26O1uw8M7NzzM03GV6z1Go+c/U2XjWi0lJUhcAXlqQoOBgWyJ2ExjAjXEsYDBLSSJBZwaB5gDz2GA67r+l6vq69dW4/cYR2rYZCIIRBCYlVCiMkORJjheskGEOWG/KsoCgyRJ5hdIHJE9AabRKsEQjlxHe00Shctdls1wmUR2YdZa3bTUi0xbMxnh8wM9fgxJGDnDl1CwjF1aU1fudzXyId9NjZWGcYZxBV8ZpThJ7HdDWg3agihCBJE7r9GJRECYm2DkMhBFRCj3bD5+Ceac49/yLDQUI3yUhyQyVUZLkGYSjK51vcZ1VSOCqz02jC9xwGwe1kQ6qeA/TuDGICT1CNQmwtpDd0eBykAl0ghYf1XRFkkxFFnrC9PoDVZbj8IpXmLEGzymj1ApX7b8FUBPH6CvGxowSB6wYZhyallAS5KaG1JggCWs0WWmvC0HmbGGOwwNLSMttb29x15x0cO37Mdc6MRUqna6NK+qu1Y4yJo+e6sJNRSZK6LsjYTND3faSUJGnC6uo1BoMhSZqQpRmf/vRnWN9YZ1h2IcYYFmOcQNddd93J6rU1KlHFAbKz3Km+JjGtZovRKEYqRaPZYv+BA2xtbRKPEtZX1ym0odfr09nZwfcDBoM+hw4dQgpBmqZkWc7W9g5SitJZWRJGEUWRk2bu50EQ0Ov1+fmPfpRjx44xPz9fgntBKa9UtrUIKV1hUnZRhoMBw9EIIXBMFGuZn5/H8zx2OjsEQYgxmjRJJ90Xi3uf6ak2nRs6KF/tuP3OO3jDAw/wyU99iqWVFcIgIAoDkiyl0WwwNTXFW77uzezbv5+Xz51na3sbay29fp/nn3ueq5cdVXZmeppDhw9jhcDzPTY3Nrhy5Spvf8fbeed73oPRGoQgHo2QSpHnedm98x0I1WiMNgyHA6xxi9xdd9/NU0897bQpfFesTU1PE4QBvuczPTeDAabn5iiynMcee5Tp6Wne953fSWd7m89//hH2HzjAwsI8zz73LJ/73MM89LaH+Evf9l4ef/Qx1tfW6Pe7ZLlTBb66uMygP+D0qZPs3bPAc889T6VapdPtkCTJZLz15FPPOKVX7Yr70XBA4EWlsWVGp9cnCEMarRbd3hKe8kqtmMIZnuKR5TkVG9Fqtrh88SIrKyvsmZ9jdm6OY8dO0O0PWFu7xrlz5xgNRjfVAHLw2Y9ACEJqwGL9DEWCEBojLJ5wJoXWCgdYVRFCBq4rLg2eylFKoKqBU40OPQQeygvAC0A4/SMtYVMXfOapJ5FBA1tvErSaTLcbNKsVTDUiaM0yFVZIowoyiCiUTy48CgSBL6l4IJWggqAiciKdMrzW57OvxvxKokkLSLVmMBwhjOb2W2Z5oOXx6c+d5/lXN7DaYNIRDHqQjMhtgk77kN04pMNJAhhd3tsE2jppi8JTRPUq9SNHHXtxmJDHQ4b9Ad0kww46yMUOtjiP1Imze5ECTyhkNaDaalObmqIyNUWtOUW9Vqc11WSu2WS6VqPeqnLioGPImihEhCF+4COVoN/v8cXX0Bh7XRcn09UQL4ww1lJYS6otRW7LC2DAGLAFpsjJsxSdpuR5gsKiCw0emDTDYpBC4HsBlWqIUJJGs0GlWmOjN2J5o4vOCowAGdQJlWKmXeeBu05x/Nghrq3t8OWnzjOKU4p0QNzvkaY5Nqwg23WkFQQC9jarRJGbAY/SlK2dHn4UoazEWIs2AiUg8CVTtZAD+2c4cugQLzz1PElasN2PEdJ3IkBGY4XTZXCFgKuSx7tdAIwlywtXSSMYJRn1qqLqKwQBnd6QPM1Rgc90s8JgCHFcoPwQrMFqjRU+YdQg8wJskeNJxc76VYbbW+RxH7m2RvYzz+IFTbLmPCtLS3gHT1Ddd4BoZga/WkWom2f8N9YZabdbrlNgoZf1CMNwAijNsozf+q3f5vCRI7z1obeWcvUSKRyuZ4zxKEpw7HWga4kvEG7RDsPQvVYKJAKpJHmR8fmHP8/HfuVXmd+zwInjx7h69aqjtZZOxAJHabZYEIJ6o0Gl26PZbDLoK4pCc211lXa7zd69e3jDG+6lWqthjOHypcuAZWXlGjs7Hebn52k06s5xNk6oVKog4JVXLpDlObMzM8zNzXLu3HnnBRMGVCoRStXwPZ9ev4+UiuFwwOc+93nO/Of/zN/4oR9ClYDJoihK8OO4MBPOURZBq9ViZmYaa52GixDCYVVyV1wNBoOvwN9MTU3jez5rG+sTQOXNis989rNEQcjzzz0PFt7z7vdw/JbjPPDGNzE1NUUQBNTqday1NJtN/ubf+hGmp6ZptlpMTU2RJAlHjj3GlauLfPzjv0kYhk5nxvN597vfTRAGXFu5RpqmKKUQJZ5HKY8kSbHGkBcFcRy7XCpNJMfjPmCC6Sm0AyB7sUelUsHzA0SZyyKq8vXvfCdFoRkNBywszLNn3143Emk0OHbLcQ4fPsK+vfuwwMKePXQ7HeIk4dDhwwgkv/Pbv40ssWat6RluO3WKI0ePkOc5lVqd206eZGlpkaeffpo0zVhbX0cAaZLRsR0eeughHn/sUZI0JU5jhoMBSZI4nE7JxFqYm2Nr2xWbUkmMKcjzjAff9AB33nUXyvdZXlxGAL/xG5/Alt5USZrdtByIoqfBD7BKTTZXwpMoFUEQ4pW2EbmQyKCFtqpkTfkQ+uS+jxVVUj9E4ENUQUZV8EI8PySohjQbPq1GRK1dIQsDCCO0ComlREvFBpKRleTW4ZKU7xH4HqEv8X1JzRO0Mag8pbfVYePaFpsb2wy7Qzcm08bdewuNHQ05UINvftedLF+7wv/3P5xj0HMgZ2kNNhlCEiPylAN7G/TTlG6pKTU2/mOsazVmHAJYg84Mo+EOwzUcocAPiKoV5g8u0KhWyDJNr9dnkGoyFFYFmFKET9ucUZqwcXUL++oyIstQeYIiQyiB7ylE4KM8hR9G+FGNWr1O1G7SqrUJajeRSvy1ErEJCApBbixZiVA3RkORg84QRQJFRmEKCmOw2umRFNot5J7wCH0osAgL8XCIttCYmePq6g7d3iI2L/B8j3prGqlg/8Icb3ngXmamp3j14hL/5bNPMhqN0FlCMhySGo0Ma6hGA4QglNCuBARCECcJaVGQac0oSYkqdTfjxaItSOmeXw8l9ZrPLadu49KLTulyKy4YJBnNRoQVTijJUQcdABbG+WjRRQGUHRTtwIoonzxLGSUZlUqFQAka9ZDOIGU0TNA6ol2vUpED1ra7CBmVGBvH5gmCkCiIHGZlfi9FloFZYH5hPxhDVGlR2X8E1W4jjWHp0lnWv9yncexWagcO3rQc8MtOxvLyMghHYaxUItI0ZXvb7RDDMOTpp5/hX/zzf8G9995LtVp1ysKBj9FmAoLNsoxcOsVYR8XUFDqfyN2PuzKy7ChgnZT7HXfeyb//dx/lhU+f5UuPf4kiz8uiEDylqFZrTgAuy7AWvvjIF7E4R+XpGWf8FoYhjUaD/Qf2I5H0+30a9TpKSQaDEVFUYd/+Cq1mk16vz/aOwzDluiBN0xK/0CBOEuIkdgaIOLaN5/lY63bx1WqVra0t0ixFIPj85z/PX3rvX+LQocMT3IHW2o3jym7SWEG32+0yPTVFo9FwzqPWMhoNSZMEz/MRuA5TtVolKN15i6JASceCupmxtLjscC/WtQyPHT/K297+9kkBJYTTbRHA4aOH2dnZ4dz581x94XmajSbT09McPnyQWrWG5/loown8AG0MDd8VIIV2jtTGgjCGvMQmgevgmTJnjHFj1U5nhyNHjhBGrpM4HAwIwpA4iQl8x/Zy4mSuoBsXwePc8srntNtTrsAxlt5Oh2c2n+LF8EVWlpfxfUWr3eYN97+BfXsd2PbIkUN867e9lzxxsg6DajSxQbjjrjup1eu02i0OHNjP8vK1iQ3Io49+iW/+5m/m7rvv5vSZU/T6fSolzunI0cO0Wk6ZNAwDqrUqnW6XOE6IooiFhQX+17//v7K0vMz/+yf+Gd1OjwMHDvDKy6+QlKyyBMtkR38Twu47jvAqWE9hpUQKhZUKi8J4HhkBVkSYsEJ06Bg2N1hfkUYetahKfbbGVLtJ1IgIKwFWCUSosIFEK0VmBSaHXqJZHhTEiSZNDLZwPkNWuO679H2U7+H7HkprgqKg0o8JBh2KrU1eXV9na22HpD/CFnm5iRYgNBQaipSKzHjPW+/g7pNH+A//5THOX7iGLQqQID2FjWOETkFr0Dm3HbuNjRCWXrxcajUJhAVrtFNsLjccpQwRwoz/7Y67yGOGox6j7Q1QPn61Sq3RZHahiV92ouPekMFoRIJCNNuI+gxUG+AHCK3J4yG2s0Xa24L+JnLYh6yDLFKgQApDCc9+TdfzdV2cJFlOYRWZzrH5CFXEKJNisxxtNUm5czUWcmPQaeoqeD8gCEPCSpVKFNAfDuhvbZFmOQmKbryM1ZYwUAT1OrV6hRPHjvHgG+7G9wKeOXueLz5xlizTJMmQdNgntwIV1pGlgyxYIiWYq1dQwjKIE6xQFEmOsZYwqiEwSIurNqVj3NQ8CHw4dGw/g61tdta3iAvNdqqRXoBXdgq0teS2LGxMqfdqbQnocrteKxyOwo6ND72AJC9QXoHvK5SUtGshO/2YThyT5pqpRpVDc4a1tQ20qGNVlSzP8ZTvcDHGgKg4VV2VYvwAW2h24pztV85TqTRoNKssVCocfuAWVq7t0H1q+ablgJTSWQ3kbjHOyIiiECkVcRyXuiaWIAgYjUZ0Ox2HqwDyLJ+wUsZCag6fwcSLJxThRAulKPIJfTKKIq5cucI//N/+Hxhr6Xa7pchXQZI6CfcwCJ3WRMl6kcLpScjSQwcBge8TeG53PRo65shwGHP06GFWV9fodHr4vsfU9BSVSkQ8jNnc3CTP3XimEdYRQpBlOVmW02612NnpEAT+hFaLFDQbDUajEVIqp4jrByRJwlNPPc2H/vbf4UMf+tvcedddjpFR5JjCjTfHNzNwjsLttgN7Lq+sTIqeMHJOy51Od1LUGaMnhdSYfn0z4+VXXmZ6epooDDl9+2m++OjjNJotHnzLmxkMBiwtLpKkGb1el3g0mmCTpqamqddrE52XrZ0djNYliNjhi0x5HgpdlMJ8yinwTQpYV8y5wsV1HPMso9vtcu+9ThG40aizurqKl6YIKUikK5yTJJ10YZwEj0BKUYKxwfNUOS4zFBrqTaf+arTh8NHDJKOYjY0Nfus3f4u8yGm120ilOHPmNHuOHOJ4eAvWWmZmZkjTlCRO6HS7PPXkkwghqNdr7N27x+mj5JoLFy7yxgfeyIlbbi3dsjVz83McPXoUYy39fp/1tTWWl5b5uZ/7OZLUvd+5c+c5d+4cD7316/CUx8bGBjvbOyytLE/o+zc7dNRE1WYRlSqEAUZWMVGA9Cv4lYh6s0pjukV1uorfrGC0RRmB0WLSZY6NZXNjRD/rkeWGwhSQFVAUaFN2NhBYqdwIXHngKfB8pO/j+T7V0Kfl5XhJh3Rlid7qCitbO+RpCrnG6twVC1Ii/BArcQVKkaLIufvkYf7yt3wTL7x4iX/6z3+RQVbaaiiBFQIyiyxyrM5dR0QXXL5wgeHWNqJIsVJN1gPhgFBl96TcIAiBsBasdk11J7gBUmANYArSfk4WD9neUEjl4UV1Gq0G+w7PUK16YHJ63Q0661cZZpK82kA0p/COHMV4pzFFQZGMoLuF7G9he2sw7KLTETbt/d4X8L+K13VxUiQDTJFgswHYbDLisNpi0AhhkZ4HxhL4ChGFeGGFsF4jCqqAoDfsM8oMKqwidR8pJJkfEtQj9rTr3H3n7dx6/BiDUcqzL15ie6dPMurT62wy6HcorE9Qa+H5AUp5SOlR9aARSrCaPEuxyukijNIMqTyENSjjMCNOhVOhhMT3IAwk0zMtjhw9zBOffYw0z+jHTlwpCnyHKymZKbIwGISbKZaqnGNDMNCTdjwlYFF6ColxrVUZlYwVS7MeYoep23FbwXSlwkxNsbN9BdE8jPFr7ouJh5IBKpCkxpAlBqWkKwyURFpIRztkoy0wGn/pMtHMPO1686blwGgUT/xqxpRfKW4QA0NMvHJ6vR6/+5nf5crVq/yVv/LdtNpt56lTsmOEYCJxL8rXSaWcuqwIGPZ6rK2u8jP/+mcwFvrdHk8/9TTg1nCti1JILUWNR0eSUlFTkpS7ZNdRcAtav9+fUHezPCOOE/I849Kly1xdXCTLcg4dPMArr7xCEARu0ZKSufk5RsOhEz3sdmk06gS+T78/cCaG1tJo1BmNXFs+S1OCIKDf26EojfGEEBhtePrpZ/g7H/q7/NCP/A3uu+8NTE21XQepkBOatrWW2267jTzLuXDhImEYEo9iri4t4XkeWZrheYosy8iyHK8Ece7s7IC1rK2u3bQcAFiYn6fRaHD//W/gz//Fv4CUkqtXF/n5n/8FKmHIyvI1PN+jEkUoz8PzJDpx3aTBYDDxWdLaoItytykEnlJ4vsMpjXFMQsgJjghcgeJ5/uTfeZ4xGo7Ys2cPrVab1dVVjC4YjYZQUpLHmKXRaFSeXyZieHJsRWFM+ft91yH03cZHSffYWMOnUq2URbhwYz6gs9NhbW2NwWCALgqOHTvOLbfdSrVWZd++vRw6fJB3f8M7yZKcOI4ZDIdsl9R2bTRrq9ecnlPp4bO+tk61XqNaq3Hg4EGSNCWM3Oi0Uqnw6iuvMopjvvzEU6iSNj7Bnf0xRf3ASSrTe/EqEV41xA8k1i/wpcEkOaPhFsNXr7IVx6TDxCliZ2CNQEsLRmKFB17pU18Wi44KKCAIIAjBDyCsIoIQgoAgCmjUAipZBhvr5NcW2VxdIe72JvcghGRsOiU8H5QPWEi6CJO70cyeNt/7P3wLe+dn+amf/wRnX7iEoVShNsY1V6QsRzUarHFTAiD0I46eupVLn/uSo0QrN7KyunDFiXDuw2O6uRDO8Na12225/3Aja1tkIHJsIcALsNp3TuPDHlvrPtKPCGs12nMzHLj1MNXIw2QDBhsbbFx+mX535HA9YQheBJ6PaM8ham1MnmEGO3Dxy3/g9XxdFyeD/oDQDwg8TZZpcp05lLaxrqXmRyB8atMt5ub2UG+06Gx3uHp1me2NNTCaIk/wgwhVj6hOz+GHIQf2zPPGe29nenqK8xeX+cwjzxKnMXk8IB116XX65CrAq00TqQrK81BCOu0MH6YqikBKciOcmWChGWVFqVKqEeUop+L5+L5C4nAmkSepVnzuvO92Lrx8iTTOMEAnybHGEipViomVgvjGTkBargS2ToYc3DOsmGAkjHF4FM8P0IW7IUVRhJQKXeS0qz4K6I/6XEsVraCJ521Rz67SDJtsjQxDE2JtQRIPwa+hqg2Etfh+iB2NKIzT2rCFRhQFadohSROMvXl4A8eucf4jSnlgYTAcEvg+SRKXOiHuBtvv9fln/+xfkCQxK8vL/K3/5UcdhgKQVmK0KWnJctIBcIVLznA45Dd/8+P88n/8TywuXsVaqNfrE58eUTpdB2FAoTVRFDlwpHEMIs/zrivMGgiDoKRiOpqyKZkmaZbR7/epVKvMzsxy9epVrl1bZTAYIsSwpPYGxHFMXIIb09RRZ0fxiCzLb/ANcgBcp4Sc4Xk+U9NTzocoL0pHZkOeZ1y4eIEf+ZG/yT133813ftf7ePOb3+IWy/J5Yyr0XXfdySiOefKJL/PZ3/0cRVE4XyLPmyxEY9DwxoZjhWR5flOBkAA//o9/nEazTpKkPPboYywtLTvmQa3GKAyJogjluY7mWAuGsiAx1nUe3RgLpx4LE38hXbgRlwPD4m7uUk4crJWUaF2Uon6aonBidgcO7HeLirWkaYbv+1iYmOeNtV/GeeH+LkoNFferMoDR2Flbue+5HeOArlOAbbkpMWPwdaEnHVNrLP3B87z8yqslVghG5fd/z54FKpUKzWaT4yeOk+cZr77yKsPBgMFwOPHQqVQq1Go1PE+xs7PD0089Q7fbAwThaIjRlkJr6rUqB/bvZ219nf7AqcGWp+ymR6Ppo9MNhutdksEO+bCHTmKsTrFaYxw8uzwaiUWCVAirXPeCshMifPA88H3wq1CtQRCBLxHSohQ0IqhGBZ7uoa8sMly9wtrmJnmeOgAgEiE91x2RyrFnPB+hPLAFJDGYMYvI8o1vu4fv/5738olHz/LPfuY36I2xJeVIRUjAGoQp2YU6A1OglMQauOuOW7jnxBE+/rknsEa7cY7bsrruSmku6z59uULY8r243nnHyLLbohHSKwuVsssjfTAFtshI0hGrgwGryxVsWCGsVmk359lz5jinQkuYxnQ766wuLbJ9bY10NMIKBV6A4joU4f9fvK6LkywdYnVMJgsi6VHzPHIFwveoN6ZYOHqQ6eY0ozhnfXmdSxfPY4qMJE2o+MIpwaoqEkl7usXpk7dwxx2nSZKUp59/hcuPnSPJM0yWMNpaJh6NsGEdojZKhfhBgBIKKcGTkppnCX3XwUi1RhtLkhvirCAMAqQtEDiwZeQpfE+ikCgPRoMtKlNT7D98CE96LF1YwhaaUWbRSCTOX0cJicQBgEVZqCBKqWp3d3KMHynBgFUWiWNbGAtFCdLTeUaapAQlijpPU2qhBOPRiTXd3FBrHiM2A+ajhPm2x2InZCtvYvwGwlisBql8cmvw6203W8w1sR4gJUjpZp5jR9+bEZ7nUZSuuZQaDZ6niGNHFx6rvhZFQZqlJGmC1obPfu5zhJWI973vL3P06DE85aHRExVYax0Y9bnnn2M0HLG5ucHHP/5bXFu9Rr1Ww1OKzk7HAa9xu14hJIPBsATpGoq8mCwe465OJYrwfYdfGZR6FXnmQJJrq2vMz89RqVTwfZ88yzh29CgXL1/G8zzSLCXPC4pCMxgMJ7iSMfMry/JJB2hcDHieR71Wc3iJcryklMdoFKOUG1sEQUCaZHi+4fz5l/k//l//lB/+kYK7776HKApBgC99/CCYYAz27T/AcBhTr9fxlGIUj9zj+/aV3QDJYDAoBe0ouwE3L7a3t+n1eyipqFVr3H///aRjR+nS5mG8MGVZNhHSM8aN3bRxLBxRbjIcnZpJ0eAYXXai7eEpJ+YnVanOWhbBxprJGKter9MfDPCkIgwrEzE+rOt4CCHwg8B9P6wtiyOHMxl3PV2hbCbXeXzcY5wKOOn+PHd2AhZXjIw7gKPRiKIoGAyHEy0aY8pNjLXOyDEvKPICP/CYmppi37693P/A/SzsWWBjY3NCCV9fX+PVl1/h2so1RqOYO26/w50b4fBHRe528cZalHK+TI2amhRM1pqJltDNiOXP/EqJnzHYcadCCKx1hZoY4y2Q5QZPlpRbD4IQ4VcxvnKdET8EL0B4AUJJotCj1YqoB6AHawzOX2Fn7RppPCjZCLiRCwKkG6ljLFJGCOW5n1kDeYI1BcJYhDHUmiF/5bv+Il//pjv5x//6V3n0y2ddzpWFvi0VyIVQGJODkI4KLYAix5YU70e+8Dhnn32xLCZcflidY3C5hNUT7BhF4c6NKcc+1hUirpotc43StsOYUgEdrMgRfgBSYaUTN7XJAJRP1g9Y245YX46wnsITilajyszhuzh5RuGZlNHmOp3FFbZWlngtGfC6Lk4iTxNFIVZ6BGGN6nSbufn9tOen0XHK0pVFll5aIssLB2ITbgGpVipIpZBSMD8/wxvuvYNbbzvB1uYOn3nkS1xZ2iC3Fqk1o9466TDB+BGiNoeUHsILyh22wMoSyOqDkpY0KyiUJM9z4qzA4hGGPjqPUdLdjJSSBJ5yOyRcN0P5AUHkc/TEMZ578gWnTIqlm+SARApKxU+X45Q3LinASrfrt7ibpcIyLoQFpR6fdRWztQKEQkoPbR3t0684DE4Sx0Shz4zyGGWaQT8mieoEaoqTC3DwIFxcV5xdHpKnzsMjTwbk2umthPU62hSEzQZFkqOEIM9j7PDmUUh1OcrTnsZTijhJEMLpnxhjnHquUvieX96sY5R0Kqz/8Zf+I48/+jjf9z99H+9+z7uoVmvYEsj4sz/zEb7whS+ycm0FozXD4ZAsyycLultAQBjwPB8pr4NJnW6IQUrxFcqzU6226/CUXQatNUk5ArLW4vs+vZ4b8ySJ67Y4fEtIvV5zHY8sJysl5qUQKE/RbrXodnsUuuweUap55jlpmlKv11HleKDT6ZQ+T7HDPoUB1kKeZyAgjmOSJObv/t3/lW//tm/j4MEDfPM3f/Nk566k5OwLL/CzP/sRlFLUalUGg+EEn6C1LhfEcsRqx2vEzStQgXKBhzTNmJqacs7NWJI4IUnTyZjPraWu0FCeKgG/EiiLUhyI2DG6mLCMxgXWeOcpb2Ay2XLcY4xB5wXD4YBDh4/gB4HrrijnjZUmI0f515o0VUipJjoyooTGu1/GZJRmMe49pJw87q6va92PMUHauNHS2KDRF6A8j6hacZ0sqZCeRJX6F7L8jozPWZanGK0ptKHb6fCFR75Ae2qKo0eP0Gg0CMOQA/v3Mz01xW0nT7KztcPGxgabm5sMhgO0dhgZykLE5VHKzs42g+EQUWK40jThyaeevCk5YNOB63xgEaI8l+LGotiNfI1USBVgvQDrVcCPXCGiAkR53X0pmZpu0GxV8WxOvLNM55mrbG9toIvU0Y/d0g5SIIRyxc7k+igQynUcjIYiA7STMRDgBT73PXAn3/M938rzF67x/r/zk2ysb7qOBeXopwSwWmMRnkRajTBFyaS0CGuQAowpeOXi8iRnMDkWBdYV3phxZpV4RASUXdvxebK6KLsj8rqsggBhhduIWoNQPqKwZU57oDyEct0Up7Q2cDtS5aGlz1ZHsoXCKYdpKpWQqYXjHDl6C2df/PwfeD1f18WJrEzR3LOX6YN72Ds7y7C7Q2d1lZcuXSBPCwpt0QikBeVJDI4+Wq9U2L8wx733nObg0f2cf/Uiv/DLn2AYF2ibk6dDepsr5ImGWhO/NuNOseejhEJIRRQoQgWYgkboUwkkoEhKl1tjBTKo4EmIlEsSqXx85eFLgcGgKPDKttzC/Ax33HGa4SBhbW3L6UqkBXHh8CaBUg40JR0oyrWU3U1GSUffyosSZ2JdS0Uq+RXKqa54N2irCaMQkWZuQc0KUALp+RRZSqgENpCkmSRPYlaylE5c4eiMZM+cz1y7ysqO4NJmwU5XIOIEGYTkeYHEIoSHlAVWSFQQYYr6TcuBQpcGY66FNPEQSVMHhi6KgjAM3a60sJhSxjvNHCX05Vde4R/9ox/jt3/7t3nH17+DJ554gheef4GlpWV0UWDKTkqeOyyAlIoizwmjkCxzo7Wi3AkW5fk3xuD7btEPQuerMW7hF6XWRaUU6Rozdcb6E+vr6zQaDQaD4aRwGLNexuJwFtcpi+MYMlfUNJtN8jxHlaqyxrjPOhyNHDBYCvIsI45jJypXqU4ortVqhTxzANB+v4/vexhj+ehHP8q+/fu47w1vYGZ62rHDioLnn3ueMAjo9/uTIj/PHXslyzapViv4vp1QZ8V4lx/ftDTgypUrDpBaYo/GLKMJ20g6T5HxKATcbl8KUXa1HK7EH49+yoVBCmcWacvXjTsOBltS0Qt04YoSK2zpT1RggYsXL7kNBI5G3O313OKH01BRyo2/pLpeuEkhrxcdpW6KEAKhLao00hvT5x3Y35SFqhNvTJJkIilgjHFdVATG6jI/JVEUuTGXcrlZCwIaouHyolYrVVwFWZqysrxCUWiS1OWQ0YaFhQVO3HaC07efmth7xHFCv9dneXmZ9fX1crfumFKdTodBaZHg1GVvTgjrBNaQjv0icIWIGHdHVIBVHtILwAtdNwK321NFQaXeoDE9RbUWoOMuo5XnWHrmGtn4nAqBnGBRxiM5dR1LUnaRxkasCLBF6nIOZx0greHIwQP8yPd/J/fcc4b/4999go9/4mGKOHaFB8YBbbMEpER6AUYXjqmDLTsqBonrRFljHMZHO30dh6118hFjx3VhbTmGdPIaouy4WXO98+pgAI69g9au6Cm1j5DlZzTO6dpajURjdYaVzmkZQHoeVovrWivSAyRWCIyQDOIhw50djHltdPLXdXFy91vfSCAF65cXee7l8+Sp65BI9810F1cIrJEgFK16hdOnjnL3XadRnsfzz7/Mr3/yi2xtreMpj0rdY7S1zWDQR1bbyHq1pGVJl8xK4ktFEAgCWxBZQ70REigPEKSFdZblucaqAF8FhMp1EIT0HbXNKoQwSAW+UFRCr2y1S/rdAY9/6gvOcTYKyTXlzc0VN+POh2PrGKfICaWXjpyInVnpZudysmsYb1/LeaI1FFo7Pw4BeZphrSh3DB55kaMkVCsRA9xC1+0OeW6oOL/U5/YjTQ62YaZieDlqsLjhYQqDtNah20tqnClysjTG826izkm56CulmJ6e5tDBg7xw9ixp6nbOQjisxFibwuFsJH4QEIUhUilmZmaIwoArly6RDEc0Gk0OHIAszUjTlDRNCXwHeKxV3YikGlXQhbthBZ7P0SO3cvnqq8zNzTIYDsAyoeChyrGGAzIgpWBqZop6vcbOzg5hGBJVInRRkMROrXNqaop6vT4xExzFI4dp8LWjDMeOLuwWI6hWq/T6feq1GoOBsy+QYUiW51C23E3ZBUjTtBxRaESek2WOxVaUjsuj0YgwjBgMhywtLfOxX/kYL710Ds9THDp4kP/yyU9SaM3c7CzNZpPl5WWkVNTqEYHvk2UZ7alpEJZ4lExoyb1S6v5mRJIk+OWoRCAmXRFjHBZLSQXWLfCeUk4BtOxoja+tUGJC6R27VMP175EDvLoCZaz6W9bESN8ZSQopufXkbfwP3/VdRCWFGAHxaMTP//xH6Q8G+L6Pkp7z5lJqMvYUZaHEeAc8Lk4Yd6BKXMzk2CwlBhdrzQ3jkzFjyk4YV2Ngs9Ypg/7Adcom+Av3+XzfjXVOnDjB3NwcQeCTbiV4SqCEII4TdFFw8dVXWbx6lf3793P02DHm5ucn+J1Dhw/x8kvnuXDxAp3tHafnoiR7FuZRvk+eZ3zyU5+6KTkg0OV90rnHG6lAluBTqRAydOOWQoNJ8Co1atPTVKamiCQknXV6r77CRmcLo92GYzyqETDBIAkxHgu53EJrUK5rIr3AFQDWWZ8gBSZ1Y04v8HjH29/M3/+h/5FeofmBv/9TnH3uZcfeGVORrQHtCkqrXZE77qY47IjE2AKFdd0OIV0XRzsCiGNqupGRNRolRAmMNeVVtq7IGI94rC3xSo6pM+50Yl35JbFOuFQ5tp2wuev06gKhlDteqxFKYdIc17VSjLs+7s2cn4Acj9N08powSK/r4uTik08TxwmqnC1mucb3PbTvKjg/CkB6tKZa3H3HLdx1+21sdft85gvP8Pzz5xlmFs8LAJ/hzhrbqyl+cxbZ2IcodyNeGCHDCA8HSPU9iygympFHo1bFGkNhLXmh6Y9S0nKHE0iBIMW3JavbFAjp4ymX6J4QKOUSPwoD3vi2N/Pssy+7FqonSNKCQabJtTN3ikpEv7AlLWy80AmJkqALM5mnyvLLY0sMhi4ciEtI12602vkFCVFiJUKfJE4do8kTBNInz3KqCkQ1ZJQZRw0rDDYIef6aphJJDtQNx2cKFmqK86uKTt/tDnRaIEIPJT2qQcCod/PGOp4fMMaaRFFEEIRIIZmdncEaR6FEiJKSGdBoNAgCn0qlyvz8AgcP7ufEiRM0Gg0uXbrEzOwce/Ys0O12GQyHrK2usbq2Sr/XZ2N9g2qlgvIUd911F2maUq3WePXVC5w5c4Z9l2eZnp5hbX0N3/O5cvWqEyYTgiOHD9NoNt0uV0la7TZTU1NcvnCRNE1YXFpip7NDURQ06nWKQrO2tk6SJBPdiyxLSZKEqBJNwJdRafiWpI4amxU5hdYOcFnu+lvtFp1Op1y0DELoCXDW9z2yEhuTZm4UZktX4mqlwpFDh1hcXGR+fpZup0u32y27NAV5XhDHCVIpFuYXOHz0KKPhkN5g6DpzwnUChv0+/f5row/+UaPb6TI7N+sKEmvJCzvBi9zIOHL7FjspXCfjHF0KN5bFjZAlSJVyN1yeS3lDF+U6iNZhOLLMibC94f430Gw2mdh9lB28q1cWS0NGie/5JX6kxEXAV7BcxjgTKVXZdZXlsYgJiNEbj5YpMQLWFU/OoXvMwKA8fjkRDow8z43D7fgcUBZChm63y9NPPYMsGYSj0ZD50ttpamoaqSTdbpd4FHPu3DleOnfeCdZVKgz6Pfbu3ctdd9/DydvPkKUZo9GQbrfL8uISq6vXyNKb1zmxwsNIp3FicVRfAdgix4oCFShqcwu0Z/cho4Bk0CNeX2bj0rPodOS6BuMuCOMRnpkUhoxtVY1xAFM5Hu0pZ+ajVHlv1g6QrAuk8sAaZvbM8X/7a+/jG9/xZr589jw/8dO/zNLlFTfuMQVifC2LDDzP4aOMhsKiwOlVKYU1uTsu7b7f49y0VrvOTDnPtzZ340ozoUeUBUk5mByLso27KuX/hGvMUBKm3SbH4sT3XNvRFUtClg0Ai0kT10ER5WiyPFdjn6ZxEo6/Q9YWr0np5HVdnMRxgi+VA4qGISK0YAQagfEEcwcOcu+dpzl0dD/ba6v8p9/4DFeWt0gTjfQjajJn1F2jyHNEpY1fD7HaLfx+re6oe4Cyhoqv8DDYwtCqR1QDWc7VBWlR0B/GpEY4pT0BQmcoT+Arj8jzKIzFC3wkbierhCDynFDP4VO3YCX0NjdQwmK0pR9njFKNQeD7HoXR+NIpw1JKrhtjHAVOSqQsW37lnBBA4uSKxxuksSqukAKrDZlJUcpDF5ogDNB5hi88t3sMLHnuukNaAbWILM6gyMl0QTYyxHFERRjmmoKDM4LIg7Udi1UWmyUY48SLxsdzM2L/3r2EYVRqm7g25qlTJ8nynFq16hxhZ6Zpt9u02k32LCzQak8x1W5TK8Gc2hp63R5ZnnHnHXewtr5Os9Wi0WyyML/AXeJOPM+n1+2ytbVFs9mk0WoiJQyHMTs7OwgpOHT4MKM4ptFqghXMzc+hdcH0zDT3PXA/K4vLpGnOvgN7Wby8SHd7C2MM1UrI/OwslUpElmYgBIPBAKUUx48d5erVRScjLySGgiLPqVaq5Q7eMW6UUjSbTbI0oxpF+L5PmqZsbF73TnFQpHGHxC1+SZJirNODscZSiSIOHjzIXXffxbFjR2m1WgyGQw4eOMCZ22/ni498gZfOnXOLrJLkeUYljKjX69Trdee5EoYl0NON2bI0YWNj46blAMDs3CyVKHIAwLL17hZsd3N0Eu2ukzIuCsYFwZjKa8wYX2In3Yfx/x97LI2LFcBhPQqnbaO1w3FVKhEnThwvCww72WErpZidm52A1d19Xk5Ainbc3YHJCFDr8Xe3XGBKwO64GJ8UFqKkhRq3MBWF84waf/7xaFeX7zH+HOPNy5heen0kVrjWfFn1XFu5xvr6Rom3cmNTYy2HDx+k1WqX46QUJRVLi0usrq1SrzdpT03RbDSo1Wvcdvokt548yfbWFj/9r/7VzUkCIR0Q1pajDKEImlNU5g/htWaRVpPsrLN+/gny3haiZDZaZDmSuV6YlNBiZ1MjHJkAYSeFpBCuGy+kQnhug4QuXCHkkghhDZ4UnLnnDn7wA9/LnSeP8+8+9in+7c/+B4b9AUJrB5Z1rf4SyzEGFQqE52F1acpKydQpQaxKipKVA1Y4EoDOx8dcMnSk65rc2Plxj8tJF8ginBeRtQhZMnrKMegYQOzyrXD5iiy7NSUOxbiSDVNMivZJx6ScYphyzMg4Z+1rE2R8fRcnucFWItJRQqR8jFXU6k2OH97LG+45Sa0a8fLLF/jFjz5Gp5dg/Yqbf9NjuL1FmhR4jTZeZQqdawSKIPIQngOrjYuS0BekSYL0BM1aiMKQJo59UWjNdreP9iKnIoomkO5nQknngKt8QqGwVqNwLDXPd2C41tw0x249zlNfeJzRMAFjyBB0RhlINy6p+Io81wjPFSRqkjCujev0VaSTNKbkuGszuTFZYzDSTdKdIqqbL2prJq6VWVbgKY+iMChPlsBKgbA5kacxuSLHkOepA0kJyTDrkwU+3U5C0Jqi5Qv2NmBzc8gw03h+nTyNMTcRDNms16lEFaKaozqGUUStVsVTikajxezcDPv27SUIQrTRFHlBUI5zsixjmOf0ul36/T5bm9scOXKUqakpLly44J5fFEipMFpjrCGMIvKioLvTIU1SxxBRiosXLk4wAY4+PGLQH6CkIk8Lhr0eRhcIa6hWKjzwpge4cvkyJ0/d5gCSw4TBaMiVSxfxg8AxqIqcer3Ovj176Q8GJW6hizWmpAFDtVbFLxk4xhoatfoEGPvMs89OxlLWjoGcgjxzOihjtkoURRw/dozTp09x+sxpTp46ydzcHMZYNjc36XR2aLaaZFnKgw8+yOcfeQRrLN2ek+A/cugI586fY35urgQEe/hKOQ0fP6BhDMeOHuXJne2blgcbGxulEqtBUArJlTohY8aWLim8QgjC0gfIARfHLXNXTJlyt2mtJS9yAj9wIxOtJ2McJRQW91he5BNvoiNHDrN3774JqNCW74O1pfbIesnsEpPv7Rir4JfAauC6Dk3JrFFK4fvBddwLbsnR49Z/eX0d2NdMirJxF8hOuipqAsC+sfhyeWsngOFJlNiD4gafqLFnUK/TJYxC9u/fz74D+2k0GxMQZpYX9Lsdlq9eRRvDwcOH2Ld3L3MLczctB9AFqtIgnD1IOHsAGVTQwy7xxhWyl5/EFsMSEMpk/OMG3aXfjhWOaXMDO8pap/w73hBOCsQxRVgppzVSQgmkFJMOVntmmre/5x189/e+j5qn+N9/8hf49V/9HfLeNn4Qlue/ZM4o38ERpMRmGVZJrLbXC1NTdnBKSrHOHdjfyRVodyy2HDONP6M1aF04LMgNhbIwruBxhCJX+ji2jnZjGmPcPb58T8e4LIuhsSxEqcUzBgSPOypuAySuH0pZJE/GTdaNq15LvK6LkzzXRDWfqBFhdU57qsH9953kwJ4Fnn72LC++ssxg0Ceqtx2COO8z3FxnFPfxwyY2qJLEhiAoCGuRE0grL24oLLWKj7SaIs2oR5J21XlgOMl4S5IVbHcHaD8iBCqiIFDGteEwYF170RQGIQoEBuUJAuVu3l7kc9tdp+murbK+vI427sYZp5YcQZJmk1aZtuWtx1KaE5ZaQeWNzwpD4AnSzJTVt0BZS6HHoD+LFYJc5+WcW2AKl0wyCEoBLQf61GmK5/t4UhGECpuVM8IoJLbOQ6TI3Cx61B8RCIsZDMmlRqU9Wu0IP7Z048Kdryy5aTlwy223uJmrtUy12+zdt5e9+/YxPz9PoQu2d3ZYW9/AaEOtVqNarZLEMaPhkCRJ2drccuquRqM8j5WVFd74xjdx9eoi68tLJGlaYgRkyXgZGwM6f6YwDDl69Ah+4OMpJzy2ubnJoB8yNztLlhckccyrr7xKUTg9lOLll1mY38PKtWt01jdJ85R6rc7W1hbVaoROUwYlJuLgoUNsrK2TDIcOM5DlHDx0ED/w6ff6HDp6hHg0otvtuUUHR0lVuFHPqPR6ubEDIISgEkWcOnWSd77rndx9990gBMPBgCiKqNXqDIcjet0ui4tLbG5tUa1WGA6H3HvvfXzHt387P/uRj2AF1Op14tSBbLd3tksdB4uPT6tRp1qrsVo49dqbGVeuXsXzxkA/146e7NTgemdE4PAeZYEgy4X6xnOjtZnoAympUL5X3vPdbhFBOVKhLGxcl8HzPY4eO0K71bouPmav66PmRcHOzvZEH+XGcRG4m/q4+zdmS4xl/5VSeNKbdDvcdMdOik5rjNt43DiCKrVYLM6eQZXjXqXGmAm3yZVCTphM4+MYH5PBOh0XYwiDcHJcN3pQLV1dIqpGNJtN5ufm3Dpl3e8cjWKUEFy8cIHpmVmmplo3LQeaZ96FlR5Zb53uS1/GJjugHUsGxqM4SkxP2VEoN06uHzWZZ5TXzS26suwWWOHICFK5kZE1FrKkHLeMuxYSaQruufcO/ucf/GucuvMMV5bW+fGf+FmeeuwJTJa4rp0tgammxKsYgy5ShOc77y7pdFikhCLPXHfCGtAl0cH3MUXmsCTSdSPkmDlWgkeM1RM2GWXheuNIB4vDpDjNh7KQuD7XMUWO8l0RPy5Yx9R5tOu0IEpsjAUpvcnvdsejGJdEYlytMClp/sB4XRcnIEjzgjB0lK3NtXU+90hGkacMM9dh8MMIm6d0t6+R5TlBbQZfNcmzHOUJqrWQIAzLKtm9JvQ8apXAUbLylHY1oBq43bPWlsJCnOXs9EeoSpVm6BEKBwzySg2CwhgqvkRKU1aQmtBzxn7aanwU8/sWmJmZ4rFPfpbBMJ0omQ7TAqMlxmoiT5Hl7hujy+turKXIDcKTCOneb7wTRjhHZS3cgqRE+ZryhuFJz/HcfYXyfUxRoI1Bogh9j1Gc4StJkuVUo7CkSYdomxCFHlJUSbKEXCh0kSF1gREC3d2CxhRatchyCEOPmkjJco0guGkZcODAQU7ddpI9e/cQVivs7OywtLTE41/+EtY4k7dms0GlUkEqD10UjOKYXrfH1auLNBoNmq0mjVKTYnt7m0olotVqsrUZOTfiUo8kyzLSLKMSRYRRhOc5MGOaZRRFTp47QbLpmWn279+H8jxGgyGbGxusra9hgEG/T5wk9Lo9kiRm9rZbacqW283XIhavLFKr1EnzHM9XhGFIVrgWrfQ8vMAB0+JRzMzMLJ3tbZaWVziw/wDD4cBRyaWjVBeFLnfX7m9PKefO+5YH+fbv+A5OnT7NYNDn2rVVhBDs2es6TNYa0jSlKLsg4CjGOzsdLly8wD333cc3LC/za7/2GwyHQ3zPIwpDzp87x4lbbqVarSKVYn1tje2dbcaqqDc1rEFKf1JsCKBSqRKGIZTO0uAMC8cFw7jTMC5kvgJPUuJERKmRMhE3K4tGJVXZoTDXwbNCcPToMYLAefLcWJhYoNGoc/DgQSf7z5hNRGk14KTqZdly19qNZsrJvdOLMZY0T0tAbOFu/NZZN2jthO6Kopjo6rhxk1O81aYAK9DGteetMZOuyLgDKxDkuigpxXpS/IgSszLWVYHxubATzZUx/mHMDByLtkkhCXyfMPTodjqcz26e8V/3pc+iTA7l6Hwy9mK8my97B3a8CI/HN2WBB4Ab1TMp1NyI0Llr+5MOCbYoRzfOSkBKN4KpNBt817d/G3/5fe9ldZTx2c99mY/8q3/PyuIKmBzP98vvZF6OZQqkV3FrT2kAaYrcdTHKay+NdoDX8QiyyN0oqPRNs8ZicEqwiLFkvSlVYkucx7homYwANaJkFNqSnWOtwBqXV5POXZFOyBgK10liXAQX2hU2Qk46KwLAaHfk2kxGPK7rI0pQ958Cbx2Eu3FkcYLy3Je02+3hhz7ogizXDLs7zk233iKsVilSdxGrjSp+ELpWk3Bp6ilJ6DkdAJ0OqCpLpeYj0RSFqz0LBP1RzCA3yEqdwFME5W5GSUXgSyw+obIIfIpCEvoCT+rxmA8lBdValVvO3MbiK6+ysrJFVuR4SpIWMMwtWXlhpRTkhcGXglybSat3/PmttaX4mgFVzkjBydqXYK2iVAwd32RFKa3ueR7C8yiynLTQRGGA5yuSLHPaLIXGC0Nk6FFVklEcgy9BVrBmhBUBqigmJle6SFFhA50OSYuUfJSR6hQlb56vyqkzp1lbW+OZF56biH9VKxXa7TbtqbbzW6lUynuKIS/czHxra4s0TZifn2Xv3j00mk304hKbW5v0+wNOnzlNtVrlyaeeIk8zRqPRRPnUUZWdfHfgBxMmUBCGFHnO8soKRakAWqvXmZmf49TtZ5ieniJLUy5dusyFVy9gbMHVxUUqUUQQ+LTbbcIowJAzHPY5tP9QyS4SNGoNLJbZY3NYa9wiYh1+Yd++veRFTlSpIJUkHsWTVqqUkoW5ec6cOc073vEO3vrQWxFSsra2xpe+9KWJmJcocS6WsZ6HII5jxm6yaZrS6/VZWV6hUW/wTX/mm1hcXOTpp59xvj7luGR5aYlOr8uxo8dcNy7JeOn8eYLw5hWoAIPhyPnWTICrkuFwdIOSqiTNUsZeTGNBNkfdlde7F2XH4Ua6LlzHgYzHMErJyWPWWuI44djx4+zbv+/6vnAyInH3mF6vz+LVq+U4zU7GbOMNx3jXOe5muNdJrrN0HDvIU9dv22Oquy2LJKAsIlxbxyt1ebR2XRdlPAI/mNCXr3cSnDBcXuQEykcoMSk6xHiDU4KwgZJenJRjMKd5pEtasbGWPE3ZHA7JC6cwXK/XmWq3aTZvnqyAyjo3CIaBsLLEiJR79RIHMelTlUXHeFxjrQbrtD9cgSIYy85L5ZWjCzcCNDZDSc8tyFIilOCeu0/y177ve7j3TW/gsVeu8czjT/Cxj/5HOttb7kxLhcG48a5XdmCldGDTsWGkGLPDhKNEa7fQa52DKKm5WKQVCM93r4UJo8fY69jDcTFi9LiLyAQr4rpq+isKNScaV2JGynXCFrmDmCCw4roqsihPpymcJcu4yzTux1khsLkjXYhJUVieT/OnoDhRQYTFkMYxlVrofGdsgbABJh0y7HTxW02i5jxJDEIbVOgTRQFCKjwhsWgshtBTbnRmDaG0NCJB6HlYISm0A5lpFDuDEblQBGENKRySurCWUAmUFBTGR3q+u+lJD08apMiRwpbULo9KEHDyztOYQnP+hfMkqVN3jDPDMJeMsnG7VlIYiLMCGfmYwhB6ru0scEmtceI4RVHOz3EgWD0Buil0mYBuru6SrkgzhHC0SeF5FKOU2KQ0a07zwuQGVfGdu24Ooe8RBCFFGuMjkNUqg1GGF2qHXZESUWiybAsZVrHSw68o8m5MUYxuWg782q/+GkEQIKXC8zyqtSpSSbI8Y2trm62tbfI8d12PG1RUlXR6Eqtr66xvbDKWIZdKcuHCq+w/cMC9Lk3xPI84icmLYrJ46RIEKMo5/pg54SmF7/vEsStgBv0Bg36fpaUlwjCkXq/TbDW569678csddJHnZGlGq9Xi8KHDrF1bxSBZWlvFe+kcjUaDIi+wRjuxLGNJkgRttMN0NOp4yuD5Po1mg0a9QaELWu0pjhw9wr333cvtZ85QrdW4enWR1WvXJnL5UjqJ+izPSvM7t9BQqowO+kP6/b67uQ8GBL7PxQsX2bdvH+973/vY2NhkZWXFUbOjiCgMmZ+ZZTgYsLW9Tb1eAxwt+2ZGFIXUqtVJUQHXCwkxVlQtRdbG3klCuuvlNjmuwzT2sZFKldYIelKEjHNkDGh1asQehXYL8KFDh5hqT/EV1Un5t1KKdrtFrVYjCMLJWGY8th3/fqWcQKDv+yXe6bo+znjcM8HQ6OubjqIsVo0ea5zYUkH4Omspy3JnOhjHE6fosaCcsaZU83ULydiZGkpA4w3jp3GXVmt9A2bGLUyqFFuTnkfgeQRCMF7vBvGI/qB/85LAGib6I9ZhScTYL8aM8Rs3sHDMuAApN3NQ4nMoCw7PaXxQdhcUZTFgkdbi+Q7nGAU+f/k7/gLf+q1/jvbCPFe3+/zKL/0GX/ztT5BnKUJYKOm11nIdA2ItJdUSK8qRSYl/EjrHZLkT3xOSsrXhOjbadSwMDoQiPR8hnCy+NNfPhWNsldgYLDbPSx2qsug1Euu50ZItSnCwcHhLrOvqOJE2d4xCqkmvybo22USJFnFDsUtJty+/b67TNHZeFs4X6DXE67o4GQ5HNOf3Yryc1HqgBFpb0lGXNMlp7j1IkgmSVOBXPALfc0qrwuE1rM0cG0eBh0Zaiy+h4imMkCTG+QmMtCbJLHGaUFjPKYBqU5pSCjxhnKx8+QX2BUhpMVLje46ZU+SGwsIgLoil5oVX11leepZ4ZxOtLdL3STWMMqdPkBQWKyAZpQgso8S1+SkEhXGJl+UFmAKZOmnyPE+wuHGQ1RbpCQSu/VjkBdLz3YhJAEKSxwlGOG8cJSUG6I4SRFAh1zndOCFQAqkEojCEURWhFL3hCCMF9WqFRIFIYookxiqJjvuujVykWAO12b0k/ZsHhNTalHN0VxS4xck5Do/y0aTFPZawL8oRhxXjXaudOMoC6KJgcfEqx44d58KFC+S54+57ymMUj/D8G3ae1jnVjuW4o3LUA74zxktiBoMBSRzjFGA90iShaw0jP8D3HWA0DANq9RqVaoX5hXmO33KCwXDA5uYmSRxPAK03GhyO2UiVSgUQE4+YZrPBVLvN7Nwc8wvzRFGFZqOOtZalpSW0LmhPtZmZmXHTZa3Jsoy8yK8v6sLd0IPAJ0lSNtY3eO7Z57DWMhwOCYKAZ599lre97SG+67u+k5/7uX/L2NAwS1PmZmcYjWLyLGMwHN60a39jKKUmSr3jTpAqnaDHLWXX7TYYZQmDYMLOEeXnHeeO62o4JkRQYgDGuZbnDvwocV3IJE3KAtVjfn6earVavudXjrGkUA6Ea00pwKYmu9Oxp44qwbvgxk9jXITWTv1YlCMruA5eHTNzxvLxFrDGMPaHsmXR4Zywr9spTLo+WOeyzFgbxY2u3KgLtHGeQhNvKKOdm3cJ0h0DNsef2RhNbpzZnTbjAsd9z8y4O3CzQoC0btc+LqYMbrHH3nBNhAODjosX16kqF4ZyU2lx4w+lRCnbVBo9yhKnYi06izl47Cj/0/u/l3e99UF6ac4zZy/yr3/2l3nuy1/GpCOkdVL+2paaOLjRvfKCcixnJ2wWqSRFnpU4mLFfl5urqZK6W05JSpyLKyCcnoqaCHPaUjnWaqfdo/PEnQ/PYRE9T2Gy1OFMynVGyvIcWOdGLjHl2MpliRgXNVJhClfcO9l+43ArY2AtN8AHyn9TrjcOM1u4934N8bosTsZf0LBeZ9jvYvOcfDRAmAIbeARBFaoBw9zgec7C2s1qctJkhO9LCiEQGMd0MJIC68z6JBSFM4TSxpDrhCR15m9+GACaIs0xUmAkiBwKYYitxQ88PJmSlXP68cbJaE2aFwxSjfBr6I01Li5ukaeZA5sVOWGlTqENWWEw0sdYN/O2WuNLSIBAeyTGSYQjFSbPkUoghQVpXfvPOkaOEAJSg/SvS6VT3qSk7zt2UtkuRrgvoMCSpXmp6OnQ25kQhEIQF5pMawrjqn+lJEZnSGEorCaLYwTuyzLcWsGrNvD8iKy/QR6nX3Hdvpo5cOedt5cLtLuhh6FTqu31em4ub+0EDzL2RhE4YT4hr7OIxouClIL1tXV6JSsmiZ3MuzNXM2Rphs4LlOcWQwxkZOiiQOsCz/edLoWURGHorn2cOH2H8n2qtjYZDUwwDEriKVV2eVK6vZ7rlpRt/qIo2NraKIWSDEmSsWEMWVFw4MABThw/xsFDB5memZ4swmmaMhj0uXrlMqNRjDGawA9AjtUfnQroaDQiy3OMKRC4485L356xZ0yz2XBOuLgFbXtri+eefZb5+Rnuf8MbePTRL5KmCUUh6fX7KCWZnZuhWq2yvbNTXrSvbg7cmAeOEuy6AJUwotFqTLAvY+XY8WIbeD5RVAFpHZuubEkrJcsxnRvtespzeIkoZEwvHY81RLn4OtM/w3PPPcfMzAzxaMSI62v2ZD0UgvmFefYsLCDKrsNg4Aq38aYY3L1CSDEpJMYaKqYE6RrjOmQTMKx1xYMui1ZTFtvgwL/WmJJdcwOdk+sHKIX7ZFKVmiBSos3495ZgeiEmXj8ICYGPj+9yqASlWONyeHyhTQkSLkpDRM93goRjl+ObcS9Q45NtjBNbm+zzxeQ4AQdqHZ+DkkEiEZOx+xjvYUxOEZcU2RJLU4pFUa03+fPf8Re46y0PMj/T5LHnz/OxX/1tzj1zltXlJazO8bDYUlXXjetk2aUBm7uOhBCuMrBGkxeGMYfIyut0XcqCy335S7Br7qTwkWDyHM8Lrj/XOkCrY5MVZXFmEZ6PEQKMmphCjoG2riB3QpoSy7jd5XKlPM+6oCQTY61xmi7leTSl0aDDISmk0JSILicEOBkdOWLIa8kBYb/ad4s/hrh48SLHjx//kz6M3fhDxuLiIgcOHPiqvNduDrw+46uZA7CbB6/X2L0X7MYflAOvy87J9PQ0AFevXqXVav0JH83rP3q9HgcPHmRxcZFms/lVf39rLf1+n3379n3V3nM3B776cTPz4GbkAOzmwVc7du8Fu/G1kgOvy+JkPC9ttVo35eT9aQ1Hu7055/OrfdPYzYGbFzcrD27GwrGbBzcndu8Fu/EnnQM318d8N3ZjN3ZjN3ZjN3bjDxm7xclu7MZu7MZu7MZufE3F67I4CcOQD3/4w079cTf+m+P1eD5fj8f8tR6vx3P6ejzmr+V4PZ7P1+Mxfy3H18r5fF2ydXZjN3ZjN3ZjN3bjv994XXZOdmM3dmM3dmM3duO/39gtTnZjN3ZjN3ZjN3bjayp2i5Pd2I3d2I3d2I3d+JqK3eJkN3ZjN3ZjN3ZjN76mYrc42Y3d2I3d2I3d2I2vqfgTK05+6qd+iiNHjhBFEW984xv50pe+9Mfy2j8t8Q/+wT+YOHOO/5w8eXLy8yRJeP/738/MzAz1ep33vve9rK2tfcV7XL16lW/+5m+mWq0yPz/Pj/7oj5Y27F+9+KNey90ceG3xesiD3Ry4ufF6yAHYzYObGa+XHPiKsH8C8Uu/9Es2CAL7kY98xJ49e9Z+3/d9n22323Ztbe2mvvZPU3z4wx+2Z86csdeuXZv82djYmPz8+7//++3Bgwftpz/9afvEE0/YN73pTfbNb37z5OdFUdjbb7/dvutd77JPP/20/cQnPmFnZ2fthz70oa/aMf5Rr+VuDrz2+FrPg90cuPnxtZ4D1u7mwc2O10MO/NfxJ1KcPPDAA/b973//5N9aa7tv3z774z/+4zf1tX+a4sMf/rC96667fs+fdTod6/u+/eVf/uXJYy+99JIF7KOPPmqttfYTn/iElVLa1dXVyXN++qd/2jabTZum6VflGP+o13I3B157fK3nwW4O3Pz4Ws8Ba3fz4GbH6yEH/uv4Yzf+y7KMJ598kg996EOTx6SUvOtd7+LRRx/9PV+TpilpmpJlGU888QQf+MAHuHjxIjMzMwgheOihh3j44Yf563/9r/9xfYyv+UjTlJdffpk9e/YQRREPPPAAH/7whzl48CAPP/wweZ7zwAMP0Ov1ANi3bx8HDhzgd3/3dzl9+jSf/exnOX36NJVKZfKcN7/5zfR6PR5//HHuuuuu13ws9gYXyrFJ1x82D3Zz4I8WXyt58NXIgfHn6ff7PPHEE/zQD/0QnU6H7e1tZmZmdnPg94mvlRyA3XvBn1R8refA7/fEP9ZYXl62gP3iF7/4FY//6I/+qH3ggQd+z9d8+MMftsDun9f5n8XFxT9yHuzmwH8ff/5bcmA3D/77+bN7L9j9c2MO/F7xx945+aPEhz70IT74wQ9y7do1Tp48ycc+9jG+5Vu+hU/9+v9JrVZDWw0WhJS4z+1CCFWCf8AaA8IihEQIgXtw/HSBthprLdYaBBYLCCifIBDgXmev/waLex8x+Y0WgUAI9wwBWCym/B1SSsT43d1IDXuje4Bw/5k8Yu34t0xATFJKECBueNn155ZHK8Tkva4fhbjxV7jPNP4stjyeGz6Ze5KcHJednCs7eWz8WSevsub6cUw+m2U0jHnnn/9+Go3G73V5X1P8fjnwzh/6AGG9hhIKJX0oCgIZIIWiEdYZ5ilCWCIZUhjtroUQWFPgKUVhNJ7yKLTGHb6lMBZjDFZYFIK6F1BkBVuDHahK8CW+8AiMwuqcwK9irbuuBpDjnMPlG9JSGI0UCgMIX7ljEKI87yCkAG1QRiNSTZGnbPe2oVJB+D7t6T3keYaHYJT3yVUBgUegAqQvqY2gUUQEVsHWJdLNc+ikD1g8z0NKBVJy8NhRBjs7JP1t4iwnTTVCSsIoAuXROHE7i8MqIo8IVIg2Bj8SLHUWifMBfWHo9zvgSdAWpECEPsrzKZKEqFYj1hmF8vCLDJnm2O0eCMmF3/it/6YcGOfB+973Pk6ePMknP/lJbrvtNg4dOsQ7/+e/T6VSRSiJsRZfSpSU5KbAaI0wBq01Qgis1iBcbtvyOwsWawwKhVLlfURKinSAVBKpfDKdIazEk4ZQCEIpKIxBa4s2BiU9LGby3bRBSGIEea4x2mKFxvcidB5j0xTleQRRhAoqDLZWsUIQ+Yq8t0rcWaewOdVmi3plhiCo4CkPW6RoIVF+hJAeBYAXIRFIEoosJZUVBB4eGVJalFL4QuBJSZplbO9sk+cZo7iD1ZogDMAYwmqD2tQC4dR+hPAw1lCphGiTkyUj8uEAtMGrRhR4mFyjdY4tcvwgxOicdDhA+gGe8hHWUOQJ0rrbrfI9tPD59X/1j2/KvaC+7yGs56FHixhtkUEL8j5Yi2ztQSofaQ3Wavz6XuxwA0SNwhaYOIbQRyiLLjpQn8M0ZhFBBZHGYDIIp/BEiJUam2TYjRfIN191d2ypQEjk/D7Yt4/WXffiTx8iSXdI9So2z9FZitQ+Is6RSc7/Rd6fBN2y5dd92G+32Z3u62777uurRYGFAkCQAm3Jok1bYUoU5QgTlqUgTI854oDh8IARHnBseuTwzAo5JNG2bMmhkGAGQYKCSAZBggUQhepf39zm68852e3Wg33ufa8IUCyDuJQrnBHv3a87efJk7sy99vqvtf6IAWErqKryjK0saItKNShB9AMpRuQsUGHEj1uMrLH5jFgJpAxEGTCb+7joYBzQqkLqFa7/GDML5Jwx9YL9cEHsL5GLDmUsEYGyLbKuiMPEIt/B5RviuiHv9+TLHfP1p7A+5s7bf4IHy1f45OPvcTs+xi5XLPWKfr5m76+I7oo49ah3PkAIw9HD/x7rzdvoY0snO7puzc32nKq2JDI3z97lW//x//afOwb+pYOT09NTlFK/Rwn89OlT7t279/u+pqoqqqqirmuUUgzDAMBi0bLomjIRHibU/BniAD6bqIUQh0lDlAmj/LIAifzZvJtzOsyvh/1k8WIi5sWen0/AfDbRP5/8n7/HAYCkFwdSXlbe+7MJHJ5P4s//gM8AzOdeWvYtEZ8hoR/5XfkMzz+7+Nxv/6kXHP74R7BNfn6snx3HZ59XHI7nsKcX5+P5l+Jz57t8FpEPT6OcyalM8C+uxWH7/3Yc/LPGQDaavZ/IKSK0xihFqwVWSwbhGNVEoztcAiUtlVJEEikptDLoDEIpREgoKQgxIoLHSoXVGi0VpIxsoW07fPJkLcgxUZsKiSDmRIgRRyKIhDUWozQhTJAyQknImSk4jNWoxQolFcF7fAjkDCk4kpBIaTE6ISbJo+Wb9Ckwk3FhYnYDVdOyWN7B6BqVwAhFFA4rPAtp8BffxV99F5UmqtpitCnjXGle+8Lb3Dx7TJr3xAQ5QVvVtF1LForu/gOu2jOqWCO1xGCZ3chuvgUlkaqlqQ3762uabsH64QNmCcO0JcwjUkSSgGwM2Q1kIcg5EHMmTOO/8Bh4Pg7eeOMNlFLs93vW63XZr1SkqSfOW4SusJtTqGtsBmIkeY+IHokkCkcOoSxEBCilyRmktSA1gkwY96ToiX6mqluS1mVhYCzEGaEkUkR0SFRG4GfPnEDoBqlBi4yWEpEMUYHKGbxH2wpja6IZUAKUVJATSiukNtjVKc1izWJ9j/n2Kc4PxBRQ1QJlNEqtEUTk4dHkUiJriaksiopx2GOFIumakBpE8sgcEEoTY8DWDffv32e3H5C9Zhp3BZgsOjKwPnlAkDVWKepWo2Rm7j1aK+Jqg21alNKEMBNnR8hgqwbnZt779m9w++QjvvC1P46WAqEMta2wlSULBabCpfTSngVSG7IE7x3gyC5B9GQS2o9oqQnznuj2CDRKN6BaRJqxS4huJkeH9J6861G7Gc7uwfoY4WdiGMmLIxh6xDBDtmQ/o+qGHCP6+C721S+THp3iW40Y90hhseIuSd6Q3YDWEnGsIRtikBh1nxwcIjnU4g7O7chSobXAVMdM+3NoNULeoUtLTJIIVxG1ZYwfE1LAuUtUahG6JmkwTJjmmEa3uHjN3EMeBCa2tO2rJO+JfiIkIDmEdMzhY4LzqGAJTYNM17DdkaWh33/C5WLB2Z23UecWjGSpGu4uXmU/7Pjg4h/glMf89M8hdj19HaE6R+sVg5ipYseqXdHYlmhrght+zxj4/bZ/6eDEWsvP/dzP8au/+qv82T/7ZwFIKfGrv/qr/MW/+Bd/rNf+nb/zdwCQZBDpMAV//oM+/zof2JLPWajKO5bJk0xBDwdeIb+ACC+mWyE/z24UgPPZ23weRBwYFpE/4z5EPnAPh8lZ/v4ARxzeXIjnLEdGvmBY+BxMSIf3EJ8DNp/BkZwPN/7zV4jPjuxHMEvOnx1DPjAyCApsSgfU8Tn4kj87XYePRRafrRCf/7xgnEjK6QDyIiTKJP1PbX/QcfBPj4Ht9RXWGrIAVRkGgCoxpp69UcScoMo0aknMZfWMgJQCZDDKMk+unPsksaYip4jRGlJm9DNGqQJEVKLVmpwzSSWIEFJk50cmPxOyR0iYjSXME8FPiAS2qfE5EmNEikwdJkigbX04dZJpv0VoRa4qJiEJ0eOnAbSmkhX4TB0M87TH3Q4smjV316+gpULKhGlm+vd/k+np70Ly1EpirUZkqLoFD994g2effkS/3TFOM8FFpBTUbQVSoquacPqAee6obIWUoJUCFRmcxpoN/e0FCs39r/0CKXqEjmVFOY2oXU8rNWpR4+aesN1iqpaxH5DZE9z4hz4GfvVXf5U/+Sf/ZBl7KZC7Nd3yiHl/TR72BOdAGbRtQGm0skhR7iK7WENK5XU5o7Qh+YngHaSyElaVRaslEo1zDlJEpUAWijFlAtApiZGQpWDynpwiMTfIboETYGLEpoisLMIUsBiSR2QDKaHqluBmgpuxpkJWFoxCCUktMnUGCMxzz1ywLu3qCKkEwmgWdYXMESEVLkZUZUkuIPweY5rCmoVAjDMhgowBJQWbRUfb1tzsOsb+hqwklW0RpqaxhsYIIBJDwBiDlIIYA2EeEMKAVZhmQY6RfpoZLx5z/ul7KKXx0WHbFUIIEgoXA+SAkgkrf2+n2z+sZ0FmJK5qxPEr0N8idzN5dBATrn9GSgGlO0Ta4m8/Jm/exFYaKRKBCSkUIjc4EVDVhnh9AVdXkCUpzDDcEr3E2CPSPJHcjDQV8uw+5ugVTu5+g9Wdt7jNtwy9p+oess/nhOhQacPJ5itM8yfEvCMqh05r0niMr56hTcJvn6KNIcoMtDgfEWJJrlIZa80dJr0lipkstoQAuWohZZIGlEHKxHR1RWdPEcuGbrMk9o6lX5N1TZoG8uOnJNfT3bvPPF8TY4+f9qjVGX66AlkhFi2Lt/8I4yfvM20vudLvEUSN2F9hwjHZQE6W1qx4/exf4ePz3yQtF8RmRz0LhukxefsBmIpsrmiqDStzwskrD3nw4K1/5jX9/PbfSVnnL/2lv8Qv//Iv8/M///P8wi/8An/tr/01+r7nL/yFv/BjvfbP//k/D5RVh5bqR0ojgs+t7A+P/h9hS54zFfk5EsmfgzVlshf5M8jxovTBgQkWnwGfz4oln4GXH2ESXry2gIaUnx/fYdlDRr7gOw5A4cWePtte0M6HY83587/lR46f3/P+n0MlL+ihzxV7cvnM8TPqqBxPBrIg5fQ5IqqUKwqTksrnygKJBPl8f+JQ3omQAzklkvu94AT+4OPg82Mgh5k5eYyxTN7TNAtELmNDCEApHJ5aJWLwCGlIIRKiBwUpZrybqYwlSUVwicZYlFKkmKiUYtm2CAT9uCugQpkXpNTOj2zDSEwekyJTP6GriiwVyZbJYdQCJ0Dut+Rhzyw90TnWZ3dw8wwxo4UgOhh8D03NerNBDwNu9hilUShiiizMmrqyjOOIcAEXRmotCTfvkm7exxCxtUFLSY6Z9Z07nN67yyfvvcs0TcyTx/uIFNA2DUYZQpasXnuNj6hJySIi+OAZ5562qckBpFFsTu+SlWEQEdKE7B0ieDjfYtuK4GfGT3fMNpNCxM89IgaiC3xGIf7hjYFf/uVf5qd+6qcAmLYXCD8z54DRFUIb0uRQecKbCdMukKbChwmhS1mPGEkpIKVE5oyqa4ytcBQmQ4iM2/dkZZESUozkmNFK4+c9QQoGVZMAbaDOiWEaQVXMuwFlFY0VNHhcgCQkIQQyAm0Mfhxx4x4hNCJlkveE4KmbDpUT3pWyGllijGEe92SRSW7E+YmsFKnu0LaibTV13aC0JGvH7Bw+zGRdIaVCpggSYsy4IMjZU2nBvZNTrivL+dUzEAVc1zoRXEDmzDj2xOgxpkFWDaaWgCb48h5pnkkpElLm3sO3Ob37CKUtRmu01thKYqs1la1xGVxWL+1ZEO1E6gzCrhD9gFxYWG4QUpMunxF3T4i6IrsRqVvSvMerBllZjDkGEZj7Z8R5IDUBUVtEjKTrS6RpSMMEqifdvYdY3ad77R6xeZXpWBLqNTstGeTHCBaIakGfLvH9LSZXaK3QObNI95nFkqm7QYrIsP8EISUxNJhZgzcI9YyQe4Rdk+MKOe0RcstePcVLhc8eOWaQFjGDMS1WL/DpBjlUGFaolEj+Gh8MSgp8vqFLa8I4EAS0iyOEVGSdCHFGNDVSJGSWGLnANplkMvatLyFjgu0t1zfvML33HbqzL3By7xvIYMmNZ7M8xh99jYvpE4LX0Cyxkye6c/z5BRf5Fl0t2W5eY14EKvt7Aervt/13Ak5+6Zd+ifPzc/7KX/krPHnyhJ/5mZ/hV37lV7h79+6P9doPP/yQv/yX/zJSUEoGh/p++fIASLI4lHueCybiYQ8HYFL+CiEObMTzCVyU/cgXk/xz+PF8v6X88aMqjs9Yj8/AhSCLzziS56Dp+W/LMfMCwIjnGg+RX3AYCPk5gHFgJn6kdPP8OMRn78nzctNzgPKj7M5nDIs4EEepnKcEBWw8B0qfZ6MOM3GOpBRJORek9RzMJEghEJ3DO888T8xzIPiAmx3Xt/0/81r+QcbB58dAGEdM0xCjp6tbfJgJSaKkIkWBCyNj6hEhotHMMpOzwKAY5j0qWTSCGCIpO7LWKCLORUJIaKno6pokBKauSSHShxmA4ANjdoTssAIWbYf3DpES7eaUoTJMMiGWC0wIpH2PUIYsNaaV7PvrUl5IILMAFIMbkL6mOzYcNUukadjFHbZeoxDICFYZVosNad4jxyvmq3eYL99BiUhjNVYashDcfeMRUis++uEPcCEyThPBRySStq2wxuJjpj07YT69z3RtkVERg2Oad1gl8d5gZYWIEU8mpIAIW3L07J6dw7IiHXfsYyApyRhm5n5EhYzz0FQVdrVCrgVP/pDHwPn5OX/1r/5VAMabcwgBqSTOXZHDSLM4IUtB020IbgYfUE1DDhFiRilNXbVFX5QD2UeyVCipkL5MzEIosghldTpOSGXJeGQh2hjcnqBaKinR1rLSmhAFfQzImHFeIHNEOV90HNEjdIVPAV13ZQGQIklIRIrEacYjkLZCLFeYnJE+EMYdum7KxBkiKI1VCq0kJME8TUQiUhqsTFS1YHaBKUwkKbHGlNKnkviY8DHjpoAceo66FfLOIzygjCU4RwqFARVKYYylrhf4GHGjI6QZNw7M80hX11hrOb5/l/atV/EJtLHYpiMLgYuRFDLbeSYKxTC+vGcBWaCvZlLoyc2GFEby9hLcjDYddBpMQ7xNCFGT/Qwqo7RGmgXB35KdJ8870sUPEHoB7REiQQ6H0uB4Q563yG6BefsMZyQhPkHoG264RQuNCol8GbHrbyBocfUt0Vq8jOActjvGyg1+uCQNA0pJpLpDXtWIeU8cBwSB5G5QSeMnhw6ZnCTgkAuJEBI51RglUYzgoUoSLRq0qTBek289su4IdmSnBqp5Qde+QveK4Prp9xivnhBXgVRVKNkickccb0h4+t0lbXUM08jk9tj1CnnniM7+Eexo8SEx726o7Yr3L75N295n1d6lyqfk5Kg7zSRLuTgaQ3h6ThaB29tPkE3z33pNn28i/4gi8ydj2263rNdrvvm3/wOWi/ZzvMWP1hnyj/7v8BeJwzIfRP5son6OHQQHcABCfk48e9jji8n/c9/z/HWfCTP4DAQ9Rx/PRZIHsHRgThKJnPJhn/KFPuY5k/L8g5Tv5ed+R2Elnn/WdNhPKoAlp1zeTzxnMsp+0guR7UFH8hxAPd9fTIQQiLEckw+eFMvk7ZwnxYT3gRQy0zyX/3qPdzMhBBSCSFlJCVnOXUiJ/93/4f/M7e0tq9XqX+TSv9iej4Fv/Nt/hsXRGaMf0bVCComua2RtmaahlKw8WFujFw3bYcvR4ghzWHVUoqa2CqlMeRgnECEwh5EpeJpqwaLbICuNVpJ5njjvL3HBoYQkxVwYmZxIIaKUQkpNtVwhTk9weWbX7xCypnaO6eP3qY+WuNjjY0ApRQwJkSRZCuZpxFYti/WGhT6mVmtmbqlNS6fX1NqAm6imG9zFu8xXH5FcjxIBJYoI1JiKN77yU9xenXN9+QznIv0wklJCAk1tsbYqo8AqXvlj/32+F06IQwO9J84DRkVUgqvbWxKJKBKeyNaNBJUZ8whZ4Gro9+e43S1RgZ8HcgyE2UHI1KbG2o6x3/P0v/y1P9Qx8Plx8NpPfwOjNUZbUirlFYRguTrBdiv0YkPdHWG7FVWzIOeINoYkFdq2CCWQISKNKksVCfM8oYUk+Yib+lISzBElShlpjCMg0EKR/YTKieVihZaS6BzDFIgJmlWHtjUxQsqBEDIpOIRSZCEJwTNePsFWS6rju2QCkkT0M9poshGI4AjzAM9BjpuRlLGmlKLqOow1CKMwfkKnGZkyU/C4XMorWmtUzoToGecZqVTRxURBUhSNSLcipVwmPaXJUhQxb46kQ5kmZ0GMM1arwuJtb/nkg/e48+aX2e93uHnCdkviNBahKAKpaqKb2N+c8zf/o//jS3kWNI++UtZQWSHbY1J/gak7wvUzUIBuieOMTIIsDaI9QS6PSewRwqCTQbiR+eoH5DAj2zUpS2S1QSwfkM4/QDYbxPoM/eUvox40KCEQUjHOHxGrK7KgCOlVRaYjT5qKDCFAc0r2FyRdgz7GiBPknJn6b6NWC0S1QviBwDXJ30IOiP2AjZsybtKEsBZnZ0RO1LMtwnQj0HJFygtCHlFmRZvPqMYFlWyQreZ2+F2qvkVUHV215Pad3+H6vW9Sv/46Yr3B2AYRFMSRWAmGj79LtXmENi376w/ImwXrzV1CDtRssOOKyfcoG7m8/jYnr/0MN9snYCqiSKzCHTCZnEa8DOQ0w37AJkO1PuOd/+B/888dAz8Rbp1/1nb1wTuMbVM0DikfRGUaqeRh1X+YuiOHvwFEQkmLkAWoKCXJmaK6DwnISKUQUpKRL36WYmKaxzIh5UTdFIW8qSxSKXI8OH0kBO8BQXmKZVIqToDoA8EF5tmDlOUYMqSD2yjxnMGAkEDkRAwBkgCtCZMvKD9TdA/JFyAlwceDVkRKYgpIocmy7O+5riGlTEyBHDKIjE8RUPiU6JoFnky/G0hZ4nNGKM08zcTgkVIQQiSljNAW5z22rpFCYqsVUWdSzmhrAEGOGZEjPuXDOXw52/LsLpvTuyyTZ5x25DnghonkJ0zVQBKsVmuGNLEfdmgBk5tQxkISTGkkpkJ3d1WH1jVSKvqpJ6kKExSji9TGoHR5EMmsCiOVJUZVVFIT0oSyikTC6qqUji6ekqJHK0PIE0JqpKyRwqKYkboixYQ0kn4eqWxLhaVqKqJR+CZh5EgtF8gYUe4aMyTC5fvszn8IYQQyWshSmhCSuu149OabnH/8PvM4HYDJQIjxcK1smZQpQ/Tua1/gPW/ZDY7KC0yMSMoK73bsmYPDx8jsHaOfCCSq5ZI4BtSiIwxbSIoweZKfsLXF+YiVhsn3jDESyAj1ctdAbh7wY4SYQAqQCikEru9R1mCbFrPYUNcti+NHLNYnyMqAqnDzHqWL48jPh2cAipACWUqksuiqQSeJn2+RMpOlopI1Uhhy9mS1QIpMlJasFUZqKgaCj7jdQKwzddsRhMVqhfeWnIvDR6qOUV6TkRhbykTRD6jKknPG+xGkRLYLlPLInIhakkJ5vgUZwE9EkZCiJpsW7wQCTzYGKwRzTLjgkVqhqw4jDVLZsqCyFolA65qUE0lGgtB45/HBYesabEtUDS5HlJ+Io+OHv/mPQEBzdEJ3fMrV9SVx7OlWR/jby8JQacvc76kWS7RSLKqXN+WE4Rp50AulfXGQpOUGpTVh2iJnR+xvwK4wJ29i3/ga8uiU+en38bvHhGAwB7CRq4bsZ6RZIOoO0TWY5guodoF/+pR48wx5/x4iW+bhFtms8WYPooeLLSFK9OY+JgtS8kQhEH4ijXukyCT/AWLxBr56QF4tifGa5hYWnBGrJbO6ZRZX0Fl4JjD2ISqPrMMZQ7hhqp4SdI/wPSJZJjmS2ZH3O4JV6MUVnlOSf8jCHUNvuXz8bUKdWZy8QXeyZhm+iJ88bd0gsiHrCqE1IQx097+ECRXeeMTs6YImZ4XNCmUkpo4YGvx0hdzfsvXPsNTM548JYQeLhGyP8CnSdisSke3+MeMH71G98dUf63r+RIOTT7fQeEmIRXgZw1jqwkIUqx2ZmCIyF+SfU0TmYlOIuTAA0SViTIeJV+CJiCyJKeNTLr0DcoaUECLQWI3IGWM1MmfausI2lsWypa4s/W7P7ZNLckio2pJixjQV8+yYhxmhVRG9HVgFVBF/pSRws0dpQwyB5AMpHiytCBBFc6CkpK4qfIjMLpBSJuRSGvApvtCvyOfW1iwOlkWLrWu0sSijmZ0j+sg8O8YQiemWaZ5ZrNYM+54sNav7D1B1zf7Tj+mHfSk9CFDW4ocJWdUobRByC0qWiTZnpmlCKkGMEaVN0VW8pM0xcjteEkJgciPReWQWqCgZ9zMnx6dsxz3b/Q3d+giBwIWIEjNLsyRMM5MLSGHxGIQ0GGNZLCRJKMggdYVSFSEGpKqozZLKLhGy0NR11RKTYZ89QRa5TRhHfOoJ3mOO75JSBqNZntxBNhV+yOyHHiUkPnhU27BcnlKrCoXEeU/tF7RmhYoa5Wbi+fe5efZ9krvFyIiSRaCtVSljrY6PuPfoNT75wffwKdPPE+M44X1EKUldV9SVAQrAVtLA2UPOd6CjhNkTvSPFgJsmppCQyqJEQmYKMyPATZ66XSA3K6bbGYhkqYn9hIgBWVvGiyuMLQ+76GfySwSoANViQXSOOA7kEJAyk5QkKkGcpnIPzzMO2D/9kGZ9h9PIr3jBAAEAAElEQVQHb1OvT1GVwY87xOYYpRu8n4gpIYTCuxHbGGbfF0Gskggp0abGZAgSrFzhxp6YA1GKwh6mgG1rdBRkBDkrfIhkKQlhRguFDwEqg5KKnBN1VVGZhinM1M0RIY0kEsJ5QpxhDkWbQkIqQ/Q7ggCl6lKOyaCyZ4pQ2RY/D0XnliWiMpiFYe53fPzudxmHEWUMTduyOXsVVTfMfo8bB1JyRRStCzAL84jre+pmATkx9LfUdcurX/4687jDu5lN27JaH+O9JwPqzhlkgZ8ngvNIXVjf2a9f3iCYDto2YwljT04RNewICLKbyLpGmgbdbsgyI9Yd0Vjy6g6qquDTd4m7a8L+GSk6zOYB6u2vIHWDwBItpLZG5TvIm0u4aVitvkqrvsAtlzyz1/jpFqUbtL2DHs6oQkXSjqDLtVDtMVqc4NKWtJSI+BG4HYIOrxx9PSCVAHeQEMgK8cAQ5YxVFf18hegFiDuo5RHB/wDGG5KI5PkC1VqEVYyix0rANPQmkU4E4juXpOEZrl2g776FXn+ZbvKk3qGXx2QpGfonWLtCeE+4vSRUCVuvEQOsjk8Yp2uqUCIbjpb3qR9+GXHnBHfUkK8G/OUOub8mHAVoPDZIXNyCUMjlBmEN8cm7P9bl/IkGJ7/xrQ8w1tCostokJ5RUxOiR9AgFIXp0EmRRHo45wn4cmOYJpS3WWGJMpZyiFDlFtJakLIqALGmEKDV6owQuRbz34EqZ5nqfSbsR8aRHC4WLHmIR4IbbPSH4Iq4MCe88KWciEHLCxvBCw5EiaGMQd86QtsJNELPi9uK60MYIsoC6slgdmIN/IaCNBzYooEgHal+r4lRJUiCTQMyCRkiWuqESmjEroghEbTBtscQubE3MkradkdogYmJ3c4OoLIvmlBgzRimmyVFvmiIQzkXSG2NES4U2GrsoK7OsBGhBdPG/7TL+C21XH31Iu9mQtWSaBpSxrO2iWF+t5qq/QmlDXbc0ukWhEVpgkqJSlm7Zsdv3NO0GZSqGNGK0pFuuUdoWKj4FBJoQE0ZrVstTYopMYaRbLZBJEzyMjURkRTUEHJnBRbLSzPsbquWCadxDzLRHJ2zWp+RpC8OIGYbC+siItTWVatmYFisUYn9D2j4hXr1D2D9BZIdWYJTASIVUCgS89tZbZKH45J0f4nNmNwzMbi7ARArapqGubQFJQhJC5MEbr/F0klSxIkyRMAWskozRk7QhpHzI8BAkJKZuSEagsydomPxEMJocJKpq8JVmGvYwZMTsyCmTvAIlwb9c5qTaHKGSwA17wu4GvCeWWiVYg8+ZGBwAyWXG8QOuH79Hs1xzcvd11ndfY74MBVQri7QGIS1CSaYwFYdN9EwpoouyHZUFMXjS6qg4cUQNYST5AQmI2aOURVnLnBVpdoiYMKYiC4GUBkQCmWjaBbMPxJtrbNOSqxqjGpS1xOSZ3G1x2gjIbiROPcYuySnhfWSYbrHtAiMaUqaMu1xKOcEHkndc3VyTx4ksKx588UuYpsHqUjoOuxu0FCibiAG0TCzaFQEY93vayrJoDDFHTtf3MVpRVVVhXqQCZMlYCeEwvgLRe5TVKKVBiLK4eokYVSmLFJow90ipQUoQCpFB2g5pO0RzhFk/RC7XeDeRxwHlIyla4vIM5TLi9mOE1KiuQzQVsh9JasaaE1KUqM0RcZyZqxuetO9QhTV+KbHqETlqxFGNHDVkSRgjygu6oUUtjvFmRwieyrxKGi4I80jcD6iTNXl7QRSQGgvsEBKsPiJOARMkGUt0vrCA0uL0jMqnRDyMtwWAa3mIRoBq2pBlIrr3iKKi/fKfwFy8S0bhpgnneprF29TrNf1wjZZvI+4eE3Y/ZPzubxF2N1T372HW96jFgmgUjTkjXo201QZURcBwtHyDwY9MQrLoXmN1902ejD9gun6PRexAGlS7Ri/WqK/9MdLF1Y91PX+iwcn11ZbaVtwAMSdUkqBVyVXwASQopRBJFMozFdNAppRatHEo4cgiU2lDVTcElwjClYGdSqxWTtDPEGIiREeOgdl7nHdFm6Ep4U3GkI1ES42UAh8kORfqdAT00RH12RmLtuOrxxs2lFWYMBJjLcpW2OUKLQ19gL9z/h5Pfut3uNdbjk4ekISgqiwhJaoUSiaHEgUUSIto23JTKYXSGrIgpAgU3UdOib2ASWmyEkUfIQ7HEDPRqiKW1JoYIsYYaiUKyWMFkYQ2EiUkEkgH15GQgjnEcs5zIseibfAx4nLAj7+/W+cPY0vDjFc7PBmlDALPs/kCoyua1bqI9pShrTo6u0AgUNIUia81zD7RLU/Q0pAOTFsfZwyZRhmsrXCOwiAgkVKgtcG5iaqq6J1HyETWEbndIYXBebgWsFtvaISgciNxmqiyJg8zOoNWFTpqdLZ0iyPQM1q0VHSIEKnDDdy8j7v+gDTfIrLHqCLQLeBToJTAVg13H73J9vqCcRwJIbLre5zzxJAwWlHXFfZQbpNKkshUdYVqVjz78BmzWqJNR1PVRWOkDKN3RSBZGdqmxodAILKPe5KQaCQyJ/ZzIE4OJTQYTZ4FekpILDkpJBBDfFGufGnb+gQdI7ppyXWFv70s4lIfSEKQtSZJCTESUyAhkSnR77ZMu9/myUff5/TB65ycvcLY3xBDpH7tCywfvYbOmcYYjFDo2hB9IvV7fvNv/D+5fPwB3dEd3v7Ff4Noa7SqkSkRxy1JRJT3ECdEzuiqAWMQbiDsdsSYULYlVS0h9EhR0TYtKWXS0BPzTLQlkKsWQCqMjJCWqjNMw57h4gnCKGzdEGNkuLkmpcBunmmXa1CSShsuHn+MtjXd6V1e/eKXWS0XdF2DERKtQBzGlQuRlBxGlamhfJ+KpipmEgIpNTEE+nEkzRPeFWY0HRZ5mYytmmJFl5oYc9HcZUFKw0sbAvUhaC1EkNqSpi3t6WtMt0+o23ukak29us/i5HWqbsEnj7+Juz1HTFvczUcYuyGN10gpWD36BrFpSaf3kG2PevIp6fH7qLMT/H2FP+2IziGnS7x8QtomktFgBFLviSEgUoSFx+iKMUXi9H1UMmANgg8Ku93UmOP7iHEiLTuMSxAdMSTS7gq9rLHqhFbeZ1QzsqvJ0y0+fJc87iBmOnOfyVb4tCXd3JCGgdx2KD1A3IAIZCPZrZ9AA2IesSGRLq4xlWGct0QzM4UPGMM13H7E/MkPIGfc0qKP7uJSYNw+RtkGcf8Es7zP+eUnHNEiY0V2NywWJ+z2H/DU3zDmW4SUjJdPUZtTWnmXsPu0lLcWpz/W9fyJBic3iyOabkFOgSRyoUdTwgdf8gwSJCXLJC0hS1k0plGQZaFISZKkUlHUh0SuDBmByoJsBFIbUihhPlFmsrSgDJWuaNcGYwzhkJ0QU8bnyCAE12JiMoeALp1RVPzMz/5r3Fmu+XJOPKxVoU0PyZ0ctC8ZzRQSv/vkPT6YrzDKcKUjg99RJYUNHmssta0O6Y+GAAQpiFM4rPIhHj5/lBJSeuFAkkrg84BSqpSWUkkIRUiMKPkKQhdJsBSSJMuDSQoBgSKMiwlCIKaETIIkEjGUkhNakGMgPgeHbc3wEss6zZ1jpn7ALhcYo9j2t2SZGb1jvBpZHp0glYGsUaLGSFE0RZRS3aI7RnEIWlMK3zv240BtMzrXhRo2FTFDFiWzIUtPVVcQE42oyQKGfkLKIm5s647WNYXp0jVatTB7rJD46PHziBOxBFR5Sas6RL1CSUNDJFy9g7/6Hr4/R+JRQhwU/eX6aCXQSvPgtTeZnePiySeAwHnHft+XCTkmtFI0TV1CsOAg7i622Te/+FU+6gPd0RvYbPHRM6cM2lDVNcl7VAxoo0gChEjIlLDCECjXO06eJiqsbphzJtVLQgKJY9Us8CGihSDExHRz+9LGAEBbH0O7IBOR/Q5dNaRhT7i9woVQRL0hFpdDXR/s5gJCws8TPmx5+sH32V8/Q9uK1eaUdPEpUcLq9bc4ee1NuqMjpC26hOHJE/SvWYbdLdE7hstPWB6d4nMqOhXdkH1PFIkkDJUxmJSI054oJFIkVJzQIaFlYp73tLWny9e4BJMr4Xy7y+uS4aNNKVPniBEQnKffXrK9vSbMM9JWnNx7jeMHryJVRqFYLZcsrWEYJwSZozt3uHv/IcZapMgoiuOslH8T3kViioicmdxEzKWknENgdjMJgdIW74cC8mIkxoCQkpSK1kcpjSARo4cYcW5CKo2xNSonRPi9eTd/WFt38kVSEmyWp0zjNYvjN6hMQ7oX6davk3K57229IfpbTvQRYzVys7vAZEElNQ5IUlMfP2L/9PuY86dIERBLRb53TDq16Lqhbmr6cU+cV5jUIYJDmruEpIjhCUpGUpzJ7InTJ+Toi9NLWoSIJFXmpsiIjhu0VkxuJpKw6hRZa+zmETJocoBZXpLEzCRGVKtAvoEVmuw8dj4h7s4JqyvS0Q9BOIRwTP4D0CNhWSGmW8J3v0O6vi5M5uYZ6XpmMnfQy2OEsuz5PunmGuFH2i+/TRwdsuoQPnIzXrBZvEJl1+zznmfuHdRGE9mxSgukXbDPVwQbmfprdK0ZvcOGHe7yugCn3R7aFlX/ePPBTzQ4cR7kHMmH3IYsMlJIQDGnWGrqWhUdwSH9M4dDxHrShDSjYsCmzBxnRMqEXMKpUBIZBVoZVusjXMpMMaJlSVrMSIITKCQqFxYiWkNrK2ICkUNJIpUwuIGzO3dZ0lF/8ow7b7+CVpkk8kGomyCUSXPynt/4+F3+3vu/y2n3gJg7VK2pdI3KZeUevac/OENSiGijCTEjpKExFZGMiBGlBCHHkpUgKTHcGWpdPgMhYaTCzw6XZqSqyucilnIUINLB2SM+S86NISIOmKepa+YYDjkQGeUEUgqy9yU/xUeEdy9tDOSYkU2N6ir6fo84OBKmcUIadXA0SKSVBBFQQqOlQMviVkEKrC7aIIDW1KScUaompMTkR+q6wwrN6KeSGTB5RCupq4bsS3uCro64nFm1RSScUqTOguAyWhqUsSU+vBrpt3tW8pTOLkqKKxYtPfnyB7irH+C3H5PjhFKgVWHC9CG3RUnJYrnk+N59nj15ihKZLATD2NPvx4O7Khctiini8BcJxLIItLvlkkdvvc0//nvfR50tkUIjc8CHuTADuUSeJ+8IMhJiQOhMcoGltYTgGLMnTiNrqZhjeYD6INFqiV1KjLKk2COlYlW3nDVHfMQ/emnjAGkgR/K0Z75+QtYK2y4xOSDnsdhjKW0E8Lk4T2yDqDRCCcI0IkVmP+1Q855xd4PSBv3ed8j/8NfolhuO77/G4sF96tUGpS13Xn2bi48/IkbHh//47/GFr/40m6MNANZopMrEGFA+ILzAWntopRGgqYhWkVLGGpglLCpDNV0x7PYYrcmqwspUni3RFx2M1IimwtiWlW2ol6fYuqNaNYSckakEp3XrI87OTqlMxTLDK2+9XbR2wTMNvgTPyQJyYwzMzpf7CYjBEbxndo6qrskx45MApdje3pJmh9FF7yRlCQwklYgFZRXJJVLOZAG6qkv7AClLIGBdv7QhUB1/kfbkLbS2mKv3WSw2GDqEqdFmgUGT3IhMJeJdd6/ytL9hubzD8u5PUzVLzp98m+lmQ0pgkYj3voeTnvatr9CvW2Rw6FGTY4vKliz2pQWG18i+x3THGPEmeZ6J8yekxpCqGaU0KQXyt34IH52To4NXT8lHLa5x0LxOkx6Q/J6xfgxhJoQJnU64E3+aKBxX9WOUhexvmMIz1HKNsmtiuIRThag2ZHGG9Ptizug0s+9RH31K/O5HxA/eRy6WpQR7+y568yrbZx9gbnY0R/dYr+7hzCndacssP2YYnlK3J1x9+I9I3QJfr5BjAF2TVISg2JuEJCCCoq7OWClHdBdMnz7GHK/I3QZ7fk2YPiBdXZGMgrf/fziE7Q9rkzdbtIvFEqctKQWGecIYgwVEdPibyBRcualV0USkGOm6lpzkQRTWMU1FrKq0QimLVZosMstFh5SmBPlwcBUXx2+JIFcKgaSPgX1MqCxJRGxKpOjx3lElSR0El9/5Pg8e3UOYCp/L6iLJUrvWqjhutlPkh59+yNvNI45Cy7Rosd2iKMhzSe1MMRJysRGnmNDGMPR72tbSGMvgPVJlcoqMk6MRlKCkOSC1wlJ6K6QUSWHGOY+bZjw9/e0N/e0VyXtkEoTgcX4mek8MjnnYI1KxIddtR7Ne0y6WxfkjFMkHTG1JWrE8OgEhSfHlgRMXAg5PmhQJQaUa4m7CBk2UAomin/a4FEArpqRghnurVyBLpmGkXhaBsshQ1w3aNoRDyS2L6VAKFDS2RStJyBGXI1ImlNG4YaRpF4zJs6wanI+0VU0/zMVeLDJKV4gIFRWn7QNqsaaTHUYp4rgjPv1dwtPfRPo9MpVyndEKpXQB3AKMUbz25hdJKD5674fYuiIC8zQz7Ee8d6SUkVLS1CXHREjxwsmWM5AyX/jyV3n29IJq/RCvil4gBhDGMMVAiKmUNIUgpYA2lGwYZcjBk1PAuwGBR1FT6wpCha42oA05BJq2w1QTxlasVyv87eVLGwMAanWMFBknMty5Txx3jCmVPkhdC9OAvrkm9XtSlgU0I8n9HmkM9XJNFhJ9wHHjdlv0Hd4jlaZ/9imX730foRVV3VJvTmiO7vHWz/5rKCVIYaZqa6q2JbuBlc5YqUr4o5DF2Wd0sTsbSz7ckzkEhBDE1rJoNFVVsWgbJhSzMGxsQ24WJK0Zdj3d2T1sVTHfXpGiZ7VcsOiWBKWJAmSMDMNImgb60dGPM0Yb5FzYE6M0PhTR6jyNL3T5MRZjQEqlX05lG7x3uMMiI6XMPPQMux3L1QrbriFnQhYoqzFalfMaPUnlUgIWJY9DKYNUBiEi/e7lMWjLB1+n6s4I08zyxMK0YyZSCYGxFSprRPCIXEryplrz8OEfZ5ov6ZoF07zn5JEirO5wu3tMe3wXYRf47RPC4yv02RHbOxXKJIg3pFzYIaNX2LhC5RWiN8zc4uUOjEZkAXVLDA5ZaeKXXkPeO0aeX4GqwNQw3RLGH2LamawMYoLIjMAR9x8xyg1VuyIMT2GQiJCplyfEWSMfPyOf32IfvVr0NaEi3T5D1BaZJHJ5j7gW8LZEv/kIqRQplewa0R0ze03qPeOH/4jFvbcQpiLUAWaNyBtiaEkXF8SLJ8yn9+htSdhmd4tUCqvvo3REhEjwjs3yFeox8OTjC9Kk8X5GPXhEnndw9xHq4DL9cbafaHDy9s/+Udq2o2pMqXkjcDEcskBSsfeSGMYBYyzRR6QWpJSoTEVKokzwZHyMRARCmxJ5rTQxenwKhJCwqogPU8z44DFGE3xESFNi2oWhlpna2hdCvOAd1/sBkyW7Z5ekaeC8q7jan2G1IM8OYTRKCGpjeHZ5y8fPrjhNG+pJksOe7/3ON3EuIJQCqcgRhCoi1DAHtNaHFfHznJWMn0cIidn1CCTaGGY3lyhxVZiElCIilxp2jBGVJTFnNJmUI6vTU5TSzK70EWm6BWq94O5rr9F1C6SpaU+OmHPG+cg8T9R1V3JSnEdKXcTGOSPijzcY/yDbNE4gIAqPSiBkxK5WqOyZ57mkd4rSO2fY3YDWGFHRTyMkxTjtmEJPVTWcrk6Z51CssE0HBJZ1R3G3lJYCKaXCeEWHD8XNJYRgmkv8+OTm4o4AWmtohKUyHZVpMVKjj15FJIFUGhVn8v6a8PR3ydffR4a+2Nu1KOnHByGhFGXV/dN/9Bf54be/xTQOVG2NEJJpnstklBJCCLRWVLYkdEolSsCbLMcjpcQlz/1XH/Frf/O/gaOv42MkK4GsNKOfGb0jpkhVa6QG4Uvmx7if6KqG4GaEEjRtw9U4IIjUTYdta+R+R7NaEnOmqVtm77DWkokI8/JE0QBRhJKGKlaF5cEjri4JRxsGXSGXR6iHbyC9I9uGKity8ojLC+S0J2lZ3E/bLWIO6CNJ9B4xjJACQkgqrdHW0jYVq66mraFbSTabI+paY0RpqWFUVxoPqqLjKInQmck5NutN0WIIcWgsWRiFpm7Jmwds9QJHRUiSKUuOW0tUBoPjOHpqfBF4Lh8Wd6EowEFpifSeECK10WTVkXwghEDICSMsAkE4ZJ4gJfWighBRpsQPCAoTmw4BkbZdFjuxn/AuYOsKSSygOGaiAJ+grhoChygEAj5EvBvZDsOLcMppGFAKusUfXsbNP73d9D1GKbQ3iN2eNJ0jbU1uKli2kC05TCg3Uy0XhNiz67esl3ewVYeqFmwWr9HvL1n6C6ybGeaBfPc1+ptzxk4iqpkUQilfZYVqT9DpmMRAso+Jc0SEGjkPZC5LAnd/Wca/EMiqRt5Zkc86hDBEqQoz5gSjLKx+9BIpFmQvUe3IPn2PQa5YpTMqc5dxs8KbjIkzyjSYWlPlNdreZbAP2df3EcYinSHbBeqVt0gPt4QFBEr5zXmHVBXIFh0M6sEt+3d+Fy63zMePcM8+gmDI6y9gfvaPI1RPiDPxt34LYQ28cq/kvShHlrG06ehanB/R1QkP3vpXubh9D3V6h7S/QnkN58/Q67u4eP1jXc+faHDiRJl4XMhUpgjvYirRy1m+YLGRqsL5UgaJKeFDJuVwKFeAm4p1MOSEQCCNxguN1Jp5nBhvb5CqTEyrkxPW3YLb3Y7oy8o424ohZep6wTg7iKU2PI47UvB0ixUpaYSt+eA73+dMzSiKe6ck0kp8gsvbgWdXNzx48DZhntCqNKfLRrK7uSHmTAwlEj7mhBKKeZxKZ9BU3D5KScah3KTCaExds+8HhmGHtYbKtuSckAiUVRhVIZWiqVva5QJlKuq2pVotywCXgtroYp+0htPjY0CwHyas0vTjjNMRvT4uq4CUCG7G+YAxEq01OYSXNgbiZY+QglR71KIldQY37JFNW/p4OE82lhhmRNXhXaCrGy6vn9GYjqaRKK2IeeJmuMGoutwVoiS9qiSIyRcwp4vQudKlZDKMO0bv0UKTRGnCp5Vh7ifqZKlURbc6IgldOiD7WNi2sUfszvHXPyBtPyTON8hcnBhSKoQspbFSiRGsj475I3/0F/nmP/j7BDdh6opMwnvHNIzEFF903K3rispaoICRmMvPpSpWTpEF66O7WCXJyiCritRWOBVILlKrjtmNoAWJVPRQWdCtN6gsCGmmsQ3W+RIRnzLNao1QkioeA5B9ZNl2YCQIwTTs+Gj3+KWNAYBRBIyU2HaD9oasDf78GfKTxyhTk40ktmtkVWGGHZWpsMdn2HtvooKAGFipTNtfY+JMqxWb2rBqK+rKUjctbdceYtkPKbKqaHgyZZwrWVx6UkpiSofww8+akaYQUcYw9ntSiIwh8DQrnoqK6/6CbdYImVDp5kW0/lZosjbgR4zOLOoarWDZGBpjEKpE2+cYGbVikg0yllKqloLaGrRUhJiKcycmfIgQFToVoJN8YnIBkkNrmF0qgW5IpNRkSiaTMlVhVGJg9DPP86k9EedGovfk4GjaJVpb7Erj5gJ2F5s11tSEl5j56Zwj3l5iZY3OUK8ekBaZfqO4OrpkdgO1NuhpZiElYXfLk4t/zIVd0m5e4c7qAcfdEQjHOOzJJ3cw1mD2DrvecXehuDm1XPhrrtmXcnVwZN8jk8ebEbpEkCM5C0TsEASUeZOYS8uA7BzIFiEViFyaGWcBKhDHPTJHtFZk78DW+K6lqk64G99ADjVJdFzM74FZoBdHVO0x7RtfQZkaLTrSzRYXJCgwdkWwmlh5IgtEGulY4vun7Lgm6gnEDbcpY47WqIcbzOkdppsZs35AuHpKyo5UGUJ/jd4n8n5H8onsPM3PvwERZj/QdAt26Ybhdks1BNrqlOhmFB3q7mvkmz0mW1R1TLz88VjUn2hwcn11Qz84SKn46DNIWaLoY3Alhi1EhCgUpne+pB6KRNd1WF3srl1dURlNltBIxfnVNapuuHv/dQKZ/qZFkpFSYRYdbvbgJuLUc3x0RNAVjy+fsSUhXYIYiMKToyeFibDfk32E2aH8lt3VFfubK4KCRdcyO8eHTy6o6iVpLm3bszFIIvfv3eOjx09RdYMbB6ZpxjYNMTiMraiMJQRfQpSsJcUyMRRXRolcr41hJcDais3pGVO/Zxz2VFVpwy4qC0JSLRbU2pbcFKXpmrbY2ZqGJBVW6dLsK8Oybul0xTpn5gM4ikSkUGSxwBgDWRGjYBpfnghOdzUnd+4y7Pb4cWIYRtCKBk27XDEGR/LloZBSQlrDXgosFe1yXcSAMrFp6jIZZ0elNW7eIrC46LDKoERJb20XFqsomp0YsFKgkkRFgUgSIwyVtrT1gqau2Y4zSkhiTEWXM17in/6AePFthN9CTgiKRVm9aJZd+hVJIVmu15w8eIXv/u638POIqS35IECephnvPenA3mijsMaW7rkcdNDiefcmcdDCJMiKvp+h3SOO7zGLiBMOFpooIklrcioN8FStC/siJDk4tDAgJEIUFw9Sko069I3SSB9YHa3IOTPMAz4mbrZXxPTyACqAubxBNzXx+hpjLJvlEnPvdeTumtWiK2zTaklrLbUuLiKrJqS7wFYd7VqzaWqWizcRQlHXNUarw/MElC4uNQ7NQ2MqTSQzRXcRpWGHZqNKuVYKiVC6MG0xIYQkioixlsvzke3keKddcRMTtyJhvEeNlzi94TI3mAzRfUz/+ANy9pAVWSva1QOkyiyPTrh/1FFZQ50UImf6mIi2otYtISucHxHzTEyOnCKLuim9fWIi54nb609LLIKtCdEAga6qqasaLSTeO3IO1EYxpdKTSdcGoUDIRJhd6aotElqCrCRCVZACUmmkNDTaFrF/ymhluLp69tLGQAi7wnbpFbZq8Die3X6HeRhRn0Tmj3+HvlqTl6dUD94i1RL58JhlPsKsVvQLhZvPMaaiO30LV0sGEalFxM0jN++9xxvm5/jC6ozYJvpu4kpPnDOyT5EcMrMoC9+cRbkfZD70cUrlHukMCYUQApUVJgtsCugwo4zEkmiMotYKLST4xGI6o7Ov4PWSJzeP0d/6JnmxgkdfIL/5JfZKobKk8pZGnKHMClErlK6YZGA0t3hhqdJdqlHQpRXSZ7bT+2Qxkv1Alj3ZOqKtkdUJuA6hLanV1Pe+SnqWycP30F96A3X6RWzUkNeAZVrN7GtJ10ssGiUjsY4s732R7BLD/hzfZCQnyF3i7lv/Y25+81f+udfzJxqcPPvwU2zdFOpMZIiuRLB7T4qeEAJSqkJtBl+6aypZHqg+FOSqNXXT0C1WVOsVTduRF0uONmeM7Qq7XnL0xlsk57i9fMaT9z/h4oe/yzz2tOsNl8OIqBt8cqSzBbMu2pHJ9czOkdNMvNmS+j3h2QWvtGvm/JBqsUIlh1KGtjNcXHyHbXpM2yy5+fZvsD5+wKZZcOf+q9z0E6ppeHh8xGp5RBICWRerntKF1cgxE2Ik5lg0KSGWALlYUiQjmdnNaG2oj89Yi+eTIAihipblEFgn4kxTW6TWhJxQtqI6JOLeuokYEue3t8VumDPOeSptiHNke31VWJnGooXF28yn29+vq8ofziZzYpgGmtUK4WpWynB78ZQ4zWzjFT6VnilKClTK6OUSETNU5biqruZEd0xREAGrKjpjULouVKv33M4DViuUgnm8ZZ7AhxklFIJSV66ExeiarluVtOEsmKJAaIskodyIv/6I6dPfJvVPUMTSYgBQqpQUlDwImsglW2fZ8dZXv8Z+13Nz/hTTlDTiGCM+hMKi5YSURfRaJkRZ2h69aKxQgEnOZZ+SzMcfvM+XvvwFvvmt32YOmersVWrbkmNmH3t0XeGsYk6BnDxaC2oyXdT4KRJdRisLyuIl7NOEMZocE0Jk+lT0SaPr6fc7UnSs281LGwMA98OOZUxUxtBUmTxdIRpFvbxL1xmsOMEaTdXULJcrusUSYyxalRJbAnJM6IPVOqVcencd2lfklPE5HDpvl8RnAKU1Skh+EBdsVg1V3jP0ruhQUiLH4mJLByu/yIluueTp5YcsRk9qlmSjCT7xrDJMtkX6wHj1Abvv/wPm8QYxjCWOX0v2y2NU13FxdMz10YpHD14nS0Vr10UXtgsEqdBWI2MJJOz7K9LsmJDEFKmrlpwyT589Yb+9QXctplsUYXgqzQMXuimMCbaUtKTENhKRAzJrtLGY7iC2zhHvJqIL+OQRxkDKOO9KI1UlS2ZQijTt4qWNgby/ZPTn+OYUqe9ilWH+5B3UYsXy7C1k/338h+8iFle4KEibDtMco3vBuD2n7hq643tM/UC7fkDIkiYOCB1ozxr8dM73v//3OLrzJaqmxoiRL2wW/A9feYN5/5jB74gpI6QqnxmDjgIlG1CJkCN+DqgYQUSshFZqWqupFmsqI/F+Zu63pKkAX6EUevGMWex4cmsRqeUyHZFHhXtyiVhfwp17qLygFQu6ZU3IIy4GwhiwpkFly1w5jFBsqgVtY2n7YyrxOrO/wtkdJkTUSpJnR1weEd0tYXMXY1eo7g765D7Vw68w/pNfQdYR2T2gzSvmYUefL6mau8xeUu3rEnbXNOhmw15PaL/CT+8iq1PO7r3NdP3/B2Wdi4tzRC6ZC8GXCHijBUImop9I0Rfr8MHOaA7i1awFitLkSlsBMrO4u2D94CF3Hj3CZTAYApmnTz9hurpid/6MyfWopGhfe42FMcwWooU+jJzPE1c3v4sjEYYJOYxoLzAIVFJ4BHnZcjENPL684M1Hj2jlc9oXfvZnvsGv/dY/5Mn2gnRzQXXzlKPuAd35M5aLJaZpkVXLnAUpg/GB2hble5hcCRozliIUgCxkybbIGWM00zyxqGoy4H1k3w8EkZn9RGUqqkPL9egcHz1+wrff/xSdQGrN4uwOJ6f3WVctu37PPLhDqm1E5YwnUauKwY0Yq5DSEoxCdzU5zJj55a2aldEE79mxxXQtMxnZNCQlEUYhXKRedmhk6aJ6s6OSxZFT15YmCfwwoZSmrWuayuD8jNENQc6YSpKJRO8JDrQNaBStLk4dJSvaZompS9iQS5BTJqZM8B6REu72Y9zH/wAxXaKyhxwLy3cAiOqgT5BSHtoYRJaLBX/m3/tf8w//7q/z/g++jTL6oBUqLQ1SCKQYIR/aJggOvYyKXi0dgI+g9FN63gSzaRf8vV/7G/xbf+7fY7ff8f5Hv0Vkwh29yZwFS2Poo6d3N6SVxeniuIoxohAM8WBTjgFpwQnBHN3BrVUcMePYM/T7Ei6lFbOfXnYGG1+6d0xdV8VBogRNs6JpLKvFmm65pG7aotVKqdhnc4SUiwg0Pu9RJRB8VlaLzwGIFOUcHsTG2uhDe6zC0oYQmCXI63N8VzJ0cs5orYqGIJVyXtfUiJw5Wq/42a//NM8uLnn85Jyb63M+3l6CEiR63LTFT1eozRqbIlQtwU0EP+H6S/L2gvDJu+zvb3j27LvIquPu6SPq7piq6ZhjhckambZcu2viIFDOUNsFaY48ufgQPw1Mux1Ej/KRZxdPWS42nG7OODm+y+XtLbthQpiaxXJFXS0YxolWiyL0zZGQDuMwRaSpMVag8vM2HRM5l0iB7CDIoSRyp5cYeJMcxJHgP+X29hykRjdruvaMuj5j8XP/C8L2HB9nRjkS55lq9NzKZ8xN5PbqmqfjRyzkGd5IVPeQyhyhZSLOI4uzn8dt/wnTzfcYrjx1teZ09VM8XFW8863vwO4SYizAVQnqxYLVcllYJFujqw5VlRyueXa4fk+YenYp0h/s1sv1mkoIbseeYeiRWqKkxtqWV9enrNpMzj/Fp75lGPYMF3uMha4+oRqLVs3lCe97RG4hZkzQiGmksR2tXYETrKpX0WmFXNQHDd0Nwe0wwnATdwTuE0UArxFCUyng9HWqb/xpxHSN1yOTlkzjY1isaO98CXuq6ZsblvYhk7pi116yD09xN+dUJ5qU9qyxpP2Pdzl/osHJ1TeWCNsggqBSNUYa/DSjfabWNXKfqWixxqKlRikBWlI1NdoajJHYpiKrsrK8dTO3731MSgGmPdM84bIniYS0Ftl2jH7kWTxn1HB927PdXxKDR7kMQ+kA2jVLpusJGxU2G/y4R6wN7s4J/e2Ody6e8vDVN3hwdodaF8ZitTnl3z65xz/8/rd59/xThn4m+ytu/EQ7TByvTxFC4kWmOiRI9iggo7sFbdvQ1lURWsqyaiu26kRI0BiNVAfgYjN3V8simAR0LpPidp7Y9z335Zs06zVW2aKJMZJls8RoRd6XXjBu9hhbHE29lZzYFXHSSCeYnMPgCXLLMMyY9uVFVgeVWdzdIAOMuTAkVBrGQBAeULjBQd3Q6IosIUbPuluwXCxw80y36Lgd9wQiQ/BoZTnTDUFmwjTge49G0rU1ddUWcaGQYIpAUumKyUXIrvSsQYB3xP0lsv8Yf/FtpCsJjqUUUJCJVCXnpsTPF1eHUoJmseL03kP+xn/2f2O/vSm2YK1L4mqKBOcIPhxyJkpIlpKFOifzQoQIoqQfAyUHy2NNBW7mv/y//3X+zf/5/5Ju8U2+9bvfQmwvSN2rpOURxlru1ne4JTDmcGBjHJfjIYDNGuZxghSY+4m2rRjdhM8evEO7yNzvWJiaeZzw+/7QxfrlbXdPjzk+PWW9OWLRLdCmMKbTOB3E4DuULMwSuZRlUi6Wa6MtRpZnQMoREYuOQyhRcpNcIKRIXdXUbYcPgX67LToTpQjRc1wHvKwOwtICUBPFJUWAEDziEHgoD4l0p0drzk5PGPqBR6cbPrna8umw4ymJm7MT3J1Tqvk+880l6foGdXmBaFYQPFKDJzJER9MccTVeod2Oxm+o6w0q1Hj3KaqTuHRD151w+fEz0uAYbs/x00DbHTEPA/XqCDV5VCvYbq957wffOSTPOlan9xFCMk4Tl5/+ACsCtmoYhp6mWhDdzGq1ouuWZMKBPSuMStctSzK2n+j3W/w8g3p5U87w5AfUx8dU9ghqQYgzynbEpmHaWJbtHWTXstIN49PfhJVirlqm7S1cXRJur7HHD1i89VOY+pSq3mD0AmlAzU9pj95ELhb0j3+djOT44Vf42ldf58Nv/QrD9pKcwgsmKUyBkUxlFJWtCriceqSyIGXp9Lw5Bo4Z9zfMfc80DozjHm0Mi27J0eouzjlutrf02yvG4ZZmeczP3T/i6HrmWXfKzSgIVxmzScihp1mdkoNl7q8Y8kDImuP2jDwH7FIRfI82G1Su6WSDjIksIykpbHWPECdqs2YKpa9SVpJIZspbZjejzB2qzRv4cE3obyA31GrDlbkmioH4aM91/zGi3+I+/SGIhKkq/OAQdsW1/CF2/ePNBz/R4GRKJZlT1JrJO1CB3BatRWUKQBEZrAgslOVIL2lthag0oRLMPhFwRGJRpVczk58Zxx5lM4GJXkWmMJUmXFKTw8w0Dfg500RF6yz0Ce0TOi/Y3Vxx/PCMHS1pHlBty5wyPiaiNej1iovxik/6HV959CdodaY1FTk5+v3Ag9fe5NOx5zuPP+GdT97jYnvDzc3HPBkvWVRLWtuyaJbU1YLN+hTVLGiVLiUVN5aVTGmfQqctVWXIUrKoa2Rt0ErRKUVlLEoX+20Jo8tU88xmXrDtF3S7lrqq2O12PD1/grAjwzAx+5HTds1ivT5YEANm3+NCpLUNq5OOq6tLIhKXDWK1JL/EzGopJbmxaF1hdj27iyukUNRdC3hcjOjWMoqESiWSXwmBIjFOI/3QM8cZW1eFTdMKmTMuenLKjNsZLS2brqOpG6YgyLI0m4yxOFBi8Afq3iPiTNqeI/uniO0H+PGCnD0iHRiMgzhSSIU8KPWlEqUflJJoo/jj//qf4u0v/Qz/0f/pf0+KqUxwiBedozMcHoKHLtMHZuQ58yKVJMYSS14m3FRstnMqHWetZXYD/9lf/7/wZ3/p36euLL/9zd8gXj7Dh7eRx68haQlTxqwsexmISpDWKxKJPgRErRE+onXLbrel6Sr87KhyZBp6hmFAmUQcHa22hJcMTr729a8DmXmeubm5Kqt5pV6AvwIMS+doISVaK4yUz2kmYswoVboakzP+4HzJOVFVFScnpzjvubm+LoyYBFCEEPExcZxHLoJiva65vZnIlH5dzx07WSmCL8GPOaUSDSCKldgaxeuvPuSN1x6x70fe/egTPrq4YCsV51Zzc+8B8cEjsncM04QWmfH9d+DZY2zXIbIhtgtCLgnWu+Epra1J+wtqexetJVv/DO17LDXKWi5vrnFqpl2sEVWFyotDAm1mt7vFu5FmsWbf37IfBi4+/S5+f4vUFU3VMfuZ0zsPqJuGpltiqrr0BjncD1LLUibSYNuOerFB5MS+/zGXzX+AzdpMVTcYc8zi5BFSSib3mG3lub1+l95fsNy8ypQc8pVHSBGIbUdz9jb2zCN8wHb3OD76aUzVolWHnybyuAe3wzZrfBYIWbFc3uPRnWP2H/4jLj95l0pJYhaInJHaFOF8XVFVRaAefQEu2ihM3SEEuHkkRNjceYXgZqbdNclNpByZ9lvG3S1123L3zhkpwfXNNdurpxhzy9urYx7GkXOh+fD6ffbPfguXA/bBzxNjwqSM25+DMnhvqKoVcYqHclMmKFCyKuy3zGih0EkQ3YRVLSoltC4l5GG8QQeLzBmjDFWu2PsifE4P7yKaGnHxhOHmm1Tzjnnck0REe09Gkl3ESklSN+zXN+Rkfqzr+RMNTmLKKKHJWZCFLHkkHuK4Z8bhVI8wmawkF0bxCYbWVEhjsF2NrAxKCUyGZdeyjCvq5LGLurQbnwaUzzTzwE3oS/Jnd4dxnnG7W45yzcLW5LaUOERtMfsrtufnSGMxdyzeeerXznBuh+5vmV3A5MTHz875ZD+yqC02bPnqozfZ3BWcjSN3+p6vvvoWz7Zf53fe/R7vXX7Kx1efcuW3XLob2AvUaKn6Cm0brG2p6o6VWdHZBhE09WLBvhJYI+hE6Tp6u7shxCJg65RFa4lWmkoqvAGTM01doesFxycdg58xS8vxyhKtYJ/2bMISO4D3AYNmGEakNdRdQxCC82nkk2FH06zoFopg46H78UvaUiLc9ExhS4qJ2lRkn9C2Zu4Ham1pbMM+hdLbSGZEmLi+PKeplwzTjhQbSAmlKowV1FVHzhJNTdcolKrwaPKsCcm/sF+LnBjnuWR/hAGbHHW8Qtx+QPZ7gptIqZRe0qEE8FwjIuUBjGhVgIUqgX8KwT/+9V/jH/za32IahhJepTQcgElKh4aVMZYOsqk0spQUV4iQhTUxujSaE0qWtg0xgRCM00Q8lPq8G/jP/6//IX/2l/59mnbB3/+7v8rUf4LrTvBJsmgX3IaIrMt5JiZ89CRRkkRJiVxVCNEWnUZOXN9co12ksQ2JRNXWTLs9ovrxHkh/0O3xp5/QNA1Qyltal0eb9445JoQsZc5KmdLWPqUXNnBjDEpKYk64eSbESIqlLHP/wX1AcnlxeQi4K/o1a6uSDZIiUmkqAkd+Rz+sDrbuIkR2zmFMyaqRQuCjL1ZymZCHcpFSCu8TgsyisXz9K2/xZf86293AB48fczVOjFJy3bQ8rVt2bkZ89evYV9/GXZ2jF2fEPKK7DWncE8PEpKFRC/JuIiWFjJFqueH23cc0TYPdHBFdYrE+pR93jLs9ZIGpaob+lsoaopvYXj4lzhPTtENkgXZwc31DtVxxefGEL3zxa0hbIaR50cl5dh43DiUhuW7JQmB00WYJIV/aGGhOT5nTQNh9SJAztlkS5YycA+ss2Y1P2G2vkN2CbDU6GcQwors71PUaVTVslq/T2GOayjLu9vhnP2S6egctFIk3idPAevkKb795H73/Drsn36OtDMGVFh3GGCAjlKVbHMqJ5MIoKY2SqjihZGHnbm9vePrkE+698hZSGXx/A2FGdaL0Kpomrs4HlLYsFgvO7twlhszN7S1xuuaOMdy7XzM7+Phyy9P3/1PmOTFxRFNtkM0DhBuQYYkfLmmO3yJPEWkiwkhyVkSZi+ZKRDSL0l8uQ60Mw7SldpKj9iGj2zPHCb+bOKrvUpsGKQMuOrLrUe4e/nYk6TVxuYBhJjuH6GqyGzEo5usrzGLNj9PQ5CccnCTyNCOaptS7h54sZAlKCx7hQfWJdHAbeK3YSlGSUI1Cthq7aDFakhcQtSWlRK1rKm3o2iVpmhHqDsthi08BWWlW6zXdg7cRs0AZRZgz09U14zSSjUdVM/3tE6QDczvg/TP0nY6YBVXbEmzg2XTF3/3oO/ziG3+U//q/+S/45msP+Xf+1T/NarXGtC3ROTZdx6tHx1zv99zsep7lid9+8g6/8/4Puemv6OeJNF2VOnvVUtkOpKKulyznNWErqExL1yw5qtdIqamUZPYDKo/UskOJgFEaNwd0SszxBpNhFoE5ehqhkVbgdCDlmkvj+W6+ZmoFs3MEJqw0LEXRoez2VyTlUGnL7v1nrDcb9vnluXV8COhhZLFekytDmDx59OQKNA2taZidQ8rEHCeUNmUsjDNudNRNhRaGtttAFshk8ANoaSBAbStiLJZcHyd8mIjcEkOgVgoRE5UUaAaaeI7bfso07cjBl6ZzB8MlqfTCkbJMVNaWCTEXKwxCKLrNmv/Jn/l3efbph/yt/+r/gbV1ycTgIMLMuaSElp8AuViOc7F6phh5LqbNlMC+GBNZikMDw8KcDP1wiLWviMHzn//1/5A/9af/Hf6Nf/PP8bf/5v+b68vvk5avINUdFnYNs8QKgXMJbSU9My7MhDjjpSMT8VmgjEEtV3R1jXMOv7tluNkhRIaX2F8JeAH0YowEX9xjQsrSkdtUCFFYJudL5s7zHklalxLENE34GA5Bh5KzO6d0iyVXl5cMw4gQ5fzOzmEPYwhK/LtVugiOgfPLKypt0LqwNjkl3OzQWpMO1yYET84ebXTJsjk0Esw5M3tPdomcM+uu4ue+8gVmH/jk2QUfPX7GwxSh67hFcm07rusFg+rwOEa3J8WENS0MPVl1uDmjM1R2yb7xNG+9QtgPICRNq1k+esD+g3exWnP86hvsP36fZbNkv7shzZ7tk8dIEnazIQXH3I9UTUN7dEbTtRyd3sGaEq3f7/fMfiqCc6Ww2hyYwXJ+5gO4e1mbXpyS95cMH/0m06eg13fp7nyZzeY1Nmev8fj6u1x89Js0xw+oNvdINqD6RP/pDxEP3+ZktaIOpSTs50D/8T9h//SfUNendEf3ODvd8PqdDSvxKfsnv8O4e4zJnnkei7ZPG0r3IUHbtSxX69LexDuQGqktuqrQ2hRGU4LVmovLc0b/CtMwcbRYM96ckxK0iyVdt8C7iXn2uGHP0O8QQlK3Hd2iYRxHhmGLTIEv3Gv52hun+Ky47R3Prq+42j9liEv8bkGImjknslli6g2qXpXkbyERKSBMyd+RSpNJ9LuR5DzJJ1TSnDT3uNk9I6mazmwI04QQls52rLqOgVNu4jEuTty6LZvjt4hzz5RHhIFGdrjhGfSO3Y9zPV/aSPmXsOX9BAG4nUiurOyUgKyL6yHlCFmQkifGjHBFCJcri10syEPJHFCm5uLjxygF1WZN1y1Z1B1KZLTzLJoV66oubpekqARM/gopFSkYUArzoCOHCumW3C4V8SmomFm9tuTm3e8x7veIdsmq2zB3S3LT0guPsBVffPQN/qtf/0+42G35X/1P/11WtoNK0dUN6xjZLBekk8DlNPBwfcof++Iv8MG85eOnH/POhz/g8uoZ4zwhdYVPI7thx+X4BKEUUihUVVPphqpeoIVBS0FWEmMqoDQTVMJgtGWYR2qp0ZQSwU4kjDbM+0CtKp75a57mPUxDsVUK8DrRp4mIZzK3KBGJIbLadLz16pvs9re8NL+OEQQd2E1bbGqRtkFXFT6F8i/gTNEWCCNBqaL10IqmXqCEITqILlM3S9weaimRlSA4z3LZcH27JySPUhmXB7TKNJ2mzgITJMbv0OkKv3+Mm/aQYikryNLPKItyLpUo5RttNFIWm2qmuEGUVGQy47Tng3e/V3I0DhqFdNBHxBiKIDa/ULa8sM7nQwbOPE7Itj0IYQtbghBIDdHnw88y4zCScsJaS4qe/+I//Y/5mZ//4/zP/twv8et/+2/xvR/+JuMTjTh+m8XmNZQ0rJsFN0Gh2xpTNSQ7cXPzCchENBXBgPfgo8NYhcuZYCgMXXh5K2aAeRxfsEPaGIw1n7NUx0OEP4fJspTTBDBNM7MrCcZKSpqu48033+Ty8pL333vvxf5zzrjZldfJEsqXgi8dZqmJKdF1CxZdQ4qJy4sLjH3u9Ek458q1kJKuW3B7e4P3Hq01+lAGkFIeIqjLFsJzx6Hk9XtnfOHVV7jZ73nnww+ZHj/mrbrl+M4Z8uiMj2bPD/prLuYFIRUQ4E2FzqXr+cBtcVetV6TbHY5E+8pr7MeJOU20d+7RX18jrGWxXCFMMRkcP3zI1PfUyyP2l09xbsR2JWTuzv3XcAK2109KimzIFElPKVtNbiCPCasMTd0ilOJl6mEXzRm2O+O9D74JaaZr73J872vcXr2HuQxszJpk7iGCZt29Sj9usdFwdfUtjl+paYOGsSeR2e8+xV1/xKuPvszrb7/OvRNFlx4zPvseN+cfsb2+Yhr2yFQWCIlUcoy0plssWB8dYaua4D3OFdeS0QZt65KNk4qgPQMiJa4unpVFs1ygbY2f9oxDoOta2naB0Y7ZOzgwpN7NDPMtLgQkgmkamPsdxlxhqppV1XL2aImpF7isue1HHl9e8vTy/8XWSwa1IjcPiEIh7TGehNELbLciS2jrNa1dshsGhDgwtFKiRIPwETErlFNUbQs5oqMm5SPuLL6BbS274YosDGohQBi0rBERZv2U/vz9H+t6/kSDk9f+lT9GEgm3n/DjROpHCMVSq9G4/Y6cI9ELcgoIUxI9lRII7whuD5PGd4tih9veEm63jE3DzaYj50xVVazyzKZZoY1mqWqMqAgiQILkIpOceCYmHB7dGOQbS9RpQ9oGLq+28NaXedB1XF9/QnN2h9V6yeX1M1jU7KcdG7NmfZ35nd/5x/wnx2v+rZ/7U6zqBZfjQC1hU9V0jaDpal4/M9xMI/enJZ+ujvjpt7/Ktu/5Jx9+n0+efMDNvCtmVEmJzbYWjCEYQ2BGCU92oYQvxYiRutThD5OkDFBFTWsaIoIoM17FkvKZBG7sywo1x7LirzTBjcRpJMQZqRQZBbs98qghpoEUXl7jvxxCmTQ0CBlojxuUrrm9OieTkUpiokFJjak066Y7iCElbkqsuhXHy1OqeoGIisrWKCGZXcA7R9zvS4sBK0jC09gGfEJmgXcONTxDTk8Y+psidIyB4GcgE2NZ0T935SALm2G1fpHamiggo64rXn30Ot/6jV/ng3ffLbH/5HItcyYdhK8cbKwpFfUKOb/YR0wJ7z3KuRLMlXOxix+sxlqrw3EFhBRlRUemrhraRvObv/F3+eC9d/jF/8G/zpe+8jX+61//W9zuP0BajRYtytZMuSYMkboKbAk0zYpp3DOPnhBncnRUTem+u7h7n3m/Zex3hJfMnGQEVVPs9bmQSgcwV0CJVLKUzQ5hdN7NTNNc+gaJ0mPmzt173H/4gHd+8EO2t9uSNH3QCTnnEIgSPZ+fx70HYiguQVJmGgekiChlmb0HKQ8JueVeSzEhMwzjWHqtZH/QtvjSP0npQ9w95JwO712yauKBtamU4ue/+hX+xNf/CJe3t/z2d77Hk/ffo10s+B/du08+PuY9H3l/c8aT/Y55msjeY3ONHARjf0NuNLbpyJsN/XaLunuXqjnB7m/oulcYhh2L4zVWW3Y314hn51SrFSln2pNTYr9jnPZ8+Pgd7pg3sMKSwkScJ0T2hzTZlgxUqkT17/bbAuriyyvxbi/fQ6RIc/wmMivWd7/M4vgNusUdth/9fbw452uvfh2zuc/VnNjULVPydK98mYcnD9HK4sYbjE0s72ne/IVvcLeboP8ulx9+yEeXT+lvb5iHnhiLziymSJhL+bSpG46Oj1msVmilmMeBaRwIIWKbBqk1HM5BipEUirjdO8fu2WNO7r9JP0wsqobkR+ZpKPk0XcmNSjnjfWGelouO9WrJNI8M+z1+BjeXZ6EYBrTZo81NsXzbmmXdcfzqCV9/+xHj5Hh6fsGHT36Li+2e3ZwZ9tfM6xNEzvgUOXn0i3Tta2yv3qU+e5Wb/pLluMHkBi2q0jNKKoy2SC3I0ZBnjxcZFQ1Mqliqg6FqVoisIEeSWNEt7vxY1/MnGpysHz3i/0Pefwd7kp73fejnTd39CyfMORN3NmKx2IC0iESgGAQS5KVIMUiUbYpBssIVDfLapG5Zl7qqcum6JEqyXNeWLZmmJVKiRYhJzDSvSFAkAAIgQMTF5jS7Mzt5Tv6F7n7T/eN5+zcLi5aWFMYulLpqa3dnzpz5ne633/d5vs83rB/bxtmahV+we7hL7joW3RGNrQl9Rwye0ImhlF8u6bsFVjdUSZNjpO3moqCwir5WsuEYT/RL6vGEQODawXUO/BHKGiwiMTTU2Cwuf9Y22KjxlaaLHU3VoCaGE1vbhI0JJkB75RrVeErIEo716vtfy9nTd2EWY6pWw9UD3H7iU+OP8vy1lzi5eYo777iHRTvj4ZN3cd+xUxyrRuSkWBuNeMN4yr2953q/YH+0zn3jTS6+6l5eWBwQY+bi9Ssc7N9gHnqMHnNsss5BO2NkxzL/956+a9HKEFQkpEhqPb5r6VRmv9/FJQmb00jGCEaRjCFHTdaK1LW4qz25ynIYtZGt49sc5MhiNOWw9/ze+RdI7a0rTtq+Y2IdDlHCLA8OCOaIWimCUuSQGNmazY0NFrM5o3oEQTGqp4zHW9TNOsZNMMYwmjQyJtIaXdVoB33fEXNCW0XjGgk3zIrULVCLG+TFNbyfEUJHDEHM2VDEFHFW0o6VUSt594A2yew9l8gBzWTzGN/0HX+R8+ee48KP/verbj8X1CQjSp2Ucik6WHltkIVnIUVMoO9bCQks6IAGnDHydc6t1FwpRXxXTAyNoa4s+7vX+OWffT+vuu8hvv4bvoWXXjzHZz/9aVIfaOd7uI1XMaqMGHFtjIlmxNraNl3uWaQOowIBjzPiG9OMTzNJp/DXb9yyNQDQjMdljCX+MbF0pVpJpo0xtsjopRjw3pff17jK8ZoHHsAYy+c/9whdW4rsGElk+q6Tce9oBGQpaBBH0hDDy4o9z/X5XArRXKINUBhrioIqkYfnmoWAi5IiJ3hBxayVcZ/i5bLwREi9fF6t6UtIX1NVfNXb30JG8eLVa3zuyWfY2d/nzPY2X3/77cSzZ3lhueDc0ZjFYkmbWlLoaO0MU63TpkC1vs6kPkasTlCvr2M1rB2/DRDy8PETd9Ke2iONKkZHR8T9XY72b6B1IinPjXaH8XTMdDphGtaY2gmxT4zqhhgTy8WMo8MdUpIxWgi3LsrCGsNitkM92ubO+76aajwm9BG1e557X/U2jpYHvOq+t3LjqGPbzon9DdCHbJ0+w0RnxhPD2Vcd5/YNyItddq98jBefvc7sYI/50QG+W6IBq4X42nctuYxzJtMpW9vHZQwTeg6PDlguF8SYqJsR1gnPBBTed+Qk9gTe94Te04aW+p6G/YMdmuNbuHpMDB7fdxyEfSbjCdY5csq03ZLZYU9V19RNw3h7xGQ85Wh+xHKxlGe9XJAXc5x1uLqmnR+h9m/gXE01mnDH6WO85r578FFx/doNzp9/gd2DXfZ3dmhjYnH+o+ybz+InY/qdq8TY0q7dSdWcQKcGDiMNDevLE4zGGzR1RdfPcXWNrSbUo22UGzPZWEdrR79ohau15qhHryz88Uu6OMkR2i6KpwmZ6XiL9e0pRilqW1NpSaBN0dMGj+oS8+U+h4tDsk7SPUX5s2vTLRbtkqOwIHtP6jtCSYsYGycR8nVN7juoLFZX5Jjoc0/SGrCEdgFkqBTRwIE5Qp012Jhxx7ao+56t46cha05vnmB9JDPOnfYi3XxG+9Iuquu42AXOuee42B9y/NRtXHnxEV7093HvsVPcN9lgDSdduzMct1O2R2vcsIec0Zu8MUYOuiUfmS2ZnTzOWjOhDZHxUUtLzd5T5zj+prdxfX5Iqic4Zdnd32U/B6zKrI+n3HbqNnYO90g+sPA9sxiYu45lu8DETG7FkVf3gew9am1CtIpl47iYWrzWKGMkLDF4clL/rkf5R74m1Zg8qrHbm4Ka9UuWhx3VZEPIpMqwNh5jFExHU3SGe+5+LcpNMMrhI2grwYvWGcaTBp8DIQecHpO9xZFIJJRX2NZjuxl12CMur2NiS9suJDCtuKBmMlZbcX9V4jaiUGiVRTmCEp+N8rVaKfZuXOPH/uHfZblYSNcsXyVfUwqJWIoTo8U/QxfOihQlqRQoEEIk0dLUkpA8fAZnNSllknarcUHwgbbrRF1Q11hrca7mhWee4IVzz/HwW9/BN37bn+b5Z5/mySef4cqVXczkDKP129HNMRiJzfnVeABZEXRPXVUonelzRxt7KW4rc8vWAEDfdivVkgJQSmB0a4UvkjK9F0dd73uUlpDPqq55+E0Ps7e3z7PPPEHOsciyBRHpuyW9DzSjMbZwJwY0xXtfFFKCcCkQJKuM3VKMBDWM3rgpJS+JvWRB1lTWpBDEfj1ESS/WYoMvRaZeGbr5GAGP0poYA8u2RSnFqY11vv09X8XRcskjTz7F5x59BN96zp45ybe86l6au49x/sYen3/xHOcP5/i1TUE+N+5iMTukXr+NOHucRQzUG8fIuZdxHSPU7WdQ3T6jE3eQdq8TbkxY7rxEDIHFtUtotvF5zryFSxk21ZQtdQqjRalzYrq28oQ5vIUBkHq8xkTXnDh2F3fe8zB7hy+g9nd4/V33407dw8wodq4foI1lVDl6tcnr776T206vsT5N1H6H2Y2neenFSxwd7DE/OmS5mBO6rkQTyDP2fcCHgDGGqq7Y3Nhia3sbbQ3tcs5yPme5nBNjoqprmmaEczVKG2IIhL4XDlQMRC/RGNn3jCdjDi6fZ7kcMaksTTNmEQPedxweRSbjKVVVYa2l7zsWizmL5ZzxeELTNNSjgYMyY7lY0nUdy+WSw4P2Jv/KOuzsgNneNbStaCZrbG9scec73oyxDYdHh1y+coUrV65xY3efo3ZOe3CJg92rzPkkB6Mx+sxdZDQ1NfPxnTQHxyApgqnYWDuNnh+Re4+rodUOraLwOpUYhvbh8BU9zy/p4iTEjPWJalRjleVovkdsF4xsjV7forcZ7RMqB3rgzMZxTm3fRhc6QhZYLarIi3sv0OvMxmjEuFsXO3hnWIZWQvOWC6xxgKILHW0UmZcyNZ1vaTGMlcWOilttBAP4nASZyS1ra2POmk1SZblt+ywnR6eoU82NF57hX/+3f4f9y5eFGPfCJertNeLxKQdXrjPdOMnxzRM8tzwij8b83u55vnrrLCfqDQ6TZ+F7KlNTjUckldmd77OjWsz6GN9Ynn3mGdqr19k2I5wzzC5fYf3u60x7Tx865jGysTbieLXGzLfsHu3wyLlHOZzNCJXF1mOcrWjbpUCyCkxliSqT1xvCekNQuShGgLZF2Qo0hNijrYHx6JatATMeY9emdPMWax1RwaiqiUTq8QjraqyrcdUE28F4tM547SR9H8jKYA3EFOl84mgxZ1JXLPyCqIJkpySEy4RGp0yTelR7A9PtQH9I3y0IoWTvMPiLCJKhGAqDXAL89Or3jTGiHiJjtBOTt3bBmTN30G0e48qFC6vxUC4GYEZptM4y3kHcSYP3RdItf79xov4JIdAiBnumHHIKcaEVdZBslNoakTmniO97umUn1u1OrLc//bEP8chnfp+HHn4z3/TNf5JLl17kE7/3ES499Sna8Vnc6Ydwx+5gfTTGmIqlKx16DsQoY4kQI8re2uKk7bvC3ZHRi3NO0KXCxem9F6t1QBtJCz52bIuHXvsQzz77HJcvXlqZ4ckoqNzDthdfJCshjCv+Ss4E3zMaTwBBN2KMbG1v4duew9lRGeckokkrYzZKUF9OMnIcuDBa65Xzb0iSg+OsleLlZUosGccmsWkv5EWtNQezGQeHh4yahne9+WG+/K1v5qlzL/C5J5/iN377d2hGNa+9/36+9Y1vYBEjT1y6wqVccU1p+lTRXLuITZp87A5mKJzSZFfRbmzQViPqjW2qHAh2hFeZYydP0B3coJ7tMJlMObx6hWZ6jHFVo3XD3uyQY+vbhOiJy45IRsdITLeOe3Ry8w62T9zL5tadbB0/yz33nsX6lip6lt4ym82ZjkesbxpOnT3OyWOKKu8zu/Y8+89f4OreNQ7392jnh3SL5Wp0UTlpNILvJZdIyRobjcccP36C8WRMioHF4YzFck7ftoQQcVVNMxpTNQ22JFH33RKVosSLFOVXipFcyOyuqpgdHmDWpjTOUTUjKWiCZzY7YjSZ4JzFpkSILTFEjg4POcyHVHUjidF1w2i0ZLGYUzcNbSsjzLZrWS6XaK1pqkqEEIsj5gc3qKqauh4z3jjGvXed5cH7X0Pvew73j7hy5SoXL29ydHDAoutYHl5ld+c6y8WC2UNvZ7F9OzEYoKEaHaff3yHODhhzAtvtEoNic+0k48kGKAv8ByAl3hptYqoaRcXINYzWpiij0NkzchOskpfZOjELs0aTVGJS1YzcBKcUPga2qglBKSpdMbIjSJFZbNlvj9gLC6pjVubNRsiv2WRms12WN24wmk5ofcfVvavMjg45uHKedOES9WRKPLVJdfY4tZ7gO4PfmPKa7fuZNuvYWLG4PuPTP/XP2Dv/AgYKUc+SjnpGD5zEuBGXz7/AksgMz2MXnkKlxPPNJY5PjzNa22A8Xce5QB86rvSHzH2PTx17O1cIzuGaiuruO5nniu7wiP7u0zz34qNYV2EqRwqR/tBju4g3hUQZAhgFMeLnM4KR7A7jatCaQMJUEjYWk0ePHGa0RvS9KFSMIg2zc6VI8RZ6XIxrFjeO2BxP6b1s2tPRBqPJBspWjO2Exk6ozZjFco9qc4tl6+nblrbrqaqxcA+K7PcgSxhXM67wPpD7nsooKq0hdfThENVeZ9kfEroF5Cgk65SxWhCKzOBlMRAcM1YbrDZoFEqJOVou7q4herQxrB/b4s/+xf8cFHzoN3+ND/zyz0KRnIYgpLQ4jAXIJXHYyChJiUcFBRHJgM9BCsaiErHWlgLFFixHiSRZicQzxUQfOvojj6vcyqOBHHjk9z7Co5/6JK95/Rv4xm/+dub7u3zyU7/L+fO/SXf5JKraZLR1grh9ErsxptMJV2+ScsLT4/P+rVsDiFdgXReH2DLXzwWp6IOYqBmtC69Dcefdd3P2zjt55DOfYXdnp5ijCXk1xUDMMs6x1qzQl6FI1EpSXTOs3Ke1TmilMEqxfeY0e0/uY4xFW02OosgyWuP9Tc5F9IGkNcZojp84Tk6Ja9dFsux7ieIwRj6zLiZ9qqAyWgsa5L104UZLwTVfLplfvIhRhttOHOf+V93Dtes7fO6pJ3nsqaf57Oce46677uC1r3kNb19b5/reES8u97hw7G727AnaHlTyOFvR1RX7Fkajiqgth634YUxP3c1yvo9SgfHaiJASejGj7eYsr18GHzl26hRhkRjbNXoVyCRSDsznr6xr/qNct93xMGvH7pD4DBQhKDINxjrGDWyfrlg7FpmoXY6uP8a1z1/kcPcqs8NduoWYoPmuRaT4FltXQgfwvSjAEB+k2tWsb2ywfXwboxXdckHXLum7jq6TwsRaS9M0VHWDceI1FXwgdF0JAQ2C4vV9iRqJXD//PE7BYnaI1WAmY6y21HUtKrTomR8dMZlOsNZSpYoutYQoCP98fsRiIUjK2toGrmqolwusW1BVHY1v6LueZdsyny9WPLS6rqisY1Edcri/g3YWa0c00wkbx07w8Btfyxve9AZm8yWXLl1hf2+fo4MzzJYt8+TxuxdY9B378xnXdp8kT05SHTvJon+CxhwjR0M6PCB0W+Rkqar/AMY6tg8s/AKnEsvYoX3k1HiTmDo2Nk+yOT0lvBFriQl631GbEW3uudHuUaPZHE2YjNc4nB+QVERnyQdZsyPcqKZa7nH9yjmST3gNdrTGZLLBPet3saxPkq3ltmPbzPuWnfmMRx77GLvdZ+h2dxmnhmNui1dtnCD0HU7V9N0RrXfYNvL4+3+C6499munaFOMq3HiE2dzEv/pV5DvuRR8/RvALchewKKrmOFMqHrrztZw9dQfRe56+8AJOR7ZOn6Gp1rk824XKcdsb7mbeztnZuYxtA6TE9p0P4pcLqp2LdP2Mw37GVj2lVgY7XiNXjtR7Dm9cZffSC6TQo22FbhpIimSV+ISQwDhykpGD1oaYEzH0QET1AfqEnozICoypbt0iOIqcPXaW9WpMXTe4uialTKgd1XgDjYFUQ0jYeo2qqvG+JamEsYrOd0VEoTFK4Q2gEm1WNFVN3dRMyIw16KTQviVh8Vi6qIhBkdBiqEWB9kvHrpR01AMJEygeJwLJizlacXbVmSvnz3N4sMux46d5y5d/NY999ve5+OJzRfJa0aduhXigFEpDTnJoiZmJIBUxRhLSn4QQVrJaEEWKGnJ2tEJrJx3cwFFR0PUe33v6XvKoBiiZHHjyc5/iqUc+y9k77+btX/bHefuXZT7/uc/zzDPP0B08T71/F/GO+2hPnaQ3FUFBR2K8vnbr1gBQ1TW6jLtSTIQY8cGvijml5JCvnOPB17+e0XjExz/6URbzeRm75DJGK9yltkUpzWjUiJHaCjVJJFRBr256pKyW49ERd95190ruLSph8blYleg5rWIHchLS8mw245577qFpGs5fuIgPovLQ2pBcllwwrUuRKbw3rTKqcJJ88Ct1l9aiVLx6/TrXbtzg2OYxvu4r/hgHsxnPPvcCz750nt/4nd9lPB1z3z2v4q3338kbUFxcLjnne2aTKUun2V8cocZbhNgSqMgW+t19OmXw1Ri1qNjWPUfLXZQ1VGoNdo/Ibc/+8pDp2ojr+zvEJhF9JMyWjKe3bh0cP3EbzdomDsg54Jzh9tsc61UiL29wtH+RnSfO8/yNyywOd+jbBd1yge87YpBi01qDs05iCXzhJpURqtGG0WjEse0tJpMJKQbaeSuhsuVrYwwYY6mbEc1kim0alHGSet93pBjIWopg4ahJsWq0xi/nrG1ssEyB5XJO7TS6rrBVTRUD7XJJiJ6jw0NJyHa1jHTbFjGCljV6sL/H0dER0+k6k8kEV9Us5nMWy4WYElqLr+X9XiwXLNtOXKgrS13VVK7CmAXL+QFHOze4Wj2PG41Y39jmrttP8obXP0hKsHtjl8uXr3D9xg0WbYuf1szbnqPuKofXbjDfv0E4djutHtHGl3DmzUzr2+mWr8yI7w9VnPzwD/8wP//zP8+TTz7JaDTiXe96F3/37/5d7r///tXXtG3LX/2rf5Wf+qmfous6vu7rvo5/9I/+EadOnVp9zfnz5/ne7/1efvu3f5vpdMr3fM/38MM//MMr46RXeh3svMBkMmVkLI0Z8Zo77ubu47fhbEVtDCFIoXH16Ig2eezaOteWh5zbu8D12TXGpuLctedwk2OEeYdTis0Td3J49RJjO2KyvsW0nlDbETl0+GvX8MvL9PWE61p8Eyb1mP3JlEhmojQPzA32zjfiTyzERfSljlMH+ywOj9BtZHb4eS5duUK4dp1wdMjx02fAOk69+tW48ZTq5AlGJ0/SmQx6RNw4w2J2gDITMI63PfxGXnPmNLWrOAiRUyePc/VoxtIHbp8c4/j6NjuLBaH3bG9ucXx6kuVySQg92das1z2bZ17NeTSNv0Y1ioxygyZiUkdUilF7G3fmN2FLOm5lKtqu46Xd61z9l7/I4pOfJ17dQTmLues0o/e+E9anRGvp5odkkwm/+2nSo89DSOh7bvs3nt0Xaw0cM2vcefx2ILOICTvZ5PjWCfaWB5iqZuQ2SNmhTUa7kyQyVYbZfIlzBuVlhqy1I/YRFRMKTWMsjoxNiZw6fOxoOCJ1N+jmu7JRhB5IGGUK1J9Ixbq7cCLl8DGD6kOMAxNxdRCmQkZNMbFcLvjNX34/Z+65H20rztx+B5cvvAA5o1BUzolnixKuSUxSEOUsXbvSRg5NpXCmfKZCziUJUlM5GU+aggbIaMBgywdWlcNVFTFEll1LX9KcrbUorXBVgzOGX/rV/x//zT/4X9g7nDFqGl7/uof4+q98F0eHV7n8uRdxzTH2e3j2qUe5/PhniMVf5Nq1a6yvr3/R10GGQhhO5aAIpDw4tBqcNYxHDW/9si/jaDbjwx/8EMH3aKUg6dUzCt7T9Z6UMuvrY4yVPx8RhQ5lDDMcKiiRFZvy623b8cQTTxKTjDHUILcvLsJDhTIQmwf582K55OmnnuGuu+/kNffdy7PPPU/bd0LQjwHvA3VdycGpFc5YGQMVzpEksUvRaq1I1Yf1tbO7w87eDpsbm7zl4Tfwutc+wNPPn+OpF87z8U9/kt/+2Ed49d1389oHHuQrTx7Dp8BL8wVPNw2XQsvCGpZtR1osSN6D06h+wfVf/yUe/+zHWVy7gXUV62dv4/a3vIVwcoM8qvD7+xwe7XDjNz/N3pPPkmNk7Y7b/41n98VaA2dOT1nbqNmaZJoqkrodDq+d49LORY72r7OczVgujujaGb4VgmbyAYqqz5iiZiuhmiEE4SYZGa9tbm6yeWwLVzn6dkm3XNK2LcF7QhRpsLWWZjRmNJnimhHG1aSsCKHHL5cSJJkpSIjETwyIWwy+GGNqYu/pOlmfTWVlPB0ifdfR+55wGJlMEq6qcZVwIVPKEsmgDcF7dm5c4+CgYmtrm7W1NUbjEYvFkvl8jtJCWaiqir7vabuevutol72gRq6MFQtvy80d7cEe9uoFrjcT6vV11jeP8/rXP4C2jv39Ay5dusTu3i6L2YL5omW5sc7O0TUO2p4ueGbtEUfuDPs7F17R8/xDPf0PfvCDvO997+Ntb3sbIQT++l//67z3ve/l8ccfZzKR2esP/MAP8Gu/9mv87M/+LBsbG3zf930f3/Zt38ZHPvIRQB7Kn/gTf4LTp0/z0Y9+lMuXL/Pd3/3dOOf423/7b/+hFuOXn3kdWydPMapGNMaBz4xVhbOG/W7O07Or7LQzeipGpoFZ5MnLj6KjIvctoxNnOHPc0S/2qTa2Ub2nf+kKW4uAeukpwoWLzINYLvv5jNz1EAN7FNIdrHgGqfy3Lr+aFKWTi1zpe6zS1KMprG+ArfBZw3SKy4qts6do1iccXLzKxuY6sxdfYPfcs4TZTHwBmjGHGe7/hj/OxDpqbcg+0AfPweKQ245tUqNJJBbtkpHV+KhYHO4xrsZM6nVmHOKaBqqaKweHuM6wds+raI+uYLWje+kCVw5vsHHHmGha5jqBF5dA3SlCH1imHfwz57j9m76O7Tc8RCJz/sd+msX7f4M3/bP/jlg5lke7XPiHP8nRc5fZ+MvfTmoc/c/8Fi/X63wx10A9HXG0nNNMJ6yvH0NbTRsjtV0jJM/+rMDr2jHb22dja53rB3sEoKlGaOUISqGywU0slbXQZ06sT3F45jeuoGOHyUtU2KGd79L3rYxyigw1EJAJjhbuyeCvkRMikpEuGUq4H7mQKJUEzuWEVgaV4fOf+n0++XsfRzsnqiElxYXWIs2zxhAAVQ7DlIQIm1IuCJCSuXiWFZmyuJXq4nfSFxtth0GphNUyfjJKg8rEIPwIYwzjZrTy2uj7jpyh6zrqquHFly7z5te+mjMntwl95GOPPMF/96P/jJ/5X3+cF55/kicee4ZHPvIhbrx0ka/85u8kLw74rV/8Kb7zO7+T3/u93/uir4O+7zHa4H0vvI0YcU7iGqxWbK2v87Z3voMXX3qJz33mkWIpoFdSa40QW7tefE/quhEpZCk+eu/JOWEHKWjh/eQssu5AxgchSra7hfSZbyI5QmKWZxKiJBSLqV5EIqAMXfI888xznD17Gw89+ABPPPkUXdfhY8CXkWmqEs5V8tmLE+4QBimFUqL3HkWgcvZlCF5md2+X3f09ppMpr3vNfTx03318/okneP6li1y6coWf/pnPMRrXPPy6h3nNAw/y6mnFLPRcSZFzywWPLyOtMbjlHna2x+Fzz3DqXV/O+vHTrK9v87n3/xiP/cqvcNf3/nmaUcNsd4/LH/o48wsvccc3fxN2ssGFX/nFL3huX8w18KrTHVpdot05z0tXL3C4c5nlXHhhXbvEd0tJ8o4vU0xZvXonU4xEXxR3BSnRWiTCx49vM1lbI5PolguWi4U0fV7ej4yodqq6ph6NcHWDNpIjkkKRDZfvSxCbgtDLn01Z8rZilPUTB+M+Z8UvSY1x1onbbpYCJHjPbDajbqKQtbOgdDF5IdlrQdGC77l29TJ13bBxbJO1tXWappHP37YyunSOZjzG9z1971kul7TLllapMtYUU8HWSNGysIfovevsXrlIVY0Yra1z7PgpXvfQA5h6xP7+IdeuXOHGtWucns2YzQ7p2w4frrE3exHdH3D5FTxPlQdG1h/hun79OidPnuSDH/wgX/EVX8HBwQEnTpzg/e9/P3/6T/9pAJ588kkefPBBPvaxj/GOd7yDX//1X+cbv/EbuXTp0gpN+ZEf+RH+2l/7a1y/fp2q+nePAA4PD9nY2OCXnnwON10ja00XEksfePTai3xi7zkOYqTeWmNzodmo17h2uMPh4Q2OZvtMg2VTj5hfOI9NGX9wgNrZp7t6FfYP0CGgYlpt6KYEsymlRBFRPkdOufy+oW5qtk6cIKRE23aYasz4xAmSceTg8fMj+Z7ZE9s5se/F2t5V1NMxXduyODggeF+Y4YreJ/oEo+OnuLbc56Fv+UZe+1XfxEN33EmloI2Jy4sZV31HrQzrTc3maMqN+YwX9nbxGZa+J/uMzYqdxQFXDm6wceo0s6N97OZxKguhC6Q205h1nj33AQ7MJZqNY5hsqccTUDUqjViEQGUUJnu8UhjtiTtHnPuev85t/5//B6fe/DDL+RFP/tkf5N7/51/izq/9KppmTHjhCr/5Z/8yH/jAB3jPe97zRV0Df/Kv/ADHT55G147YK7SCRU7kLDyE2dGheJ24KWZUESuIKWC0QyWF7xLjxlFph07QLTroe8YEqu4I3c8hHGJoCd0Rvu9WcsgQvIQhAjlHFGJZjgKjxGTNGuF/VJXDiRmLcEi8BxQheNkAjPiSuKZm++QZEpmu7Qhdx2I+hxzRL/O7yGUz9aF0flICEaOoRQbfmkGKOjjGWluRYlhJVY2xYsJnrBBrB7v9lCgi8kL4lc182XVi7OcGp9uKqqpoO8//8BO/yHd969fz9X/iG9g8foo/+ae+g2/7hvdy9sxxfN/zD//pTwPckr3gh//238JoLeRbJfLdcd1gydx122089PAb+eyjj/Ls8y+QYhT/GS3v9ZBJ1HedmBkqzWg8FnVDVaONwXshLuriFLtczKlHI5rxBGtMUQQl4YoMWUfGiKS25PwMxOicpDsfihNdrO4HvhIpccftd3D6zCkef/wJlu2yjOcGG/668GtKNhDiVOuLSZ8uI8T8sueuCq8oF0Qv5cxkNObsbbfhnOXcixd44eJFLl65xOWLV/Excfudt/Pahx7ittO3YbTm6nzJ4wcLnt07wFcGV9VQT/F711mmJZd+/V/xzAd+ldu+4z9mdPvtsLfHc//4xzjzrnex/vAbCdHT7lzh4s/+yi3ZC/7rv/+/0C2PaOf7dIsFfb8s72tH6CU9eRhD2yKzV6X4j+FmkWG0GO3Vdc3GxgYbG5tUlcigu25J17a0bSdS8uBJGaqqYjwaMx6PacYTXN1gnHjcBC+oRPR9SapWeO9pl3MWsyOWy5aQEmsnb+eOV93H0fWL3Lh6iaqqqeqatcmEtckIrRTtckHbCb8lBllXo/FkxUtp2xbv+9W4kCyqIO9F7r62vsHa+jrOOnzwLBYL2uWSrutlNB/Tyjiu7/tVuKj48OjV2GtA54yV8NOqaqibMdV4ytrmFsdPnqWZrrNsO65cfIlrly8ynx3SdUtmh0f8zE/9Uw4ODr4ARf3fX/9enJODgwMAtra2APjUpz6F956v+ZqvWX3NAw88wJ133rnakD72sY/x+te//gvGPF/3dV/H937v9/LYY4/xpje96d/4e7quo+tu9t6Hh0Kqqp1opq/P5zy5d5WPXHyc2dGSbA11Y+hu7NKbKS+8+CzsL9DnL+MuXKTf3efa4Qy6HktCJ5F81tZijUZZh6pUCQ6T1BKKFA4gkTDWsr69zW133sPGsQ2uXrrIwd4+XYqo2+9i7TVvpL9wDn/hKZjtkaMn9JGYMkEaZ/m7TCYtE07BaOTwBjnkUiZETw6e/nCHKsETv/OvMSc2Ob7x9bz+5GnG1nJ6XLPvPTeWC45i5KjvWKsb7j1+kmtHMw6V4eruZXYuX2R08jiojqP5Hm17wNpBIlVTrFLMbuySqxlb7gTKO/YuXwN6Zm7G2tZ9dIe30Zy6D1vvsX/lE5x57deSnv5N0qFY0588ts00ePzT5yFE7nzjw6SDAw6O9qnGgiR84hOf4D3vec8XdQ2Mj28z2ZhiXc3e3hJjx/jDfXz2TEbrTI5tkFWmdo5qNKJNczrVo/oMyTJxopoJfce6aWhwGKcw7RKDxzrIoUOnlhClcPRFIizjFXmWShlJr1agEQRFOllVPEkyWWeUyvgSCDdsLsEHcpb8kZjhG779e7jr7lfjfU+7XPIv3/9Pefbxz+AMJZNDIP0UxUslxAC5EGJhxZ5QZIy2JECXgkM8MzI5RbG+R9F2PdbIgQ2AdVjEWRSUGJupTEyZqox8ckyEHGWTbVvmrbisOh35/Cc+zAuXrxNj5D/5zu9A58znP/spAO64445bshcsly2Tybg472pq5zB9z+tf9wZuf9WdfPijH+Hy1RvknIr3ixafmKKSCSEwXyxIKbG2tiaFSxmNBR8IpTixw/0GUcoUouzA9dBG03UCjQMrWXGM4aa3jZI06pQigqTElQ8K5Z6/+OKLKKN5wxtez+cf+Tzz+ZyoRKnj+x4FWCuqB1PSkZUSpCwEUX4Mf2/woYxIshTHRc4+m8944umnmU7GnD1zhvvuvZudnV1eunKFly5f5tEnn+QnP/sZbjt1lte99gFOnznNl588yRs3Rrywf8D1mLgxv8E11Uno5cnjADTbt+OCZfHsS5AzYzclXtqj37uGLpLyW7EXXHjmEbQG72XUkkrBEWMQIrMWFEAXknoupmaCikmRaIooYbq2xvbxbUbNiJiE79GXrJveC8IghUkhlZZCoqpFmaO0eO4ICtLRt0sJB81AFm8bQeAECckZtKu463VvoZu9moMP/DLtYi6BoNZijaGpHcY6jA8oHcQjJ0QWsxmQV0UrZHzXrwpVbSxWaXzfs7+7w+HBAdO1KevrmzLuaRqWrSh5fC/jR2udpCnHQFdGPste7rlzRlDJYibpOkdnlyznR9ijfQ53r3LtwvPUownTzWMcP36Wu+55FcF7rl6+yIvPP/1vPNM/6PojFycpJf6L/+K/4N3vfjeve93rALhy5QpVVbG5ufkFX3vq1CmuXLmy+pqXL8Th94ff+4OuH/7hH+Zv/s2/+W/8+uOXXuTZc5/nxfkBl3evMj+8wdljd0Gn6M9fhqtXWNzYgRcvitV929F4Xw4Q0FZ8MIbI+sHuWg1W0gxJsnJVzrG+eYyzr7qHYydPsb+3z0vnnuW5xx4RaFdpNt/5x7j93V/LxV/4SdpnHyOGHk2m94EQhABJsRxPGVxdUTW1dMI547uwkitaq6mToV+21K5CX5vx5C//b+we7fPIfQ/y1rse5NVn7mLNOYxbZ5oS1+dLXrx2GVs1NKbCTiryGc10e4ujxZxpP8c2DeujqUCd0VNpR84RuznF2Y7b9AYPbb2JxXLGzvwGXYDxtGVzcoSKlpPHX0c/X7AMhuf+55/G3HMb59Uh6rkd2iceB2vYSUecmJ5ms5pQlfH81atXv+hrwEwqVFPRaYM6MWHWBVAjNprT6KRFiRIgLHuu7+1RjRVH8zmp91Q4aluhUNQoQl6g0wKrA2MTULTkfp8QFkUaG+m8dMYppZKNkwuMatEFCXEGnBVJqilomy429BRUJ5dDTdabXpFYdcr8xq/+HH/hP/svma5tMF3b4M98z1/in//Y/8T5px/FFkMNXZJ1B8fIVPxSxBo7Fg5GwmchcRolIXNt10lqcYo4Zej6XlxPUyZGQexUiJhCwBwQAHRGo1FBk4yE5vUhSCHkIx/6xCOcPrHJ+nSED4HZ0RyjNR/+V7/A1qnbePUDDwJw4sSJW7IXCEIkxdOoqdBtzzu+7N00GxN+64O/zc7eYRnlFKSr/Dl516S4CSEwGo2k6DDSGS7bVnxHCoKKQnwqSqL08OwGLxUpVFllIPkQxQROKWLxYBl8WJTW6CTPPYQg6KxWKz+Vc+dewBjLww+/kU9/+rMcHh0KKpYVbddiiv19iIHKVQWxKUndRQotpn+iOBFPHY2OBmUk6TqlxNHREU8cHjIajbj9tjO88aEHuO30CU5tb/P8hZe4ePUqH/rYRzjc3+e+V93L137te3n4tpMs5i1XDw95ScPFEHj0859hetc9bL/6IXLX4t2jMvY8OKLWlqoe4U5sArdmLzg4uCFjzxhIQUQAIPfDlWeYUyr8kCScwCCSbOcqQQLrmo3NTdY3NqmdLQ3CQgjig09OL0RrFDhtaJoxdS3FiatrKT6Noet6ck5435NiFOFeQcy8H0Y6EviYorjFKltx6u572b7tLl566vPy9zpP2/uiRFOitAxC1O26TpqbGaipwlUVddWg0GIgGSM5S1NtrSUE8H3P7s4us6MZW1vbjCcTJpMJddWwXC5ZLpfFEVn+TOUqOufw3tP1HT4Elq0v3kjuJpKiFM4Jl8UYw3x2wOxgl/0rFzF1w2Rjm+3Td/Dmd3wF8Lf+wGf78uuPXJy8733v49FHH+V3f/d3/6jf4hVfP/RDP8QP/uAPrv7/8PCQO+64g1/8/EeYq0CztsV6bJguR/hnH8EeHjA6mlMdHdEfHpKXHSqlItfVq1RY51yxFy9warmKG/XNxY1m4/gW7/nmP8lkbYPPffxjfO6jv8tiMScU1j5as/7g63joW/8TXvrffp75U48Qghfpn9IohGUvVzmwlKJddmgrWSBV05BComs7id5WCtNorInSmfbA85c5v/vr7L7pBa69/hJf94738Orb7sAA69ZSr08YVY6rBzPmvee5ncsc9HNmy0MmZsSr73ktF/evUI8m2BTZmR1Qj9YZH5ty7dIjjJoGW0/x7RLnA2uqZntSk1Wg239CMmiader9I879+PtJV/e45wf+MpGa4CLRjCDDhWeeZefwCGMNI/vvr9b5P1oDixTpZ/vMWoEhnW3wraeLvhhigfJQUVGNJQOjqWqa9TUa44gHYhpmLahuTu07TJij2yVte4DNokC6OUpJL7MXlwJzOJhSlhyiFAMJIbqq4jGScsJqu3J9VUaTclihL0q+KTEkzj/9BL/6C+/nW/7Mn8M5x7Fjx/nOv/g+fvqf/xjPPfJJyGolF66VoesyiUzMgswpkfEIT4UC46dELGs1Ruka0YYUe7zvSKXzzhm0ghh7Kbi0SJB9iDg7YIfStRtriTHwwd9/nN2DOd/4lW9m//AQawxtV6S2ObN/9RIfeen8v/ca+LetA4oTbGUVW82Yt3/V13CwOOIDv/ObLFsZYw0QvtGmPA9DTtB2nfhSOJF/qjJWTSnhrBVpcUxCVAxihuecjGmGiACZpNz0oKE0NSH0WKPFGdoVfkiRkQtwpW5GDJBRWcZGWhuqquLFF8/jrOXtb38rn/70Zzg4OBCljpZCeMUvKEieKk1OKp8rp5ufEW6O+FRBe0jlgQPz2Yynn32OUdNw5sxp3vrwG7j7jtt47vkX2LnrLi5ev8GLL77IT/zEP+Ouu+7iNQ8+xPHt49xlFR//tV8hX7rIn/yh/4r5dI3l+hoHWxugFBsP3Y9pHIxr2i+CcO//aA107ZJk7apYdMauSK45ybuRonA6yksnfDSj0Nownkw4trXFeDyGnFks5oJ69O3KWTiVsWlOgp7Xo7G4E1uHq2q0cSUPazDqExlySgmrildOiKuR7ECU10oRfEvwPTkrtk7fzktPP4r3Paaz9EUVVlnhQVV1vXIUjtHTdx1zBaM0oaor6kZUZm3X0vV+5c2jjcUiqfKz2YzFfMF4MmZ9Y4PxZMpkOsVVVRlfdXSDG3HT4JyTWAwyXdsXJKmnpSsj44JMFfm7c47WtCysRRnDwd4O1y+fB16Z180fqTj5vu/7Pn71V3+VD33oQ9x++0329enTp+n7nv39/S9AT65evcrp06dXX/OJT3ziC77fUEUPX/O/v+p6gKu+8Oqeewl1MEP5jA0ZFkekoyO62RHtsoMQ0UjgmtFiUGWsdDzWSacbcyIFqaJvdlN5RX5TSqKtR6MRVy9c5NzTv83ejWvC1i9kM5TCbG3xmm/5M4TDfW58/MNlkSWRjeZcQt4o8K9ZsbSDD/SLrhhoWZrpBG0s7WKxOkystTR1wofEsu+x1zzdRx7huRcu8QtXrvKer/wGHrj3Pk6sTYloJhPDyaZmp/VUjWV3fsT565rN0SYnputMm5p53zE3lpATi/kRzXSTNTdFBcV4bYNK1+zNr8vB1feQYDRZJ2tFbRSf/5H/kYPPfY6v+R//J6Z33EnvxdTtymLEp+Kv8MCr305rMl1YsDzYBW52RF/MNTA7OKInMxlNaWzFXttxfLRBPZqwXLY4FDQRtCdoR1YWXSuisly/so/pPGOn0d0cFRaM1Iwqz7EqEnxHH3o5wPtO3EOtIUUpAGKWosAqLahH8S+RWCNVioJMXTsUrPgFSkHv+4JMyBgmBF+6ccgx86nf/QBbW1t89dd9K1objm1s8V1//q/wK7/0M3zqwx/A+1bWT4po64hBOCxKl8MSS45JXGtz6Zi1IoZUDiMJDxtIszlJl5RyQhv5uoAgBDFnKutIWUYIhCiEb1fzOx/6BOcv3+DbvvYdTEYVPgS0UlRODve9/X3Go1Hp1IWndiv2Altm4vfceTdvffNbef6lF/joxz4qh0nKK0l3ThlTujzxlxCDK6MVTTMii3UeIOjHYIClUIjoKa8OeF0cP3VBpXIhykvmSipjlptNTwhBuNADr2HgfygpWGOKklKsdWmMpDB8+plnqUcNb3jjG/n0pz7N0eyonK3iTUPK+NyTsmSByffXQBn1rDxa4iq9OmWRvIpaqexNMn+k6zrOnTvHSxccJ0+c4O1vfSvtsuWFF17gVWdvY2d3j4tXr/LBf/2vmUzWOH/uGZ5/9ln+67/9dzh55nYO+p5LCfzd9/BMSvS3n4R+ybipyPMFcGv2guA9uuyX4unDKo9q4JsMDr1aa0xJjnZVxXRtjY3NTZy1xXtEPEikuOhlPBTCKkJikAtXtfioVI38OyOqub7vCxope7gxpowAZR0Mn6tQ1KRQDIFUCN2bJ86gjSUGiRnpK+GF5ZyoKydFhiuNUJRmt+874ZroNUFD0cU7q6zjVLho2uBqI3+m6zg4OGA2mzGdrjFdW6MZjZlMxHbBFtKs773EKZRi2hpLVYl60HsvhUrXY6zkesl99GUMLUhKb5ao+YxXSnP9QxUnOWe+//u/n1/4hV/gd37nd7jnnnu+4Pff8pa34Jzjt37rt/hTf+pPAfDUU09x/vx53vnOdwLwzne+k7/1t/4W165d4+RJCQD6zd/8TdbX13nooYf+MB+H0aMv0BjoZofMZ3NxTYxR4Kiy+Fz5RxuDNgKlFoEEIYljZFZiJy0bWZlJay0R8EY2iMXREY/9/ifwwUNRX0iXqVHWcPrtX87kjnt47mf/V2Y7N1A53Qx8AwFXlHTSg0pAQrDUCmqXObelGUvlPV/MSxGEQMIKamcwIRGP5vin5ly7MePDBz2Lr/pa3v6mh9lemwJSm05GFTaMuXu6xkOnzrD0Ea0tPo1Zes8iee7aPonvWvZDIG+dKUx2j3ETtjePE/o5TTXCaUefE75t+cT/9+9z/ROf4F1/779hkVqWF55jc+sMp9a2qB94A582hhc//EHWXnc/XgXaFy8C8Pa3v/2LvgaMr9jc3ELVmkpXbB4foVqYHS0gaHKRzh7tXmfkKkbTTXIv5mM2wdgpbGyZjitqZ7E+kzrPYrZPCkJiy0Ut43sxk6J0pgkKCTOTcyiGWRqNrKWq0oV7oAub30rxovVNtUZMZWQgMmCVNSFFYp/5wK/9Amubx3jbO74arRST8ZQ/9We+i3vvvZ+f/8kfY3ZwvYwHM85VJJPp+qXMmrUFrdC6RqXBT0HY92hFzlIkdV0vB3L2K5OWaIygO7LV4tuOXvtymMl7Rcr86w9/knMvXeVPvfedbK6vlawfGV8c21hHK8WlqzvcddtJQuHDXLhw4ZbsBdZoHnrdG3jtg/fz6JNP8MlPfVremxCJMWBLcaQQomgoXBIfvBxQzmHLWhlGujHGcqhlqqZCkVkslvIOl3GOzN2FeLhCS6LEDVhjoUD4euX0WszvcsIqsyLU55xR4abPirKFXl0O0scefXwl+xy6cuHOyPMPBRHqijcKuqBxSgM3vXaGHCCV8ipwUFRmqZi5iXMpSAF94eJFLl6+xMkTJ3nwoQd5TUqce+E82xde4uqJ6/zar/4KL547xx97z9dy4eIljKs4sbXFca25581v5kPWcvLaDu7V93Hp+gV0G27ZXuCckLMH871cEI6bBG9hyZuiZDHGsL6xyWS6xngyIaVI2wrvIkZRqAXvZb14XxAZKeJdXeOqqnAvnNxzpUHr1TNKMUphW4jpUotIKnjONxE2rbScQdGzWMxZy5nJ5haT6TqHu9dJpZFw1mKcI6VcHIQdwXhx3i38lthK2vioWN0bM5JU+b5HeS8eQMWo0VW1KExNj/eBvb1dDo8OWVtbY219g2Y0Yrq2jq97mRL0nr6gQFUlKErdNPR9h/c1XdfSdT3LZUtfkr9l9OwLl8eIn8srDH/8QxUn73vf+3j/+9/PL/3SL7G2traaCW5sbDAajdjY2OAv/IW/wA/+4A+ytbXF+vo63//938873/lO3vGOdwDw3ve+l4ceeojv+q7v4u/9vb/HlStX+Bt/42/wvve97w+shv9tV3vlAssYy0YqWvG6KqOaAi3JDVGyUYvWUlQNPqzsojMKqw2VMWyfPcv22TPM9/a4duUypVwUYlwhFK5QluIR4Ta3OPHWd+LbObuf/+RqnEDZjCpnyUo6HW10WeCKdilWyBmB2YwN2AzKGOpRg7GG+XxRIt3LKKhsNJmIiwl/+TIv/Mqvs/vI4zz5jnfylq95Dw/e/wDTymKV4q61KT5n2pzZ04E+Zs7tXSMAvu84tr5FM15nPQSUKZVwSoSc6FKFGU2ZzY7w0dOlxMf//t/l+Q/8K979N/8WVT2Gvmd2eIPejWmrmtF4yu1//Gu49DO/TGe+Edc07P7srwHwtre97Yu+BprJFkY3UihS0V6bM9s9pG5qUop04UgSklRmrg3t4RJnHKOw5HgjhYgxCZ1aGtcQl3Pa+R4qB+lKkrzQOScpYMOg9DBQIHqZzYpsPCfpjJUSlryyTtQhtmxeatUqleI0E2JakeV8TCu/hK5t+dWf/edMp2s8+Pq3ocg443jb29/FyTO38fP//Mc49/SjVJXBdx5ljJjmZTHmotjSDxwV4SQooo9FppiKckO8NnxMolopMlujTbHVhqgiNgkKobTio595iufOX+YbvuLN2OKDMRyYTTNG24YHXnWWj372aVzxSAE5lG7FXvCud76Le15zH5/+3Gd55LOfFfxDQUphJatMhRQ5JBWHEhKIyri6ErLooHQp/BBBO1VBWkpsgJaOdFBDwcBhkUJjFT6I7C2m+MSk0sEPY5xUnIVlvQgbJSZBUbTRBB9xCO+NDIvFQtBarcrcmYLayBpMsZi66SweRKXocc4VQm5xAi73RGTQsZBBkTElAqz1PmCtQVtRkV29dpUrV6+ysbHBq+65h9fcdy9/7f/1Q7z4/PP86T/zH2Fdw5NPPMZnP/MZThzf5r7X3M/Z06f52q99L5/6tV/mL/3nP8iltVP82i/8GHBr9oJhTD8gHBS0KKVSyJU1rcrIbLq+zsbGJtZV4iTc97TLtqRNy/ufUyIUMz8ByUUt5YpKzbkKV1VCVLUOXwoFXjbSMUatEIfgJclagh7l3VRaoxE+WrdcCLekadg8eYaDnauopAh9h3dFVeel0VihJ0lMB1XOZJKgNsyFt1jIuZWrxFE4+1KkFsK7VlhXC/VAa7zv2dvbZbGYs76+wfrGJq6qma6tEUOga4Wb5UuxptFUTkwaq6qiaYST4wvi2HWy3q01hU5hBL19BdcfSkq8QgH+d9eP//iP8+f+3J8Dbpqw/Yt/8S++wITt5RDdiy++yPd+7/fyO7/zO0wmE77ne76Hv/N3/s4rNt0ZpGNvffBBmsqtChBtTIF3zUoeKAjp8PLL5hoKezulm7LPY5MJ3/Lt/zHv+vqv5ZkrL/FzP/qPufjCC7LYywZitF7JzUQjb9G2Yv2Nb+Pe7/yLHF19icf+7n+FPzoiRdkAtFIl9n7gu5hVmmwo2SamfF1VVaKRr9xKWdF3PW1bzH7KQ03ls0vnJxr5EDPKOqZ338kDX/7lPPwVX8lt997LeDxGG80iZio0U6s58D0HIXK0XDBbdnTdkojCNlMWXcfINYyrmnnMtDGxu3+Nue8Z1Q0/8o6H/8Bn8u4f+hu87pu+FVPkyx/97/8bzn3gAyTfc+rNb+LiRz/2BdKxL9Ya+Na/+j8wnowIlcZGxXLWohwoA6CoRzVYK/caTeg8oxxxiwPWK01uD8C3gCd1h+jUEXyL73vatiWlADkVHgLkmARujRFjhUNCkm5IK7VSb1gj0KexFlePUaqMA5IUOrFwV8jSaTPwFl7GFaiaGqMNx45v8S3f8Rd56PVvW61jUBweHfKrv/RTfOJf/wY5i711VobQtcI5yFIexxgxWsYY2ko3H1NaHYxt32NKob3iLuRBoSbKI2M1KcpBF2Lgn/3SB//A5/I173wDD77qDlnfMfDhTz3BMy9eEoliTDz99NPcd999q6//Yq2DJx9/jEcff5zHH3+8yChLa1AOBXFyLeNUrVks23KAJSaTKdZVqyKGQpyMMYpRm9EYbem6Hh96RrVkpgwkS2uMJJWXsVHve1H4BCkIJMjPrIoQraCuqpvF4crzJJUk43Lvy4GhKLb6ReWRkyhEhrU2jI6EU5NXKIk1UhQOI6Th+w+E7piiFKYFAR6QBjsgOdqsUL2+/CwpSae/ubnJd3/Pd/+Bz+Qd7/5jNJMJo9GYN7z2IX7vox/hk7//+4QYeOOb3swnPvbRW7IX/Olv/TYZn6e4MuQDVl27JERbxpMJGxub1KORFAzlsJXgxUDfdeQsjq4DeqaUxA84JyZrVXGjtk4KFGMrMkpciYMnRiHCdssFzsl5VDkn6qCuE4lzL+tkkHxrW3HvO9/Dg297F0opXnrsM3zmt35ZmhytC79lSl1VNLV4j6QY8MU233tfiqoodIRhnboKq7WojAoRNxTn28E9OSVBeYbR0JCj1jQj1jc2mIwnwnMpYymRU4tsOaVUvl6t9pYQopCJW5E8D029KWTvX/uN3/h3Son/vXxO/q+6hsX45Q+/gcrakrZob5LLSj+jykIdxiJDtTpYT2ut0MaxtbXFd/2n/ylf/TVfz5PPP8uP/cP/nisXLsjBU4hxQ1cYC7tfaUFhVFVz6lu+i+N/7Ku48amP8ML//A/wbSsHGrIRaTWYZcnYBkrHUwy7TClYrDU0TSNzQiuzZ/FDiHgvcrboA97fVGOEEFcEuxASfYwkNGunT/Pqd7+be9/2ds48cD9bJ05QG0ttNVuVcDPmMTDrPYmyyVF8ojKkkGhtxdX5EU0Jh5uFwCx6KCZf3aIVlreruHxwFSoDETamG+hsMNah+47ULvj7737zv3Mx/lHWwJ/5wf+JpqkIuUcZjakdXWjxRDCasWno2lZygmYzRqGnJmByz8hYSEc4lTAqcHSwi4qeTGAxX6KUuI06a4vc8+YYZ0ACBnfWlJMQa4tc1GiJiFdKgbGiwEjSNakh8E2JKyTaFhKk+B9UVYUq6NtoPEYbSc/99u/5K7z+TV/GzX4dfAx89MO/xc/9r/+EbnFY3FAdbdeJaVcpghS5mDIJ16D3vWzMUeTMwucUqP8mIqCKRDnS1JV4s5QD3jlh8QvBlNIQmKJiklFHjMOBnWh94J/8yw98UdfAy9fBj/7PP8LlK5fl581yQJMlV0ug/qKkspbFclm8TizaGkbNWJoUbTBGvFJiCIQom3hd16ugRhDVXj0aSXHKTT4PWe5n17WEGEWhE4N02s4VBFaKgUHam4vnyErmXbr+AWU1ZTREIVVrJXlhGSlsKAfMQIAdGkgRJot6SRcHY6VYeaqkUiDHGMr3YDWC0KUJ04UvsFIiQSlsSpFlLOPJmFfddRdbm5tcvX6dc+eeRxnDzt4+F166wM7eIVcuX6WZjnnHO97Bsc1NfuA/+yu3ZC/4lm/6RmwZj4p5mRQjg+1/1TSsb2yyvr6+kmF730vgZd+JEAHo+04M2YKQYAfCcV3XQgytG1xVi9y2aUS+bp0g8b4nZ1gs5kXynVZeLc46uq6j71r53kWOHGMAFNo5bn/9l/Gmr/w6rLUc3bjCh3/un7E4OhCVjnW48ZimHolKpoxNUhDr/AHVCMEX6bRQE6qmYTQay7g5JRbL5co6P8aALkR9US+JQRzc9OLRxjAayfc4trUt7tKIq7F4pLRFsh1XgZapEP+lSBniMHpiEsHHBz70wVvrc/J/9VVZS+XsCmIdUl+HziHnjC+GRz7Emx0GqhCFDMZVjDc3uHz9Gv/ip/85Tzz6ea5cOE9f5mRDIqhIx8qBVIhsWmv0+gbmznuYG8Psxo2yyemiMRdUBpVXvgnGWOlKM2UcNchRBUrVxmOiwPKuquRQw5DRjLQix8R8Nqdti634cLAohTVgk4RI9deu8ul/+XM8/aEPc9eb3swDX/1VnLz3Psabm8SNKc5oauuKZFRkb2hDVhBjgbRDYhJs+Rk0hsRWPUYrzXw+p5o6HIlj4wnHxvdwsFigjGU0HtMFSFlzo430fbh1iyAGjJmIAiXB/GAOWpdNqqftPcujI9Yt1DZTq0htQCeHMWCrDZrasX/1WbTO4nkSgmz25aBt2w7rbLnPBmMzSlu6dknlhMvgyiGSV4WAke8Bhccj3UzSSnhRRgirw7jFGEVMpQv3PWiNVpb57IiqafB9zy/91I+zcWyLu+5+zWrk4Izly7/yvRw7foqf/sf/iBvXLxJzom5GtO0CSGjl8KGnMgYBFEsoIZnKWUKQgjumuErlTTFhnchNrTUyvtKaEIscN0lniNborPE+yTgBSKkvCjUFSlgWt7oFev7cuSLBTaufaeBxDQT3lBJtJ+ZZVV0TU2LkRoUsa2TMQy7jgCRjFSeW8bFIUAdVjbO2KPVAO7NSZIEgY4pBVqxL3opZoTJDETKQplXhphlTHGWH75XTqoPVShcEtki7kyKEjptlZBlV+fiytGNZz0pJ562VQpkiadZa1kLSK1msLsjPqhtO8v9VXRUbfVGgDaRe73tmR5FHH3+C8XjM2dvO8I63v4P9/R2uX7vO2ZMnuLG7x2Ojp3jx8mU+/vGPcyuXQfBCTlZKY6wqIZsabSyjyYTp2jrra+uCMIVA3/crU8UQpBgZ3HYF9UJGfYWTNBpLfpfWphSypjSquowI08p/KPieFII40JZ7JnwNQasGUrV8D0EVVcq0syNyCGAM4/VjTI4dZ3F0sOIepuUSay3GS9NbaYeyTorcKpX3OAFyXsUoKIcpPwNKlcK4kLWjcKdQrKYBwErxlWIqZnOBru1o25a1tXWm6+tMJ1NGo5E4yrbFLbcgM0oJ38latbp/VVMTBuXQK7i+pIsTXW60Qh5yKNVyDLFUgTflWiklmacacf6TIDCDtpaDGzf4V7/4i7KBvSz1U7ocJQdOKUyEla+KXbmiOX2WdGyLLmf6owORccpus2LsK62KpFSKFqM0USJlbyIzhe3vQ8TUlhgizmXpsgsByihF1InRJGOdo11Ih5bVMB/PN1n3BhqlWV6/wlMf+A3OffITnHnodTz83v8b9q1votlcY2cxZ1Q3WG3YaBrJdxng4xRxObOuFUcx4v2CE+M1joLEhmcF2cKoGuO0YtkFbNXQ9h2HBwekrDg8OmLeH5CTv2VrwI0q3Kimn4laQRuNirA+HjGfRxbBc+L4Ng+ePcnh/iHd4VUW8xtYO8LZGp0WtAc7LOcHdP0SEsTQSYGJdKCuqgYmJSEI4TDnUFQ4uSivbNnMEjkGoBxGCBSco+RvKBQ+RSyqMOgDTT0iZ4VC1ktxFJEiQimi99iqZvfadX7yH/9D/uyf/yvcde+DX/AevPa1b+Qv/dX/Nz/xo/+Al555EusG4iVohFPQ9x6DJiKFc44JmY4PpnKskJYB+Ugp0zQNKUTEJEzGis4YfIgoFfHlcI8xrcYNuqhnyJY4SBJu4eX7Djex8vyKh0XjmtIdFjgQVgZqQ86QoFjyXmulBHVq20JcvkmOHTZoZ20JahS5NkNRp8X+PhbCIYA1A69HEBVbCj2lRb7srANuSkml4ZHDSuWSXD2QWWE19osxrsbXoIqDrxxMTVURc6IPBYnr+6KYqEgqExARgNj1CwLstBX7f2PJSvY/VYIsffT4uS+HspBrpfGTHUcDOQYOD/aZHR1x7vlz3H72DHfdfQ9du6BylmXbcmJ7my4E5vP5LVwFuXByQDgZWoqS6TrjyXRFlh0C+nzfk1IsiIdfdf9l+xaeSeEX1U2DcxVKmSKnZYVwa2OlGCncx65dkkJY2VWUjyXeKiueV165MfvBTj8EFrMDkQ87hzKWY6fv4PqF52XUIvAWvpCelY9o7VccKGMsxiUsiAFdMfkjCaKjtUKp0iArLWuroGSpFEg5DV45iroZSbFRVD1tzCyXSxaLObPZjI3NY0ymazRNg7WuEGI7aGWsnFQq/K4IGFxpWMb/IRQnpoQkDVbccHMB9H2/WgSq8EW0UlhnxaOhQGIDSUdmYvI9YkwyYy/29IMngFThedVFausYb59AVTV9ypAi2hp8lyELDJdilAjvsslRnEK1VqQCwQwdNrDqqrQx9L3HWhkhKJRIwZQqJKyauq5YLJYsF628VFphAKstoRDyTFbEFOh3d3jxdz/IC7//cU69+n4Z+XzZl+HOnEaNx1zv50wbx5qzOOPwWd6oZVUz6QM7+x2VVYQukn3PZl0TtaZvOxZZsQw9u6Fn2S2YTjeZHx7QjGqO2kxUr0zX/ke59vsdZgcdsQ+EPqBIWO1YzA6prGHkHP5gj8u5xy9n2HSIzZDbqyyPOnTyzJczmcGG4qRZ1CgKuXeD/bd1FV3XlZGMwOLOlqKk8EB01aDIhK6lsY6YPL6XA9JVbtXN9V1L1YzQsYxWlFjaywaSi7pFDsu+62VEpi2XX3qJf/6P/we+4y+8j3te/VpARktGae64407+yg/8ED/3E/+Ez/3e76ByLp9PYYzYVaeCrFXWYqoG7yX3yYeAta6gKKl8TkXIka7tiKlIhKualMLKjVYKEUeMg49HFoO56KUrjxmMxsdbiJ4hBZP3nso5QghUlVvxKZSSz9p1UsAaK53seDwRJYG1qIKELjshRIboMaaM5UphmlJEazmYFosFVV3JWEfL1ySG8UrJT1I3Q/8G1DVlIRhbLYgKihVhU9CbYqZXxjU5Z3xOYFUxihz8VQa0R/xshlFMX6TN1ghyh1J0vfzctqA3VTkwUyHeSqikkEJjLjJnoB9GfApRe2gRHYicPoqKpBR1OYmsfrH0PP7U0zz73DlOnjzByZMneO6FlwghMT86Yndv79YtAqXR5X10VcVkMmW6JoWJsVJA+N7Td33xrpG1vvIwSUnGqTEV12UwTlPXTfHvsHK/tKD11tUFQRL3YNkvxC5gUAelaOV9DqEgJPELuGeU92xwGQ5tR9suaUZjEpnN02dBG1QaUqwh9J3sB4C1WlLflQFt0NqiVOF4xKJG1Yaua0UZVFxyBeG3oKVx6L0va11sN8R3CbJOKKdW66XvI4v5guWyZTabsbl5jNF4wng6YTKZFsm0NEIy5vGrkaU2hqpyUpS9gutLujixqqSwZjm4QwlX0lpIrKaYEg0FiC6M4sF2d2Dmw0BKS2VOOcCihQmvBbofVA0DipKVRo83ShKtIlgnfg5KyQaNVNdDOBjkFdmsDJeKGCitqmtBekAQOFU6AfFnkcPDr5QEKctLqLWmayWYbTjoVExYIyTIPsSb1Xu75Opjj3DpsUf4/Z/5WU4+9Fru/2NfhV1b4y3veJi0tsaRF4+XaS1zVKsTp7a2WJCpjGZtc5OD2YLoA5NmRG0NVXZ0i0xsE02GyeYmF3Zv0DQTNm5hcRJCT9YdtashK6oyjskqcGJ9QgoJ5Tv6o12cNvj2EJUCxAW+X3A0m2NNxhmFKuMK8SeI4uSb88rIaukDrrKF95XR2knCcCEckpOkg2ZBunJRREjiaCqZPEo6F63oOkmdHdUNPvTkrKWIKc6Uxmi6vgMys6MjmtEYpQ3Xr1zhZ37if+EvfN9/yfGTt5VxJhgU28e2+a7/+/ezfXybD//GL5NjQBvHbLnEaItVFLdSIa9Xzsg4UYuh3MAryBpQojQjZ+q6KQf0gEIIh0H8UGJ53ww5SZGTFeRS3IRlyysk6P+Rr5VVt9aMm6Y4tA5yb0Pf9eIjYqW4GI0aQoz03lOXvWCVEqvVzT1Cq5XTqiuHu7HyDueUVzEEg5P0gHB4L66tzja0hwcAVG6CUorO90JWLcWvHAgDL0QOKassmSBrJImXSSr+LILoyGc0GVGIpLRaByB8toHMPxQjAzKQSnNljUHOieLJQhk3K6TD1ml1bwdCrTEW7+PqHRh+XRcScU4JYqQNgfMXXuLFF8+zf3DIc88/z/7+Ptbeur3AOMl5aZqGyXTKdLpOMxoVYUFXpMHCyYghipPyym9EDvMB/ZJmRDgl1hWDNW1QxqILzzHmm0ILWzgnA29rGP0pdZPLE0NBSJKEceYCwK1GLFmKmPl8zsaxLUiJ9e0TVKMJi70b4lFTxoEuRyG/x4QKstfbqhbUzctepnISdNSHImuOghYWioEQucOK1F1e69WYT3hFGo2cf7okNPe9JCPP53NSjIxbsfYfTyTjxzpL6CXWoi3fo+9uOmu/0utLujgRmEs2xrYvJlSF7CUbi6SN2rKYho1l6IZyecFymQMOJMVhlhhShFTg1aLYSKF0ROUB6+kaAdnYzZqQe5TSUpGW4iZncboY5HsApZkbCM4rqDYW2FYXZnhM0sXmCFVVY4wUSEO31Pfdio3ufUAHieLWOaOKW6E2RtwRU8JkLWh08HS717j40RtcffQznHj1A1x/8jHueeMbOHP//WRX4X2HcxUbGzKnPekcYychi2E65mi5ZPdwj83plGY85u7jJwjrUrgcLBeMXcPtW9vMdq7fsjXQ1FPGa9tk78nLJRoP0WPDnG7/iNx7VLdP5+eM6ooUZM5M8kJidQaSJ3qZAadMIYIlSGqlwMhKSK4DHyHlJB04GmXk0A8xIHzMjEFJvDwQVcbWDb73onbpO1xVi1+BFoWFtRXLxRHaWLyXYmmQ/qaccVZDjkKGzJaLF87zL3/yn/Adf/H7WVvbXHFQFDBpRnzzf/TdbG4d55f+xY/T9h2VtSuSpwSf2fIzOHRIN8eRRgpcUwziQDhIURWpYxkTUHhYlXNy2ElrteoeE0iRmAEyOd7a6mRQ2sjc3MkmrkpKuFL0BRUbMmiGJNrxeCSHQkySexWCxFkYuyIczudzYojFEbeQQbUqIwBROtRVJV1xKRpijLzlbW9hOpnyq7/yy3gfcHXNaDxh5D37uzvF76aMvDRFcmqKNFTG0VVdF9M0ObyMFVQjxozRkmSbsqxNGRWU7r8UJ+KMC7HsbzLW6KThSlZ4D6XY0koTS0LucE+1UmI7ELzwZwYCeEFxxcNCMqRkD9MkIR6tuAWL+YzJuOHs6fvQxvCB3/yNW7IGXNWwtr7BZDJlNBpTVRKG17XLlRInDohJUZjIr3vZh5PcN+FZSW5bXTdSSBpBZQZnZEHly5ou/JGubWmXi7IuCk/POnQpOlKSgpaX7fHDfRReVsKHnvnRkeRmOUs1GrFx4jTtwa58Ri0oVbdYFu6LkxDAVTFtxK+njN60lnFRH3p0hj7L2KYZjaUhKfJ6WccFLS7rbeAxZbLcg1KwgTTdoS929t6zXCwYjSdMplPW1tdX5nSuEuRXjEeFp6Zf4V7wJV2c+KK+GSBmVVjVuUBlkkYrGSHW2kLQKSx5blYHuXg3qKxvumRqhUoIuVIpYpCiw+e+JM5qUJpo6zJTzjBaJ2SFrhvhiahM7DsGWV6mQN5D9Vg4LboYsw2kp5Cl+1BdX0hMCZNVIVN9IaLibCULSWtsXRNjEllZ74VjUEK+UNL9pFggYlPhewm88vu7vPTJj3LjiUd58RMf4663fxlb976aZYrc/erXsDEZk4y8SCkIl2eiYbSxwVSLY+rh/IjJeEqNYtw4PCNmbeSF+QH6FtLgUqcIppdzNWdy39M0hqymjEeael2xPDSoRWBcG2aHc1TuZUxBRimRgcYECbGTN1rRejG8S1lge6M1JPExCTnTOMeiXdA0IwienrAy5nKukMoSOCfBezmL5blSCWMUbTsv48aKGDuWWRxXnREUTDc1GnG9bGqJXvfeAxHnIKvMU489ws//1I/xn3z3f0ZVNwiaIaheZR1f9d4/web2Fj/74z/K7vUrBYET34qY5GDNKVLXFYezOVqJX0tVGYwu4YI5yVgkZ/o+vExGrRnVDcvlfAVjp7KeBSVMQiIum94fpmP6o1zaGCrnXhYHIIVd33tQN/NTYoqMmhEpZyprVzyB4IU0ahRFiimH8tCsdF0HylDXFZTR3KDGGub2Sou9/WBNHkLg+MnjbKyvc31nl/WNTe578EExMvzoR296jxSVlrWm3MNMiLHIitVNxZWFlIdIggKVa4tT6aZjNYKQuNKsZISgP3CohnRplTIekZinWHxXohSpsSgHc+ESCX+u8BdKgSMjSGn2+r6X8MEyLqsqR0qingwhcObMKU6fOcV0OmE6nd6yNTCeTplM16nrWnKk2paYIl3bFvVNYAh+FJm4lz243DN53IXAWdeSSF0Q9/JYiCmjYyoj+6L+LIduLPLZlQtxKT77EMr4fvChMeTcrxyIV+9OghwCfikuuillmrph+9RZrj3/ZEFepdiISazojbbF30X2HGMM0Uhu1hAeG0IuyByE3pf9LjJqRHU0mNYZY1ceO4Oi1SizStXOZUwssmSxTfBekouX7bKockQm3YwnNM3N4m5onlf0hldwfWkXJzHKBl8OYAnmkh/eWiP287DKyhBpnnRMA1uaQoIdSECpzOViCQmLA5k2J5w20ollsS/O1pEnU3GENBbqEdvveDfqdW9l5sakoz3yz/wYaX+PwUVSFdRFutyi8Cg5LTIG0qjEimiplEJns6q8lVYl16P4aZRApoGJrbTA7s5VWCtpkvIXl59LqRWfwKjCycmK3ve0swPaJx5l97lnWLvzTk7dfz8HL7zAS3ffw/bZOzl75+2MxmO2mpo+RXrfcWZzjWvzFuth7Awj62iDZToasRnX2F/O2Qm3jm+Q5jO6zmNRkBTOVnSLPWoTqetjhLaFFOSQikOcuBgW9WHIf5F/UvEqGSBtQQYqUhS5r1KGvu2xTuSxldGkkJhOGvooSiebUuEFCIlymKdpa8WmPIr/SFI1kAppsKIqNvHBl463KDW0hr71dKUrdbYmRl+g0o5Pf+R3OX7yNr7+m74dow0hS0FhlPjnvOmt72Q6WeP9P/oPuHrpRWKSw1BGjw3L9kB4C2hc8QdKwRNTIOSM1YICphhoaldMwiJaya+JtDphjSWmSF3XEmJXDi3nNFZn+v7WFieCBAlKkLLM/0MhJYZY0oS9pxmNxJQsDAaIgnS4GOm8L8oYMXNMBVWN0VM5vbJ7N0YM9HxR5IxHoyLfFLO1XE6y/f19jDFsb29zfWeP/b0dUgxUdcXW8W0uvnSBytWrJNi+98JjyQqrqhUCFFUsBH3ouuK2qWHZizTaWoMzknMUvMeavAqWHDg4sSAZIrEWmbohr6TXZLMi5wvZ1hJyL6OulKhsRRoCJQuBM6VI6qUgTjFiy3hzcBGV0XPGFWSm63oWi2u3bA1MptKxZ4QgrZAEY8nECStX5pxknJdCkM9YxjipvLvWDZk8rCzu5WxRq0RnuaeS+DwECsboGWzpc0ENfVHCDaGQw8hnuH/DWZRyxjhxMV/M58JvVBql4djp2zBVRUiBgoVBSnTtsnDRxBmYDHrUYIwDUza1LpOMoOkDd1GV9dn3oqpz1iHmcnY1zu77nhwTfkB4Yip8Gml+tLHIKQQeKXj6XgIOl+2S6WTJZCKIunMVo9GYuk4stCK/wgLlS7o4SSmKpW+xYB7C0JTWJYRIlDxaqwE5lW40DXNFwVDEoY/VnC0j8/I0wE+5zJFDYLAozoCualTdyCamNLmqycc28O/8cp5uNeup4/QjH6f//Y/KZhkDtoRMxRhIFOfCInd8ucldjImkZITj9OCjUILBkhB8XVURYqBuakGPhuKkVMLNqME5y3LZopN+me9EGfFYByv4uMJGgR+j79h/7ln2zj2Pm25w5vVvZPmGN7Hc2WHj5GnctGHUVEwnYxZVRdNU1LV8FpXFW6Y2FowCW7G5uXHL1sDEOnLsIAS0SqxVFeNpop8dkA46nFKQW5LWeL9Aa8WyE2kvWWzP+8IBiEE6DV3Wgy8dT91Id5EBrbNkMkUZ6/gQ6Eu+SYiBpnKrUUY9GWOVMN1niwXO2aIE0NTGklBUzVhiyft2BcWOakeOER984T5YnMpozMrcL6lcpM+B/+3n/wXHtrf5snf98VI8K+G/5ExKgVfd9wB/+Qf/Oj/5o/+Ap594HEjonDFa1rCJEauFNzVbzKidJUWPUoYu9KvE7rbvGaJ5nLal88xCGFdIemkvZMOcxSSKomwZiKC36srIWCTFhC7IZiz+REaV998atJJiKuVE7GUNLJeL1TspzYMpckjhrOWSpRRCEHKiUtRVkRIXzsXwzMnytZVzzI+OAMWxzS0WsxmHezsQI1lpzt5+J5cvXRKicBl/WGMIXkiyQyerlcYnL946wHAwWitdrtGKnHQRZQxNlnTJ1hgy4vpKzoVjUIICo+w+MUnx4ZzMuZ21RYoqf9egWJJCz5TQQV3UWv4mAg30+HIAShGkkcIQZN9VqpBsb9FlXfUF4X6xeGwMxNOYhFsyZNvkcl9iDKBVSY+WNaIHbuHA1RMylhDlCz1jiBEYxlzey15qjcHYklatpZiJhc80kGFVFs5hzGWskwcxR6ZdzFYEVaM026dvZ7p1ival54UPpKVoCiV3Z2U+ai1d11FX0vgM6F4q7+AKpYkRn3tCmTQILUC8SZQx2GJo2rUtICO9FZ+pFDhWS4OGtdTaSLK2Fc8Y3/ccxn1673GLOaPRSLJ6auED5Zedc//W5/nFXiD/Z17GaConm/zAwRgyNIasksEtVhfTLF82oIEsphDYU/wpFJJ7gMCdxQ0xlw4pMwQCio9C4xyUcZE2CjVd5/DqFXTfoc0E78bUb3kb/rO/LzH0WrqZiOzwxaGkvAiQA8Qcy0hJfk/s0W9mYMj4SRanzJp1OYuK02OBWm0xpYspYiqHbzuWy+5lUP1A9lXkmF+Gylh0SgJFxki/d4Nzv/vbXPzcp9m86x7Ovukt3POGN5KOb7N74wYn77qT9ckYqw0d4ulijaYtZnftcsF8dnTL1kA7P2RU11ROU+lEnl+mi3O6bk5/pKhri9EVKXm6+RxjNZXVhVuSyEphq0o4EQVdUjkTQqSumjJvj+BFmjcZj9BKS6igrXAqkfslKE1T1fQ+kpKnrh0+iDLLx8hk1BCVIvYC/3cpEf0gWdZFCSGFr1Ia6im2n2G0IvYyA/axpyoyRqJ0ZFoZusWSn/2nP8pjn/4ks9kCo8HHHoWiXS6xxjKfz7h2+WLx1hDDPmXETI9yYFtrWJ8KEqgHF9vyfvQhUTdj4nIuG2jbFmM6mZVX2MLxkGJu2XWoLCohMSO7tciJ7HcFBbGidAPIUbxKeu8Zj6cSGx9vBjDmnEsmTSecixgIWZC+unIF7i+OughZXmnJB8mI06uMbcsBUxQZGUXXtswODzm2vYVWsFwsWCxmWFdzeLgvSFf0q6YkRjHok6yVtOJwoFS5h0JUHFxejVH4PkASs7mUM9ZZfEEEQK0k0NYa2rZDGY2lOMYW5CsjhbgoVQqhf4WyFEsFNZjADfWmwTkJnjRK03YdMYMqKiLJUCncLG2wthxmr1Cp8Ue5UoxErYrXhieXgoAS5+D7vhTtBZUsZ6RzjoSg4UNWji2jEl3GMzB4kkDXS9OQioQ8BFF35Sw+QdY5OUu0Wo0zVfnHGiMJ4oVrYor3kfggCQLTLuZFUZdJKlONRky3TnD1xWfJWhFCj4qC5KXiraJQWCuolS73W0aSFq28jHV0WmW0Det6MN+sq6aMc4boDSnyRVkqRQxxiFawBWXS0iyXZkemE6Im8z7gwyHGOoL3dMuWydqUphl9gRDl33Z9SRcnupCOilmrmJ4NqIbRGDTW2ZtdrzUQxaRo0LNTfj3nXELCinlTqRRjkV7GFARmLd0SFLMkWxE0OGdwG5sc7e9zZnlAfXxMCpFjb3yY7vRp0sVLxQsiFHtthbZ6pSvPheymk1qR4RSDMuhm6mlOiUgmd4POXrqhYYNEKbHGzlJwxBTE5VErdLFxjyHQtx2D3bUzFq1YjY6GOXVSJZcjZVgccePzn2H3mSe59PGPcOLe15CqhjNveB2xMpy5/S5iVXHy9GmMNVROXvTeOVzd3LI1UOmESpHs52jTs5hdpzYZq43MQw2E7PHdAm0yfd+h0bS+xRlD9EFmwCmQlcEnBaHHWtnknRWWfVU7THL0PuIsOKfJStNsnSItD+V+GouJRSXhA9ZpEnKw5HzzgG77ltrVJONQRpG6JaUiFsJqjjJaiYE+JyFCqxqlPMEHXFXspqOEvcUUmR8d8LlPfFQ2zKLqisGjtGU+XxTJYeFcZUs2if2DI0aNK9ksmeRvEsl9l0gpYI2l9bK5iXlZI3wDpYuUNUAytL1kFKUEofPUTSMSZGRjusViHaoS5y48gPyyObqh856mqYuyRKB0pfQKyofyShe+wZBcPpi2pWLAKMo4iy8GbzlGeh+KGiaLVDumwiVLXL+xwy//4i8xahqaklr7e7/7UXxRZA08hDQobZSiwq5gBs1w8Mj/C4nSrJREMUQEWzclVoNyYN20JtBa0BCtNUEFObALEpzJCLAh+5FEKhSFmZY1LKrDQgKPoaDR4tUDQ/MmoXtt11JZWY8DiTdnIYqHKGjSTVTm1lzehxXCITbtPcCKtD3gPDnJyGJADpqmFt6MFvFEShlXW7GZyNIIi4meOLK2ncQfVNaKO2vXrfb1QZm5UnIh7uQURWkuVvFDaKf3fXl25RzqO7quYzoeDnLNqTvu4fIzn6ddzAr6IgV28B2uqsTWwfuSiB3RSc6OJItAEB+lhdQdApkiwAhif6+1xmT52Y2xhbepV54okpouP5vv+2K5L0R+kPNrSB/OuVoZssUYODo6LCTxQNe0r/g8+JIuTlw5AIcZnqvcipw3VKrD5hNjIBcppyswKoVPEhHrYGNlHm+MkQq0bFAZ2aRD6ZZkU7B4EsFSUl5BTyfk5YL9H/0R9OZJ0I7l9jHWTp5l/9Jloi8wX/n7tdLE4uQ3zEON1uhkQA/qIdlQNSLHonLorHBKo60heo9xtYxQoJCuWM0YjS6dojYULrAEVpWXKvi4sk8WK335HnVdCZSrNIokKarOoIJn59kn2Tv3PNXaJvNLL7F9z9242ZLJyRP40YjNkyfpkmzWjbOrz3YrrtQdgk6MG4NOHRvTKe3ykMpQRjUBbSvpjn2Zk5Np6rqsk5vW35pMTnKwAoWArOTA9QFrZFQRQhDLdm3ojvYlfbocViH0KOOwCrokXVlsF3RevGucLfZqWQijvltidEaZCnLCGUf0npx6jBEfjVgkj8ZasKK8ULmk3+qEUgZFLiO1jO8EjlUp0/ZLlBJbt+l0k3vue4AQAnsHu2xsHXK0v4fve6KPxacj4YxlPGlEHmwtum2LFDeVIkOvuE5GW0KScDPKO6etpV20GOeIsaeqLG136+B8EHSr7zqUgkW/LN26XalWKuuKqZmQSW1RJamCCKy6XQVVyf8YuluJny8/ndLFXC1iCwE3higJ50VanFKiqRvJ2AmBxWIpNudlTU0mY2mssnSyKQ6253ll0iUBoQLFD0oqa50Qbb0XY8DCfQuFNyLxBzctx2ORrPrYobNd2bkrXUIni8Jm8C/JeQiNy2WULSGBSsm7ZKuKvi8pu0oOr0FOTI4lL0gO5pQF5ZHCqFq5pw5cjltxdV2Ptbq8PxLdMEhfC9uC3ncFNZPxvSqjfFTJIDJycri6hOxpI01MDOLqXJrIsm2v+DWDI68rGU1kQQ+GsZYgNkWCzctGRrBqMFJMqJjw3ZJuuSCur5egQsXJs3fimim+6+S5hCBS6Chj40obrBHeYSjpw85JkWGMK3QHJfy5gRweZJwFQpRVlaZpXMlRKmT+MrpCQeh7WQ9QcrhKsChSnAwIS06JbB1KgS4KqBQC8/mMtmux9pUFOn5JFydKD9HXshgG62Kl8ip1VZAONeC+UomWGbR1brVByYsuCyEW1noqL/eQ1yB/R3kAShFzcfNUmpAzph6BsRw98vtoW1FN1ghWiEPGOQgelCapVAhuNxVDrnIrvwRlFJUWQyytxdI6poizUulmYyCLFDYjqmWzyn9RRZ4oDrXOCqxOzuQiGfO9mHopo3FOZrPLZbvacKyRGaXSuoTaFUfIoopKAVLoaXevcmH3Olce/RybZ+/kzBveQH94xPz2OzCTCRvHjrFsWxaz2S1bA3ffcw/jyYSd5z7FbDmnrgyVE71/1y5wVpF6ObA1kJTM0EWplDDOQhQWvuTliOV3572gDVaKBoVlvpSx0KhycijnQTorLPyQAjEp2nZGU9cYlSQILEZx7kwJjUFpS0gw0ppIxlVjyLF0wIVQp9RKUdKniHEWrRJoR0iRujL4RUAjn8Nmgw+9FBRasWxbyNA0NcvFgpwTy7bFTcZ80zf/R0zWN/Fdy+Of+QS/9i/fz96N60XtYeg6L4d4yuTcorRhNJ7QtkuUMrRdi6uLmVJKMnooFO+kMl3bsjYesewDZEvbBW5xw0wMnlwUItYYnJF8IWuthIIWJA0UdV2txj4DUXFAJZSCqGWdDwc3Zc0YLeqmFHWB+ssIzggfaEVUhxUhMhS5cV1VLNuWtutQWjOZTDDKkb0vnflN2/CcIuO6ElSvIBxkMT+TbB1BMuq6pu99IWwWAy5YFSUDQXellNKu/MzFrylLgKAtWUsx5UJ6hK5dostI3Gi9ymLSWkZfKZVOuXB7lDHFaj+jMyQElepCJ9LblKisgXjrlHsSWifIxlAMDc2kcPYKD4ubpmCqjHVNSfjNyMjcOUFSet+jy/3rC+k0Ri+8Eq2Ec1ZQEwl41AO/XpRBStbYYAUPudxDtVIOZS1WEXIMiY3+fD4npETuOlzlaCZr1NMNDnevFwSomPQlCSi0dV2aFgOkkp4uBZfQFRN9FCRsSCWOKZHLfjMQulOKVHWzujepeAORM6p6WcOvBkfjwbpDrbiMgriAwoEqhNpSNHV9D7Sv6Hl+SRcnA7yZUlHSqJcrclhVtIPcS9CVugQCFqjNKFxVQ9lIYNioBDrPxamz957KVWKRrzUYQ9JigpNiFDMcY9Hrm4SciN2S5XIungmqQKsFBh/gu6Ew0mUBq5KdQ+E8hBAxllI9y4gg+ED2nrqqMCnLaCiKcdsA/aLkYJH3UebfA6DZjMdCikXm8cFLJV2nmq50GLoa4FdNQgheujDKB/29aPZFWuwXR1x96jGunnuGC5/6FCfuew1br341p17zAKDYuXTxlq2Byy88ynQ0RcfIuB5Ru8xycUQq91dU2Z6kLaO1Y/R7N1guDlbkQB/k5acQ16qqlpGMBpLcn9o6rFE0VUWwNcpkcoxo10DsUWhGa2ssDvexxjAdT+h7T9ZQWQVWYpIrZ0gkqsoRQk/yHc45lss549G4PCHZNFOQnJbFcol2jciQtSUtF2gUrZeog5wSTT0qG0aReUaJdU+hp2s7JtN1+m6JGW/z+cdeZOfaP+Tb//xfop5ucM/rHuZr+p7f/OWfY//GVSF7NiPaxbw4vhoWywUhRFwlPjHjumGx6ASRUYquF5SxriXccLOZMl8sqaxkU1XaEfKtO5RASoK+74V35hy978X1tnI4V+GLv0tcqSdSKacopElBIYbNNxYUTKNwTtAupeRdlkmrdIghy/hACIXI+FebonKQ917IwJqu66isE3lp3+Oc7Pa5PLcUBCrXWrNYLGnqGiIr876UxJGYwo8b1HwxijFX3xfyshFoXyG5YkZruhK6Nh6NCF4OSSFzmlXER+UsMUkzJHskq51jlVpcRj5k4ZPpITMIqOuabrksKijE56IICVQhDid169ZB8B6V5ecWbqD42zhr6fpWVHrImNZWlfDrBj5FGXEb61DKiOur8GdLxESzUm0OPKveJ5bL5cr99abJmKAvylhSFCsJrQSZFgdwLzlQOtMV08aUIReFKBmWs7mkEQ++PNayceIM1y88h0LUM4MsN5d9SluHZkDfRHkUVKRytmQryc8qSePFGC6JQd1QiBKKgEQ1JcKh/BmtUVFJ7Api4Gh0ybNboU9yVkmGnXii5D4Vj61MRpOTRHa8kutLujgZ5sYDKVRY86FIoYSZPKAqpkgdO9+hjGTrxOhRuRjlKDmIy+MuZCc5TNCakR7Rtl2xhJa5/sAZCUmgumwt7uzdhEc+DSrKoZdkI5CUUum4YrEbHypsVSTPw9yYjMwmySvYGSj6dPl+PgSiSthswUfq5iY6VNlqxaT3hfglAYMyqxz8HhKiOMsFCTJW03W9VPDlPigyvixSYhT3Px9kYVqLVgN0mYh9x865p9m/8ALjRz7NjQdey/bd99AcP3HL1sD6ZIqrxmizJYWk32e8PmF2cJUcIxiR2YWSSRFSxFpN7QyLtocCzRqtUdYQo0hRx+vHyTnSzg85Wi7YPHacplEsZ4coZYuctLtpxBUD2iqq8Trt/JDKaKrGodB0Pom0sa7oQ8QZQaSWXg4dWzl63zGw+uXllhn9uK5YLJf4zhOzGLHVrkIbSF4zmow5OpgxGtcYUwsEXYjIzhgx1aoaQrsg7p4npMwzNzQ/+Y/+W25/zYPs7+zy9Oc/x+HeLion1tYrUZ5pTd9H6skU3QsCMYw2lDXUgA89WlmqenCAFEmyD5G6qdG5xKsXLtOtvHIW59uu71eHtLO2qKdu+jigVHE4LShIFr5EiIGswBlDCLGkveoSkSEFho8elyt5p1NEG4vVBgppdTDDiAXRlLgLiH3AVK6gG0JENwMsnovtflVDLj4cBdkVMzbh8RhdxsCxIMFZck5U+TlVeWt9DBgEDdFFeRFTxqaEisU9WotHRQiRJMO84l3jMCrSd57KVPiciMFTVY6MdNG1rUsxJLbuIYpdfipfWzeN7GOlIVsZSpb/zrfSViAFFJVEhOQkERAFKRkOYmsdTg9IH6tAPFF4WjGuLIXYkBBunSjwcuH/Df4oMYojuYzFrCDuadiv1Qqxz0XaHwgrbmBKkbbEKQyIlBSB0mR3yzkhSIExcGO2z97J849UhG5RPHUCSkueWOw7knHQyFlobS2IXCmkjbEkI2eackrS1wtamMuwtu96urancx3NKFBVTVFADTxLSVbufY+zpYhVIiN3xYRwcNVWA2dSmxKlkEqEhqZv/wNATqDYwydhhGeCpCj6iDaqBI8hc7gUMNquiF+yboTw4/se61whC2ZsknlzLNkEvpMO11gj7GqkoLCuIRtDdA5vLcoYzB13oayDTjaCgZpmrCYF4ZzkUGTESqSPQwenC4EplzFPKEmgQ0aGKlDewFmJxcFWHAhNMffJUMmYR/gnqcTDS/hXKPLYjBDVXF1BX75lZSQoTmty15F8KCx28Y+xWWTX2SQGC31XOVy2xfq7jJnItNev8vSVS1STCRt33nXLnr9vW5yOhHZGiIHxxmnWtu4ghU+xPNpFu0p4FM6Skyf1HuNg3voyI0+rTg80YTBVapfEHGmaCVXdYFUi+gTGEJI4AmsjM9e1tRF96CW9tl0IIpUS9KFkt8hzWS476lFD5/tCcky4eoxC/E26rsVZIag2ThODh2ywbiQk7djj3ITFsiPngLHQtgsma2NSkYGH0BNDEsWO92jg4NplRpMa3wViDsQ+ce6Zp7j04gvYYqPfOHn2y8WSLs5Wzq9EQQJQSkZ/MdJ2HXVdYZWQ8PLARyrlds6ZHIX/IHkaMk68lZcphEBr7GrUmykkT62pKpGZDuqXvpdcFWD1jury2SUrR2Mrt3ID7kNcIZ+1qYsZYpHtKl3sChRK3XRG7WKkKxLywSgx5oxJ4vQ7uEIrxJV4cJYV2a5evevOGEJRHhpjWCyXYktgb6omBtt9Mcby0uxE6GFFcs4psmzbkpTrqLRl2S5kjSqRpjpjGDUNISVi7CVKoQ9kMuORxAIINC9orzGGFH2B9g29b1cmcH35bEbplS1D729hxlISUUNKokTRQ8mWpBkMpVgWDywx7QO1kkiHmET114ylkCqS5Fzk3QPBUxWCcNe3hX+mydqgdRZ/opxKESwmelVBypW+yYeJZawkPLWbSdIpyqi0Xy5ou46qcity8/aJU9TjdfrloiTbC7STkVG9qwLzeRFAyI9GUooUy68pJSO86Mu/5e8NPhGR82rgbHrfy/noqkIVkKiUsBT0Sf7qDIhiSc4ovSpiUhIeF8W8z1V1Kd5SMUL9d1+3dse4xVdMkb5kjwzyyFhkb7qQ11ZhXCjRa5eoeucs1kknpUtl17atwL6wKgoGKFOsj2VWOQQH9n1PchWdsXRKE7RGHzuBqmsJcSppj5TvF5FxjSl/X0pJ0Jfy3zHlYpEseTy6MOVl0xnm2MVfw4cViWqwsU9RmOBd15ZZpHTmw2Y5wNedF8TAGkOMuRRDFdpamtFo5ZA4GothlSxsVqOSl9ufpyw/l3VOfAK0WllcN85Cu+Tq44/dsjWgco8k3/YcP30nt995Oy88/gHmhzfQ2nHl+vWXWVgH0ImuBAS2bU/fB7wv7pEp0rc9y64npB6rhXw62jgj6FaKIpUsVu6qHIAhq7JZ9YImaMti2a6UX4MZ29r6msjT0dKdV2OMNlS2hhKzIDC5oe0CGSXz32qMD4ll2zFftNjKrXgE1jqWywVdgON3v5vKTZmMaoytmLcBnGVtYw1rKgGblcFqS2U1s/mco/mcxWwhnjhVzbIVJU7lHHVd07athMVVFXVVMR6PcNYWIrUglVWxtFaKlUuzsyLDbLuOfrDHv4WXL8iHtnrlajoEqoXeC9ejjH1TkdPHNLhgDsaNjqaQoZdtKzP0PETQC6oycDpEeRdZLJfy/WJJto2JkFIJ37M0zZg+JEkbL9k4xtXkUkA1dc2oGa3e267rhHxa9hfIpZGRhsKHoqgq5NbKCdE3xFAO5pvmZ+ICzGrPsq4ue4TwH9quK0ipOGkP6sCB92K1FnVYea+9F7t3kZLLuKIvoYKi5gp0Xb8i08YQ6L2n92GlHhzQ3Vtz5TKKF86F957e+5UaRhvp9nNREaUyhul9J1wZLcjUbHZUSM5lXy7S7JyToLGlyPEDyjygH+Vny+XPGS1jwBC87M9BFE7om++CNMhDUGRBbPqWfrmAgm7L7C9TT6Zsnj5T9h3K2CjKCFhR0Ne8ei6y31O8eaQoz1qjjH6ZKkfuiy7P/eaYbnAkl/OhqirEsFBk1inF1fuVhoakNMM3UT/JHbNW+DwDOuVeYXHypY2cDDencEuUGuyqFT5lMpGmFpjOWCsGQBmaccNKKqVU4Y2kklsiL5Ae5sp5eGEFsk1R5GC4BE1NqwyzDD2KhGKytkY2FkqXNgSEiRpEgZICpSCEZZwjZFdjbqZaDhwSrRSxEHGNMcRiPzzMgSmQNYVfYp0legkTCyX1dGDnDxk7zjqZi4cosH8ZMw2zRecco2pM33dUdUW3bFFekWMs3VJx5C33fnhBhzApV14OmVi/zK7/FlwpW8Ybm3RdxeH1Z9m59BQqLjhcijx3IClaV9F3beGgJKxtUDqhVUKb4hSqFWZUE/ogJkreo5sRYbnL4f4ea2trvO7N72R+sMfzT34WrMMoiH2LUhaN5nA2L34xDpRm2XbiLmorWu/xvkDfKRUVQKKNiYRiOl2nW3byWdOCvvMYl9DGE9qFdLwkUpBYg67vcTlhq4rke/YufobD/RsolRmNJ2yd2MY5TV3XbG+f5OBwn/lsRruYEbsWY4RwW9cT9g5nVJXDWIixp10mtHX4TlxTc5TnmxWMxhNC9DTTDfauXyGlROUqco5lhOIFjaxqNtamdL5n2Xe3bA2ANJHOioJIq1TWcUlktmUNGEPX9XSd+MsoCspQOXHJ1OLX4YMEpWFNIcGKwZZWmj5EmkZGBJVzwiOKgVjMEROs3nchJUthkAt5uu09SSmMN5i6ZrZYELxfZddA4vDoiPF4JN2wlfgDa3VB24pNQrb0fS/oXwyFZ5JWcQs34wLESM0HQVOMFXJ/VDK6apq6pE5Lsdn7fnXfrLXkwqfoeo9SgSGTaCCEDuM6pQ11bdBeuHqC5NjVaHqwRjC3sB8WmwYZb6UScifoR6Rr5d/WFHTcmpW6CuQMME4VEYIiRjnYB85N25acrBTJpBKiOLhxS/p8eTzCARnk3GXcJ0neN/mJA0dlyM6S8c6QVi9Kx929fcbTKV4VozTrOHbiNq489xRt38s0sYSIgqC4UaSFUggj59bg/5LSTdfxnJGg01iylJSBLMVI7PqC5lhiFkNTeb/TCs1XSlBmciaFTEB+Jmsd2hqMk3dqoCqkcj7Ivf8PoDiR3InI0otZkdZGuvasQGtCSihdFwKQbA7WaNCGHG7KvHLKZTyUScRVwdP3vRzohagmc9aaEAWZaY4fZ7eq2df/f/b+PNiy7DrvxH57OsOd3n1zZlZOVZVVhUKNAKoKEyVOIKUIUpREWmI35YasdmgIE/qHDjJMWxIU7ZAluyMUsq3J3W61oiVFU6YsuKUQSUkEB4jEWACImsesnN/LfNMdz7gH/7Hve5kFFIgiWEmgqFwRr7Luveece+456+y99lrf9y1FJWKqsL+6jlka4kYHMSsRPOlhAz95CDaLjnt4k6XwixRZBBYdUrnsAsQbgbMx23PYv8JFigFSQWNjz4OmqWMNdAFOkouIG2Kd+XClGBBRREpIAh6tI/0tOEuWpNjFikOKiMMgA6nao3p1tWCCuEWqGRa6KIc9VETEUSgRhe7CbVw0l9WYG5dmtG2FbeuFfD8YEajaZvGb44ol0QFrQacaKSHYSHttW7tQQK2ZVTWry0tg/SKr4XBNE0t2QvLGqy9RzCc4B8VoTD9LaHxLmkaKcaoV0hiqskZpf1TSkEJwMDogSzs4HyehumnjvWhKlIT5fKGB4yKoMwhLMZvGSbFxJMIgTaSxmiQjkwl1MWM2LhFS0A8BrQXeBZq64onv+aN8zw/+cXr9PisrGzjvef2N19jZvsrrz32NK+dfZLy3z7QoSMyiBBqiblDTOrSIk5d1UcbfpAnlfE5lG5qmQkSgV8QmhECWmdhc0HrS1MT0+qK3kDpUvLpNprU+GvQOA5XERAn6PO9graWq6wUYPWJNbtWjKMoqZlUW4lRKSdo2gr+bdqE46gN5lh7RYf0iWNdKUlTVkSI1xMkkTcxR9kBrc5RxWYTsNIsmimmaUpYl3scgI03jttrEUrFwPtKZF7ROJTRRHC3QtG3EsHkWAYM8mgQDi27NSsbS3CJId85S1g2ZiViVuCqOJdrg/eLZj2UJhCdJMtIkWZSKFrIDhyvtRek6hMPr4Y8Aw0cd4g+bMEqJdbePUm6tJUsT3CKT0Nr2qOHfzU7SHrkQqlMqNnfVRqNlQlVHQHXMCjoEC/FOwaKVRLzvs6oguDgnHJYLE7Poq5UYqqIhhnDhKCgThCNpBhYsnhBisMihYu2CHXPoP26R6T7UwfHBs7S+SdrpUZfTI8yic1EH2Ie4+JZJQltH9XQvBF5IqqoiBKJoqfdoc6j8KnDikNq8aIC56GQs5WF/NkWaZQgEclEu9sT5i8NyzgLI70JkD0mhUGpBx+cQKOtxh1PS27B3dXBSt+2ReFhAI8NN/EBUPz1Eisub6c0kagUE58myHNs2twCmLD4sblLbLuSG3eH8vgCpNjG4aVp02TJtBTMnCUHSSEGRdUiWN6hefw2jFq2oxWGH2UV2p24WwZSkdTbKVlsb26ynyU1a4wLdfUjPugmSFUc167CQTQ+CqPDYWkyS0LooziNClDlXqKPeCv4I7sqRDHUUIFogr5UkEQlt0yzS2oEky1AyMjO0MdF5lVqkgGMzq0Mmk1+AD2NyKA6st8uU0pTVlKaYIbUh4CNWxjvyPEHIgEIulBElSQZSmriSVBEsWJQV3W6O0orV5cECvAwIyWw0xWQJvUGf1jmm+zdIEk2aJywtD5kXM4QXtCFQtguVzbKmNxigFMynM5q2xqaONM04cc+j5P1Vti88w+TgBtbCYG0DVxzgW4+T0Ot2GR2MOFTpPORWOEKkYxIDlKa2FFXDytoq4/EIaz2T2Zx+rwPC8+oLz/HDf+J/xfrx02gpIAjuO3c/nU6PJz70fUzHB7z2/Nf4D5/6Bba2riFFIM0SprMiBsRKUvk4ATbWkoUuTVNTVXVsi1DXkUJaxzLhvHDkWYpAUDcROzEvWsoylqJup8X0vMUk5ogd54FOpxsznSzKokIcZTISc7NbN4TFqtbdnFAWmj9N25BnGUka2TVHzQLxON8i8zyW5MTNzsBmkeL3RGxAVZUL7EcUBGusw7uGfr8PxCBZExZj/YJt6NyinYKgrprY10UItJaL81osGBBH3x28PxLLOgKkEifhqMESOOyyHoDpvKDTyWMPn0V7C2Ni2dAkJnreQvBPykNsViwFRH0kYldeFcH3QsbsgzEaa+sFoDTB2pZ5Wd3WJqDOWarKH91rtyhzx3LPYuzzsZylFwvGQ8kIn8SgoV2wEA9xgIc6HzG4aRdZtPoms2uxwG3ar6MK25tlj8PuvyzKijIsMChiMbZLFXVmhEBKjbUN09EBy1VJ3VoyIXEiBsImzen0+sxHO7G7+iEsYUEddkC9wPp4H59Bk0TcSJpErJRz9kgkT5uEsMjoWucWmfhDmEHMhMR4yh/pvBxqL90s//gFXTqWS/UCI3UIi1CLbNuh1IV/m9HJuzI4OcRQeBd73QQXcLT4RV1NLjpqJklCswBzCQFZ1mE2m0UJ67aNaPVFScMuKF/4mBI+oiAvLrxAIJSibVqE9AgfqA9u4Oo5dp4hXY1H0XqLHC4fBRHOL6TgARmiPHoIARcOu3vaoxSaEIKqqBZR/0K8R4gjaphfSNoftdj2ntI2aK1o60WXUCkoinIxKMRuu3JR/4uCarGr7iGeRR+qGHogRI0PZXQU5SHK/NsFGOxQPChSrwVIR9O0MSXcePBR0C4ql8pFilkedfwMb9Mpfy8+0LYFab6Eaysk8V46IxFIbF1jvaMJHD0wznm0slG4iriSTbTEtw6/KLP51qFSg3MRbd5UFW27UGR0LXneoZpNaJrY7Mu2DtW2C38JdLOEaj4jhhSKqmwiw8kots8/SytC1IpxEatT7O8AAZPlKCG4fi1Sej1RmTLPEoYrS1RFQTGZoxe/zwtJmiZUZUmiFFVZkWpFVZRxRWUv8el/+y/5kf/yL0Y9lxCzjXmWxSZ0wXHinvv5+F/9P/CZ3/g1Xvqdp9m+ch4pA4nUeOvxErI0PdJTsItsQt26KAJoW4SKeIPWeaqmIVFR4E8bhdGKQXeZ/cnsHfeBW493GGDUZYkPkKWGIGIzPbcAhDdNDEjDAqNhdKST1nUUQVNSLsTQIp1SSUlrY7M1u8Ba5J2c4BZyA4uFUFEUUS13MXAfqjDXdU3d1IugwEVwY4CiqrCzGXmaxA7UUiyAxXF8kFLE7FNiqJom9jLSZsHyW8ggLJiIzi9o0V7G526RPbHOURHZS3qhjyK1iuwUFZs7zm1L29bMpov+N7cwO9yhSrWIcu1mUeKyi+scwq2S+gJXFAs9E3eUQXXOUpWLcrKNiqF1Xb/jfnB4LGvjHHAoiHYI0D4sccUSOWhpFmNvBH3Sgm0XQiPikPcUn5VYfuFNiuLeOZqqXuACJTpZqKR6T9Msut4f/bwQ/SL42M13oS/ivTvCN7JYACpjENITpKRtKqajfcYH+zSL3l7AkVaJ8wstpMNykjzU5Yog8CgcGLE3zsWF+mEzWyHCAiflqeso/udse1Smcu6QFh1oVIP2cd47xFpChBnUTR07DR91MY5zU1iAn62NvbcO+xRZ28QM4qK/0rfyARHe6dHiD8DOnz/Pvffe+50+jTv2e7TLly9z8uTJd+RYd3zg3WnvpA/AHT94t9qdseCOfSsfeFdmTlZWVgC4dOkSS0tL3+GzeffbZDLh1KlTXL58mcFg8I4fP4TAdDrlxIkT79gx7/jAO2+30w9uhw/AHT94p+3OWHDHvlt84F0ZnBx2iVxaWrotF+8/VxsMBrfter7Tg8YdH7h9drv84HZMHHf84PbYnbHgjn2nfeBdrXNyx+7YHbtjd+yO3bE/fHYnOLljd+yO3bE7dsfu2HeVvSuDkzRN+eQnP0mavr3Wy3fsd7d34/V8N57zd7u9G6/pu/Gcv5vt3Xg9343n/N1s3y3X813J1rljd+yO3bE7dsfu2B9ee1dmTu7YHbtjd+yO3bE79ofX7gQnd+yO3bE7dsfu2B37rrI7wckdu2N37I7dsTt2x76r7E5wcsfu2B27Y3fsjt2x7yp7VwYn/+Af/APOnj1LlmV88IMf5Itf/OJ3+pS+6+xv/s2/GXvw3PL3nve85+jzqqr46Z/+aVZXV+n1evzET/wE169ff9MxLl26xI/8yI/Q6XTY2NjgZ3/2Z4/65Hyn7Y4PvD37w+wHd3zg7dkfZh+AO37wduxd6QPhO2R//+///XDmzJmQpml46qmnwhe+8IW3td8v/MIvhCRJwj/5J/8kPP/88+Ev/sW/GIbDYbh+/fptPuN3l33yk58MDz30UNja2jr629nZOfr8r/yVvxJOnToVPv3pT4enn346fOhDHwof+chHjj631oaHH344fOxjHwtf/epXwy/90i+FtbW18PM///Pv6Hl+O35wxwfevr0b/OCOD9xeezf4QAh3/OB22rvFB26170hw8vtxqKeeeir89E//9NFr51w4ceJE+Nt/+2/fzlN+19knP/nJ8Nhjj73lZ6PRKBhjwi/+4i8evffiiy8GIHzuc58LIYTwS7/0S0FKGba3t4+2+Uf/6B+FwWAQ6rp+R87x2/WDOz7w9u273Q/u+MDtt+92Hwjhjh/cbns3+MDX23ckOPl2Haqu66CUCp/61Kfe9P7HP/7x8GM/9mO341TftfbJT34ydDqdcPz48XD33XeHn/qpnwoXL14MIYTw6U9/OgDh4ODgTfucPn06/N2/+3dDCCH89b/+17/Bmc+fPx+A8JWvfOUdOcdvxw/u+MDvzb7b/eCOD9x++273gRDu+MHttneDD3y9/YE3/muahi9/+cv8/M///NF7Uko+9rGP8bnPfe4t96nrmrqu2drawjlHp9Ph/PnzrK6uIoRgOBzy/PPPM5lM/qB+xne9PfLII/zDf/gPue+++9je3ubv/J2/w0c/+lE+//nPc/78eYwxSCnfdM3W1ta4ePEik8mES5cusbq6+qbP8zwHfu8tysMtXSgPm3T9Xv3gjg98e/bd4gfvhA9A9IMLFy7gnKPX6zEajdjf32d1dfWOD3wT+27xAbgzFnyn7LvdB77Zhn+gdvXq1QCEz372s296/2d/9mfDU0899Zb7fPKTnwzAnb93+d/ly5e/bT+44wN/OP5+Pz5wxw/+8PzdGQvu/N3qA29lf+CZk2/Hfv7nf56f+ZmfoWkaNjc3+cf/+B/zl/7SX+KhYz2UlHgJaZrRGwzodpbQacrmsQ0+9IN/nLqsmc5n5J0+IXi0Nmgl0MIhbEEnS1k/cZLpaMQrz3yZ4C3zg30O9nbYuX6DAGwe32A8OqA/XOHs/e9huHaMjbvO4J3lYG+Xa+df4vXnvkRdl7gQCMGBh8P7IET8HR4BQRBCABHfF7D4VxAWuwQABFIsokoR3yGEw60IBAQghUAg6C2t8NiHf4j7PvBRxvu7HFy9yMapM3gHxWzMibP3onTCaG+Lz/3HX+by668ghKCz1Of9H/0Y9z76JDrJcU3JeHeb8f4ubVXSNiXlfIprWqxtcLahKkvybo/jZ+5D6ZSynFOWc5qioCnmNE1D3TRY2yCFoG09//d/8Sv0+/133Af+2//mr5HnOQKwrkEKjVCK+cE2wVUonZP01vHSQAi05Qxbl1hb471FC4nQBpXmgCQIgVIJbVUSREBKAQG8bQhtQ7A1riqoyzFNU5GYlG5/SJL3sK4mOEdVTPGuJU37JEtD0v46QilkECA83aUNfIDl9RMIpbDVHKE0OklxtiEAQkoCAecDri6RUqGCReIIUtI4Q+MMXhuSNEMKhdIabItopgQcgoBvG0II2LYi+BacgyBwUmJMhky7iKQT3cw14CxSK5zzBA/ee7xzOOcICKT0SBmwrgUfCN7S1iW+raOPL/w/hHDkv0JIWmv53/8f/+bvywcO/eATn/gEm5ub/LN/9s/4I3/kj3D69Gke/7Efp5hOmVy+QkgUadZBdfvoTCNDgMZRHMxI8owgBG1ZoY0G4dG9nKTbx0+mpEqDkHgfqOcl3rWYNMU2FUmS4gXY4FCJIbiAUgqvwQuQymC6OdZAtd7Bbw6QeLIk4dEWXt+6QmeQ89d+5E+zYXp87Y3zfPX1V7hvY41/8YVnuLY3JoRAcIG08uSdDkmS084rin4KicJt79IGCHkKXuBbS3AWt7FJORxgkATnkUKhr1xFWYvrdJFKYtM+QUIiAgkpQQREOUY0Y4rnXyTVEnd8jdZo2J8il/s0RoDUQEDsHhC0QpUNFkso6uinQSLHc2S3Q/AB4QMhBFxiUMNVvFYE0eIxhPEBk2efuS1jwd1nz+Kd57/4L3+SH/zYx/jt3/pt/vk//xdIIRgMl/hrf+2vceXKFf6XT32KH/zYx3jiySf5W//N/xkhBCYx/MSP/zjvf/IDCCkhxIzO3/m//G2ca/ne7/s+tDJcuXSJq1tbvP8DT1CWczY3jrG2tsav/tqn+dxnP0e/30NKxbVr1wjBA3G839xY5+677yHRmt5gwGOPPcpTH/ogPhwN+G/Dbt1QfNvX75va4SF/l/MRQgCB/+7/9d8znU544YUXCd7R7XTp9/o89v738Wf+zE/wT//Hf8rm8WN83/f/AP/dP/pHfP5zn0cZzeryCu958AH+3//kf/yWPvAHHpysra2hlPoGmtL169c5duzYW+6TpulRE6InnniCp59+GoAkURgtsdbT1hXj/Za6mNHp9hnvXKOazfkjP/KnuevkWcajMeAx2mDSlNl0SqK7jOYl61KhsowHP/AkyytrSCF45vO/zrNf+CxKK5YGfdaPneCP/9T/luXNk2htQAiCdzRVxWz8Ud54/gM8/eu/xPWtNyDYRTzh4w8QASkMLiwGexbBCdwMMIRAQByciBMiQi4CmxBfioAIAREg4I8oYUoq7rn/IR77yA+wtHGCTidnqdenu7xCt9tnMFwmBM/1KxdYWlpmbWONG1cv4L3DyIS6nLFz8WW6vT7F5IDJ/h62bRACXNvSzCdAYD4ZM5uMEEKTJhkrKyssb56gqir2r1/h/AvP0lQlSIlJFEtLK3hrGU2m8TKImw/U79UPvpkPdHoDOr0BMsmQUiGVQSpNb7CMayus8+isj2sabDVHpYaQKGyjIXics4TgEd5ikg5CK4IPqERimwJXVXGQsS3COqSUSCUQ2pAoidYGgcO1MxQeAhjASYH0NX6yTwiezspmDEBMhhEtvq0obryBNCnSOWSWkeTHsEGR5L14v5XBE/C2xbYtEocQMWhNELigQSrK8S7eO7orG3SGQ2whCc4uAoWAlApEwCQ5zjvaak5dTLFti28LcC0ID8GT5j2y3greQ1XMaeoKrRTOtwv/FITgMVITaAlIpDF4EfDeIbUGHxBSgJR416IEVGX4ffvArX7wxBNP8LnPfY4f/dEfBaCcTrFVDVoRqorWglldo5Nqgk6pru9gsg7GCJAGYwwuOAgOpManCfb4Knlpka3HuYCoa5RKCW7xrEmB96CSBOEDJklACIS3CAkmMUij0GlCCIKm9STrq6wqQ339BmmWMx+X/NuvfYlzm8fZnU6Y2Zr/zxe+yu7BlFAtAr66jT5wYo2DsqZbSZTzmGxA06mgk9I0FSLJMDqjOHmcVifIYAlVgxEGOZmhdErYOIZAIaZzlEkIChLbohPJvNiDUCJnBcIkiGBR/Q6NtZiVPkEZjIeQSDwCbz0yCEKaIEsHSHwIaKMRxmAlqE6OrB2urlFJihoMUcGDSmmy/lEQezvGAoj3yDlHlmUYY1BSIoTEKEWeZ/R6Pfr9AWmWsry8zGOPPcpXvvIVRqMDdGLodDoIKZFC0rYNSiv293b45V/6ZT7wxBN88KMf4T/8yq8wHA7ZuX4dwjb33HsPZ06f5rVXXiVJU6QQpGfv5vLlSySp4d6z91A1DT/5X/wkv/WZ3+Ta1jbz+Zx+vx/H+xDeMh54U6xw8z9f9+lbbCy+degSws2Nb94KcfQdR9/0puPd3HYw6PFn/syP86l//a8ZDpc4c/Ys5+67n2d+5xk63Q5lVSGEoNvtkuc52hi8d6yvr/H4+x6PRxO/+1n+gQcnSZLwgQ98gE9/+tP8qT/1p4A4YX/605/mE5/4xLfc/2d+5mf4+Mc/DoDSiuAdQoGWELylKi22qen3B2xducBv/Jtf5P3f+0OsbJ6kmk0p5jNUU+Nby960YHNzg4uXtul0u6yurrO0doy00+HY1kVefebLJHmPk/c/xAOPP8Fw4y5AQAgkJmE+K6nmU8YHO2T9Ae998iP4z7fUVYlOUpI0Yz6dEQisrm1QlXP2dq7iXMuhOwoCUog31d5uuuDNmxdEWAQ84ijwkYu0S3ewysMf/kH6q5vsXb9KMdohOM9031HPp9y4cp43Xn2BaxcvsnnsGFcuXmR98wSDlQ2qYsrFV1+mHO+T5zkm0bimRihN1h+gakk5N9x19hyz6Yjnv/J5hBDc+/Dj3Pvw+xgdHJBmgrauUHiS1HDs1FmMMQTnGO0fkA2W31E/uNUHvFSIJEelXUKM2vDeY7rLGKmwtqYp5pSzEbaY4l2DEhqd5Wilmc9HaJOB1OT9JYrRDeajbWxdYesKgkcphU67i+seaMoJxWQCIpBmGbJWSCHQRiO1Jss7NHW9uHsBV01oDkBlObI7oK5ntFUB1oFUmG4P3eTU0xEQSPrLZL1h9LPuEibJoqfYFqRAJxlaSKxzuLYmzxLqak4z30eJAM4SvCMQa/c6TQnBE4QAJN57gvd42+K9R7A4d6HxHsYHu1Tzgraq8LZGm5iVEVIQvF9kTfziGdRIZcBbgnMIoUEHjMkgBPzivNtq/o77wJ//83+ehx56CIC2cWAMUhpsqBC2RYRAkBpBwAYL0mC9Q3qw3qEQyCwjOAdKolJFmDcQAkoKVJLi6oZgPUiFCxK8BRtiZql1ZJ0OWhkwCoxC+riw0E2gbT1tUbJ56hh/8uQ9/MIX/xNlsLx87YDPv3ie4MDPGupRhd2foqUkSEVwAV+3mPGcRAh8asA2caxIDFQW1VgqUWIGfcx4HzlYp61qhHeEcorYm+BkjkUijEIMh3EMUWBtTT3ZwVHjXIXsamSeoEqPEwLVzXDzBmUSTDcnJIq2bWFlCT+fI4VE2YBXElk3yEwhOzmubRBK4VY7sONxOztkJ07RVBZRVsjuEOQ3drp9p8aCsPDJPM+RUmKdxRhDYhKCD3gfkEoyKwoCgta2TKczQhAYk0AIcdL2AS883geqsqYoSjpC8Pprr3H27Fm6eYcsSzl9+iSdbo9jx48TAjhnsVYihGA0GsVnzAeWV1dQSjIej+nkXZYGSyRJEp+9N03QhyO/uPkqfP1nb/F6sbCN7wYIv3t08qb5RRzFH9/4HeHN53O4ZQiBuq5obcvKygrD4RCtNXnewXuPs47Lly5z+vTpeD4CQvBIJWmto6qqb35yt9h3pKxzOLA88cQTPPXUU/y9v/f3mM/n/IW/8Be+5b4/+ZM/yaVLl/i5n/s5WhvItOYwQyGMpGpqvHfMi4qlYcb1rUt87t//Gx79yPfSX9kgSzOEVMyrBltVHOwdsL6xyd7+lK2tHZ7+0pfp5CnNfEJ/5SQPf/CDrB4/w/LaOlLGgb2pW8pixmx8wGy0y972VQaDFe596HHuffCxuPrsdgmAby3z6QGzg10+92v/DrknQBgOyz0CFlmUuCIWMfbB3+Inh0U6sci1HE6SQgSkAO88rq3ZfuMl5qNdLr7yLLPRAd3BEloZ9vd3mU7GeOupiwlPfPR7uf/RD5INhox2tnjt+a9Qjg8YrKww2d8jBEm3v8Rd976H7UsXWNM5QiVok3HuvY/R7Q9J8y7Xr11mf+sy1y6eRymwbUPbtuxtXaauSlaPnaQ76NH6twY9fbt+cKsP2GpOW+V479BJB0yC1AlC6VgKaRsmN7YpxrsIZ8mzPsPjZ1g9dQ+z8T7JwQ1CCCRZl6YuEdbi5nNsXSIRZP0l8J7O8iZpb4U071KMd5nuXGU+3kUIUEYjkPSGa5hun7QzQEiFW5SPJAFkDGDwAbynnY9pq1lMt5c5Oknx3qGUoZrsMFMpAo/OMrprpzC9tYUzCGxdRZ8IAYHHmCRmKrzHFjMIDu9dfCYIBFvH7JxO8D7E1av3KKUBhw+Bppjj6xLnWnzrCEFgbQU4bK2xEnxbxyySlPH36AwhekhtSLvDhf/GzJJEgm9pqsDeaC+WOt9hH9jZ2eFv/a2/Fd9QAikUspuhU4UvK7z3tGUMrnxZY/Js8cx5JBKhAjYBicIJgZxV2KrCBaCN98l7H4NCI0kTTTlv0MognSUIhbeOPFHY1hG0ARVw3hFUigwS6zzH84ynd69gsg75fE6yukrW73LwpRcRlQcUutvFz8pYQqtqhMpQ84ZBYihaG9e0XqC1opJga4f0CpzEmxSERlVlHE9KS3VsA9k4pPC0SuK1gCRDzMcoZRDBIHZvIEID3hNmBUmaMNub4FZ6MRg1hto7TNrD9IfY0RwRKqQ2YBI8jpAYpNG0+1OaqiA1CSIEMDKWdLevwXAFO53g3XlcM7ttY0EIscyWZXkcKwOsrK4wHC4zn03xwfPQQw/xp//kn0QnEQA6WOoT8EymUwIBH2KwLkLMwPjFpAqgpOSN82/wvg98gCxLmWrJ7s4NvvD5z3H9+nXKqsI6hxQKtxAn89bx9NNf5uyZ0ySJYTKdxMWOkgQfQP1uUcTbq/e86QjfIhtxtP1is2/2DeJ3OVbbtoxHI375l/8989mca1vXKYuCL3zhaZaHSzRNg7OWuqpQixKZdx5nPd47Dg7Gb+t3fUeCk8OB5W/8jb/B9vY2jz/+OL/yK7/C5ubm29r/L//lv8zP/dzP4YKntIFEK7SC5fW7SLOca1fewNqa3b3rZCahLko+/alfYHn9GA8/+RFO3vsASZ5RVwlCKixQWYdQhqoN7O1dZ+vSG/i6IvRex7x+lfW1Vd73wSfp95eYTw5oq5K6Kmirgl63R28wQAiJygzKaNqmYrS3g5ICqTUm63D2/ofJ0owLr7/AER4FjnAkUohYLgoxfRb8Aluy8Kaj+PjIaWPKPs0ynv/SZ2iKGWUxpyrnICRpqkm6A5p6jg8OoTLe/9T38T0f+zGs0ezt7zBYWWN9cxO/tsLS6gbLyxssD9aRacbeZJfu0jr95RWapuXyq88ztMcAwWj3GqPdLSZ7O+xcPs+smGOtIzGGyf4enX4PoQS7N65/U9T878cPDn0gy4cYnS5WPH6B4ZFok6O0wUuFyXssbZ7BO89wZZPe5glE1meQ9tGdIbapkDoha0pSndBfPYEPARE8yqQobRAmRZsUISXd5TXW77obV89pj8pfFpXEdH5bTxESvCsJdYmXKpaQbIvzcdBq5gfYqoQQsNqQZClSSaQ0tOUElEZrgy0U1fgGaWcZlXXpLK0T0k4MDpQhEMuEkpjVEEIScBglkTqJAYMW4DzBW7RSmF6fVmts2+Kcw1pL29aAJ9gamgonAipEJ/ShiSl/QOkEZVJIMlRnGYgrRSVMLG+IhrquuXZti9fOn+f8xUu8cekSD9939zvuA5/4xCf4+Mc/ztLSEuVsivIBX9eoNAanJs9BCSrrIn7GebRJ8G2Fdy1BKJjMcSKQ5n2klnEyylJER0LTYqdThPAoFbMuOIuWGWXTIpUnpAYbJF4KgrXY1qJ0jvYSGwRYy+fG1/lg1uXBYxtMV1e42BRsXd1C1o60gdA3WDyyl9G2DTrJUUlKINDImCE1SLyzaJPjqgkiOJTOEMsbkPfw6xvYvIO3NXJDEWYFQTbRN2xLyFKcUUiX4+cFwbe4VCJDipgWOOuZuzpOnCKWJVmR+CylnY5ReR+ZpNDJcVmCLmu0TqlzDU6A30W0FjeZoQqFTFJUnuOamtCUCFuj5pZQv/Wq+Z0YC2LpTcYMH4HHHn+MtfV1vPNUVUmWZfR7Pb7vB74PKSW7u7sA9Htd2raNAUWsny/G4YB1Du/jOG2MZvvqNZwP/NDHPsZ4NEKIOREfGBeXwQdsaHHeHe3bWksQgp2dXaazGZ1Oh9FkHEtiHM4Ci/zFLWWUcLhShVvehDeFFF8XQBxucjMb8nYsQgm+IcgJh0cJi6+P1yVNU+6//z186l9/inlRUDcNPgQeeu9D9LtdyqpkNp8tLqU4ws+FEPAh0B+8PbzRdwwQ+4lPfOJtlXF+N0vTFClipNrt9gnBsXnmHMfO3MdLz32J8d4ORVNjpMPg2b56if29Gzzw8GPc/eBjZJ0eTV2xt7OL0gapJMPVDbqdLm1Vc7B7g0sXr9EfDJhNZjz3O1/jwffczyPvf4xqPkOImOIIzrK3dRmlU1aPncAB1jquvP4q470djp++m6XVdZ78gR9l68LLzKYHHOzvLlLq/ghvAosQZPFwsfj30CkOwUiHDhvxKjGduXvtCm1TxpVtAJNmzGczJtMZWXfIY9/zPRw/eYZz9z1Mrz/ESkHaGeC9Y3X9BBLQSUaqNKkyFL5hozdgZe0EZVUwuvQGUiiKaopJDCJ4mqqgqQqm00lcLQZoag9CcHz5NAc71xnfuEF/uH7b/KC3eZY8y24+jIcDi3fEOECyeuxuPBErIKWgtQ3tdJ/QWsr5PrYskErHfZoS7x3ONti6QCJihkGBDBqlFVJLsDW2LkEEwiJj0LYaqinVwRY2OGxR0rYlUqk4aFqP8w4QeB8nHSkUOlUQBAKJtZYQLEK0WF/ipUAaDQssj6hHmM4yQiVIkyBVAkqBUAilUUmGSbtIY5BJByl0nHRtLCUG73B1CbZBBo/SmtQYvNH40MNWc+rZiIBCJF2k1jFjGDwm69MZrsWMgQ9476nnY3xb413N1a1LKCH41L/7FZ598RXKqoypdim4ur1723wAgLIh6XWpijnBKqTWeGfxqUGqJOIIJJAlcQLXCb4uEakhCAjSg9CITopIDM55RJqgjMJWFk2IYPeFf2md4KyjLSqyThclE0BivcM5j6la0t0WWadMsj0+zQ1WbkzZnhxQ+YC+PMIEicoy2ln0keAEwgu8d5R1hVQGbwIueIJ1+HKOTLqI1iJFgjA5et4gR/vUown1SgdPIJRFxJe0NaQpQWX4bg83OoDZCLe/T6gKNAFRVIiixHc7pNIgvMPKLhiNnlnodvG2RdQNJArbz2PJyRikC4jWEdqAdxa5OkQPlhAmwbsWOatQtaW5enUxxgn8/K0zJ++EH0gVszVNXRMIHDt+nI3NTZyzzKZTjNZ47xfZlYw8z6nqhvF0inOOtrU3x+LDoCCAbS1CqiPc3+7ODV59/VXuP3cf83kRCQ5EmIEUkhACWmu63Q4CQZImaKX46le+wmOPPsbVrWvMprMFYFbHzPkRLvZmMHI4nr1tvOyt9q2rO7ds++YNj0pN4uasdHPbCEgYLA1obItfgJ+lgPc89CBGStI0RSsdF3hH81bcd211jZWVbyzzv5W9K9g638wefOwpdq9fY+f6NeZNzSDNcdaxec8DPLmyxvbF87zy3FepqglN6TDGYIspL3z1i2xdeJ31k3dz4u4H8ChMoknyDkoZ2rrm0Sef4sqF81x74zzT8YRub4ljp+/lq7/zHI3zvP+pJ3HOUtZj6nmFdw2n7j3N8dP3EAhceeM1ZtMpabfD8bP3xG3nU6xtWT9+iulkjG3bRdQMQt4SoCwGwEMHi59LQJCkOVmnj9YJJtHMRjeQ3iNlB5f3KOcTgndkeUrbVBw/+yBP/OCf5NS596K1QUlF5R3GZGgVj23SHCki0NF7TxUsNgSsbWiakrYsUATqYkox2SdZBCd7W5fY3905wjaExapDCNjdukKvP+SJj/4A933go/yNf/iLt8UHgm0QPpbJQBKCW7BLbAwy2pqmKhAEhFSAoJrsUY9uEKoZwbfIEAhakeZ9hFYo0yExOUkni+Bn7/B1jacBGwhOYIspOu3F1LaLWRIpNW0RsQPOObK8S9LpABKlFEppVJqSJBkqSUEEEq1j9sPHumxb1yAhyXrgPD54AgEZwLoKERy+LUmkwbdlDEa6Q4I2GJMelbMIgeA8PtTYxuKdA9fimxJXTWnrCp120MbEc/EGa1uUECRZB2FynJBoHTNHzrURTyIleBdLHbblxvVrXLp8kWe+9jW+8uwzbG4c48beHvOqiRQWVAzgv70h9m2bkoJsZZm2bWhtiyhq3P4Y5XpY4iAZBFhiYNF6h8xSTJbg8gSRp3glwcWSmbIB6z3exgnLo5AmIVDgQkAoRZbkGDwCjXfuKF0eqpbgHCFRgMUegOx1mGys4rOAPxiRbCzRsZrZ/ohEJVgpEYlCS433AjxI67CFxVpLanKqaYnXAWMSdJrTth6/s4sWOVZ3oXUoiKyyeoJMEpwQhLZGMcDVFco3eAXSeULT4MZj/GzBBtsYosuSdrCOSztgS6QViEQhhSIUNaatsc4ThCQUcyQaqTQiz2n7XcKgh9cKQo4c9NHXD/D78zjJB/ctQZC/H5MiPmdSSqSUR4SDwwnycPWutUYIQa/X44d/+If5/Oc+j/fu6HOI460Qgk6ec+rkXbgATdMStKabddjb2UHe/wB5lqOUiqUM5/ELosN0Oo2EA23i8YSgmM9p2pqDg31+8Ad+AK1uTr9HT8fh+lPcfCm+fpvfxW49zk2c680MzNejSGKG5uu2PTxW8DHYuuX4RVHw27/1Wzz37LMLNl5YYGfgYH+f9ZUVtI6LuKZpANBaI4XEC09RFjz7zHNv45e8y4OT1sLZ+x9ibfMEu9e3KOcF21uXkWnOcGWV4/e+h+X1TV599ksc7O3EFDzQ1DWj0S7zqqBtHafOPUjbBqCgP1yhmVt2d25w6t5zrKxu8NqLz/HKyy+ysrpG1hlw4fVLlJVlbWOd0cEBqq3odVMe3zxOkuURb7FxnAcfeZy9nWsIYD7a48bl88ynE6qyjHgBqY5oxFIs2Di3eNUhREEKQWe4zrkH38/d73mY4foxgo+pStsUBG/JO32uX7vMS1/8Tfauvo6SipUTd/PQh7+f4eYJHIL5ZILUGq0UoSqOVhHONogQ2RbBeZq6xAcPIlDNZ2xfuoCUMD3YoxiPmLmWupozm06xziOUJCwwDHH1EpDK8PhHf4j3ffSHGJdvDwD17dj4/BdoOzlSpwidoZMcnWSx/iwNri0xvo2TaojUWtmU6HpMM79BKlNaIQhB4kKLUIogZziTY9IuSihcW6MB15YI70l6ywzPPkh37a74LHtPEAGt46ocoRbjQcxiBbmoL3tHEAJvLShFcA5vq1ijFzFz5Q+DCgT1/hbeVkgFvq7JZZ+kt4RK+sgkjwyRdICVChHE4jsidTj4Fu9iFgYXCD7SoHEt0jaotkGEGnyJlKsEaTBKkXa7IBVBxJUPYrFilJIQWkTTQPA0xYTP/Nbn+Df/8ddorWU2GlFZy+zS5UV6/HApKEAerQNvn6UGjImMmqJEHZa8igq9NKDNUkKiscIhjEa2Aa1TnG0JOgfrUcbgOh2EheBqwqxCKBUDWw1SGpQy0HpwASE9QUnato4lPQLCWoLSBBdwHnzlMSNISaiygEn7ZG5O2lEokaBujPDdDFcVqLYlNA1tWyOlRi31Ec4SqhaZdPEuTp6itdgkRS6v47Wh7Xahn5Jah9vfxeYpngTVepRoCE2FnBeo2uGLAtVEsKsfjaGo8QSy4TK4yM4LB/vo5RSvDUIpWlcjJIjekFCU6J3rCJ0QAsimRaeakGY0e+N4y5ME7WNALY2mrWuct5ilJWjfGnv0TthhYNLtdo8yGD5E8HdY+KNYkA+cc3jvueuu4/zX//Vf4Dd+4zcw2txcGHK4reDcex/E25gRvr69RZIaCPDiiy9w5u57mIwPmM/nMQBa4F7CAlwrpMR5T1VXDJeGvHH+DYaDJS5eusgHnnzyLZ6KN2cxbi3PHAYSt0Yg3+yp+ob3b633EBYBiXjztuJmtkYAk8mMwWCwWHhG39vf3+d/+O//B5586gmquqZpFuNNEPz2Z36LH/7hH6KYlwAsLw8jBmcR6B2WeJb/c8ictHXFfFqQdAfc98gxmqpib2eHna1r6KzDYGkF0xtyzyNPUc/nXHnjJdqmRArBdDpCB8H1rauovMMDD78fnaSU8xKUZrY/pphMWVpb4aEPPMXJs/fy+isv4ZFMZ1Mmr7zCeDTm1Nl76HU3mOzv8dnf/E3e8+ADICWzyZgbl8/T1iU3lGTn2iXmkxGj0YiyjIOnED76oog1y4USCodgWak0w/VTnDhzL+9931Pcd/9jeKXwQmGdReBJkvQIM9BbWmF8/Rr721ewwbB++gHS3hItgr3dG4SmwiQprW2wTUXEaUqasqCcj2jKkqaq8HhW1o/TWxoyPdilLiYU4xF1OUcIGO/voYxCCBVX9VJgTM7xU/eyv7fDYHmNex95P2cefoJZ07C3e+O2+cDkuV9HLA+RSqJ7y5iNcwzufhTRGZKkOSbNqYsJSkps26CVAinIkhSTGdK0E8sjUoEQNE0LCJyPgUVVl9iyimWepkQKiVQ3Sx1xADN4FydksVi1ERwEj9AJsND/8DFF671DpjmHw4JUkeUjlcYHj2samnKOMSlGCoQi4l/SjCAk3vlIkWTBuinH+LrEt+0i4GnwNjJtbD1DSkHWWyLtLqOyDtngJEmag5L4OuKmgvB4FF4InBcRoxQ83luCi8wXoxRaK+qy5p/803/Kb335GWwI9PtLWCHib7Q2aqn4mF3wzqJMLIHcTpNpRjub0xYlBEGwscwoVgcokTAfTchWV0ksCC9wdUMVWrJBH2EdggaVZSiZEHyJ84FEG7xJ4lOpE1ASkeaIBc5HaA3OghBY7wnBYRMVafgyQQoFTYOagDdzsBJjUhKdE6oK35Mkyz2KgxmShqBBqYRMxeyOTg1hWqCMxIsAraUJFSFLcLlC+Qq2r8exI0tIuj3cdIJcXsFmOT4B4T3KCuT1y+i6pg0BqoZmMiZUJaGqIM8IbYvMuljvccJj1zbw031E0yBVCnWNyDrIBOj2CPOCoBZsuQBBKbRzMCkgadBphi9rqqZF5yluXCPaSEW+bbY4tFLqKFAgLFb2xHFWqZhVbG3MJiZpyvf/4Pfz4Y98mOlkchScyEWA4r2nk3e459x9JGnGi88+y+7uLtZZWuvYuX6dg4M9Dg7249giOGIGNW2LEJLEaLI05cRdx+n3Bly+coXLFy7iFxP3rcDXb5UluYlFefN2t6BW3vKavPkAt37wjbUfQcyEK7XIQEmJCIGvfe1rKKXj3CQlS0tDDtweoW1Jk4QTJ44f7dvJc/I8xzt/65eyv7vHC8/+Z5A5WT5+CmMkRqfU9QxlEs7cfx912TAfR3aK9xaFoLeyxsNrf5TrW1dp2pZ7lwdMdq+zt3ONN156lvHuHg+8/0nO3vcI08mESkywrmE2njMfT+gPVzhz7j7GoxErm8e49PLzPPfV32EyGvFHP/YD6KzHtKi5eOEymorZaIfda5fxAYrJAbPJGISgnM1pbHPEajiMzg+DEyUkOsnJOh3ue/yDPPrRP0anN6AuZnilQCqauqa1DUmS0NhIXa7LAm1SNu++D+sC09EBw43jICT1fMp8tIetS9q6xiQ6MkNERKQ3TY2t67h61wkBRzE+YDbep21qmroiyTqs93rMJiMmB/uMR7uRmiclielwz4OP0Vsakg1WePx7PobO8ojqPrjI/u71b3kvv10bzcY4W2PKA6QKTF77EvPXfovV+56g/+SPIrKUXrKMkgqtFEqJiLNIEpSO18G5gJIKFyxSBIJzuLrAliWuKQjOxvp9UwMBoUykngqFVhqVdRBZAkHgQ3oEcItU1lgG8a7FCw9IUALvGpwPcZXmLN4JfFAEEfEF0luE1gitF/4Bvp7R7m8xvnGR4uAG9XxMM6soqhJrPUXZUFuPlQZtC2Q1RYoKoyRZp0/e66M6SyRLy4Qko9vto9oZqp5gmwKTZCS9Hmb5LgbHziHSJYIPhNBgFoPVy6+/wWc+/2V++yu/Q1W3ICQHo4Ob5SdipkiYWDNURuPCbWyrvjDfOrwrEW27mJACTniSJCNUEbQslIisISkjnmtS4tMEmWokkjAvcMIjlMAngrrxKC2h8YhOjjMaWkVoXRS8E2CDRytDsC1CG2xZIbUmSPDBo6RG1C2qqEllRmoMMhUE56kC6EGO3j+I55Bn+FlN6yzeaFxwON+i+z1kmiDrCp8YCIIky2iaEh9anNHUa0N0UFizjFvbQDQeU86QezfAzpHzOa4qkQHcZIz0AS9BdjJca6nLGYUxaC2xW1dIljZphY0T0/qQILuoIAnWEvIevqxiUF2UWBpMJ6Wzvo5wHlc30DpcE8uEIsvxB2OsbRF5dvucIMRrbl0UAbx69QqvvfoqnW4XgMcff98tINfI8LTWYtuWvNM5ClwOMyeHyb9Ot0PbtPT7S4wnY4bLyyRJitGRpq6UZjKe4JzDJAk60eR5hg8erRVZnjMeT7h6bYsH3zPEO8uTTz5B0zQRy2XSW+KDr6NpfqtY7ubpfkNp5taAJdwSILx52zd/RV3XXHjjDbRWhADjzigKl2rNeDTC6GQRwBE1kIwBAUtLA97z4AMEIMujBlZZlEfX+fCbz959htOnTvCvPvUtfhfv8uBEmhwXHMF6OktrFNMRs0lJb7iMynpY68hURlVHJUOdJJw69wDBe2bTKaceOMbaXfeydeUC9XzOM1/8LbYvX+T+9z3J+olTTOdj5uMJvrZMr16m2x3ggqCYzrnv0Q+wsb/DzpXL/OZ//FW63SV0lnD9+jbGFeSyxlZROXV/+wreB8498n6WN0+xu3WF/f0bC3ZFTDNKAUnS4dxD7+fuh5+gbio2T54l7y1hTEI6TJjXFc5aqrKI+JBOF2MMTV1SzCfgPUne5bHv+UFG+ztUxZz9qxejaFaaMhiu0hssIUSgLaeMbmwzn81Ie0sM14/TXVolyTKSNGXnyiXK+QQlDU1RIqTg4isvcLB7nbqMTue8I0lSHv3Q9/HwB7+fG9cuc+7RZXSaLzI7gQvPPc32lQu3zQfmrcSsr9KYDGkbpGsorl5h/9obXH32M9z7A/8VvVMPo7TES0WSphjZxbUeKXKEkEBLCAvcQmYQPpAYMP0BqFhXtW1LU1YoLSOVMgR6yxtoY2jahtnBiKYqsG0dBwxpCK4BmphiVrEeniQZQUSKYdM0NE1NOdqiGF2PehuANBlSJCitaNuGanSD0bU3KPZvUApBk/SpZzP8fIIVKS4ZIJaWaPUo/r6sQ11XhGqCPLhBSWCicoRLkaFDu31AaBrS+oA0seggCL4iFUBdIOcVyyc2OPnoU6SdTZJ+jxr4yguX+OUvv8rTz71MWbdIAS54cIC3N1d1cjEcChEDrKrBt+1t8wEgll6URHW62KJEGUGadkhR1DpmzYJSGKNxbQ1KIJJ4H0lSfOMw/RzbFHjrEdYTpCTpdJjNC4ySEFqU0VHjJbT4tqWaTekOhnQ6OQFoncMfsjaqasG6UtA4XFFhHXFM2p+T9FLwCtPv0UxntOU0ZmGKYoED06SdHo2TMbMmRCw71jVNWzPf3MDeew8yz2lUhg0CVc3R13dRZQs3riEzhfENQjjq6QSaFumhHU9wNpYZQ9OCEBTO0kk6MJvTlGNEkmA6HcTWNaS1NIMlQpriO0PwAVdeiWVDYdBSQ1PRBBGDfSOQnYwgYyAmVGSs3c7yXggBPHgX8SMXL1zif/qf/gVJknD82CaPPPIYOzs7FMWczc1jEYNoLZPxhG4dmUoR7B+OCAiH5ZnJeEKn22V/f59z5+7BthZjNNZaTp8+zfHjJ3jltVdBxMzoIbA2Am1bdnZ2IUCv2130qBljTBLB8oeJkFsyGmLBkHn7Jt4qCXIEYL1lq4Xe0ddttvjOq1ev8iu//Ms4FwOrPMtIs5Q8z1lbX2dpsESWpaRpRiBQLeaC3d09fv3Xf5OPfOjDhIWezOraasS63SI09+LzL3L1ytW39Yve1cFJ4RNMYsi0YHfvgDxLCd6xv3dAr9+lnEyphUTnOXs3bpCmCevHjtPpLWHyLgGJT/o8fOpetDFMdq5z8aVn+c3/5V9z7wPv5exDj7B58hRN3XDj6gWKoqTX69MT4IRksH6CpNOnno0pJ1MGnQ4tMKtgpyg5d+89DIRjdrALTcVguEraHWK0oXWOchZZLkpJlteP8ZEf+hOcuu9hxtMpwVqkTgjeMpuVeNtSziY0VUFVFggpWN04TuE9s+mILM0ICPrDVVwQJHmf65feYGfrGkEKvueHf4zltWOU8zHT/evsbV1h68IFuiurnLrrDHlnwPLGMbx3zMZRRrs/XMN7y8GNq5x/8WuMD/Zjw7VBH4JgPp2iE8PmXafxIbB54hR1XaO0Iet0aaqSE/c8wGS0c9t8wFYt9XSC0gKjBT5IjMppMYz39nj2U/+A0w8+yn3f++OsnXuKpDtAKBOZOcGDkGRSEOFzCzaNiIAu7yzeBxJjCCHQ1A2tcwsgmKepC6a7+1STXZrJAbapaKsC21q01pHRYBQq7dFb2SDtDTi49gbXXnmO6XjGaDymKibM9ncQs32sThDdIf2VDWS5h69nlKJLwKPShGZe44saZ2qsNAQ6WBRmaQV11xmkmyGdIwhFV2rack44cTfV/i5hPsG1FXI8xuQZLunRLp+knu/gqikiX6eT5eh2RmIvslsG9p5/FZ/ssjOeceHGnGevHOBNQlHXSAFt3SKUBrkY/oSMQmwL7YvgXBRJvIVhdrtMOIczhraucGWJHPYR3Q7JiQ3UaMTYtriiJF9ZxXmPoEEuEOFSgHMtaEFlA0IFwnRGRopIUsQic2UBEcDXVRQ7CwJtDFqKmAmVip7SNFimTYvUAiEd1lls8AQrSfMeUqUIZbjn/ofYvnyR2eggrtKLipCnyKyDznOkUaRk1MUMCNhuikoz/LCHPXuK0BlGTSSVInSC27uB2t5FXbgERhMUke2x0GMJKoLYXN2A1pDlCB+QskblfdJ8gFk5hg7QjMeE/hKJdQSlaRODLybI/QqZp/i6iiyyNCdUNcV4ji9myDRB9fqEtoVuSl2XGCEwnRwvJCK7fZmTQ1Gzpmnwzi/wb0DwGBPxJJcvX+Ff/s//M3/2z/5ZHn38UabjKf/P/8c/oCjn/Lmf+ime+tAHFw4VExBKCpqmRitN27Z08g6vvXae++87h/NR2LBpGqRSVGV5BP6sqxq5WJC01pIYQ6/Xo5N3GE8mnDx5AmsteRLLviHcLD0dnsBNFdff3d4qwfK77fpWMY8AdnZ22Lmxw+hgjDEapTS2jewzrTQvPP8iZ87MUUozOhiRJulR+dv7sCB4BGazGePxmL3dnQVubQHIDYEHHnyAJ554gv/wq7/6LX/Xuzo4qdooPe2sRZke87okMSleNNStJ+l0qOdzbFUgVcww7F27Qqc7Ruc5/dUNhMio65bxZEqSdrn/yY/SFDNuXLnIc1/4LMvrm5x98DHueeRJJvu7HGxfw9YFg+EgAsKkobO8Rm9lg6auydMEnXUppObFly5x5tw5zjz8Uex0nyYopvt7jPf3MJ1leutnmI12CdUBj37wj7J+6l5ubF9FKs3K2vEjIKVravZ3rjEfHdDUJXU5x1nLwc4WaZqhlWQOdHpL9FY2o3xytsrq5klGu9ukeYfJ/g7F7IC9axeZ7u+ydfkCs+mEcyvL1HXBdLTH1qVXaOuKpixRWrNy/Az9pWWOnTrLdLxHVRc0ZUG302N/fx+lBU1Z8YXf+BUeePwJJnt7FJMJdz/8KMtrJ5iNd5lPJhTF7QPECgNtMcfZQNM0ZL1O1IBQNUpqSDpcuXCZK+f/NsO1u1g+fj/943eT9JZj3xwtoW2xo6v4okBoTX/jDGplk9YFZns3mB7sYBtL1hvQ6fdReOrxNfx8n2o6jQ8oCU6nOGnwUlPPD6BtkG6KLxqqtqURBicMDQm216MJAr10DHP8fhhto6QhXTmOMCnljUvUr34Z0V5DWEcVQA2G1L0BJB2aqsH5BrOyjO0kuOllmsku9ahmcOw0NjhC7Sn39xCpRswKqGps1VIKiTMaveZRwiPqhsxFHRaVGarNe3jloGIzWScEzWdevcxoMmNW1sybWJ50PsTyBSyUYSPjjBBXnL5tjwZB37S3PTixRYVQsX4vlERlCSJNcPMZblrE1bR1C/C3QAtN6Up0nuCURnUUbdGg6wgkTkyKkRl2XkYQcd3SERIrNR4WEvM5hAhejjoqltbHUtdSkuGdp/Q1ZBonAtJorKtJsi5SGp7fu4EaTaF1iDxFG43zAd3pQC8naI3KM7JEIIQh31zC1hY5r0hf30afUNjQYgnYToadjqEtINWIjVVsJ0dNx4gamvGcgAKtUCIlWId2Ct9JkYNlRBsi4NZazNJaVDUeDmiDIOQJVjrkdIJfG4BQkYQ1n+JTg8oyqBzUNXI4hMESclZibYHxCjedEVxAGIHo5rfRCyKmazqb0VqL0ZESHnCMJxOatuHk6dPcdfIumqbh2tUtPv3pTzObTinKgpdefhnnHXm3w7HNY6wsrzCZzPg3/79/y113neDec+d44gPv58WXX6bf72Fd4PLFS/R6XbrdDv1+f8GqXEjsZwlZmpF3OoTgWVlZ5tSp0zzz7DNUdcP29hZnzpxlXsyZTWe88PzzPPWhDzIYDBbVpcNWJm/x7HwDyCQsWD7i6OXbCWyOALBCkCQJ5+4/x1+9/6/yyksvsb21zSOPPMLvfO1r9Lo9rly9xnQ6QwlJlndxzt2SXfIMBitHGJU0zdjfP4hlnRDwIWa2JuMxrX17WdR3dXBiOssoLaAtadoSk/XiKsVLmvGURILRmqoq0cpg0g5121Ie7JMVHZraIpKUtL9K2hvimob98YxumnDq3INUdUU1nfHiV77IcPMYx87cx9nHn6Q42Gfv6kWSTDFcGTI5OMBiybKceVGS5Qlrx89wkPVoVY+t/RKjcnKVYbqSjupjsi6d/hC5fRU3uU7S7cdVjvdY13Cwt0Pe69KWc4rpiGqyTznepyynEf1uLZO9bdJOh9P33EdbNxij6fWXkMrQtjVZJyM1mmsXzrNz5QLetzRVHSnCdYMQgZe+8gVe/drTLA2WGa5vLNxZoEzGYPUEIEi7AzqDFbq9IUtLK/T6fcQCVGztjGp6wPULrzPZ3ye4lkuvSJqiZDbZR5uMk/c+eNt84PzIcWY1p2MkrdTQ6SM6wwjeq6e4eoRrW2wrcFs32Lt8A5F+liyNvTewFhM8TVOhiNmAKiTMRM7YJ8xVShNE5PNXc1ZSTyIEmYGN4+sM8j6ykyNNgmstTkqCawkygbTHZA7TyRaF6SF6S+gkJ/hAb/U4vaSD8J6mrUGliMkWzegqY68RqaHtr9COAlILwBGyIXppFZKEREa5bDceQzXFBku5NyEEz+7Fl9C6S5i3i5KcjoJ0JkEv93CJwKiAcXNEOSPvCBrvCMIxmzY0gxP8zvlrPCo6XJ+13JhVzGdzmtZi/WJFqmJzQL/QhkCqRQ8aCcETygqRJKAVQkdMxm01LWnLAldXeA9+IXzV2AqpVCzHaAUopIntFpJ+j5AYlHOILI0UYqcQZYUrSnw3Am2dtRE8HALKO8piFnVORKynt8EhFz1jHKCEQzSADOR5igWUzDFJH+kCTCPFUtzYx6cKudwjTEts8CR5jitrRm9cJDt2F6bbR8sU11SEmSdoSWIrainwu5fQSmPKhtB4ZhursDwkDJZgPscIQTASN5oRjELOLWR9WgXCRfE/lCE0gTBIaXSK7nRJsxStBXWaEqTEuwrSjFqDaVpkJyckHn3POUS/S13NkddHqKXlqNFTNzAcglxBjK4j5vOF/khFZsxtcwEfPBJBU0cGiVQq9jLzsfxQ1zXLyyukaYoPgb29PT7zm/+JsizRxvC5z36Or375K5RVyUc++lF+/Md/HCEEWil2dnap6pr3PPAAG+vrdPIOL730EpubG1jrjtgoasFMsa6lmdYUZYWZzVhdXWV/NIpYjabh+vZ17r77bqSK7CJC4DO/+Z/o9Xp8+KMfARZS+t8svrjl/TfFKb/nRUCgLEuctYzHI5QyzGczvviFz7O0vMq161scO3GMQX/ASy++gPMugsFFbDsghcQRx4Bev7doFxA1ww72DxakC31U2tnbP+Bg7+Btndm7OjjJlzfp9PtU412Y3Fgg5yXKdBAqZT7do6sEayfuophMUVJg8i56QXktZzMGacJs7xr99ePkg2VC0qGTZ4S6YHX1GNW8oDOf4p1lf3ub7atXWTtxirV7HqSaTiin+6zfdQpnG8Z7+wThKeZzJk3L+rFjGJPQVCWzpmY2mVPMpxw/eRLlPAd7+6RJTv+eR7h0eYe0u0Qnz5iO9pmOd+kVA/aunWc22qOYTihmcZUeACU1yiTknQ5aaTbvvYe008OkKXU5Z7x9mdCUrG4cYzBcZvf6NfZubC+YPW2UZF5EvK11jCd7jCcHGJ3SG65y6r5TeO+ZTUbsbl1kNtpH3aMm8gAAxAFJREFUAk1Ts31tEoWOQiBJc+46fTeDtU2OnTzH6omTdAbL7F67wt71bVY2T2H6K7fNB756YcIsdBG+oQwBLm+zvFyQdDrs3djj3mMrnFxeonNsg2I+gnqEbC2V0HT7x3CzHQgar3q0raVUilHrmdU1ZjCIeg6uRfgCPehRakFjIv24rHOy6ZhONiFVakGZ1Qgnmc6n2NoxcwGZ5LRegAYjNMYIRpMdlNRRNr8YQzHH0kF2U2jmtAfbeCRBRo0NqzKE6mHmLfXBhLZ1tGULOkFlgbqoKCcWITUBRSc3yN6Q7rEeOs9QiaCsDtBa4Mo57uobVPMSiaXyHqFSnJQctIHd/WvMmoaLe3Nev7LFfF5EwLTSCK2iAn9rQatYM1dRzt63TVyFuchawkSNE5EmqE6GPXh7g9K3Y66q8CFmPVAJoW0Qszm6myAyDVqjelFBVeX9KBqmNW5vhNxMoLU4avxoRGgcoaoRosB0DEF5vG9xSqKDQjiH6GUIGwGN3nlIM5q6Wgi6Rflz29SIYACDaNxCTt7ERUdd0ly/gRl0qMYj2vEcaT1OzACJqC3CeWSeUFUFRucktoVOQtM2OCVonCQhISkD1bF1wl0nqNqapCih30GMR+gAJF3CRp9QFLHRZIjKwHI8QVQl2iuEVxgR0CLF9TO869AROc14D5MkhP4AwRQXKqS1kKax1cF0SjveJxUGc+IkZVtj2obpXfeS7O2QqC7V5jnUC18ibG/hi2/ssfSO2QIQ219Mkjd1T8Si7UiNbVvquqFtG5ZXhnR7HcbjMcvLQ97/gfdz+vRppFKcOnUqimGGqNHjXMRUffnLX+apDz6FlJI8z4AQy/RNS93UJEmCERFMWlU1UJMkhiyJkIMXnn8WozX7u/s0bUvwjrqq6Pa6nLvvXi5fusQTTz0Ze5PBNwQbb3p1hDE56mn/Ddu9uYRza5O/aM47XnnpZZ577hleefkVHnvsMabTKa+9+jrHT5QUsyneB1ZXVjBpRl03eO+wtmU0GsfSOBE3ee3aNe4+e5a9vT0uXbzEuXvvRUh587cg2N/bp6nrt3U739XBiZvv4bKU3ukHqQ9WGV94FkWs/6osI9Mprim4enWb3EQcQUentG1LW0TNkysXz1NNRqzMpgw2T2LyAW2eM1jZZD4dRYnhrAvBo4ymYyTFwQ7z2YQky1HdJSphcC7QWdkgcw3FrMTVJTe2tpHesrqxQZrnOGvpDVe4duUKvW6PvDdASdjentEfLPP0F3+H5UFOv6uQrqbcuYytI9ui1x+wceIsS5un2Ll2idHedQaDAa6tOf/CV7nw8rNovaCiWofwDqkM1sWa92waaXI6MYBflADdTd67B6UE3rYU4z3K+YTTDzyGcy0rGydJdM5u1mfr8nm0iXVWIQRSacq64cRgSN4b4kLMtJw89yDLx09ikpzR+PZNSh7Blb0Rzjqs87R1w9X9OSZN8a3lxkHBufs0K2GO9oY0OQbFHqqzgRo3WNelqmqcC7gg0GlK2VbgEtjZp7+yitQZdVng3DjqiPiATjM6wzVU09LuN9DGzJXMojBX6wLJxhrZqbsQzjG9cBGtS7QJTGYzRN2g8j7CGRLtCUpR7O9BKEiMQjUFbaPR+YAm6UM1h6Ji2tYIDD7N0MMMJRR107J26l6S7hIH21eR3S5tPUGEFpU4vJtgsy5BGuZbW/iyRgVFbTrUwSOItfmtSU2ZL/HGK2+gsoznzl+grdsFJdqA0XjrOFThJYjYkdh7lJLg5JGIFUoRbIDgorpmcvtWzBA1aFSW49vYZdoLSeMswzRDuMieMavrhN0dpEzxjactR+hBDyeBpsYVE0JdQq+HVz4ypQBnPSLIKHKWpkgjF12X9c3B3lvKsiDtdLFNgzYJrvUE2aKcQEwr5GBImmTU89j00U0Lkk5GOCgwgw52XiKdx5m4wHLBEcxCM6WscFWNTxUmTdFFjW4ENjdIB2Z/n3J1BUKL63Tw9RyTZui6jgGUTiMleF6gJciyBgxOCWICKIowOm+pL1zAj/cgy6CXRfrx+Aa+qwEJrsQiCVWJFgrjfexD1B8i5iOcTuldv0Yrol5MfrCPzdKoO7IQ5rodppTCe0eW5yipFl2kPUmaRaCriEyS7/3e7yXLUobDIY89+ijFvEApyfrGOn/ke/8oUkWl13IB9jz0aakkiTF85ctf5fEPPM7973mQnRs7NLZhNp8xn82R/ahS28nzeFwdabVr66tkWRYzLEpwbGODPM9pmpbRwQhtDGvr6/zqv/8PfOjDH+L02bOLksstkkG32q3g11s3PLQAiDfL0r8pMBExpJFCsre3x8vPv0zey9nY2OClF1+k1+/xx/7YD/PKyy8zn89xznHp4iVOnzmDdfGoJjH4mSeE+Jcses8lSRK1UQQ89+yzR9fwUADv+MmTb+t+vquDk/lkhEBRNi1BGvLhJuV4B1dMsc6R5H2EyaBOKesCYw2TyRaJliAkJsvJl9aYTcfYcsr2K8/SXVoiW1olbNxF2hliraOuoy5JYpLYu0NHQKXWkiTvULcO1RlQNS1KJJh+hu70aZUhNDW7N/bIOin9QR+dZAyWVphPJ7ggOXbmHvLgufzGayRJwnRasnlslWY6xs52SJUHbzFJgkCQD5Zoqjmz8T7T/evYJjZjE0LGZm+xxIcUgqKqIj4guIXEcFwJdLr9hYjb/M0OLUAoyXB9k1PnHiTv9dBKMRER1CSzlNUTsbvzy898gbZpIn1URTDgdH+H4+cewruoNOudYz7epZp+c8nq36+1TcNov+VQvM47B0LifR1p0lbyzPOv0l/ZYePYcXpLyxizwpIegHMEaZFpS1XVaCMYzwps0dDtdlkaLNNqjdGa1dP3YxLD3tZl9i6+ivKBkM5IuylJbwmBoG4akiSLeCejadqS+tJrGC1QHYH0DeXrV6mrBjvsovMEnWkaGVvRueEazfZVzI1dWl/TWdukCoHEe7zuEKSmCQKhbKTNeonpL9FdWqWQnun4Dcb1AQOraKoaKSKOAJViZ/vUXrA/rjixNqTGMSPwzGtXSIxiaTjg0tV9ZuUWyiTUZb3QYVBIaWK5yvuoFrtQNpYhxG20iiDLsGBlaA22uelbUsas5m00pySxGQQoYxAiEOXTHD43EByJVrRAU88RCuRgCdXpxk7C1uGb+PwkqSaYAXm2RDMp8T6gE0WI2msErZE6rlVD7bHB0+qoEmudo61rVACFx84bQibQeYJ1DtU2sVO0NLi6piWQbq7SzueEpqW1Lcr08FWDSz2ubWlmc1IXqcthVuCtxYaGpKrxg2VcZqjuvQ/ZWrrbVwl5jsvTyBBqFposIWCVQBmFms6R3mOTFGFdpLbXJSLNCU2NSGIXa+U8ra1j0B4UIElsWHRy9sh5haqaCBjuD/D7O5iLr6PTPh6QswmNEKTNBOfbOG5Wty84yTsd2qbh2WefYzyesre7i1KKwWAp4oiSlDRJeOih98YSjNb86I/9Cc7efTdVWbG0vHQTQ7FQeg0hLPol6UWPnopEa7auXCNNMvq9AaPRHmURwbDWtkgpSNOEbrcDi8z0bDajqhseeui9vHHhIt1Bj8HSElIpVtfXsW3L/t4eH/nIR6jfomvvm4nAX2dvmV0Jb8KkHAJtxQKcWtcNs9mMi5cuMpvN+F9//L9ibWONN944z3vf+x5OnTrFdD7j3P33czCa0O92efrpr9Af9JECdJLEsZabwqFKKuq6ilmrhXDb8WPHuHL5MsOlIWVV4ZzjypUrb+t+vquDk5SaVFY0811q1UUvHSfPh4hqxPjqeZpiQhCCvNOjmcUB1RjDaG+XpdU1vAcXBMdO38/0YAdjDNVsim9rJlsXSTtL9DaOkfUGSCUZj/bY2NygrWvaqkB4S6hqZN4hpPlCI0ShXEtwLR2d08z2yTpdfFOxu7NHknci794k2NZy6bVX0J0u5x55H6PdHYrJAZNZjZQ99uYHdDopoi1g3rC19SI89xWsg+HKSlypJ8minKDwC1aEUjIyKZoGG9roo4cKfULQ2hpCOJJ4PrRDJtvS2ga9pSWm+1uU0wmjG1usnDhNr9flxniH61fPR36/FOg05+H3fQCpU+577Als0Ozv3MA1JbZtmU8OmIz3b5sP6N4KyjvqYhoFyUKgrmtkEzs8K6WQScJ0Z596b4Qxmrve8wAygbSTEKqC+XxGXVmWO0OQgvTYJsnqGunKCqpxNHtXme1dxTdz2rokWR4gPFQHE2yRwioIpTAdyXR8gPAGp7ooF0izIUJBObmOtA5nBaQJShmayRyXWkyW492MajZDpxKOH6edTbmxs4NKcrobUUJ+a+86a8s9hArMm4rOIGU2v0Zu9xA+YTya8PKlS3zggXtpnEVJyd3vfZzzr72IMhlXr97gldevYD4w4JXXdpmWJdNZiTYJ13ev0FYNQkZsRUzXRvE4gSC4qP8SpIylG2KjO2H0QmDOxoHQC4T3MUi2LcJogrPc9qFGRiVf1zY425KcPktY71IcWyYflQQEyeoANz4gpAmOQGha/JJBVjV60Cf4GrwmOHBVQ5t72mpO8IHaWWzryDIT8TXB4zMFjYdBgq1s7N0TPLapY5kLj5Aqar9Yi6+rWHYxaRS4cp6eSGkktCFmo4JUKKlxaaCs5vQsZCRY20ZasvVx4lcSUdRQzbFNjf7KLuLgANlJIcmpNzaRS6t01jMmvkTIBLIuHOzg11aw8ym+WSxYTFTXlUFQB4c2BrOyiktM7PnTyZFVgVOaVnpUaHDWI3G0tkJaCLMamU+p9vdp7A2SpRVsUyJUoG4abFkCAj+7fWWde+45S9M0XLl8he2tbQiB4fKQsiwxRhO8Z2trGylhY2MDAayvr/H9P/D9ceyvSpSKgGe5GCuXhgMefM8DXLl6jda2TGdz1tdWmU4nnH/9dTbWN1hZHiJlxKYcsm4Oyz5SSrTWDIdDmqbh2LFj7O7tc+HCRT74oQ8zn82oq4os75CmKXne4fXzr3P67FmSLF0EGN8Iin1T1uTro5Y3ZVBuFUK5+e94PObG7j7PPfs8r778MgRYP9hj69oWTV3xyksv89kvPI3WCtdaPvThDyGlWAizCWwb4QGHmidKKd73vsfI81sAzwHSPCXLMh54zwNsbW3jvOPG1vbbup/v6uDESU1ZteBLvJuRra+hhscZLj8Ipsvk4nNY20TEsE5oXYOUhtUTZ2jbJoqIeY9XCUlnQDnZQxIf/rYumY4PuHLxVQa9Ho31HDt9DzttgUyzqHvgDdV4RBjtkWY9umsbyG5K1YDKuqR9QZql7F96mfGNLYYrKyxv3oXqLjGfjCgPdkmNohqPeO4LnyUbLLO0NKCczVCJ5q6z9zE62KEoWo7d8zBIw2xvi+ray9zY3iUKVHrSPEObDJNkaK0YLg+jFgOCyXRCEIuKn+CIfx8EES/ATR68WNQkL7/+Artbl7GtQ6uohHrh1ecIPgJHg49ILakk3jVcePkFTJqj0w5eSib7+8z2b6CUxCQdlLx92gbrP/Ln6HSGbP/av8I5D0pQX7sABJIkQyeaVKckaUIiJbs717n84mts55qs02V1c4NWxEl3bgR0OtgEJlcvU9gSneWolVM0Gw+gXUM9uQ6zGUxv4JiQIJhvj1k7toGWfVZPHONga5vpaB9vPWk5xxhB2s0g7+OzAW1VEqyjahz17gHJEggdWD92hvmNyxSuQix1Kcs5CM/B1fPUwfDq1RvcdXyDlV6f7e0d+mt9ytmcNM/pJAmhLFGt5/XL12ldw3DY54Vf/zRGp9x9+gwvvXGVtnF87ulnqRYiWq61eOtpixKVJrhA1PhYBLraJDhvCVLh6hqpdWw0qASwyNYtsiJSyCjNL6PYWXAOIWM/nkMNl9tmLpabQgASjez3aawj7WZUi8/a1OC1otq+Rr2/g+73UW1DUAGbZ4SDgEbglwYg5sjBAHFjH6F0VP4Nljo4AtDYluAFSkTySt3UiDSWSay1JApc1aL6Gl82MTOTRWaLdQ1Cp3SGQ+qiwIuAb6Nek5Ia4QLBaNAR12GDjQFfqmiqGTrJUNJQDCUYh+p2CFe30MFhl5fxmxuQZqjdPeqNFYKWhNEesonqvc4YAhJZzfGCKEXvQXiBNAqSLr7XJaiAcAJdTqBo0EoQtMc2Ft047GiOah2h04O1VQAyk2F3d1F5Tne1i5+XtKHAFlH+wC1EuW6HPfvss6Rpxp//33yc06dPE0LEitRVE9kkS0u8/upr/Mf/+Kt83/d/Hx/9yEeo6/ooq2AXWVdCiNk/YtM/5x2PPPIwzjpefvllvPekSYIUgel0wvpmLNHknZxut4eUkul0QtO2zOcFxmhMYggBXjv/Ok3TsLG2ilKaTrdLr9ejaVt29/d4/JG7GK7EYOeolcnXaZV8S3uLYAbejD9RUmKbht3dHYqiYndnh1OnTpHnGTs7N5gXFY8+9ihSKNIk4YH3PMjXfudZmqbFWsdodBD7MSl1dMwvfulpHnr4oUUZJ4rXXbt6jevb13n6S1+mtS1pmvLe9749gsS7OjgZHrsb27ZUkz0o99j52mdYv/u91On9LJ8+h8ay+8YLEbdhDDrRtE1Daz1pZ0DbNJH62dTkvWFM4ZVjlExQ3YRGzsg6CtvU2HLO3s4O1eUr9Lpd8v6A1btOIXWGCyDbimp6gKwq8l6P1sK0sRiVYmWCdZ7d6zvs7+1xz0Pv4/S5BzjYWWHr0hv0l1YBTz0vuPjqq2RZBkIymyRsHttg89hdXN/aJusPWT37ICcefILx9mX2r53HjW8wm+2gDGR6iXY8ZV5ZssQQXGy6FBYYE0RAiMNsyaL3w+L/bxYkY7q6KGbgA81RzTPcBF0JsdD6iPz8vZ1thBDsXLscZfmVQWpFlnc4ee5Bkv7ybfOBS7/8/2X5gYfiJL22ycmP/Qk6tmVy9SLHPvg9VFs3qMYjlk6fYXLtEn2doH3D+Molqp1rXNkbgYD+cAU/B2MnWOuYTiv2xxXD+96LGS4jjEKKPqyeQlnP6LP/jmr7Kpsnh/iBYX8+Jw+W5STh3vd9hNTkdLpdrly5zN7eJXxHAQYpHJNLU2RmECbFpwmFd+S9IbOm4cVXrrG2lNNbyymcweQ502LM1b0DKuu4cOU6V+QuTVHTLSJFVsgxSikeOHECkVTszitmsynX9scEKck6XYpXzlPMyqhP4gLe2tjtVgBte5QxEUdF7gDOYxcgU6lUVAeNUJPYT2jRLZeFYJRbyNZLkeDrKN0dRbFqjrpM3ibzZYPud2IGoDcg6XTxTUvlA0pKlFHU5QxvJL4u0VqRbK5TFSW9pWVkp0vVzamGWWwEuHNA42wsiUhJKxUEUFpTtA1pt49C4OuKsFsiUbGZYAohWNqqJgjIB11aF/FttmwIQiCoUXkgG/ZpmhahFYnJ8KJC5AnkKanSUdAtLBSLXQshRTsf+xzVLaKb4FTAdnJ49L3osoWTJ2g6CRQVQgSS8QxfNVEUF4nHoZsA1tOmJjIpEAjrwdbQyXGdDtJ6pBKEZoaTEtXrEBqHcArhSty8QDYtYWUNsbwcy3x7o0hRXxqig0TUDhsk1eiAYC2qk0OSwd7t0T0KPpYZNzY2OHX6dBRB8zEotm1Lkia0tmU8HjOdTqPAYR2ZaD54nPPcdfIubo6KgbZtmYzH9Pt9Tp85y3g8JiAoq5rV9XX2dna5euUqRVkwm84ZDIZYZynLKgo7KsXS0hJSSNI8Y293j+XllRiwLzRB9vb22Nzc5O4zZ9nZ28ULMCZ5U1JEfJOA460s7rfY+xagSXjzS5LUcObsWV56/gUeePBB3v/kE1y+fJGLFy5x7doVsiyjqRvyPOP+++9Dqdg2xVp71LvIOXd0jnmek2c5UkrW1tboD5a4fOlyxKaESORI04ThcPi2fse7OjgZXXmZwbGzqKzDzhsvoIKnLgpO1jPI+nSHQ/S9D3DttedoJxOUjlTbyXRMPhgSgsAJxdrxU+xee4NO1qOcjml8GVkwSY6rSgLQHSxRVTMGq8eYjqe0ckb7xmssDZdpQyDJcsqihCRl6NfIOn3WsoR56zCdJZaOnwEf2Nu6whc//e/YuOs097z/Q5x734c5uL7N6MYV0t4SK50u04M9+ssb9Nc22LryOt3csL55nNdfeA5hW9LTd7N55h5WT59jvLfD3pXXkS72A3EyQXT7ZCsb2Pk+YbKFrcbIBf2LI4DUrRkTjqL0w20gpvRZKCRyFJzcqvEY9zz8XGnNibP3M1jbwCQ5x8/cT7a0wvbVS7fNB9rpdXa+soNoHJ27jrPy4AN08yGzT13k9CNP8uKNX6VsPauPPsHS+z7MfFLgRgesPCbprm+gbUtTxU7CzaVLHHzpN2mKhnl5heTsg6T3foCrF15CK9CdDJmUiOAQvWXMQx+kzDOSwRJt2qV2DXtXLrLnLjG8+16SkLGTZIx0j3RaUM3HmCTh8qUd3vexH+SZX/11Nu47y2xvH5KG+bjAJ9Bd3+BAKJJTd9MWlgsvvk7Z1BFLpAWts8hM4YJDKIlrLbayvLF9ncaHRRfhsGjvY6mqEQd+HEserSfpd7DCEeoWbx1pniGkZL4/QaYp+AUlWAiED1A3+COkv4hZkBAIPqDSlGAtebcDQuLahtb5o1Ew+BaCQ3rJ7Vszg1pbx8/GKK1ZuvcBnDHYRBC2dtDe408fw7YtGE07KyIwPE/RsznKeexSB1cMCKnESkeapVijQMiIqUpN7EHjPDLv4LXGFiWml1Juj+ivbTLfuY7xEcMRfENA0cxLWO4Q2wWDTDTSCxKlyNeG7O3sQmqwpcdrgawbWuti0OADfuhQQlEWE9LBEk3bkoWAyTvUVYkcDNE+IcwbbLeHun7AcGeXMCsRSlPksaOwD9C4hsQr8DY2wMxzhI8KsSIIVOsQBxNkMDDcREuDUl2KvQsoZZBa4oJA4gmU0B3ge13kdEJoa0LlUL1VbNMg6wonPIWrFg1FHUlnCXcbncA6RwIL+nDsP6WkWgBaYyZCa818NmM0OogN+cqK/9v/9b9lPp/xEz/xE5Glc0tfHWtbTp85xXsfeoT1jU289SwtLXH12jW0MTFwtS0rq2sURXWEUZnNZjFjL2B5ZRnXRqXYxx5/nEsXL1EUBfPZlOFwyMmTJ6NU/GRMURQ88MADSLXo8n64gnyruOSIQyxueXkr1uTmWB3fCkfxzcEoNiu8cP6NqFRL4DO//mtMJ1PKoiBLM+4+ezdKxcxJ0zYLIcoa78Oia3P8HrE4h431NVZWVyJjyRheefkV/tSf/tOMx+NFe5bAbD5nd+ftBafv6uBk99IrKASmv0aSDwhtyWDjOBdfewWkpD9cRqgE01kiaI0tZoxHI5Y3NqmaluACeTdjXDRYkTEvS1ZO38f8YJdqvB9XHv0h0nsIlrytoS7p9vtUZckcSXnjBq4ukcFhlGKwukwoNlg5eS+27UKSMTxxima+zHx8wGpvyPq591Af7PLMb/x7uivHOPHAI2ze915uXLpIW0+Y1S1yOiXtL7F04h6uvPIMN7a2GA6XeOXF51jbvc5gdYOkv8zyXWfxJqHc38XXU5aPnaKta5rWceL+x7HFPbz2xU/TzezCicPNbAk3nfoQvR1xKTc1fPxhZ91D0n04BFcdksMOW5HDyrG7eOADH426GkpTlzN2tt/gysXbF5zkK3fRTPcJsuTgpWd5+m//n+jf/R7mrzzHQYD5zlWc81z7e88jQsTm2J2r9I+f5eyf+9/RXVllZf041XxGt7fMmUceYXx1m/LFr7L+1CPkwzUeePwRXvrCl7jxO59n/ZH3UQlH0x2iejnV6grzukJnCcg+cnWD6/OWg8EplrIlJm4bv3SS6888AzSMt95gcmWLX/3n/5Ji/4CrFy/RX9lgOvUkJmM88vz261/ESo/OE4wyFNMCdFypWG+Ri6ue5BmNswQZlXJnoUQZTVtanHXoNCUoSNIOzbzCS4/INMO1Y/SWVzESmqJCZp1Ioz44iK0GpFg0EYzdnIWJwYtMM6QxiCQhW17D5B3a8T5BQZootBTMxyNoLKlWhOkc2zQI73HN7dU5kYnB+UA9GVHPRoj+Mr6uUCisFNDvUBezCNbTCpV3EEIhlKYVgtZbfD8nLOWousL3K5JOBz/oIzIDSx3KWUm3afGJwctInwwmAWtp5tNFp2KFShKaxpIPOoS6jSUN56HXwaAYLq/Qk5LUg00z9uqCYAy636Xc3yNxCVZYRBCUriFRCnD44EiPb0DjCUah04yqnBJGu6iiwq9uIHQSfWLQBQdSeFwxRfgQO2I3bbwm6ytRPE5I1HiGGReRgaEVzlbI+UHsj1XP0XmHMB+jJiNCvgLVHF/WuHuOQ11hHARh8N2ExjboEKjnk9gJejQGpbDFnE6SQvn2aKTfjh1iPYKPgoImy4HYZ+kwY3BILbbWMpvP+cVf/FeMR+Mj/IRblB+V1jErEAKbx47zxS9+ifX1dcajEadPnyHPswiCr2sE0O10jzILhwOqcx4hBbu7e6ytrjIdTdna2mJ3d49er8tsNsd5R1XV9Hs9hktLnDx5kvowADj8YV/H1rmpafLmd8LRJ7fse+sxFiUi7wNaG5RSnD57lp3r18k6XTY21tnb22UymTCajP//5P1psGXZedcN/tZae95nPne+N+ep5klSqUqSZUmlwRiDwTKY2TR86HDIpsFENA1BdwR0g+PlQ9Md0QH0OzQNQdjYxga/2BYg2bJmWapSzZWV483MO09n3vPea/WHfSol2fBaAmW8r6N3RFVF3nsy89bZ66z9rOf5/39/nnjyCVqtDv/+f/53uJ43J/C+0zGZ5y4JCaLWL9bFXgLG4DoOGxvrrK6s8PZbV+uQ1PlPlXyXKfV/qIuToL9BJW2Egf65h+uNp9GluX6FKkuYDg7JZiOqsqxD3ZSDwDCLExbW1pDSIcsM0eAYr9nFUl2m0yGu35zf+Hqh2pYkmQ4Jm12y6bjWk4QtSm0wpsJRNgJNMj7h+NWX8HwP542XWDp9kcULj9JaO0V3dYXe4jKD4wMmkxnBagujXKpkys71t7iZ5Vx+4mlUfwnfa3K8t0107S1s36e/epqDW29ysL2D43ps3r6Bt3kHv9Um3LzNyqXLLGxscHjnJoPDPfpLawghOTo4YO30GTYefo7da1+m1bDmhYWer1SoxzsCXRmqUqMsgbIUWVZiWRJbqflrTN1JYd4vMebbUMvgeg0WlzbI4hlVmZPMxhwf7PPa629x886DSyUu0whvYQ1W19HDE7J0RpEmKNtlePU1zMJiLUStNEJZtavgbBMWNti7+iqWtLmrcxiPaWmD13CwtWL19FnOPPQUFJpr97YYOjbWqQ3yyR7N5XPYTz1PHmVE6ys0ZjFVMmaWRDiOItvaJWo0yBrQWDqHcj2Es4hzbpXOYMR06xbJ8IhkOCA9OKIYHBKuXmDxsec5+dJvkBcKju5SlBWq42EKg6UU0raxvQBb2XhBQNDt1B0VrUkaOZbj4HV6dDdO02p2iaIUsdjHWtpAj6dE6ZT2hXMIZZPGOWkasygVmZQc797D3LlB+8pD4Iakh7uU6az++9pdqoM9Gk++lxLwWl2UEeSzAX6jiQxDktEQoUvka9/EnQxwVs8Sv/4K3oKH9pvYw0OKm1cf2DoopmOM42D1u2hTIsv69MxkQn1cNyBLlJbIMEAEIWo8o6x0XTggSDoN7ErjHIzAsWuh6GIX2QgQlo0z24aGh9UOyHoBRTTDDGbgeWjHRkmF32qTxhEWGa7jks8ikE7No8HCEhbne4usSUE2GaO7XY62J3XnzmhkqcmrGBy7Bkfatd4FS6ItCdJG2rX1XBmJGZ5Q7Z9gux7StSgWuhQGRJyjcoNIY+z2KXKdQZFR2XHtshIVOs0RKGSWo20BlaTKCqS0qAa3Ke06tNIUBaYo0J6HjIZQpFS6xNYCHde5ZXghajahcG1Kz0b4fs2Xyf3691dza7b7wJYAiHrvqrPKavGm0QYjvuVWiZNk7mzUlGXF5uZm3UUT3xoBvTNCeadQKcuSU6dPcXRwSLvVZm9vl3PnzpPlOZ1OB9t2ODw8ZH//gG63g9EGz/Mo5gGvo9GEwPdxHIete1s0Gk2SJCVJUnSlKfKc4WDAeDLm2rVrfOCDP8A7+/LvVZv8Zwc785H9/V/8vk6LuG89TtOUV155hVarWWto3rqK5wc4rk1eFqRZSpIk3Nm8wy//8q/guS5CSmbTGYhaiG3bFlmWY75NP1RVmsPDIzrtDrc3N9nZ2601K5bC9VxcxyWK4/q1+rvTn/2hLk7c3hpO0MAYgxuEOEEb5YdMo4i4zFl96BnKeMTx9j2KLEFXtb3Rti0Gh8dceuRRjF1HxxdVhbBd7KKgTEfYYRODoJiOMLaDClqUWmAFTZSysP1WneGgqzrcKU0IFldxLEkVjSmTiP3bVzne22L57CXCxRVWLlykt7xIq9theHRC2uihbBsZJ7Q6PSaDAdKe0V5YYa3VI4smWLLieGuTyXhEEY1w/QBl+8RJiigroq1NptMx7X6f1dNniY732d+8SXt1A9sNONw/YGH9LPc2bxGXU6o8w3UVSkLoWSAsKtUmycG2PeJojO/63Lz2KmFg02k6tFsBti2/VZcbA+h5J0IgpCBo1Kr4O9feZGdnn1u3bnN4MsPYHg9yRxJFSePJ96ObXZbXzrBz/UXyLMYkEZwcsHDqefpOwNWdLRwknlSoRoOV9bPoRpuL/WUcmVEUOe3+AjNRMZ2k7G/e4Mbnv8BoNCTKSnwnYOH0w2TRiDiZ4OzfpcgNWRnheQG2F9Jrr9JbXcXvXiZvNMnzjIPrV+leuUKmFOHyMlarw+LZMzidHtMoJU8Kdv/9L2E980EOZwX+2SfptFcI0rP4C4tY/QXSvEQGXYwt8fwmvY1zNJeXKLwGuRYcvfoau8bFXuhjui2qfotJadC3Nkm7XVqBjx5OCNcXaVk2cZqSHR6jTEVuSgrhkg8nHN55m+6zzyNXz3DuJ/4cOA6T/V2OvvifwLtMubiK7Teo3BAzHDB85au4a6dpLK4jKoV/6XGkFTK+9jrqyhMEnSUUAk5doDzYZvoAixOzsVwn9zZDynYHywjUuERkGVVVQpIS9teJtzbJphNs20NbCntpkaLUFEmMTKqaIdLugJToLK+Dd6ZTtBfUoDZlUfXblK0A1W5Q+COsfqNGct+ubcratymLBKShcBX4NtJ2cfpLPHHxEj/xrmew4hm7e3tMDia4yYw8TbEqjWk2yYschCFXFonvYvV6mMBBOj65FKh4hnE95HiGkpCJCnwPudSjkBKRFKiqRJd1xpM3jamUoRAaSwiKOMJKoTIGq6hBcqIydc5XUdUBhOmMnNo6niZT7EYLO8so4hmy2UA5AaUsKVsOlWVjkozQqkMzK1OnU4skR5cFOq0Tz6s8JYsfXOfknYJDWQrbdhiPx8ymUxyntnF7nse73/0eQj9Em1rsn+c5k/EEy1JkeW2ekErdH5WkacYv/9Iv0+8v0Ol2+fEf/1PcvnWTbrfNb/z6b/LkU09iDMxmEXES0Ww1ACir8r4uT8l6nKSURRgE5EXBqY21OntH1sF/rWaLXq9Po9HEtmyMNggpSOO05qPwjmm3Lle+zSX8rdb3fxZz/+0jnzolvNvr1lgAJXE9l27Q4WB3n9l0iuv7tJptfM+jynOiorZ+50WOUorZdIY2tYZH3T+4zvU+WuO6Dq1WkzOnTqExpGmKshTKUggh5kG1352d/A91cVJUAguFqTLiKGU2TTBSoNwASwuGxwco16W9cRFpNMODe8Qnh2TCYCrN26+9TmflFH67Q3V0jC4j3E6PMrLQ0QApa46JUBbCCzFFQSN0SQZDpC7rxNA0xfUsUqWoygrZWccYiVsmFEVJPptxuH0Pfzxh/84tws4Caxcv01tapcwKUmOwlEOZxyhtQCgGh0cYJSEvsJs+60+8i/7hGndf/wbHe3exbJcgaKCFoLWwRBxFbN++zehkyMLiEkkakd7dJGx3sVwXrQ0r5x9m9+brxFFONSno9vtI4yIFKKdNd6FPVRb0Vk/V9Ny0JI0jsjxje2/E0oJPqxlgWRZCaDDVvI0q0MZmPEu4dmub7Z19huOUcGERt7VAPB2z9wBTiZ2VdZrdPkVWMrj3Nt32Mk67Q9o7j7j7JhuPPskkSXnywsO0gga+57B/9y7ByhLOYp8yDBgOYm5df4PZ6xFaKazCENzbIz97iehkF8uxWFk5S1JlNPvrnOr2qAZDqiIh3zhPWaToSkJVMNw9qqFzuUYZQX9hHTE2XFhdoztLSfOSmckxcU4/TwnDFqdWl1gqj9i4vMHi+z/B2kIf33PJKkjKilmagZTMZmNmoxHKC0FWaKeiHTTYXmlwd5rz+tEhh3fvUK2vIXsddBKDFzAax+jDIzwBqbTIypzpNMWUGcVsiPR8TKtL+O4PkeRT1OSE3ddewjRamPEMMa5Yevb9JI6PkhbSczHa0H30XUwHA4a7d6mylCSawGiCHo8pJiOs9TOYoh5rPEj4FoDyXaTXRNs2hWVR+B6eBKUGqJnB81pkeUTcdrCcHhQl0dE93DPnamePBMdqII9O0ErWYdRJQTmdYfpNsjKpLfujMdlKm1yXgMZa7FMGHtpz8B99hDJOkZ6PM50gNPiOSxPFhbVF3ru8zLu6fRZ9F7fXYG1tmWhzh2u24OD4iHw6hscfQWmDzFJEmmLaHbTlQJWRazC2RbtwkKUmLSt0WeG0WrUjJ0nwDZiDE8zJEOm6KCPQtsAOPVReYY1nVMqgR1Nk2ALLRhoQZUmVpTX7p8zBkkg7wLEE0fAQ0ehQeBLhtMhtVbuP4glaAGWBrEBXIK0QkUboCpASKay6WLEdsllCPj89P4jrnYT3oigpq4oXX3yJX/rFX6TRaLC6usZf+z/8NRoNn0ceewTbttDa8MlPfpL//r//H1BKzbvDtQ1eiBrgZqjBYZPJBCEVv/M7n+OFF15ASsnly5dqwJ3RNMKQTrtzf3RRFiVSyjl4rR41+Q2fZ597js9+5jPcvn2H8xcv1iMRUY+H9vb2ODo8pNfr3dfMvPXmmzz2+OM4jvOdHZH5mObb5K7/5ffl2/4rEFy/foPHH3uUo8MjVleWuXPnHgj4wIc+yK1btzAG8rKkmEwAsCxVi2CVJM1SHNuuoz+oHXp1WCos9HucOX0KKSVlWfDma29w+fJD6EqTZTntTouPf/xjdLtdfvXf/ds/8H7+oS5O3GYXYUqGR8f4jQ5aQ5HFNHs9gmaXZDZFxTHCb2A8l1OPPE6VpOxu3kSVGXEcc7y3x4KlaLTaxGmEbbuUQQsdjxEGjLIwwqotlrZDWkmcVpssjnBsF8t2qTRYbpNSFpR5itXbID3ZwqYgzXOS6ZQgbEAJs+MDrg6HLKyfpb92BifsYmYnxDNNEqfIYkLY61NIiQobCOUwGsa4zT5P/tE/zWB7i52rL6PLnNlggBCKsNnF7kikkBwPR3QXlpDCkEUzhvu7JJMh7aU1Vi8+imVZFFnC+OSIza27SGGQakjQOCFoNPEbQf0hs1xQBf2NDdJownCwz3AyReicC+dXUEoRRRlHx2P2TyJmUUyWV1RG4DWbxOMRs2mE4/tcfvfzfPXVNx7IGlj4E3+FeJaiHEm74dFeXyHKYkyrR7xzne3tHTJjyKd3kFToLMNt9NGzEbOv75AfbSMKsFwfqgrlBNhaUh4fY9bOsnHhSfpeSMt3ka6DqwJC7TPREXu3r0HhER8foIRL6FjoTKOKGZ51QtOzCVRBv9VgQTh0o5TlpS7NsE2z4eOHIZbjUjxzlkpr8qKgqEp8x2I4GKO1wlLQlpKm7xIunp1vvhVxVrC1N0EmhosXHic4nKDu7fPGrbtsvfoKwzLFYNDnr6AbHcws4iTPkQZUVeIsnSUdJCiaGOVit3oEjy+SjI8pkwGz8TH6aIDVWcJcfIjhJKKqTgCLcHUFPJdyYQl/cQNbCZLjI0SWM41SnPNXsNdOY8maCZIdHZFt330g9/+dy5pm2HZIMY3Qwym626AIA7JWE6EEWZJhCY1eWad0PNJCUA6HFElKUGUwmZL0BNZaB51l2NICJ0GvddBFToXEW1ukciRF00OOI1hoU3oO0nepAo94wYVSowzYqx3OWB7Pt7t8oNllw7aw526osshrq6iUPL++TIDFr7a6vF2MGRVpnd7b6KArQ1JlUOTgCbzBFIFAC6iKDFNqRFqgjEGEIWLvGMt2EEWFcX10EGCqEhlFKAMySuqCpygwusDOakcJSiJcC2n5WIWGwiadjhFojOcjpEU6OCK4cpFESUxWd211XiB9B12ViFxTVgKjJLIq6ywg34E5GdhUFeVs+vu1EN/PNWBb84yYMZWuKIuCJE6oyopup1s7F+ekUmNqHcrDjz7MX/kr/zu+8fUXUXPCqdbmvrC1LKra6SRBKcn+7h5f/OIX+djHP8by6gpxFJNmGVIpGs0mtm1RliVK1WRY1/XwfJ9Ws8FwNGIymQCCOE7q7oiQBGGI47isr60zm0yxLZvRaERRFGxtbbG6usra2tp3qvy+/Y38rkw8dWWjdYXr2EglsG2Lk5MTqqqk0QxJk6SeBpgK21I1ULAoyPK6O6KkxWxSJ2QnSczy0hJxHJPnOYiaGaMsizRNmYyn34atr7U+GHjxGy/+/0fnJIsnlEmK7XpoZM2kcH1m0ylFaVhcXiSaRXitkM7CIrPRmGg2ZeXUKUYnx/jKISsKOgt9ylRjkhn5dIzjKoQtyeIIozVeo4Op6gpZ2w6lUGhR540ov4nlNqiKHCMzbKeOCXcXzlCO9nCUoqwMk8mYsNGZjwdLqrIkmY5xfY1sL6LsEKUPSCbHpLv3SJOI/sYFGourqLBJOhlzdDzGbS7w8Id/GNtSJCcHbL7xOpOTQ+wgxAhJ0GozHk3or6whpIMvYHh0SDSdsXHuPF7QoCwNTtjh1OWAa9/8Rh0CeHhC0GzT6vVJkpxWuw8GxuMxSkiE18T3l0nGJ7x5dRctBZNpWmfsCIXBojQVRVky2N0DaXHq3EUWT59llDw4Ouj+S78LjoMtBIfZjOrVEitsgJA4wyPUm68izl/GDlqoNCdDU0oLh5Blu8ve8CqlNOg8QaQFYu0s2kiUUDh5SSMumZ1sE+U5eVGgbAfPcuuwycPbnO92aYaKpbVFPFvhWopu06aKxlx7+23W1zc4f26dhuty/sIpHD8gSgqKUlNqQ5ZWc+euIY0jUIrj6ai2cWsbaSuElJycDJhMZjSbIa5rEziCcysBg1nJZJbScCzOryzy3KN/nK++9AZf/OJnOdrdJstEnSyrM3LLgWRGPjnAWlrHOvs4TnMVkSiMDMgrENqjUh2cZoigJIvH5MMhWb6PclyMlmBZ5FkMaUSVF1RJhMgT7KCL5Yco22a0eRMRRVRFhgibiGb7ga0BAEvKWqSnDcpoZFoLXHVhUJ6HcRyKJIE4RSKh2cdy6/C+manIbYkXNOsRiS4oGwG610aWJaXXJLdcciR6tUNlCfRaD2EkqjIoywHhUG3v4eQ5D4Vt/si5c3xgeY1lp6Zlinf4GUaT5xmtRliD2irNB7tdHptt8Jt3d/mN4SE7aT0WdpSDFrLONPJ9CAqqNKU0IKoS4dqUtsRMIyppcCwHETQRQBFFqMqlEJqiE0BVgOMjRhpTZtAMyY3AsyTasSEvqJLaWittp4bGefWjxQmbzAaHtT0ZjRYG5Vhox8bEGdpRaGWw4oLSFHUmjRRIy6GkmtvdJcJxMMWDE0YLarqrfkcLYQRlVWEDjuvcJ2Qb8y2RrO/7fPDDP8jz73uOt9586/69eqdzok09vi5Kc7+7cv3qNXq9HmVZ8swz72Jne4ciz0mTBEs17k9XRqMJUs5QSjEOA4SUfPPFlwjDBhunujiuw2g4YDab0el0KauSTreDNpqw0WRr6x57Ozu88frrrK6t8Q6f6h1ZyR/0brzTaak7LPN76bg0Wy329g8Im02WlpZ46cVv8ou/8EtsrK9j2zbnL12sxa1ZSlmUGFNbqsuqROsKrQ2tVut+5zzLbQQQzWJu3LhJp9NFzeNiyrIkz3OqqmI0iomi6D7g8Q+6/lAXJ9EsxbUsKmpugzYp0rbxgjZ5nrJ9bw+pDEGjwf7ODp4XEDTabO/sMD7apxzt1cF36YT+wgoISZRMUEkFWUwSzwiCVj2vDJtkVYkuqrr1H3TQ8YwyjrEsDyfsIOQMIwRlXlIpgdVeIT3eRpsCqaHIMyzHReuS4dEeo/EAU9Zx0peefp7u2Uvou4q9m6+joxHLa6uMtm/jNtpYjQZeZxkqTa5zpoMpfnuR9/7YnyObjji4s0k2GbB79y7tbofR0QH9tdOkCHwU2XTMtTdeJ88SgrDJ8rmLNBeXeOxDn2C0u83evXvkZcmZK1fY3dkmiSLi2RTXcwm7PZbWVjna36Uwgmlm5umUCuW46Koiqwzj0YgiL2gvLLNx9hJeu88k0RjlPbA1UJUaygRTZKBL3GYXkxpEPKpJn8MD0l0bZTk0FldZuvwkvXYfv9Wk47ucefgJXvvtX2G0fRulXFpGsnruYRZOZbSeej+HB4eYwwRTpHi2xfLiAqHncGaxi6/P8dCVM7iWJItn6KJgOh2xe3Mfx/N59OFLLPbaXDq/TmdxgawwDKcZ40mEoFa4K1GDqdI8Q6cRdqNJheLo8IBeb4nZJCJshFhKkcQxcRTTaDSxbAtMRcdTnF9uMcsqjgc2eycR73rXMzz6xFNM85R7W/t8/dVX2Nm6h+Uo7E6for9INBmQn2yhsdAioqpi0tEdGuuXwV7AzA7QRYnr92mdPUsajdB5gXAsyjLH8vtgt7C1Js13EEqhnADSFK017c4KcsUn2t8hH55QHh08sDUAoB0LmRWUjoXUBjmLEOqAyhUYCYQtRCNEGE2h6/wa7ACZRJS2pAw9cqvGyqvhiCoboDtNCtdBpAnIhML1kJ6DlZe1GF4Bjo2YjgmyhPf0F/jkyines7ZWh+MJiWNbtYZhDqaqiupb+G9jqMqCMs1ZaIX8+UcvcGW7wS/ubPGWTpmkM3SS4IQdtLLJ3QgjFWJYIlotTLNFttJCxBkSjV25iEmMFU0QVUyRVOhmiCpBaUmVzaMulEQUFdo2VEWGpaGI6s9PkeXYCHAUCEUW5yg/BCMwSYrqdqiqgsJAKcButbDiZK5hUMgoo3JssBRFFlM6ErvZQM+jNL6bx+p//VWDPDzPR8paNyLl3MP9zuN5/i9DnSemK81sOsXzPF559VVeefVV1tfXeOLJp+6nDJ/a2CBOMnSlCZstXM9F64qjwyN+92u/y/rGRg27BISUv++hGoQBCwsLxHHC2uoqd7e2WT+1RqvZpNls4QcBjuPiOHad9K2reV5VrdMoi5I8y3Bcdy4vEd/KsAK+XfD6ra+/Y/H5Pe+3ANd1ufrmW3Q6HabTusOxt1u7iN7z7LsxWtddJl13+qQUSAF5lhGEPkmaEccJw+EQ33cJwiZZlpPEEbdvb4IQnByf8L73v59f+oV/TV7kda6R56GNpvguHVt/qIsTYbkY20GaOlAmTWJ81SI3BpSNZdee/qODI97BuluOh7AcNs5fZvdGRnS0zXhvm5WFPt2VNTZvxmjLA1viNRRCOSjbI4ki7GYLO/AYD48phEAoB1Fpqumsjrz32wit8bs208E+TqMHumR2vIs2grSqKD2HYZWSxAcwNvha4pYw+e1/z/lHn2L9oUdxu30Ob71FJkOkB5bn4lsW2ckxfq+L219CNZoIXbJ7eEKj1WDlmXfTCHzO7Gyx+carJJMZk9GARneBCkHYX8GyJIraZWP7AVbYwPECzqyd5tST7+Fg8yaf+/RvsnH6LNHwBF3lNFoNOu0Gh/u7HO5ukycxGhCitjdmRUUSR+zv7ROGIRceehS32QFhMZolCKdBVT44OmhZzMALcbwWODaVVGilkF6I6q5iXX+dduEgRlMmt24Q965x1F+hKku8sEXQWWTx3LNcuPw8YRDiBA0qoShufZNGlTKcDkBnOJZhvRdy9nSftaUeoWWwhcvkcJu96ZSqLMnzAs/z6LbaeL7D+dNLPPH4FTKjGIxTprOULKvHiZaUOI5DbiAvStI0QukC4XrMToZEe7t0231mkylFURA2GvUpJUk5OUpwPBffdUkizWw8odXyObMUstrrcG93xERAWcK7r5zj8Utn2Nze5/q9u1x7+w3SLCJ0XPQsQgXHZBqy4wwnCJh+4VcwukQ4FrLTI7MDqs5pimgEOkc1Gpgyw13qIhxFkSQ0V85QxjFFlqCEwSQzomgH2e1TJBm214LmCg9SdVKOZ1hKYhohlWPjOB46SpHYmLCB1AqBhjTBmBITNCi9EGUUotQIXVFWKaiQcm0FZzSB8Yy87WN3V7DKEqVrN00lLfzKxiQFDQc+tLzGnzp1lkcWFqmKgmg6wXJsQj/Edtz7jIciSyl1nb8D1Fo2VZLPIpJoSqe/yPNn13i43+E/bG/zb6cH3FEV+fSIcnCCsi2MqzALIQ4OVW+BQnTAlrhFjsk04b0DqqM9pgeHlJ6HdOrMHxPntdsHjTS6tslWiiqNUV6AqDTCkhglag2BZSFdl8oWCKFxmk3iwQCr30cETawoRjkNpBGUJkE0mpCNsYymzCokEiNKrFRjLJuqmKJsC7vZgJMHV6gKqGM9hATMtxw7c8dhzXKS9x/k48mY27c36bTbvPXmWwwGA9bWVnj3u99DmmWcOn2K02fPkiUZu7u7hM0GgR/UmIWqIksTHMei3W7XSc9SYr6ddCYESiqKosB2bc6cP4sRgpe/+TLvfe97EUqSTOv8pp2dHWazKY7toqu6mBVScjI44eDggNNnznzH/2vd0agdQe9oQIT4vfnE8B3yWQOHh4dcuHQRU1XcuHEDIeCpdz2N0RCGIY5j10WqVLUrTCrCMCRshLiuQ1HkLC4vMZ1M2Ns7oCoLms0mjuthjOHO5l3A8NJLLyGF4PDwkLIsKYqSWkD7ADonP/dzP8ev/uqv8vbbb+P7Pu973/v47/67/44rV67cf02apvzNv/k3+df/+l+TZRmf+MQn+Cf/5J+wvLx8/zX37t3jp37qp/jc5z5Ho9HgJ3/yJ/m5n/s5LOt7q5V0ZTC2QIt645G2R15WWLZCqdo26/mNOTimDmCqTI6tNYmoWD77EMFDj3Hn+ptcfeM17KtXWTp7gebiMklaUE6OcTyfosyQlU0VJRQqxfZDwKLKYiqdotBEowF2kKGNpLO4iB16DHe3wPFoLq8xGA+4V8yIpzmiKCmODsH3casaBNdBYL1RMDnYx231SdMK2V/DFZDMhlQyp9lokY0nJHFCf3UZu9HFm5M+J1FOUmi666d4dH0dPZmwc/0ms8kE2/GI44QgbGAFDrblEjQaOIEPQpIktVe/tXqKpz/4AjdffpEizfA9G1NV7GzemW+ohpfffJtbd+4xmkxRStIKPDYWu1y5dJnFjbNIJyDJMr78lc9z88Y1qqpicWXt992779caEAc7KNev/fvRmKoqUNID26EoMspojMxidKlx3CbtcJEw7ECpkRiSo33c3hJS+YwO9inzjFa7RzEcMrm7zUKWsrGxwFInoNP2CYOAMh8zOhlydHDAcDQmCAIajSZBGGIpieNYPPPEFS5cPMtwmjGYTBkMxzU1UtdWbmnbpFVNpUzznDxPcR2FXRqm0zHj0YDy9m0WlxaJo5iqrPB8D9uyqaqcyXBE5jm4rkukDQfHI9IkRlqShYUu55a6LCYlJ9MhQltcWe2x0u/x0LlL7B4esXnzbfaPDogO9imiCb4uqaRFtX8DnUeYsqR99kkyv01RBFSTI0w2xCytIAwMv/zr5JtvYGYjsCzU0hkaH/oz4ATgNlBxRXFwjLn2NcbXv1mrJak3xlar9X1fB/a5s+gsQZYVhTA1cr8b1A+pOMPEBaVfI9st38OMBlhdUXeHRhGKkrLXw+p7VJZDudjDxBGOEpiyQlUCO8qgLAnaDZaM5Ll2jx8+t8HDa+s4lsVsNmU8HuO6Lq7jzQMI51QhY6gqTVmWdWEwd2PYjofr54yHCScH+3QXFlnoNPiJ4ALvGfT4zN4eX1FH3AZmyQxRVWSeJLcDTJnWiAQDme0ilcFaaBEetchvZtgLfSqhcFybTIBJU3SSIlQNXqPbwChJUdXFWVVoKlvh1+E9mLKkdBWFo7D8BnI6QiYJxkgs32N8+wbJzj3KaIaQCicM6Z+9hFCSMo6wuiE5EG/dJR+PYASW9/u7qN+vNVDHatSsEwQURYHRhmqehvrt+WLGQKkr3njtdX7pl/4NvV6X5eUlnn3Pu1ldW8HzPKIoJk1SXn/tNZ56+hk+9omPcnxwhNYa3w+otKaqSrQxKEthWVZdiEr5zk+EYA6zrHsQ+EHIaDTk3NkzOHY9Dun0umBgbW2dV49eIWw2EKouaPv9PrrSJN8uJJ7/PyTRjMFggGM7LC4t3Q8t/P29qe8UqBweHBH4AVpXXLp0mZde+ia3b9yqCwxbsbq2ShQnpEkMog70q+Zpw7MoQgi4s3mb4XCAshTdboeFhR5HRyc0Wy0WFxbY2dnhYG8fqdR9KB4YFhb6LC4ssLWz8wfez+/p7n/+85/nU5/6FO95z3soy5K/83f+Dh//+Md56623CMMQgL/xN/4Gv/Ebv8Ev//Iv0263+emf/ml+7Md+jC9/+ctAjbj+o3/0j7KyssJXvvIV9vb2+Et/6S9h2zb/8B/+w+/lx8FtNCjLqk6NFDUDACFBKbKixLYsZtMZyrbmqANJlmbEUYzGsLaxzuHJhEee+yBrC02+8Vuf5XDzOlUcs3DlcZYuXuDWq68Qz6I6g0QXSF0wm01YPHOB/uopBvv76CLHD5v4rRZlWWG5NlYYko6PufXmaxzbBUmrQTXRsH1Qq+LzAq0NVatNlpWcrGwwHEc4b3+dx648hVUKjm+8RWfjLGc2znA8mzFJY7pLy+RVxfF4iprMWFqqabSZVeD4FrM0w7UU7aUVLiwvY+KEdDziZGeX4dERZVXgWSk6T3DiAK/bxbLsWjtiDI1Ol4eefpLR7jZllpCmaT2q0vUHfWf/kCsXz+PbioO9XXYHE27sHPHeD36Y0kgoCr74xS9xb+su7//oH8dWkm98+bPfcd++n2vAHO9S2h5CGyypEGWMZRdQOhgqLNvB5CnKb2GHAcnoiNnRFlLWm5m0XdL9LRxlsXD+cWzlYbbe5PKpFZbcGYunFmj4NralGJ0csLMZkWUJaRRTVRVho8HySi0QzpKULM75wR/+MAtLfTa3T4jTgvF4wiyKKLICBHiOC9rUdlUESZrWkeN4pLnm7p093vjGK1x6tGJxaRljDFEUkaQprWYLKRXaGIYnIxzPwXGdmvBp2UynU04GY65WN2m2QoKwTaElWkNg+ay0W2iWOHv6FGWZcXx0zO3NTe7cvsrxzi0sJVF+C4QgO9ykUg7i6A52s0cej6nyCUZoqq23UYvr2Oefxlo5R/LGF5j8yv+d8GN/FeO4iCwne/W3KQ9uEzz6QcrxCfmdl/kLf+Ev8LWvfe37vg7SbFqn6S4toI6OKMYTlN8HXbtQjBKYtBY8kibodgOdp8iiQnba6NBFWi4CG6UalCaH7iJKSLSlqKoCq+nxUGXxo80mz62vstxp4bouUgmSKGI8HoMQOK6LZdt1gKLW9/UL9yPshbx/yhZC4ng+fqNgMhpydLBHf2GRsNHg0kKHNd/lBwZ9fnOvyRujATvJmN3JEVV8jFAOxvGwS4PIS2zXJe838bpN3NUl1GIfq7+MOTxC2S5VWdagWg3C88BTaByEsDBxBpMIMYswjRai36Bw64enFbiITghX83qUnWYYKUkPdvBXlnE6D6HznOjGTQ7eeJn+5YcwSmJcj+jqWxTRjHBxBSEl8e9B138/1wDUReAsmnF4eMDJyQnaaBSqLhoMjMa10LTRaBLNIn7lV/8d48mEyXSKHwTc295iMp1y/sJFtNHs7R2Q5RmWfI2333qL555/L+urGwgj8LY9jIDA8xiPxhweHnDmTC1ul/MCqNIVnu9jOw4nx8f8+1/7NYzWrK6tcu/eXcIwpNL6/ljs3JnzbN66xcap00ileP2VVxiMRmRpyuWHHqq1O3NYJkCr1ao7Q7pOBP9W5+Q7yW3fYT2m7tLkRU6Zl8xmERunNvixH/sx9nZ3GA5GNJsNFhf6FGVZR77kOWmacv3aDZIkYzwa4zgufuDTarVI0gwpBUmUcu36dRzHQRtNGqecOXOGO3fiunCSkp3d3e/qXgrzncOr7+k6OjpiaWmJz3/+83zwgx9kPB6zuLjIz//8z/PjP/7jALz99ts8/PDDfPWrX+W5557j05/+ND/yIz/C7u7u/W7KP/tn/4y/9bf+FkdHR7Vl6vdcWZaRZd+aU00mE06dOsVf+39/miLLOdrdYzocYyqB0RW272JbNpZtIQ2UZUZR1sjteDat01Wp8PyAIolQaFZPrbK0usxob5+ta68ST8eceeb92P1TdBcXaDU8bn3ti6RxSjQbs7v5OqfOXibsLBBNI4Jml87iInGSEnaaDKNj9g+3uL7zFtVsitvoUpQltlF4XgMxnTI42EaEPsr1oLdM6jYwJwP8ZMri0jlOr/RY668hlcXi2mn6K2uUVUEqBUEQEicpZZbVOSGuUyP3XYXvuORphhs49elMiRrtf3LEwfYW6XhCGs/wHZeg00X5IRaGcjYkHx8TDU9I44g8yykqQ55naGpRlJKS7Tu3ONrbY2l1lc7CEr/wq/8zf+yHf5iVlRWSTPPzv/Avef9HfoRT5x+FKmF8sstv/Ltf4rOf/SwvvPDC93UNqM4a0glx/TZW0EYXKVUxI+gsoDorNCyLSgrE8lmq6QCV52SDI6Kje/hKsrKyxurqRp0sKgyBa9FqNOgv9QmCACUUcTxjNp6Q5hl5kpHlKbZtsba2QbPZQFclg6MjLlw4w+PPPAlCMRxHzKKEOIlJ02wuqK5tibZVq9gr6holzzIcx6lTraVidnLItW9+lcX1DU5ffpQizyiyrN5vdEUYNpGWIosjBicnuLaNG/ooy8HMFfZFnhPFEcZolO0SNJq1oA+B8DvIxhLGSCokgww2tw8Y7N/l3s23GOzdYTjcuU+iFZZNqUuqOMLp9kmTiCqd4ixsYIU9UiMwjkf06X+C+8wPozrLiGhI9PVfw7v8LFZvHRNNiF6ri9QHsRe0P/oRZK+Ldn3EeFK7UgKJrCRi+5AKjTyzROXWYZf4HjRCZNBCao1p96mCNsoYlOUilV0LwSVgCdaKjBdsyQunz7DQbqIEhIEHRjObTphMJ0ipaLZaOI6LkNxnWwhjKMuCIkuJswy0odvrI60620YIQZ6mTCdjppMJtm2xuLhIEDZBCNI4YRylbEcFv3u0z8uDfd4e7TMaDdDSQkcRfn8Rq9Mlci1624dkd++B7SIvXcFNNeXuAcnNm1TDEc6509jPPEF+b5vJ8BD7cIKVl1S+hdgfYTV7FJ5GrfapLIllBCIIkLfuUeweUhpQlqr1A5Mx9kItnjezGSebN2k/8gi2sKg8h+E3XyI4cw5bOeDZlKMh0c72A9kLHrpyBSkl3W4XISDL8jo9tyx49NFH+Zm/9tP8xm/8Jl/4/Bf44z/6ozz91FP8n//u/4XJdEKR5ywsLvAX/vyf5ZFHH8V2HA72D/m//v3/G8pSPPP003z1a19lcaHPCx/7KGtr6/R6C9y8cYNZNCWLYr758isUVYXjOGzfu8csmlFrXQTtVi1U/ujHPspoOOLyw1e4fPkSZ86cAQSWsvjsZz9DHMU8+9x7WVldYzQa8tUvfgGlLDDwvh/4ACtrdRc6zzPGwwG24+LYDr5f62zMO9i2b/3r91Ym/Mt/8S85d/Y0lm3x1ptXufrWW1x56CGeec97mE7GHB4c8B//w39Ea02SpLz/fe/jzJkzfPGLXyIvcra2tnn6maeYjOtcoE6nTZpmzKKIPM9J4pgkrd1IiDrhWVfzHK95N2nz7l3G4/F3dFF/7/XfpDkZj8cA9Ho9AF566SWKouCjH/3o/dc89NBDnD59+v6G9NWvfpXHH3/8O8Y8n/jEJ/ipn/op3nzzTZ5++unf9/f83M/9HH/v7/293/f1e2++xqlHnuDSU08yGY0YnIzJ512OLE2xvPrD73o+sizI8wJfKDAaS4CRBs91KYuM8Tjh8PAq/U6bzvmn0AfbSGXx1MMbVG6I3WhzuLjM/u9+lfbpSywLh53bL/OeD10hiVIOt65xeO9N3MU13hylHI6PKZOYZH+/7kwwQyubKo2RsxmkGeVwjJjOUP0+QgzwFizSU6co9kfsHA7YGW3RDG9z+VLN6tjfuUdveZmwv0gmHBzXxQ0bFHmOsSQ7+0cEvsNyv4djSzBQlppSS9AGu7vIUquDXRac3LvLYGeX4/09XMfCMwV5PCVLorrqF5Isz3E8D4RLFEXMpiPubd7Bc2zOXrpC2Orcz8oIGi1w2pwMDtFas3bmCpZVd6xanTqx9Otf/zovvPDC93UNNJfOY6SFUnUr1+uuYgUtHGmYDY8pGz3yo3uIRCOMoZjsElqK0+fOsLK0zMrSct1eFdBuN7Bsi0YY1smiwyECQZ5npElCHEf1fLXVZnV9DSkEs9EAUaT80Ec/wMNPPMLdnWN29k6Ik4wkqW2G75ySLcu+H46ntSGvChB1pLrAUFUFWZoyi6YErTZJnJGlOdbchpflBVWekkQRfuDj2g5h2GAyHjKZTWqA03yUIIRAKUVVQRbPmIxOECianSZqNsKajpB+l8rycVBcXm4RLz/FQ5evMJxEfPlLn2G0e5tsclyf/ssaea2jaU1RtQMoKrLDu0ghKOfAKWYnUKSkezfBGJzOMtVsio7rveLUqVMPZC8weUIxk6gsQZQG5fkUMqd0JHK1W9svS41s+mijsXFBS+ywg9ICKzYU1F0WW6a4nT5KGc5VFe8VNs+eOsXaUp+qSLEk2LYiSxOiaFqLIY2g1aofEFVZ4rh2DaVFoOduhyzLSbIcC2odlrKQ1N0VZdUkWNf3mE6nmMMDeguaMGxiOzYdYbClZj08zQ+urPHW9haf7x3xJimzLEZVEjMYopb7REstKPsIIygchQlbuL0+nq8oR0PyhSaRq7EfuYB6M0EvdikGY+Q4weq1KNME1VmkkhLdDih8F3l9pxb5qtodpB0bEQZ4i8so10VnOcVcWqaVDcKmOBnW0EvPQ5QGkReQlw9sL8jzgna7zaXLl1GyzqapwWwla2urVFrPu+nTOkgRgTa6zlwSMBqO+MIXvohQFgf7BzTCkKIs61BAo7GUwhjN21ff5mtf/gp/4Sd/kkceeZiXXnqRKI6J45gsTzl3/gLi9GkAOp0O33jxxfowUlWMxiOm0wk729s8/vhjGGOI4wjHdmi1Wty5dZv9vT1WVlYpi5JbtzbZ29vFshRxlvCnf+LP4rgOv/u13+V3Pvc5nn7mGX7gAx8gTVOGwwGnT5+dW3i/1XP49tpECEGv2yFsNCmKEl1VHB2fsPWZz3Kwv8/DDz9CNI3rg2Yac6bZYvPOHcJmAz/wOdk6Icsy7t3dotvtcvbsGba2thlPRkhp4TgOVVnONSb5t5HFDa7j4vs+afqA8fVaa/76X//rvP/97+exxx4DYH9/H8f5/amDy8vL7O/v33/Nty/Ed77/zvf+c9ff/tt/m5/92Z+9/+t3KuWT3bsc3LnFxqVHWLl8ifW1FSoDJ0dHGG0o84pkPEFatSAJbVC2A1JhKYt4NqIsMpQUSOWApdne3sJrLeA3u+zsHFB+9gtsnD1FhSQ+GZKXCSd33yJcvkihXI4Otmk2W+zdeQ1pNAfJjN3RNlIprEYXsXERnUToPKuDBrOCdDjCciw6y8skaYYVuJSU5MpGC0WVn+C4dTbD9OSIV4sX6Zw6j8gLsm9+hjDscGnjMo898hR+fwm/U7f6l08FFHnBeBbX7oCiIGz4NJpNhJIUpUZqSaYl65ev0F1ZJR0P2bvxNsP9HSwJZZFjOS5VmSOkYDyZEMcR4+EJRwdHrK6vs7i8hlI2pTH8zm/9FsvLK3SW1jFWkyi6i5QK3w8wpsJS1v3At4ODg+/7GrCDEGH5lNmUMppgKg1ZhlA2jq4waUQxG+C7IYGoWNlYYmVxEd/zcF0bx5I0W01arSaB71IWBXlabzT1vFXWWUVZjOu6dFbreXQ8mzEbDFlb6PAn/+yfIGi3ePWN6xydRGRFLf7K85zZbIKSCttxEKbO7CjKvI4eryqkUtiWRZmXSEtBVZHNpswmEypj6A1P6PR6SCXRVUlZVnUEwzSicqv6pOb6JJMho9GIIAjw/aBuZ0tBVdb5Hq7jUJYVxwdHuJ7HxQtd8nzAcALS7yGVomU76MDBd7p85Ef+FJt7++y/9SL7117C6IosmZFnMcp2sGyXLE+xqnoTSrffQrgBzEaYZAJZBEJQjo+gzMHUT67FxcUHsheQl4gkw1QGk5cYT1M5AmMKdC9EeT7atZFFgdQGpRqooINdUjtR8gwpUgI/pKEUYZLxvCf54Ucvsry8QBpNqbIEP/BBGOIkIZnNmE7GVFrT6fXwg/DbdIe1M6XUFVVZUZYVeVngtnrILKkJosbhHb+nMQYpalZRo9mocQgH+/T7BY1mC6ksPN/DRDFhFfPchTM8HC/xtZ0dftsZs2tyUikQrkMmQbRbCMeDZgBaYIRCn12nECsUOkNLAdEEvzSYvCA/s4bWAnl3gHX9NvbiAnHPR4YOZRpjzixiTgaYhotOMpTn4bRaOKtnKIsJZjJldusadthAhg1MnFKZonaWND2oDKbQqGYIRw9mLyjynF63y5/+03+aRrMmtQpRY9GErEdrWZaDEHTaXRDgOA4rKyucnByTZjmvvvo6r7/xFv1ejwvnz9c2aAzRLJrn9hjKrM7h+frXvsbm5iaVNhwdHjGdTomimOFwQrfbodPp1LbbRpM0yzAY9nZ26Xa7dNtdlFQ4jottO3URVRSsbazVwldRH7Z6/QXOX7iIlIo0jomiGUI2kcKwtrpCww/I8pxrb1/ljdde58/8uT9Pp9v9jvfrW/pcM09QTvB8H20SXnv9dcajMZcuXuSpp5/GcWyiKOL2zVsYo9mq7nHq9Jl6bSJotducDAasrNRjuhs3bxLNIuK4HnNLJbGURVkWNcRuPpixLIsgCOrk828XDP8vXP/VxcmnPvUp3njjDb70pS/91/4R3/Xlui6u+/sR6BuXH6ecjbnz6tcpkymd/gLSb2AjKYVEioLF00uMRjOyUYZtuRjJvP0FQW+JJJlxeHSHZLzHeneDiV0wsxJMkqLLhGomyG5s0lvqMRsP6a+cZjw6ptQ5zbULvL13Fz8MiE+dwZcWyd4ulu3XDxNZd2nEwkp9o7TGbveRZgfXqx9E3WaHzLOoLIdGHDE7PEakCZYxCGFTaokuSqK9LapiQpXNSPKIWRyRlyUdv8Hy0grLG6dxe10cy0E2m6RlhW3MnNUyrnNXAg8hFMqSRElJVhhyYbFy+VH0+jrHm9c4vLdJfHSEtCyktGpC7PYOuqp46NHH8YMGRVlhWTZf/dIXGQyH/MiP/jhRnGG5ClEz7SkN+I5NYUos+d9uCvsvrYGyzDC5Rs+G5PGY1lKDTnuJNI+xrAayiPHbXc5sLNJuNmg32kgFlrJYXFqi0QzxXJc0nnF8MKg/yVqTpjFSqnlEga7jwMMmVVlyfLDPbDjkQ+97Lz/0x15gHCd847UbjKcpWZZTaU2cpBRFia2s2jIMtW14XrgUukJSR6OXZTWHq2Wsry3y1EM/wO2bt9m8s4slRR2mRU2v1LrO4sAYLGWBqMMZ250es/GINE5Ik4Rmq1XPp43BlpI0L0BrGr6PtCT9XsAzTz9GHOW8eXWLOwcxle1iKYk0hvFsjJOOOfPYs3ROP0KRzNi5+ruUaUwejxmNDlCAkIp07xYmT2mcegQjVU0djSdUCESRU7e2vz/GwP/SOjBIUHbNsRCaqiqQlYtWAlFqqAxaWnVQqBsgrQCRaJh3gkQ8w3U8zvVXeddyl/dc2uD8mXXS6YTBwR6e7803dE2ZF8TRjDiaYTCEjZDA99HV3D7sOHV+izGIak7brOoCRY9OMGWJpQTCsuqkaSmQtY3kPsCr2Wgwm005OjpEV5pGs1XrU3yPjqWYzWY42vDR8xd4YjzmG8d7/HbLYlcpEikwjTY6yzHakLuKTEEVdBBlAVWJkxfIzMAzT5BGMcYCHUWw1sccHlBUGVL56L0B6ugI6+wpiosr6MEUK9VQarRtYfseWXTI5OZ1yjxl8eHH67ynIr8/VVBPPYNsNqhu34bdfbh964GsgXe+ppS8zzSRot7v3xGLLiz0EQZOTk44e+7cnGViSJKUZrM5f8AqwiDg2rXrGGPuJ/Nalo2aywUcx8Hz/NrmW5acv3AeJSSHh0fs7e8xmUxpNptcunSRxx97lN/8zU8zHA3rwmF+n19+6ZsYrekvLGCA45MTPM/j1s2b9BcW607L4IS333qDNEvw/ZD3vO+9zOIYy7J56KGHWV5eRkrB2toGg+PBfWfY77sElGXF7dubHOzvI4TAdz163S6D4wGj8ZiXXvwmzz3/XlrtNkHYwHZswFBpTbvdqTOIDDTCkDzLmc5mpEladw7n76PQv8cdNb+CICRJkvucme/m+q/aMX76p3+aX//1X+cLX/gCGxsb97++srJCnueMRqPv6J4cHBywsrJy/zVf//rXv+PPe6eKfuc13+3Vv/wolufQu3yFMhphsoSj3TuEjkeSTJnNZnjNPu21s7ROr3NwbwfHCkBa2Fatx4hkRWo0h0eblFlCpBKqvWt4a2eQtsJq2thRgnu0h5IQNHt0+ovsD4ZUlk0sDPHaMvk0YWoksrNcfzAFyE4fMzhApwNklCOUxFSCbOkM5vgAWZYo28KLSsp0ihEarTzE0llMFoPyodenlAJ75xa+sUitNkxnjLIJX7z5BmGRs9zr8fTxIwRBANJm5dQp3EaLoN1BddtMphNGe7uEjQBbCVw/wLMcHNtFISiylEL4rDz6LKuXnmDztZfY3bnDsKgYThL6C0t1wJUfMkkTOu0On/+t3+Lu3bu88PEfYVYZAlGDl7xGiK4qhtvXEIsrSNurc0f41ono+7kGspMdnPZKLVZWkrIqmM2GhI5k0VO0Oi2UbNDt9vDDgNX1U7UtlxrLnM4mHA6OMXM3iaUUWZFjNExnY1zPo9fv1UCnouD4sF4Hf/KPfYL3ffC9bO0fcf32HpNpTFlWxHE9FkMbMIaiKHFch7woyYsSpLw/L5dSIMtal6CrijzPKNOU/rklXOc8YTPk9p0D0qSOMLeUoqSGRxVFxnhSEQQBjuchpSJoNJmMhuRZnWchlaJ8R5w3J2bGczvf5z/3VW7duM3HP/ZBPvrhp7h3Z5cvful1DnMH2V1mudMmEIK7e8cUVcVRXNI88wz5aA8GezhJgs4jZrvXqdIJjbNPEvSWyaIIGbYp05TiZAfpNpCOheydIrn9IkdHRw9kL5DaoAuNsU0NLjMaiULmVZ2jM0vxlI/0ughpo4RCOQYcFwksNxo8bkk+8cxFHnr4Iulswv69OyhLEjQa2LZVb8C6Io1nJNEMU1WEYUgQhPfBX47r1C18redQMF23uYu61V2V1RwYV98PIRQChRHgOi6TckSRZ3i+Rxg2mE6nHB4eUFUlQdiq9Qe2oNlsYacps+mInuvwo5cf4bmTIS9u3+XF0YBrVcmo3aAyOUZbkKdoy8Y4FsJ1KRoOuTejqgzCdlDpFNFt1q6e0108Jci0wfSaOJ6Lu3KGvExx+z2szgLlvQPMeEpu7zB58zXS42OWH3mS0nWQS4uI3T3stUWSe/fQYQPLsnDOXaZaXIKvf/2B7AXa1O6Zb6fAam3mB44aKX/37r25AH0OFisrjK4/R512hyRNeObpp7lx4yatdrsOvZtNsewapqe1xvMDoniG1hV5UXL37l0EsL6xwZNPP8XqwSpbW9sYo7l+/Qbnzp/ngz/4g/z6r/96HfvQ63B8fMw3X/4mr7/xBqtra3zij3yCqtLkec6ZM2fmAfKGxaUFTp8+he06xLMY13bQZcnh7g5FoVk/dQrP8zkuTrhx4wY/8IMfrN1K3GfJ1qPkeSBPlqecPXeGs2fPMxqNSLKcoizxPI9Go8FgMMJ2HIqiqPcd30dZNltbW8xmEY5jYzsucRKjde3grB2EJUJrLKs+ICip6lT0dzonShHHxX3OyndzfU/FiTGGn/mZn+Hf/tt/y+/8zu9w7ty57/j+u971Lmzb5rd+67f45Cc/CcC1a9e4d+8ezz//PADPP/88/+Af/AMODw9ZWloC4DOf+QytVotHHnnke/lx2L1xk7VzF7Dbi4SrZ5Guw6JrkU9jpsdHNCdTdBoTNgOk6xIEip3rr9FZXKVwGwjLw7EMWTRAziIm5Q6m5WPKEjMeUZQ5h0A3XMJUmjzOqIxBOQ6OrXC0j64M2Ve+QlVVWL11yjivP4jCJptlOM3TqNEI2V0DDOX4CGtvl3w6wvF9oiIn8FzMbEpRFtihTXXnbUS7i/E1alSSHx1Q2ArdbREHLTjaQ1oKqTWRtLm1vct+meIiSQ+3WF5c4YX3fRyr3aQX2ixKQ5QnTHdz9k6OOTo8YpzExFgkrk1jbY2+49GwHXZ2t9g+OWQ8mdUx4saw4DeIhEKXJa9v3yb93CbJ8YCnPvgRdoqUQZHhTo4ZjvZYai0ipeTW7h22JidcuvQ4s/EUgGefffb7vgYsKpge4DgN3GaLTuDRcFL67SauI+h1W3T6fdqdHo12G0tZRLMJZZ4xnYxA1yJVKcV9x5Ixdapop9PFdusPajSdMRoN0Rp+7Md/hOc++F5ev36Haze3qCooirx+2CCI0xiYOzSMoZASqSQCQ57WnQQA23KoipKqMuiyJmtubu7w2jderLHQVd0RaXa6ZFmGZVloo8mLmrgoiopRGuN6Pl4QoCyn1gjNRZqOXZ/0tBCEzSZZkpDEx/XJxhg2b2/zL/7FL/O+597Ns889w5/9cx/j1o07fPZLV4mcBYLuEucaXY6OxlhBwMnREQdWA9k7x/rSWW5/9n+knA1YePJj5GlCMptg2yFogddZI733GqYoEdLBnNQt+q2trQeyFxhPoR2DcBSlbaEqECiUbaNKkLlATVJUJpGWhesFtKRipay4GPg8//hFHn3kIpWu2Ll7l6oscD0H13ORmLoDUWXE0YxoNqMochphWM/YdQlaYDtunUEiZY1xlwpd1u36oqzHeAunL1LFtaC4LIs60ddYKKlQloXreQwHJ1RlgRf4BEFAHEUcHx7R6ZaEzRa27SAsC9d1AEM0nTE9nLDU7vKnnn0vHzoe8Nlbd/nt6IgtpcnyCRUV2vXQ0sVUBbmJa7GvL9FITBEiK4l2HAgsqlmOqwWxKag6DaLhHt7CKXQeIVwfuxMi9k4YvPwayWDA6sdegFmOGBwj5Qqy0UDNAxSLr38N1eniXrxCllUPbC94B4ue5xme584hZjWZ9x07q6403U6HXr+H73u865mnePvq24Dh3PmzfPgjH2Y8GnPr1i1Ojo8Zjoa4rksc124TZVk0W01m0wl5XpBlGUVZsrOzy9bWNotLSzz55JP4x7ULbjgccevWLR56+CEevnKFxx57lLffvsbxyQlSCEbDIUdHR+RFzh/94T/CK998mYP9A5ZXV7GURavZZnt7i8FwSJHlPP700ygl6S0scu/O3fsi2KWlJc6fP8/21j16/f7cCSaoyvI+0K0sS6LplP2DA6JpTL+/QBzFtDsdDIbNzU2WV1fxpMQPAybTCVGSUFSaJEkYj8f0+z2KouDg4JD+Qu9++O07xXlVVTX6vyoRwsW2LRzXIU2zumAXfIeY+X/p+p6Kk0996lP8/M//PL/2a79Gs9m8PxNst9v4vk+73eav/tW/ys/+7M/S6/VotVr8zM/8DM8//zzPPfccAB//+Md55JFH+It/8S/yj/7RP2J/f5+/+3f/Lp/61Ke+64rqnWt6sM3d8ZSg2wVl47oelaUwvofTaGB3Q1zfpxIG37VY6SzgtpsMb16nGVoIVzCaJVAZqukIOSjIN2PaVy6T7G9jBwHF0T6J3yOzfSKVI/MEnWQIxyVQikB5zEYZthdQTXKIRmjXpZLU3ZJ2myotcFqSSPg4Z1YwkwGWKaAoEJZhlowhzxGmQqCxWiHSs6k2b+AurpBuvg2PP0la5cjxCayfQgxO6sC22RRRJCRbt0hsG6+UbL35Fv8xlzx67hwvPHEJh4yWbdMOJOvBIvlKhzjJuX53m/907Rqvf+OLVGlC1e8ijKyFb7aLUjbKC5iVJZu33q7FW3fukR+d0Lh8iZvRDOmFCMsh8Rcw/RYDAeHpC1x/7WX8hy9z7+sHZPdq69h73vOe7/sacBo9Os0OvmPTcCx6rQbNdpulxWWCZgvf9+kt9MnznDxNGEzGTMcjBAbHdfFcpx7fFLXGxmiD63o0mk3yLCdLMqbTMdF0hheELG+c5s69Qz77pZc5PplQFvXJS+tqHoIl6gIlmgK12yPPc4SsQUl5UdQPLa1ry6FSSAqkEljCosAwjiLKPMOxXUYnxwSNOiG7Pn2b+amvTj0VBuJoRp5nNJrtuoWtFBambv07DrZlkSYJnufRarVJkoQsy9DGEMcpv/07X+Gta7f46Asf4OFHLnHm3AZf+/IrfOWtt4i8BQK/wbn2Outr69zYOmBra5O7n///Eh1ucvoH/zKlBmGfkM4GaKCcDLCDBu7iWaLNF/GWzqNa9YPn2WeffSB7QdH00N02Ms1RWuJgYQsHk+cIx6CaDWzPR6HoVpLFowGXV5d56uFzPPPMY2AKDvd2yLM698bxbKy5uNhQO6qSNGY2qZ0dfhDUJ8yyBK3xfB8AXZUYI+uCzNRprnlW/1OVJdPhEboosIyuM23eQaUbgyUtgiBkOp2QJDHM16jjOkSziMP9fTpJSqvbnXfLJEpKHLcOhZsOjhkdH9Lq9fhz73uWjxyP+J1XXuWl6Yi7ruaYgpolW6GVRFOHU1auC7ZLJaBqOpRhSLZkUElOkczQ01o3JcolhH2Izg7xmgFHn/8Ks90dln/oBYTtkO8cUaUpejrELHfIewHq8UdIXn8D88HnKXfvEH3+yw9sL1BSopS6z7VScwGrMd/C1oeNkEcfe5TVlVU83+ehhx/i1q3bdJ0uH/7Ihzh95jRfuPMl1jc2iKIYa27PdR2ndgQ9dJmFxUWMqR/YAsFCr4freQwGA7a3ttGV5pFHHmYynnJ8coRA8Pbbb/OJj3+Mzc27RLMZo9GoFvEbyIuCl178Jq1mk/e+91kajSZSCKazGa+88gpe4LOytkIjbNYsEsdi89rbnBwdkcQRvV6XaM4k2d3Z5dHHn6g7bBjyvGA6mdQ04qrk6OgYS1mcOXuWbq/HI48+zFe+/FWyNOPHPvknaxq17eDYDo2gMYe8wblzZ7l27Trb2/Ve7jhOzV+q9H2hvwFsS90XvVZVySOPXEEIxbVr1+6D73rdLt/NYO97Kk7+6T/9pwB86EMf+o6v//N//s/5y3/5LwPwj//xP0ZKySc/+cnvgLDdX0BK8eu//uv81E/9FM8//zxhGPKTP/mT/P2///e/lx8FAGOHqEaDOE4QZKRxihAWlp9RDCMqIbE9H1NlpH6AUQrt9gjWzjMbHeKagjyZMo2HiLBJOjhGVCWB61NWQ8rphMq2SZXkSFkUgYvKYjAZZjZierRHZgIsf5HSCESaI1obSOlQeS6iTCjjCHAoUgvLBkYzjPEwYYBpaVJV4ZoevpAUAorhEXLtFHmR4fQXKJIYe2UdYTmI4QC1uEI1mdRq7DxFKYHQQGponrtEe/kMxXibTneF9cU+FBlpmaGkxPd9LMumHA5oBi6PnV0ha3T4zN0thjdeQ5wMqDptZKKh0aBcWsVEESZLYO1MLcj96jcAmL51Fbh6/16ETz+HvbFKpRycCxfJ4zHR62/V2oh+/zvu2/dzDTRtRdMSNDyHdhiwuLRCt7/A4tISRghMVTAdT8mz+sECGksK2p0u2tRx5nmWIoVAzrUCtrKIZzPGwxHTyRTp2CyvnWL19GkcL0Aazd07u+RZguW4dRhbVSOmhRQoYbBtmzTJcF2HqjIoVceM25Zd51XMNWFKSqqy/rqtao1LNJ7U3JOOT5bFjIdDmp1uzfSpSkAghSBNExzbBq3JyhTfb2I5FhKB7YfYtkM8m9ZRA2VFnNQjHm1AKhtd5BitSdOEra0dfuVXPs0jb1/nhRd+gA9/7HmeeteYz3/xZT739ZepeqdZPHWWU6urWLbDq/9D/ZC589l/+h33Izz3brzeGbLZCX7vNDqZkOzfgL1rAPyrf/WvHsg6MEYiCoFV2cgCpG1TCYMMPTw/RCiJU1b0i5In2i2ef+9zPPH4wyA0hzv3yPIMtMZyLGzPmSfJVugKqqIgjutckDzL8XwPx/XQxmDKqk64NYZaySZBSAxQVvVIpx4fFFRlRTI8Is8KvCAAJZDKQlUV9YcYlGUThk3SJCFJ0roAsSwC369HPMeHZHlKr7+I6wcoy8Z1TR3W5tnoJOVwb5fh0QG95XX+zMc+zA/sHPL61au8frDPm3bCTiBJXYtKCbDnXAyhMbpEIlHSojSGwlVUdpPCc7CzCpOOcQdD9PGYtN9m8sbbAOz92qe/41743QZu6OEc51jnTxFnCclnfoek0lhrS9/x2u/nGlhdXaXVbHHv7jZFUdFf6OO683s51/bEcczx8TFSSVy37q4UZUkQBHzms7/NeDzh9q3bNMJgrp2or7evXaPIM9I05gMf/CCXL11GWRa3bt1mtDemLQSO49SOOccmSVKefe5ZWq0m4+GYL33ly1y7doPt7S2EEDQaDVqt2l3n2A6Hh4dMJ1O++c1XWF5Zpt/v02iEPPe+93N4dMh0MuHW3k0ef/IJur0+thfgzvdzKSWNRoMgbNDrfisZuaoqdna2+eY3XuSJJ59idWOd/kKfJE7Z3d1hb3+PV195jbW1NfI8q+m3QcD+3j7tdpvTp09zMn+v0ixnYaHPeDxGSslwNKScr+uyrObjsxqAlyQpWlfYjs25c+fY3t4lDBu1yQBIs+/OrfPfxDn5X+uaTCa0223+xP/xf8IIhbIctC4xqm51KsujMlCK2vHi2oJijhYvyhwnbFAWOSqZMj28wzdf/G2SbIKQFtbwEFsKkiRFOArRbdO/+CiN1iLp9haySMmGxxRpjuwscJJbOFIiKzBZXKOi8wI6XaoqI5CK0rhYTgBhE61LymkE/S7aUzhlBD5IPyDLY3xLAXVFTZZSDQZURQ5aU+7dw1y4gtXsYLZuYzwbEQTo0tCwPBprlwh9H453ubCyyg88dppiegimottpErQ62I7L0c42QtnkWUxptfj01Xu8cv3rxOMxrhOiF9fJpQWm1khQVXWmx+AQdXKEsAJkq0ueREih0FWO3fLIHRvb8aEoMWUJaQaWj4mmDL/2hT/Q1/5fswaefe9HaTWbSOoOXqffZ2XtFJbjkiUzJIbKQJGnuI6Lmaf/ho2QqiyxbJtoNsXoWnSolCJPMyaTMZPxhN7CEutnz9NotecblSaNY7IkResSXRVYlgNSQFVgTA0FlJaNkhJhasiakBaWY2PZDmWeIS0LIa25C6eqT+uOQ5Fn3Lr6BpPhgKXVNaS0aLY7tHp9tAaty7lVryBLYgTU4wEDQilcP5iPqRRCQDwdk2UpvheAkriWRZQmJFFcu8d0iSnKuRWw/j2nN9b4yMd+kKefeQLHcdjZOuBXf+1LvHZo6Fx6DKTH8WTGeDzk6HCXwd2XGY2OMHaD0LbJk4jk5B4CQTk7wQioqpL43qvf1zXw7evA+7EfRXoBKqndOJ7j4dgWjpC4VUnfcrnSbvCBxx/iqacexeicvZ3auWCMwbYkYRDUjilt7o9MhIHZbEYURTVg0bZptls1vdTU33c9p8bUK1W/h7IuUKpK186vWVS3uU1NyawfHYKw0cCdFzpSqdoRIRVZlnN8fMB0NMJzXfzAq0PU8pLJZEJZ1Ljwbn9h7oqrxdJZlpEmMUmSkkYxZVWhLJvF1Q16a2c5Ph7w8suv8uL+HternP2ORxzY5BbISpNLjTYCYXkII6l0TiEMRggqY7DLAn80gaJCeS4yy3EMFNJgygJ3PyE9PMBoi3KpCzaY/R1MUSFbTayDEdr3GPyHzz6QveDSpcssLiywvLREkqS02k163R6dXofFhUWWl5ewbQvbdlldX+P27dv8f/7H/4mtre05dqGsx0kPP0yr3eTunbtcv3ET3/ewbYfpdEKn0+b8+fNsbd3jySef5O7dLa7fuIHRGoQgDALanQ7tZouLFy9ggEajwY3r14njhLwomEzGtR6sLHn6qSdpt9uMxuN6D2o0OHvuLB/4gR/g8PCIX/yFX8CYirDZBA0f/shHOHfhAq+98gq3b97gyWee4aGHrlCWJRjD3bv3OH3mDEEQUFUVb7/5BgtBA7/bIQc+/Ru/Qb+3wNWrV7lzZ7Nm7OQFrXaLwA84f/Ei9+7cJS9yOu0OaRIzGA7Jsqym0qYJk/Gkpu8aU7uQ5q4c23bwPBff8xlPxggh+MiHP8TJYMjbb18jSeKau6Qsrt+88WA5J/9rX0WZkZUG3zNYlkOe51i2TTIZYzsefquB5TtgO/ScusU3PjwgH+ximZKFhQ7D3bxux0/HqGhWJzgGAc3V1Rp85TbQZcXJrbcQSUqVpsiqwDiSKp7i5BUmTynyAsq8jjsXCntWR0xXSoIoKeIRtnsWGXahqqjuXsc59wilDDG7NzHTEyzlEMUzVL+H1VsGP8Qou3YZodCtCGlsKjcguPAYebOJGwRUwkYUFUthj+T2azQti8cvbkA2JU1TAs+ubaxyjm6uKqpKU+Qllplxur/Icfc8atGncjx2ZkOqOIIyR/gu5WiEmU6Q62cRG4/Ui1EpZBwhbQdZ5FTxECEN1TDCd0Mqy6LsNpB6nsb6gK5WI2RpcQnXcVheWwNR0zynhwOm4wG24+C4HralSKt5mJYx5GlKHEW11VBKWq0WuioZDQY1wbOsuPjI4ywsryKVIk3iOoY9L+oHOnqef1FnkZRZRlXWWHIpDGWc4gc+RVHNtQUlyrEpilqAVmUZvucicCnLAmU0aVEg55k7vuuQRTNsv0ESxQStNiBI4hhTaUpdUOQZjm1TlgWe65PPYW2u7xOGzZrNMD9ZTWczHMfGOB6e61Fm9ay4KCqMMIRhWOd6WBY7Wzv8q3/5i9y4doMf+WM/xPqpZX7qf/+jfO0rr/Ir/+nLlN1z9BbXcK0+geeidIKHJi9KsjKj0V8mGx5AcozBYEkXnX93p6X/2ssdRojFJtgWgVC0jSGsoO8qznRaPHHxHO977zMIodm6c5M4ipjzWvF9F8fzqCpdB7fNu2mWsu53TNI0RVk2QRgCtdvCVHp+Mhdg6lj5d7op2hS11iRNyYus/n5VsXz2EmHYYuvmG/V9LxSCmu4rRN1JkVLgewGRmJAkCWWl8X0XJSVhGDKdTBgMBlRVRX+h7qAIqXAcBylF3YWTgslkShrPuHvjKntbd1g7c55PfPzDPLa5yVtvXuWtwyHXj2KOjGbaDJkGZd1BEjMqW1GG9Zqz8hxLKHQlyMMWCA+RFyiZIWSAtiVlMUaEYLXbmO0jMm+FUuZI38K0A/xphXQddMN/YGsgjmL2ij329/Zrsaaoabz1aKa2sy4uLXL58mUefvhhXv7my9y8eQtjwHNdOp0OS0uLTKYTwkZIo9H8jiA9KSVSyjqtt6xBh++kIBttauq0MehK02w1GY3HCODg8JCV1VWUVHztd7/G8fExZamRSvLaa68ThAFhEHLu7Bm01hweHCKlpN1p80M/9EMMhicMTgYcHx6xu7NNXhRsb22zvb3LxunTlOVFsiTljddfJ4qmKClZXF7CcVzi2YTF5UUa/T6jLGN5eZnXX3+D3d1dlLLI85wsy0jilP3dA+7evVc7B8uC06dOkaYpZVWRZxnpXCuipKxz4sqy7jzNR2jv6E3W19cxxjCNZuRFLbZtNhpoXdFqtZjM+Wh/0PWHujgZjA4wRcFEa/ygixKKSpc4lgUaiplBGxe76TMdJAwP9tBpytHtV7Gk5p4lufPai7WieX8Pr91GSIXym4igh9WWKNulPImoBkMqNJbrofOMUpRYUuPqiiSJ6s5HPIGqrDkqlkNZFDh+A9PsYTc7VNGIcniAsSzK2RHV9VewzzxGZTro4W2sbhdn7QxaWZTHY6ygoNzdRjQaOIvLlBcexfghKp2RNHzsIiG+exe7uwHaZjqJ8eyAxx+5yGIA00GdyeJYHsbUyuo0iutMCG2otMEyFReXu9wdnCVNS0ZFgVo5jz0+Id96m3J7E1FUuEuryPYSIqvQeQ7JFCuK0LYFvQWkFeLGEVWzg7Z9VBIjczBVibQfXCpxr9tnYWERgSCJE0aD2o6nMbieh0BQpCnK9yjyBG0MYdgkS1I838OyLMqyJI4i0jQhiRNsL+D85Ydp95coi3z+9RiBoSxLyjyrA8WQKCVJ04Qqz6mq8j6PwHFsorg+TaA1judR5imVBiEMkppgmRd116TSFb5X/96ajxLRc1yi2Zg4mtJdXERaFkoIojSZFxYFlu2gy4rUZORFDkbfF6fZjnP/VON7HkmSUBQFvh+gbBudGYKwQTIdk+YFtqr5P2VVkiYpX/3yN9jcvMcnf+JP8NCVy3zgB9/F409c4rO/9RKfufoqVec0nu/T6a/hKsXw4B5ydMBgdxNTxkijcZtLFNHwQdanAMiyRM5m+EGTfpmxpBSrvRbvfuQSH3jvM1iWYmtzk/F4SFWWSClQVg09QyqyOMHzLISRmKp+yEyiCUlUg/SkkgRhgLQsirwWGbqOPU+9lWgMVCXSKLShvj95Tpql5HmBkgJdVjR7yyytrLF7+xq6qtHgABqQQqKMRkiFZdt4gcdkOMLMXReupbAdm7ARUhQFJ4MBZVmPL/wgvC+CtB0bZbVRts1sOmU6mRKNR9x442W2bt1g8cw5fvCjH+aJw0OuvvkWb2xu8+ruCYcNRRx4FI5FLBU6LkAWaK+BnWSYSlJ5kkpkKN+pGUbTHIGPsJoIJyf1EmSnjSkLRNPG2B5C2givIm83SHhwIaDvIOoR9bjoHdR7EPgYXRcRW3e3SOOUO7dv0+0t0G13GU9GOI7NZDJhNBqxtLSIUpI4qi3877h+DPNzlhEoNbcUz5OCzbdZlqfTCTeu36jXi1S1kwXotNqEYYP9g4O6M2cMh4dHVFVFq9WkLAswgrAZ8vM///M89dRTfPVLX2Z/fw8N2NJi/fRpfM9jbU6KHQ5HxFGM6zr0+j2yuahfKQshFd1un6ysCIVh884mg+MTbt26TZam82JcMJlMag2blMRJjOu4KCW5e+9enQ2kNVCPkZWy7h+wamx+iRQCpSwspWi3Wvzon/yT/IdPf5qjw0NuXL+JmodJfvTjH+Wpp5/h//X/+H9+V/fzD3VxMkpu4zgNKHLKyRC/s0JydIBjN7D8NtqAPfGwT3yUNuzdfA0vMNCymewfUNpgtVs0/AChK4SpSGdTjO3jNvoUg0OEztFBE3PqPKoZUgoblWWo7RtUxiBDjRkPqSYDbGXqeHSpKGbHeK0uwnOxdIWeDSAvkdpQRSkmiRBGYeU5UjqYoIG3vIFstiiMQfcWKdMYef482lQUnotII2SRkV97Bbm2RrmwgCUtZJzTCBo48ZQza0tcXm+TTg8p8gx7Tp6stEEom8qkSGWRFzlaC6pS0PEKNjohr1y9jWVZhEqQJzO8tCDzfNyFbg1o2toCJZFLa+RHd+sTY15QvfYNLMcFx8EP2tBQlFVROzWMwXjhA1sDRZYwPDkhjmZYlqr5LAKkUhQVeJ6PERV5lmNMhR82ULYNwhD4PlWlORoekiYJRV4StNqcv/IwQatNlsZYc7y40RVFXkfO+65NmuUgNGlW3KcgSlmzLcJmjR3XGEpdg+jqooG5ELZEILFtd24nBd+tKbxCCIKgwZGpWQnD8ZhT585RFjmiqpACtKlohCFxUpNGhVQUZV5zUxyn1jYkcZ2GmqfkRYGybDwvmLf94zrFVNQCTsfzcIMAieHo8HC+GVdEcc7t23f4+X/5b/jBD72f597/btrdFj/2yQ/x5PU7/Ktf/hy/uxXTOf8Q3uIqi2evkAz2uP7qV5kKTRk7GDsgcHzi8eEDWwMAjuvRqDSd6ZhzrQaPXjzFRz76g3Q7be7duslgMECXFZWusCyFrSws26LSBmMKPNdGa1G7DypNlqZkRU4137TDRgPHrfNp8qJAKYWyFFBbWHU51w+ZEm3EHKpVM23eodOa+UPKtm2U5VCmKSBQljU/1FggDMIYLKVwXR/biUmTBIFG6Hq7th2HRrPBcDhiNB5TliXdbvf+ujO1ix3H8+jaDpbtMB6NiCZTpuMho1cH3LEdVs6c5wOf+BhPDkZc/N1v8Oa9He4MUw4txTAIiAJDplNMnCKw6uT1SQR2/ZnI0lqjoouIojQY5VA5DqLdQDo2VQGy0cUIiM0MJy+wtOa782p875eQ78C9DNqAJURNec1rlIGSEq0r1tdXaYQBlutjOTau47K4uIhSiqOjIybTKVmeEQZh/V5qc7+4qTsydfHjuvXhR89ZKLZjfyv8T9RjItdVtNptFpeW6iR0zyXwfNIso9VqznOWSnq9Ht1OlyiOGQ4GtbhXSj70wkfYvL1JURQcHx7SabeQUjCdTmueUSPEti2UUoSNBnlRA+KGwwF7u7skUYxjKUIjENJiNJ4wm86YTKf3QwLLqkRrg+97+J5HEIRYluL4+Jiq0hgMeZYBgmzeLVKyLshrE4GuHUT9HlpXOI7N2voaN27c4Id/+IfZ3t7mlVdeZjqb8aXPf54kSb6r+/mHujhJbl9Fr68hbA/L9sjiLdRkQpznyOYibrfLcJJiCUmjtUZ2ss10Z4i1uIyxIBsNKLKYwfEhRgqqJK4V3kVJPhxRxQXaV+BKSKbo4yOM66JPnUNcfIJK14JaipLq3u3aY4/AdV1sz8f2XIp4VJM9qwrba2K1NkgHW9jNLvLMu6lai3B8HWd9A42guLuJaAZoaSGiCXT7MBlTHh5i2TY02ygvpMpzhLawhM3Swjk42aXpu1w5s4BJhvM2o8JS8wm3qIFZ7zxIK63RGLKqwspirvR93lIgqpzqcIwuM3Sjh0hdLL+JLjJQknIyQhxBtbtdn5wcB9t2cdbrB2g2HaKShMw2dfqrUJh49sDWgAGyLEEpgVQKz/Oo8hwwxGmC7XpoqXCUxLJqh4MuC3y/Bgnt7e2Qpim249LuL3Lm4qX6AZ+nGG04PDqcP8Qr1JygW4iaVVLPXXVdfGAwumI2m9FotVBSYlmKotKUQJVrlLIR1KeaLEvnAX4aJSV5npHEs5oAKxVLK2s1rdfzaDaalEUOsrZGdns98rxAG6jKDIFBzu+rZTukyQRH1AnhlqUIA4c0TUmKFMuysZVEG43reFRVQRxnFHk+L4xChsM66TSnzgTaunePf/crQ1575TX+1E/8CU6fPc2lh87zf/qbq/yn//gV/s3n3+DE6hMKRXtxg9OPfYCjgz3SyTHjg02qLEZY35vz4nu9NvKSc8tdHj69wvve917WTp/i7p1Nbrz1JlVZh2w6ysK2664EgprQW4KxJGkO1vzzEc0iirwexUgpCcIQZTuURUVRlBjAday646o1VLU0qzS6tq4KgdbVfYz3O4RSU2oqY2o3lesRjY9whECVBTZQSQNGoVTdKXFcB8/zyNOUNI4RgY8xGj3Pb2k2W0ynU6az6D6mPWw268NIpedaJggatTjasW3G4wllkpDGETfffJXtWzdYP3+Bj3zsw7xrMOTq629we2uHmycjNicO+zZkbh38WdkZKkuxpKBohlS2h5zOkFmBaXjMOg0cV0Kxj+V3cbUidRKKfIw0OSUSa/bgxntSCE5trGPbNodHR/R7PcKwwbvf8262trfwPI/JaMz+/h6e73Pv1m3GoxGNMOTc+XN0Ol3OnD7NZz/7We5t3WMymcw7bPMiVNd6iW6nSzSbUVXfstDqqtb8tNttQj9gOBri+z4IwXQyocgyDg8PuXjhIkVecOfuXcqyotHwyDNTW36NrtdbEOK6LqbSfPHzX+Tk5BitDYuLC7zx5lu8sLJKq9XkcH8foSSbm3dwHJt4FvH662/SaDTm1mfY291lOpsRFZq9/X2uXn3rPs3VdevuV5qmBEHA6soKla7J0ieDYb22MfftyGY+upSqdh5maVpzXzwPz3Xva2a01kymU5Ql2Th1iq3tLcqy5Hd+63M1+O5BQtj+t3K53SWE5SHTnGqWYnwf0Qowo5zq6A7xeBtsD1NVDHdvohyFKB1MnFFFM9K9vfo0JBVes0WCwkgBK6co/RbWaR9BSjw4xMsqdBAiAxd274Dj4koo3BDx6LsQWQ6jI6qyIotjPMsiOj4gj2Z4YYNKg9tdRTgu2D5ea42yqBAGZKcNrkc+nqCTGdJklKNR7fpYWKI0BmlZVFcuox2fYOUMTlJBe5F8523sySG+F3B+tUHPqYmmaVI/XJVt1RumlIg5mIt5Zf9O5kFe/f/ae/Mgy677vu9zlru+rffu2WcwAAgCJCAS4gJSpCQGpEzJjqOyXbIjZ3EllhUzVUmVyqlS8gedihNXUtmqFJlJJVHkSiVmLMWOYptFL5S1kQApEgQJYhkAs2C23rtfv/fufs85+ePcaZKJKgQljjADv28VisR0T+P1fb937+/8ft/FMkwM73/kAl/86vNMb91AaelVLA5sltOMBoS9HnZ/n7BtSM8+jJkeEViDOHmeNkyIrKVdPYEd7xMuLGO1QpmKdrx/12qgLGYUeUa/708h0/ERvX6ve4CEONvSHwxwxvi8JRfhrCGfzaibBtM0hEHIYLTEuYce8QZnZQX+XEAYBNRVQRInVFXhpxLN1DPTlSSQmqquPd8Eh5RdXkfV4OiSYKVG+YU0ZVl68zXreS/90Yi6LGitlwc7azCNJ2+nSytESUyR+3RopXyG0KTIvAqkbZDCy1X9+Ng/oMI4QqvuFCehLHwKtwSsaShbSxCEFPWMIAwIgoAkjslmUwz4myoQ6R755Iimrplawzeen7C5tcOf+qmP8+Ef/RBpL+VP//THePzdD/KZ/+GzPPvcK+xvPEy0sMb5R55EBZJbr79EdrDNwearjF+5a2XA+y6c4RMf/zEefORBbt68yVe+9CXKusY2LUp5srEONEEUgrN+PG88d0ogUEhM21KWFdb41YNfkXiys2lbf4p0lkApwOFMlwQL/n0O9PFJ07SGpm26j5o/XYKgrgqqpkZ2snIh1DGXQTjLd/p7Kqm83D2OmU68rD3uxX6k7iDUAWmaMJtlzGbeFM46R9r31u3WOZraIPGW4aPFBeIkZnY0ZTw5oslKptMJr37zm7z+0kucuvAA7/vIU/xQWfLqN77J5ctv8PytXa60jmzU40gZCBR1XdKGAaKskGUBYYJ2EpcVIBTxykVaU9KEDmQKwtAGpVesLd29JlUIwSzP0FrjnONoMuHg8JAsz9jf3cPiSHs98iwjywsWFxf50Ac/iHOwv7vP1avXOHf+LBcunDuePM5m/ucdTSbgHFXl16crKyuA8ERn/CpNIDg8PPSS/6bt1jcRC6MF9vYPiOKY2cz7R8VxTJ5n3aTOUJQlKggY9vs8ePEB2tbwwMUH+NrXvs7hwRilNUtLi2xsbPDapVcJopDR4iJNY/hn/+Sf8b73PclwNCJJYl566eVurSPIpjPCKOby5cs888wzzGb+vyn4dmqxc5Ysy9jZ3fVNDY6mbjxfTOnjQ5hS/jAlEEgpWVtbY2d7B5y/rm3TYIyhLAq2bt2m3+vjsOR53r0nMJ1O7q5D7L2CtqpxW7s+UEoFBComO9onwkHURwYSYy3l3gHVbEaytk6ysg5WoHsDlocjyukRylpcFBEtr9FECaydREmBm+zRHu4SaIlLAnCOVmi0DrHjA1xZEq+cpBmPiddPU+RT4kFI6Sx1nnvL+F6KsQapNNnODfSwQfeWMU2LExUun2JVhihnBMMRMjhL9tI3qKdjVBgRlCXBibMQJjRVg25qVLKACSX9JGBpcRmRTxkOY955+iTSluRZ7jNXtOq6XD+GpcvuwIExnneCELQGjIEH13u8fvYi1mryw21k3aDWz5JN9hHTCdm1y2jbML3xOtHKCWxdUxdT4igiXD5NrSQ6q7Ar6zRBhBqPaTavYg62714NNAaltSeqNj42Pu33aJqaqiiZTWcEUYSSngtQ5DOqoqZtvSnQwuISyWCBE6fPdR+u1jckdU3T+KYjCDQHe3soJYjiFNvWzKYTkjihaRpm0ylxGOKEQHXGam3lFRNRHCFCyIuK4WiBUGvv2qp8Uqdp/X8zCEKkgDjtea8MCToMjvkH2WyGjCVSat+omoaguwlb41ACdBB6szYl2TvYIgxj72zqHIPRkEDHHOzvYpwlz3LSfo/pZEYcx2TZjCCMaYsMHQTksxlhkmKsJe31cAiybMbm7S1+/df+IS+9+BJ/4S/+DEsry1x86Cz/6d/49/nHn/9tfvlvf46br0v6F36IpVMX6C8s+dUicPOuVQH8m//2XyTPMp75vS96BY4xxwGIILrJoR9h4yxCCLRSSCEQzlEWOW2XXXRH+ZBEEVp7T5rGdATYMEApBfgG37QGAk+INcZiWnOck9I2bcdRsN1kw3D1m89x/dWXqfIcU7c44V0znXOEceTTfTsjNyH9mlLpAKU0xrQ0dUMY+QmPsZ4nlMReZjzJMlrjydnJYABSgXPUTcMdlXMQRCytRMRpwsHBIUdHE6qqoTGGq6++wo3LVzj74MM88eGPcPHRxzj57DPc2NzhylHBt/Yzil7KLAwIZ4bSVphihh0KVOMQVmBDTaVbrHYQBlijiOI+an1IMx1jsjdHhvzD4OxZn7SrteaxRx9jc3OTLJsBjsXlJazzESLhaITWmtFgwGPvfoyVtRXauuXq1as899XnuHr1CrNZRhTHJElCnPiGcDLxD9Yizzl/4RxJknrH1MDz1lRHSj6aHGG7g0JTN/R7fTY3N1ldW2VpcYm012Nre9uvg7oJXltaRkPfXCit6fX7PPOlZ7n06qskSUKv12Nza4s8L3jve9/LjZs3CUI/WRstjFhZXeHg4JCtzW02NtYZH+2iOv+mq9feoN/ve48TrY+zbcIwxDlHmvQIopCF0Yg8z2jbFq29msjTeDyRx3arrda1aK2ZzTJ/2AX2dvc4ffo0UeR//yeeeIJnv/ws3/rmC1x65WXStOebxf0D//l6E7ivmxO3uAxRRL65RasioskMkReolVXEcJnsjUsI5U8TZnFEuLrhx7sLC0g0TTbFVCXV0Ri5vAS9AVJo7HSMWN9AbObIaU6rJM1ohMpyxCyjzabouiBKU+z+LYTUqAsPkWRHtJM9wv6A+miMqWusEOgw7sy6WqwOiDcepNy87q1+aahu3yDQFjNaxuoecvkEcnaEMIZ66xZhuow8+yC6zAnTEU5ItJZEpsa0NalWPPnIWbQpKcuCaVaggwClJErjibxC0jYNVVX4HXnXODtrqeoGpRWJkpxfXeDocMrRzk1M2xJEPYQ7QFtHPt6jakqMdYSL64j+CG0bYueoD/fQoyVcb4SsHOKNV2grh5tMiEcbwDfvUhH4ca7ulBRBoKlKTwoLQm/5buqGss4p8hnOeT5BXdWMlpdZWj/FytoJZtMJbVUxnU1YWFpkNp1grWNxYeTHuwIWFpY4OhpTVyVFNsN26h8t/YMqCkOKPCNKe+i0jzEtUexloK4o0VJSWIsUkjiKQEjyzqtkNpuyvLyMlgrT8Vusg6aqPR+m4zmEYYxrfWZKkqQUeUYY+PyePM8ZjEaUlecatU1FkiaYtqHIMkrZeEJsL0FYR1PWXt6sA6xpmc6OSJOUqm7QShFGCaPFRa/sKgrqqiGKFNdv3OBofMTO7T1++s/9SR5/8gmiOORP/emP8+R7H+d/+ZVf49d+98tsHu6xdP4RlHWMlta+93v5R8AzX/yibwpbv3NXUqClJ+kFgb/NmbbtSJKgtEQKcNZQNl5ZUzdNN9aWxGGEkIrWuE4dZZDOk1ZFZ49vjVc6eekwCOPN+Lz/g5+y4KC17njyIhofLY+zPuJANCi8P4QTAilUZ5Xvuuw3gQ4DwjiiyA1N3QI1NlBgLVL6rKwkjZnNMrIsw3U5Pkl/AJ1Cz5gW01qMEASBJopiVlZXieOE/YNDyrKibhrqpuCVbz7PG5df4x3vepynPvEnOHflMusvv8Lajdu8sT/h+vaMoyBmfGaF2gY0lcHF+HvWoE+oE0yZ0c4mxL0h9WwCUYqRQH/hrtVAWZaELsK0hlu3bpFlmZ8eteb4tL64uMDi4iJRFFEWJX////oN6qqiNf6BW1e19xCqSr/aMAatFMtLSwghKKuKS5de5eq1a/zwDz/ps3Vq7+6suoBZZy3GGJRSSCkQUlBkBdvb2xzsH7Kzs+29PhzUtumcnx1VVaK15tKlVzmaTEgT7xA8HntukdaacrXixq3bPPvMl8nzjCiKWV9fQ2sftlo33iDwypUrnDpzBucsJzY22N3bxbQtk8nUuxh3HJk897EbSNje3qJpWowxNM5z6ZpOkROGIUopr1TqIjCapulWXRFVlXPjxg1WVpZ5/fXLbKyvkeczdrZ3iKL4uyIFjLX//29kh/u6OWmmBTiFHSwhZIKbjXHS0JoYlyyhH3sftAWynMHODtOXX0H3F5jdvkV05gJycY0mnyJXVlDpAmI2o751Fbmygr1xFbG7jeoNcJNDz1Leue3DsYSjLnOyHc+sTzc2YPs6mJZ2OkNJwWhhRF7XOGMIewMYrOMOd7BHO7T7twiGi7TxMmb/dbTxpyelQ5qDQ6j9m677C4h0AVZO41xAEC8j0z69NEZVRwwPtnCy4sKpsyz3FE2ZM5t5NU4gHFqBw+CQSKHRQej9N4REK+mJtl2jcsfh7+J6yq3DVSbbizTZhDSS2FPnyK6+jIx7OCnoXXgn6oFHMQvr8NLvk29dRw4WsNIhtL+h69Zg4z7RAz+BiCP46j+5KzVQ1RVra2vMJlMKIakDPyJP0tQzzU3L/t7RsX+JkD7vJExiHn7scVZOnCabTb0hGY4w1NjOLK1uag4ODgmCgOnkiKrwSattXXs+SVMB3uMiiROqpqY/GCB14LNyipysqVldP8FsOqMsK4Iopqkqf72F6zJvnPenQdC0DbY1VHVDXddIpf30teMwTKZjzyUQAqn915wQOCFobcve7jaBDtBaUeQ52WyKEhIhJa3JieKYMIyYTKbEQUBVVphu9RFHCcY4pFDoMMS2DXUXGCjDmDipsW2LVprDw0Neqhqu/Bf/HT/1yY/xJ//sv8xgNOTUmXX+g1/8OT76o1/nv/rv/w5XvrHDwx/+l5AiuCvv/x0c7O0TR15uq7Qk1H6t5axXWEkhjhuPXhLhED4t2DQ0Xb5IVdee2BjFfpohJG1ruxOkQAdBp9hwOCuwwgE+iVUpP1k1rZewNm1N27SdAZgnaBoLqss6qlv/AEM6tBa4CiIpkF2zo6SXHiMkSmmCMKQqK5qmpW0LwjggUAFN23QyZE0UelL10TSjbg3GOv85ED5rxTl3nJitlV/1xmnCqlZMJ1Nmk4yyqhC2YToe8/Vnvsjll1/ioUce4amPfZQL165x9do1rt3Y4tXbe9y+tcuRlkwJqNOIpiyhzHH9AoEjEi1lfkSrFFJZXD79AzPpflCYZRlBF4rpyat3lDb+gCqFV/Tt7+5jjGEynTJaGNEfDNi8vUkcR6ysLDMcDpFCcv3GDcbjMUIIBsMBRVlQ1f59LcuSvd093wBZzzszrecW3lnNGWughcnREcZYsjwjTXosLy+zuXkbJzw5WnZZS6oLCT08PGQ6nbG7u0fYEXazLGM4GHI0HvPqpVcQHafMGMP169fZ2dmm1+uRxAm3b9/GOktZllRVRRhF7O7uUdU+GVkpyfLKMgLheTPGc6mauvaKIby02jnvMOuc6yYpBpw3mPTS4fqY6+Q6ftbhwSHPP/88P/rRj6J1wIUHLrC/v8d0NjuW298xifteuK+bkzIJUYMRZpqhhiNsGOKWHbK2KNnSxgHuaIaZFdjWojdO4dZP4/a3KQ/2kEvLyOVVODxE25JKR8gHHqENBe7GFWRdEzxwArm8DNkMtCJ56CHcZMbkyiWU9WMvU8xQU40t/JvfNDWmqRidP0/W1Jj9CSHAwhqtcTTZLq4YE55dw6iY6nCXIBC4V19Eti0iSglGa4ze+RTl8knEaA0RRKgkRvcSAlGjXvsGzPaI4wUeOrOMqyuquqasa+9tAQjhw89Ud3NSWvkPgwDZUfpNa71baVV7q3PluHhiyN7mMk0xpRcExBceore6RnF0SJkfYaTGbt1CRAPakw8SjPdpZxMvGVxLsNtXQCrUbAcZvJPcqbtWA71+n7Ksug/rjMgl6MBLcpMkZjw+pGkbwjDsZMIRFx56hKWlFYIg4vplHw2ezSYIII4jyrKgqhuiOEZiKPOMUCsQUEymBGFAGCT+FFHXtKJGAFk2ZXl1g6azz/ZMf8v+/j6BUn7ELBWDXs8HAJbe2KhtanCag/19VJdQO5lNiCJPZDVtSxQEzLIJYRj5VUQQcrC3e+xs2jQ1odb0BgOKLKNq2s7HwzeebVnQtDVxFDE9GpOmfaI4ItudUeYVSscEoeetaOX5F1Vr/O/SGqzwqbnGOaqmIU29Amv/cMJnf/0f8ezvP8e/++/9FR565GHCMOBHfvT9PPLYg/ytv/W/8ev/+H8lWT1312oAOtVSJI5VDq5Lb5ZK+kiG7s90EPh1mu3cW+uaum5orEFJQaD9A8I5ibWOupOIh2HUNSWeU+JXBA4lFE3dYKSFTg1SVg111/BIvHrMCtdli0ikcgRO0bY1de08h0VImtZ4snLHTwGvFBGA1gE6DKmaxpOzG092N9Zh6xqHQGvt+SlZgckKP/FpW+LUN753kurrpqFtBQ7hT/dCM1xYIEoSJuMJk84QzJiWw/09fv9LX0IHmjNnz/LQww+xceIE52/f5ubmLjcPZ1zZP2L/KCfXmjwOaAArBS6vCbMcAp+sLssa29w9QmySxH5VYTvCf8f/wTmy3K+8mrbAHJOVG8aHh2TTGVV3YAjvpA8rxZnTZ4g6ZVSeF94FtXsIN03L1tY2e/ueT9e2LUZ0j10pPa9MeBfasGuap1OLc4bxePwdpFVHv9fHWB/8aY1hd2+fKAqJowghIMsy+r0e73znwzx48SGuXr0GFqaTifdxCgPOnzsHHfflzOnTjNfWeejhh3j5xW/x7Je/wnQ669SE1pNZv8OXSUhBVZWdiKILDRSSpqmRSqE6H6i6ajg8OmR9bZXhcMjrl6+QpAm9tHdMhC3ynL3dXcbjcRcm2OM7E4r9qvXNvZ/3dXPSvP4qrr+FWN3AiCF1OyNZP4FF0owPYDOHbEq4uECxt4MZLUIcYdM+ei/HvfoKJq8QOqAJS8K1k5RJgpvugXFenbK5iR0OoTHYvMJOZ5D0CQcjzHQMQHFwiKkqHBJT+5VCNBxQ7x8y3DhJToo4eZHGgCsKihd+h3RpnfbWNwhOvQM1+DHa155FVAYXD4jWzpJsvIP4wmM0zqHDhHR5GXoKXUywOzdBRVQu5vGL5+nJmqZqqKsG8CdEaw15XpPEIXESoZVCB6F30JWiGxl3xkFCUbeGujXEUnJyQbOwvEqVlxS3r7K6uIhcP4lZWELs7zHdvgXvehJ0iNzbpcpnBKNF1BPvR4QJ7G5TLy0hhaR2JSa8e2VWFxlNVdJPep5XYi3ZzBNXD5XEmZasLFhcWKI3HBL3hiytncC2hp3tHYqyxDQ1C6MhdVXQFDkGgTMts6qg3x/58b01tHWNdQaF55XkeY4zhuHCom8Oooi2Uwq1TQVS+JG3qJiVJYPBENfW7O/lBFGMVJL+cITAr5oC7cmZPhjLeZKEMygBZedtooREBwFHkyOfs6G9jHD9xAna1pDNpv7vCUMQRt5zwxjKqkJpxdbmbRYWl6mKjN2tW6SDEWkvoCpKytznymSzkiiMkdaitcbgLfabxrvhRsrijGM6O6JuK8pKcfmy4T/7T/5r/sq/82/wvqfe751J11b5D/+jT/G+9/5z/sZ/+yt3rQbAe0yoLqvGWWixCG9uTCwEddN4hY0x5FWFtT6c7A6JLwgCpA6QKsAIjXEOV1Q+jDPQhEFAGIXfJpgLsMYhlV/TNZ0kvDUW60zH6bIYV6FkcKx0GK2coD8cUpclVy59C9GNxx0ChEJor/wQ0qvrlJLHjrJBGKLKirpuaPOCsvITPN9MQaA1SmuSNCabZWR1jZ1Oj+3ZpVbHctvWOqwxmNZ7XQghCHXIwsIIJSWTqSeaN93UqMgrvvWtF7gc93j08cd58sM/wsaVy6xeu8wDRzO2jwpuHc64tjXhMAwoFhOEDDGhQx/ueQVd3qL3DnhzQtI/HLwxom8ijTW+GRS+0byjrvHX3MtnpQKlPdFcSHGczbO3v99JdDXTzS2GwyFKSVojUVLRGsksy7zrdDcxC3XQOdAGXjVoLadPnTxuas6eOUMYhqS9lDTpsbW1zc1bN/3kouO2nTl1hus3riOFRAeaJIpZXU1JkhjrIE5THnn0UTa3Njl/4TybW1vESczaxhrvetdjxHHCaLTApUuXSNOEU2fOEj3/TbIsJ47j49rIs44vIsC2XS6YMF0t+UnJYLCEs46iyOn3+hSqYJpptA44OByzsrJMXTdkWcbJkydo6obDw0Ocs1y//gZ10/DCC99iPB57W48gJEni44DG74X7ujmxh4feECyOUYMRNCV2/9CfCLSmsZZ04yxmskty8R3UWU5dZIiyRJsWs7tHsnEaBku0R2PqIkeFMTarUCKimeW4rECMD9G9Hmp5A5dn2PEmpijonXqIenKAyw4xdYWK424fbSjzkqQXUuyPkaMlWgykA9zOJriWNjtCyZB2vOl3eitnYfE04dIpTBgRJQn0hsQ6IFjqIZWh3buFnoyxt2+gqoJ3XDjDuQVFU/tTWmuNP505T15CeTKgtRbrLHGvR3G430V/d6c/vMxRWOF5DUIgbMbKKGE6XSI7uMXhK99AX6xRSyeww2VkbTDTDHd0HbuwSPzhj9PWFSZNMQc76Iffibl+Dbf1BuLEBZRt7loNJInPp6jrEmkVbdMQxRH70wlCCUCxuLjCg48+ztL6Sa68+E1e/sbXWT9xirY1VEXB0mjYSUhnBEohu9O1VIIim1CVOVXppb9BGPpTahjQ7/W8k6gQGOct2r0PgqSum+4G48f9w+GAIi/o9Qc0lf9aVeQI69nyR9Mxp8+cwzlH3vFZ8skRYZLSWsvC4iK3bt5gOFqgqEoWRiPquvZyWCnY3LxNU5QEoXdKxjlmswm9pMdwadmz7aWkLnKctVi8G2k2mRAmEWkc+jWE1oRhdDwWL/ICJSVpFDHo9SnyEmJB0h8SRTFb2zdRUlJUJddvbPLf/Jef4aMfe54//xf/PKPFRbQO+BN/6uOcPn+a97zn1+9aHQipsNYhhJ80WCzSKXCGuoVAS6xxNLb2E5HGy4tdl0otpPc+sQg/VbSOtm38lEpIHIK69soMq1wXTWBxKFrjCax1bWit8SZVTYu3VhM423p5cduweuYCj77znZRlwe7Na4yPxtjW4oQ4NmKTzqGF98vwD1pPtqV7zxB+HH9nupIkfmVmOz6TFIoojmnqmqwoabqHctrreX4MHBNlZddoeQWG98LoDQboMKTppxyOj6iqusumkdRVwde+8mUuvfwSj737cT704x+nKHJee+llFq9c5nxW8sb2IdsHLVthSDUYoPuOxhqsyLBvcqT/h4E1DiP82kxIiXJ4M7Xce8U46IzqZEfy/DYHQnaqLR9T0BIEmqVFH167vb3jnVKb1r/vQhAGIdYY3v2ud3Pz5i129/c4eWKdMAzopSlx0mNtbQ2lJFeuXCHPc6rGJ5KrfcFTT32QP/fn/xz/6B/8Qy698iq7e7ssLCwyy3M++tEf4erVa/T7w27VtMJzzz3HlatX2dzc4sd//MdZXV31K+31NeIo5vobnge2uLjA+voG44NDoiBgYTTkEx9/mtubW2xu3ibLMs6fO49SiuvXbxyvccqyPF5RGWN55B3v4ODggI2NE4zHhwwGQw4PD1kcjciLnL/ws/8q62urvPbqa7z88iuMFkbcvnUbdUtiHVy5cpW6rrl16zb9tOfVPK0hTXsdofx7475uToLYO4+a69dot24TPfgO7xDb9zkocmFIU1eo8RF1lRNtnIK6wjz4EOb2JnEYkx3sEa+eQhqLMwY3mxI5MFGPcHEdZx3xcAGnNOgYWeWY8Q6maelffC9mesDBK18mP9whag0yjHAGoqSPCBMMDlPlcPN1wovvRj/2JObwNnE6wOqE4YPvoqwb9HQF018iWdugt7pO1ZRY14JtKG9fIi0OWUDT1BmjwZBHz5/gofUYZ3yuirXeQwHZrW6UQGu/r75jymSRXm3SfSCbxvi4dGeOnQAbY5C25cxqj5vjgt6pBzncuQGvvECrLsFgBW0sqpjhpMP2eyihaG++gXn1G9jWITfO4q6/RnOwTRImENw9y+rp9Iher++dWcsCawyzbOZlvU6xtLrGhz/+SXq9Pq+/8i1ee+nrrKydZHJ0hNKSqpxRpiHtrKIqMozWqEajAk8ULfICqbyviZaSpq1RQjCbTUlS/4Gr2pq68az8/mjE5o3rnTrKeYM/Jdne2gT8LrxqKlSgGY0Wsc4xmxwxWlykLAuiOKE2xqsyghDT1jhnOdzfIwwCtrduE8UJpvYj1+l0QhJGTKZHHfkzQABN25DEMW1Tc7i/4x/c+NNLVeRMiwxbV+AEWTahSvvoMIDah3k559OZnW0QKqJuGrQVZPkU5wS68KNgKbwLp1SSIsu4vVXxd/7332B7a49/6+f/EiurK8Rxwvlzp+9aDYAntoJv9JrWorTEOf+wVlJ4x2hTH0+S2tZgu+ZBCEEUKZ+rI6RXWjR+AubXQT7RVSu/d5fOoSLvQOrwpmdt4/kGxhjfbFjP+ZBSoIMQY1owBlsVCOMzenqDIUdHYywWZyxSe38Uh0S0FlzbfXat51EYezwBxTpaa7smsiQMdedB4R+yWmpQzq96y5q29lyTtNc7diQWAs8p6h7SgdIIZVHKTxBEnLK6GjCdzJhlmZ82tRbhLNl0yrO/87skvZTHn3icD3/sY5w5d47nv/YcgzTmxMGE3bzm5u3bFDpg3FjKNKJcWrlrNTAajtCdMnFleZmjyYRXX3sVKaQ3VINjG/uqqrhj+eo9aXyTX5YlzjlWVpb5yI99lHc8/DD/4Df+Ac899xynz5zmve95D1/+ylf4sR/7Mb7+3Ne5+OAFPvjBD/B/fPazbHey2tFoAakEZ86c5tHHHmPz9m1msxmmrYjjlA99+EOcOHmS/YN93vHOR4iTBGtbhsNFdna2qaqaD3zwg4xGQ0ajBc6eP8ePfezHsdY/3AfDAR946oPHKsymbmjaxnOrEERx5Lkob7xBVdecOnOK1fU13vWuR9nZ2aVtG5I05eLFB9k/OEAIvyK6evkqQRRwcHAA+DXZww8/yCsvX+LMuTMsLo1QKuA3v/AF/uf/8X9icXGR1rRURcnZs2e5fv06OtDdIcHnDJVVzSzPMN3KRynlyeBvAvd1c2JxiMagGu+8Ksdj6A2ppwcIHfqxtNS4Xg95uI3d3cakMS6fIk48gGsM4vAAWzWIdISoC1Tag9YiihlysIyIUlR/hM1zwqVVhLHYldMEi1vo/hJSJqQLG5jKP8QGJx/EmAZblQTpItOtq6jWYqoa0T5HdO5RguEio9MXmU0ynKlJVtZg9QSR0ug0xtBS2QJjGkx+CO0MEWqa7V2G0vKRJ97BWl/S1hVt50RZVi1N61DS75ADJbqbjEbgZYl1UVPmmU+p7cQCdDkKWoddsqRnnQ9dywMnlnidCJEM2Ln6ArMbr6LjW1ilCcOEye2ryCsvIXSA7bguQmnE1UuYyT62ynHZlPiR83evBowhyzKqIu9qwpvg5UVGls/Iyilf/p1/zHhvF2MFFy6+gyjtMTncZ2l5iYXhkOn4EGNaBv0e+7t7xGmK7FjqR+ODY8Z9ay1LiwtMDseY1vMQ4jihrRvqKqdAUJY3/AkWQV7l1LU3eBv0+8xmM9q6QSntG8GmpihLWtti8oLSZry29RJhGBGGIVlTEwba+zOkA/qjkPH+HliHxVCVOf3Uy5mjMERpTV2VXaaIII0T6qah6nJhTFNRtpYoSbBNjZLKuzsK2NvZJu31ieMEpDe0a+uGME6p8rybGFj6gz5V4W33rXWk/ZQ4Sjk82Gc4GLJ/uIsOYp559uu8/Nrr/NzP/SU+/JEPYd7kDekPXQfOdRbceDKrAY0A2XmO2Ja2MT4XyVpA4qQkDgMC7QP7rLEI4agqv95Syv+wO/wBOqqjsT6XyteFwRpPbG5afy2byjeUsluXtMbgjF+11nWFwa+heoOhd6DVGmehLGucFQgFRltU6zk0SIE13jnWe6L4Jqnqfl9tOmm0Vh0hly6nxzcqTVMjtPYrTOtI0sQ3PYAOFHUnw7fGQpfN42lqftU0HI7QUcRsOiWbeXWHdQaHZTqZ8ru/9yW+9tWv8+hj7+Tpn/xJgijkq7/127zy2mssJ5px2bDrKm5NcrJQcXiXauBjP/6jxy6tCwuL7O3tEQY+SLHqogTKoqSua6IopG29oiYKQ2xnWtcav+a7caPk85/7PL/9z3+b3Z0dmralqSsuXDyPtZbFpQUeeec76PX7CC35kY98hKJr1r0fiG9Ar9+4wZlzF9g4eZoojggDT6CfTnxa+OLCIk/80BMIoN8fEEZhJyOX3dTON/7LS0vHpFPRTW+O/XF6oiOv1scGayA4d/6CvzAdQ/cOT6pt284qoaGpKvb295hOZpy/cB6AoiioqhJhHbu7uxSlVxqtLC/R1A0XL15kaXmRtjHc3tzkkz/5k6wsL/F7v/O7PP7ED/G7v/M71FVFVhQsScnNW7d9QGA3nf4XQkosBASDBGFSH8g3HqMWVmizArQm6I8QgwFuIIhWK2ohSdZOI0xLmxXY3gi1fBKpInQyRKgIh0b2l0gGS1STI8LRIjJOkUkP4yR6MCSsK1odkSyuUHHA4rs+xGD9lJftrV5gevkbaJ0Sn3wYmY4op4cM1gdMrr7I9PB36b/jPYj1M0SjFhn7qUIQh1ghqKh9TousaF2LSDVq4gizGU+cW+W9D5wiFC22rTECbNt2LH5/EgqUIIkVQeAnJ0J4QmSe+/VDmRUY40lQPg6kpaoaXKqRVhALH0KmJTy4JJB6kRevTVk79QD9Xp+yyImX1zCN89LZYopxAhN6e/wgThFCocKIppgRra+gNpbvWg3EvYTDg0N6SUpeFBRljk98HXHi1Dn29rb56le+zHCwwKkTZ8hmOdPJBKk0h3t7BGEMzlJUBWWWoQOfnSJkS1BHtK0PhkySFOMcjfEP2bapqasKIbzbZzObIEWFkJ5kmSS9Lvem4Sg/pKwq0iCgBKI4RaUJKgwZ395kMBwSddby8WDI7PCAovD5PHWtSAd9snxGWSockqaqiZIYJyTWSgaDEdPpFCscVVl7Iq9QWCSTyYRer4dEoIKEtplwcLDL6soGTWsYjHpsbt4mSnsopSnKCuta0jhBhhFFUVHlmc/6WV5jMBxRzgqyrCAvZljnuHh+nfH4kLzI0Dqk10spy4Kbb4z5G//xf86f/Fd+ko//5CfuWg0Ax4Q77x0hkN2ftaaB4wdPe7yuCnTgFUpxTBTF3Qnaea4J1t8HhJfp+oeN8/k4rmtaOn8K21mIKAE4S9tJgJ2l8xSyNF2gY2NaWmePX2uU9EBIWmtwbYOWirL2NuvaOoxUWNcQhQFYh+m4LIAn35oWZwU6Up5cnUR+QipEpyBRSC2RRlIUNYGxtK2fLMVxhJRgrcDhCazGtLjGG3BJrZEI2o7zJKVktDgiCkOOjqbeS0YIf61aw2Q64ctf+X2++c0XeOxdj/Gej3yEd73vfVx64QUuvfY6w919FicZm5MZ1+9SDdy4eQOlvbJpb/+AoihYWlnppN2mI8dCmvrYiv39fcIwJIpimqZmMpn4dZ+xhGHAYDhg0O9z7tw5pPRcsG984wWklLz80ivkec6Nm7e63B0/mZTd5DpNU6qqIYoSHrh4geXlZQb9PmEUduaIsrO59w3InWWXT7XuAlo71ZExd/KIOr+eY/8eD3NHMWNd15jK46/f+V+HJ2874VVLgdaeIByGhFFEvVz5BqxrWLI8pygKjHWcOnvWvz7h5fenzp2jLivqqqI/6NPWNTdu3ODMubMcHY05e+4sO9s7nDx9mjzPCaOIqq6oqgolfZTH9Zvfuwru6+YEHUCUIquGcPUkVklclpMO1qlnY6TQJAtrmHiEJSSQArV+Gtm0xE2N1RGut0xd1ZgwIkgHKC1AB7iqJgxCEBIRaG8zbhxSSYgTVBhTtgY5GBANTiEXV8lNg+iNGKZDpLME/SHsLxBKP8FoVYSpCoLlNUQQEC6sImRAa1qMq6mnM9phQovF1Dkc7dO3DR9YW+ATH/kQkWiZHu4ek/hs53AqhCXUgBBEkSYMhDeLkn7f7YQA55N2ZRiiwxhZ+NNda3wgYFNXaJX4WHhtkEhi7XhoUSHdSa7OGtZG78GYhqK2tK6mbR+DOKLOZkgXEPaH2Mbvz7PZGKkCJge3mR3cuGslMD4YE4UR09mMoiy9x4XSPPzY4/4krTSj4RDTWvJ8ShJGgL8x1GXN0fiQpZU1FpdXycaHndOqwaEYH+7jrKNqC5/8G6cUWUbbNljj2N3dYXlpmcj1/fdVJc747Bwtpf/wN35NogKFDEKapmU8PiBJEya3blGVOcPlZYTURFHIWnoC2obtrduMRgu0bYUQjqXlRfb29o9rcnxwQNrvczTeZzyRNFVBmvYIlCKfToiThBZo24bZbMbK8ir7+3u0TUMgA2b5FIVgMrXoICIOAiazGa0xhKEEFVDVDZPxARqJbVsODvYoyopyNqVqK4IgJNIhtzdvHMsMF5cWWVhZYW9nFze1NFXN5/7vz/PGtbtXA0A3pfA3Y2ssrcN/NpyXXVvjJwp0E4YgCr0CB0lZtwhn/fTFeEVFECickBiLd0luWkAgpGcr4OruBAtKiG71Y/yaxHmOR90YtPRNirMWCbRF7hsnIO0PKesaITXOGZwCBSgVYp0AJ/zEqnVYLNa4LlTQpyeL75iiOGsxuVdiWOvlyFXboqWmEQaU8etj62iN57BEUeBXUw4EEuM6Hpqx2KbqJkNdqCFgGovSAYtLi0RFxHQyo3TVsYW7s4bpZMKXn32W5772HA8+/CA/8qMf5UMff5prr73G73/xS7z46uv83l2qgThOfMhft6oJAs1wODwmwnp/D9llahmSNPH10n1ttDDy6ywh/We8a2S1kkjl3XqFEF6KrQN6/QHOWaI4pt/rMRyNGI1GDIcD0jQlDCOCQKN1Z9rnaS5/4OTAdVJnIVWnZhGIY/sz/+98R2MiOpdvL50PiCM/+fZEX+M3J933H8u3u35GSIFEorQiDAKSNPHNe9PStC11VRNOJgipyDLvPlwWpT+MdaRhpX021crqKlXtE5qRAoFlOBrR61yKnbOcO38WayxZnpNnBUWRw+9/5Xu+n/d1c9JfPkswWMbVBWowwqZDqEv0+lncwQ5BnKJUguj3qBtLFMQ4oSFSEKQEVkAYIlWODCKMdMg08fvquMGFIRhDPT0kTIfYuiGIU6yAfn9IOd7H5BmtdQT9IYmSGBUQjhawrSEKNaKXoqSmLkuWljf8GD2JfUqt8nkdsppRNzWhFkRNTj8NWR0MePjiBu8/t8pqT7F98xrT6RHOgZayO9X4D6FwjjgKCMKQINQEQUgchkil/OkKv/q5dvlVekniQ7HCiDAxmLIC4c12mqqikoIolF6OrCCg5vGNiLWp5vq0ZDsryeqSaGmRfhKxu30LWTbIjj8R9lLqvKQ3XCIvC5LeMvXR3XOIHU8OGfQ9OVQLSW0NUjp2Nm+T5TMUjqZtWFpc8k2aCsgmhwggiiOGo0WODvbY291CCf9BN8agwhDhHEVZoAONw1DkGbosaDor5zSOqaqSoq4JlMK0LesnTyMQTCdjZgd76DAk7Q+QKqAucwId0Vv1jcLqiVM0Tc3s6AjTb2mriqPxIVVdYuqG2zeuo4KA9Y0TTMYznHGUbYFxkKapd3NsPPl10En5atPSH/mb7OKiJ80V2Yx8NqMoMkzngrsYrYKEbDalKkvC5SWOjg4Ig4C2UVjj0DpEqYA4icmKHCUFbVuxsLpBL+3xxrXXMNYrk5qqJu4l5GVBs7XFdDZDOZBKEyUJl1+/etdqAPANu7xzChXUbQ2iC9wTDtE9GILQ+/3oMKK1Dox3WhV0WTtKAhIhlOetdWsZKTyPxyscFF1kFaa1tDjvqWb8Csk6i7B+RVQ3nqAupZc7u7ZFWAfS0V8c4YyhNg4rApQD7UCIFmE8UUxpQYP0qjrnHzTOeaJ7EPh4hMYYH8RmHLXzvif+geRtccMo9GRb6R1sK1t3a12vyvDSa//7OOh8jyxt23FmlOz4Gq4zl/N8JDFSiNmMvMh9vljrunuJoaprvvH881x66WUeuPgAP/zUB/iz//q/xkNf/Sp/++/9xl2pgX/+W7+NDlRHdPa/kFTKGyVqTdRFAQSBX/0ordDSkzNFFy9xhzB8Z7olpezMLDVRGJLECeEwZGFhgdFoxKBrRO74lfjmhuOL6dco5rucil2n3jkmJ3f/PQtIa7nzA6Ts/g7QWbUer3PuNDCu41AhRadE4rumKndUYgiHdPK4QXE4z9fuIITsnh8hSZowWhiy0XGo6sons08mU/b39jg8PKQoS4oi91ldYUDcNYWuIzj2eqmnCXT/NaUUSZpilyxFnr2p9/O+bk7ic08QDoY0dUm5d5vhyjnqusLJiHT1HA4Ikj5N3aKDHkk6oDE1LpDIMEE6XzhBf4mw30cEilAH3jOk2kOEEcJYnNT0FpYpZ1NUHJHGsbd8D2N0GIMQuCRF6ADZNKhAo1OJdIY4jHGmRUuo64owHZKkCYkzrA8TBoGlHRekOiSRkoVQErgCbXMCeUR2fZujbjTthDuWSjoBxjQ45/0snAXTOITwpzVvg+1PVn4S7Cgnh2ggDHUnQYRQS7I8RzqDsyVtUVNS4OKQMPRa+0i3PLSiOLcccm1PcGmz4nB8xHhyhI4SXH+IM5Zs8wa5lKBD0BFSGpSrCYeLd60GpPR5JdY6+v0hq4MhQmtmk6POHbUlDhWzPCefHBGnA7J8Qqi0/3u9Yaewchjrx/5BFBIIqNoGgSMUgl7aoygKVjY22N3dRStBPpvRNIaFpeVjJUA2m3mVxHRKUVWcO3UG6wxbt26jA81gIWF5bZ2yKDjYP6RpatrJhKYqKQp/QinLzJvkGUN/OCTQmqPDA3qdwdvB4ZillVWEUFRSHRvGSaBpa25ff8Pv3Hd2/cSuqSmFPyEPF5aYjPeZHY1pjAGp6EURdW0YDkeeYJz403fdNtRV4cmgWtMaS6Acs6NdTNvgTENW5WgdgXQdedNgWr9WSfpp932Gafbmbkh/WJiOrCmVPHaJ9SRv51dzSNIkJNBhRy51nXto62mxzt+wrXXdxNFLUZ0T3vBO3lkTtZimIQi9Jb91DmHx6yMrjqcnd8zU/HjeYltHbVqaxidbO+eJiwiJaQxgcUHQGYZ5PxSBJSLCSfyDv3sAOQR3TDZb6yXLzgmUBNc4jGsIgtCf/E23chCik/Z7bom1Fc5avwrqLMpdN3UyHTHeOYe0nXmdkp0df7fe6q5fEsdorX1YomwQBlpbo7SfBmVFwTe++S1eeukS58+f4ckPvv+u1cB0NjtemwRadZOLAKm8nFhKz78x1hAYTUSIDjyn545xm8SvwYXweUxxHJP2vHHa4uICSZp4oz797UiQO5MQ73/SHE9BfHMrfe6OEH5lA10+DXDHC4mumfqOpuY7eSXHMxTnjhOQhRAEQcBsOuObL7xAFEVcuHCeLMsYjUbHDdidxkbQNVz/r3WPb2Zk1wj57xHdukkpTybXyjdoWmsGwwHr+Qbj8ZjJdOqb46ahaVryPPOqpq4Zu+NqHXQO1ndeU12/OfXmfd2ctFGPsL9EFGhMntHkFWrYJwh9FH3UH/gT3cIKrQwxCIQN6MVxJ6U1tNmEME7QdYOqKmRbgw6JkTSmRjnL+gMPUosA11TIOqepcpJeyomhwo13saZGRYtETlAVR4SizyA/pG9LekmKihOKZoZRDaIJWNKrKClpi33q0pJrSe4c1dZNbL6DlJYw8GFxzgnq1ttWO+tvGIEOvOqjrjppIR3hyZ+gpNaUVY2xjkhJiqqiKkv6w0Uef99TbF57FWcaz1NREtvWSNP61FspaV2ALcGEITZKaLTfE5q2Zl0HLJ1MKcSI7TwktwIrBGWVUdAQDEYYNCYM2DsoSAaSuhVcuUs1YDqNvpQByydOIPGZEGh/+suyjNa2LC0uEacpRTFDoRgMR5474EAHEVIrDnb3GCwskQ5G7O1sYpvG8wqMwUkFGK5fuYIVUFclvdR7qxhrMWVBY71fQVNVGNuyfvIkh/v7TKcTemnqH05Vzqsvv+hVLrLpHlTOu0lKTRCn4CxlmRMnCcN+n7qpidOUPMvoj4ZgDa+98hInTp7ubgTeo+HE6dMI4PVLL1PXNUeHB6yunyCMYiZHY6qqJu4PyfKcfn+IMS1tlVNVJUFREkQxQRBirKOuM+IwRuuAtjWcvvAA169dJS9y35jt3u68OQRCCYSRCOGQKsA5QRBFTCYTqrIgSFJGC3evQQWo6tpzrOq2i2cQSCXAepK4khKHd0Wl8z1x3TpG4Jt+03qysggUjWkx+AexFCACjXA+78g5S101nWlX4FNb29b7KzUtjWm98aExndLG/+PXDa3f++PQwj+oqjInSmK//hHCp1wLP9CvqgYp/cPPS2B9Q+S4w4/Bj/JpvSGcMSgliYwjCBR104LwD0kVKkJnaVrvh9TahrLEH66cN2m8o9qzzoETNNaCcbgatPI+QqY7+VvrCZZCKPr9PkVV+dN0CE1Te9WRBmEcVVPx8iuXePHll+9qHThrOy6dpaZz6b2zilCKMAwIw5AkSVhaXOTUqZM+YkJ1pGhrqeuqa04iPw2RfqoAUOQFVVUdNw6uqx3vbeSbtyRJjr/nTsifsT4wTwivlNJKsb6xzmAwPHaIzfOcNE09x6njFllbs7O7x97uLltbW5RF4VdVnYfKe3/4SZ760Ido24a//3/+Pb7+3Nf94TeO6fX7aKWIOk8lrTT9wYB+v8/Zc2c5derUsYxcCNG5Z7vOTK3wnBNjCLTuDP58s2ealqqqyLOMw/GYsijp9VLfuN6pEeMl9VlWf9sMD8BB07yNm5PjVEPZYqspWvZJl9e9Q6xwGCxKAsUMCZSH27RVST2dcPriRUbDIe3siKDOaJKa9ug1pDHgDNJZBr0QYRqka2mrDGUSXG1ppkfYtiUKFREN+qGPkO1fxo5v+QYATzSVQUAbRdhRn8Ot2o/rtEaoFPeep9haO4WVASwvUQWaOsvQt2/ClZeZbt0gDEKGwx5lVftQtzgGKTFNAzJEZEe4pkFFEXQ3n6qqaVqLcZKirL1aSViqqQ9aMq1B3Nri5rWrJFFAEt+x4u7yYUJN0FkWeztzvNpH+OmL3116OaPngvsJTioVjZPYskLVDRZBLDwRb6Qi4kBRlvV3v28/wBpYWFwkjWPyLOfg9k2SpEfUH0K3KdcSqrphd3ebhYVF70uiFds7myyNRkxnM6+8iWKqtqTZ36WqMqIwYFaU3rcERzYZ+/e1rlBSEoVhd0ry16lsGm8HHgZY02BquH3jOnHax9iWrCjAGXYzb+Hd6w9pTYWQcLi/x/qJUzhrWD9xgsuv7ROG3h1SaE1bFhBY6qamrgqiKKIoSrY3b9G2lriXkiYR11+/hIoiRsMhdeuNvA4OdmjqijhKwFk2r1+m3+8jlcI4Q9rv07YG09QUTUOa+htrXddMZ1PSMGGWT7GuJekNSZOE2fSIosyxxj/olJx5ma1pOsdJ6V2Hgair3ar9wdfAd/68LPfOn1p6CTFSYcsWid/Lx1GEaxoMgBA0prM2d98+kWrpT4dB6z8bgVbHY/q6FlgEuvTJrDhL26UUe46Gt603Xb2I7oHfWEMgBcL61dDB4T5H0yOU1uRlRt00TLOcvG3QgUYJhcgyv25w1ucCdRrYrl8Ay/Frb5rqeNpxh4+ilCJXZdd8u+7sIjr3T+dXwsarltrWEESRb4igM47rnKMlyG51IES3BhLCS7A7jxiHI9DqePyvpMaayjthd5L0xrTIbuSfz7IfeB3c+Vnes+PbxFQhBCrw76nWftoRRBFxHHHqxAZLS0ssL/lAQK39+hFrmWUZN67fODZpFALKLq+rbrxx3x3eh4NuUqOp2+b4QQ++mXMIBoM+w+GQpeVlFhYXiaKQwXCADgLP8ZLfdiOGbrLSTbGsdVjTEkUhJ0+eoJem6CBgMByipGRvd5/FpcVupWJZGI26e1bHTdIBcRzR6/UIQ/+/6yc2GAwGFIVPO29NSxiEndtrinOWMAoQwnmFVubDQZ0zSKlRgWZtfY0kTT3xtyxRXVCgMS1VVftctiDwJGNX+5Tj7vlxZ9L0vWpAuB/03eKPAVeuXOHixYtv9cuY4/vEjRs3OH36B+N3Ma+B+xM/yBqAeR3cr5jfC+b4XjVwX05OlpaWALh+/Tqj0egtfjX3PyaTCWfOnOHGjRsMh8Mf+M93zjGdTjl58uQP7GfOa+AHj7tZB3ejBmBeBz9ozO8Fc9wrNXBfNid3wom8bOsHf/H+RcVwOLxr1/MHfdOY18Ddw92qg7vx4JjXwd3B/F4wx1tdA/J7fsccc8wxxxxzzDHHHyPmzckcc8wxxxxzzHFP4b5sTqIo4tOf/jRRFL3VL+Vtgfvxet6Pr/lex/14Te/H13wv4368nvfja76Xca9cz/tSrTPHHHPMMcccc7x9cV9OTuaYY4455phjjrcv5s3JHHPMMcccc8xxT2HenMwxxxxzzDHHHPcU5s3JHHPMMcccc8xxT2HenMwxxxxzzDHHHPcU7svm5Jd/+Zc5f/48cRzzgQ98gK985Stv9Uu65/DX//pfPw6nuvPPI488cvz1siz51Kc+xfLyMv1+nz/zZ/4M29vb3/Uzrl+/zk/91E+Rpilra2v8tb/2145Dm95qzGvgzeHtXAfzGnhzeDvXAMzr4M3gvqwBd5/hs5/9rAvD0P3Kr/yKe/HFF91f/st/2S0sLLjt7e23+qXdU/j0pz/tHnvsMbe5uXn8z+7u7vHXf/7nf96dOXPGfeELX3Bf/epX3Qc/+EH3oQ996Pjrbdu6d73rXe7pp592X//6193nPvc5t7Ky4n7xF3/xrfh1vgvzGnjzeLvWwbwG3jzerjXg3LwO3izuxxq475qT97///e5Tn/rU8b8bY9zJkyfd3/ybf/MtfFX3Hj796U+7J5544g/82ng8dkEQuF/7tV87/rOXX37ZAe6ZZ55xzjn3uc99zkkp3dbW1vH3fOYzn3HD4dBVVXVXX/v3wrwG3jzernUwr4E3j7drDTg3r4M3i/uxBu6rtU5d13zta1/j6aefPv4zKSVPP/00zzzzzFv4yu5NvPbaa5w8eZIHHniAn/3Zn+X69esAfO1rX6Npmu+6jo888ghnz549vo7PPPMM7373u1lfXz/+np/4iZ9gMpnw4osv/vH+It+BeQ18/3i71cG8Br5/vN1qAOZ18P3ifquB+6o52dvbwxjzXRcIYH19na2trbfoVd2b+MAHPsCv/uqv8vnPf57PfOYzXL16lY985CNMp1O2trYIw5CFhYXv+jvfeR23trb+wOt852tvFeY18P3h7VgH8xr4/vB2rAGY18H3g/uxBvRd+alzvOX45Cc/efz/H3/8cT7wgQ9w7tw5/u7f/bskSfIWvrI5/jgxr4M55jUwx/1YA/fV5GRlZQWl1P+HRby9vc3GxsZb9KruDywsLPDwww/z+uuvs7GxQV3XjMfj7/qe77yOGxsbf+B1vvO1twrzGvij4e1QB/Ma+KPh7VADMK+DPwruhxq4r5qTMAx58skn+cIXvnD8Z9ZavvCFL/DUU0+9ha/s3sdsNuPy5cucOHGCJ598kiAIvus6Xrp0ievXrx9fx6eeeooXXniBnZ2d4+/5p//0nzIcDnn00Uf/2F//Hcxr4I+Gt0MdzGvgj4a3Qw3AvA7+KLgvauCu0GzvIj772c+6KIrcr/7qr7qXXnrJ/dzP/ZxbWFj4LhbxHM79wi/8gvut3/otd/XqVffFL37RPf30025lZcXt7Ow457x07OzZs+43f/M33Ve/+lX31FNPuaeeeur479+Rjn3iE59wzz//vPv85z/vVldX7xn54LwG3hzernUwr4E3j7drDTg3r4M3i/uxBu675sQ5537pl37JnT171oVh6N7//ve7Z5999q1+SfccfuZnfsadOHHChWHoTp065X7mZ37Gvf7668dfL4rC/dW/+lfd4uKiS9PU/fRP/7Tb3Nz8rp9x7do198lPftIlSeJWVlbcL/zCL7imaf64f5U/EPMaeHN4O9fBvAbeHN7ONeDcvA7eDO7HGhDOOXd3ZjJzzDHHHHPMMccc3z/uK87JHHPMMcccc8zx9se8OZljjjnmmGOOOe4pzJuTOeaYY4455pjjnsK8OZljjjnmmGOOOe4pzJuTOeaYY4455pjjnsK8OZljjjnmmGOOOe4pzJuTOeaYY4455pjjnsK8OZljjjnmmGOOOe4pzJuTOeaYY4455pjjnsK8OZljjjnmmGOOOe4pzJuTOeaYY4455pjjnsL/A9UEJh/FeJc5AAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "# Printing the first sample of the each minibatch of size 8\n", + "\n", + "plt.figure(figsize = (100, 100))\n", + "\n", + "f, axarr = plt.subplots(5, 4)\n", + "i = 0\n", + "j = 0\n", + "\n", + "for batch in train_dataloader:\n", + " original_image, image_name, input, target = batch\n", + " print(image_name[0])\n", + " axarr[i, j].imshow(original_image[0])\n", + " j += 1\n", + " if j%4 == 0:\n", + " i += 1\n", + " j = 0\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Copy the required files from the repository to Root" + ], + "metadata": { + "id": "BDoZcfeX63aq" + } + }, + { + "cell_type": "code", + "source": [ + "# Copy pretrained model from repository to root\n", + "!cp road-detection/TwinLiteNet/pretrained/best.pth ./\n", + "\n", + "# Copy pytorch Neural Net from repo to root\n", + "!cp road-detection/TwinLiteNet/model/TwinLite.py ./\n", + "\n", + "# Copy Loss function pytorch code from repo to root\n", + "!cp road-detection/TwinLiteNet/loss.py ./\n", + "\n", + "# Copy all reqired constants from repo to root\n", + "!cp road-detection/TwinLiteNet/const.py ./\n", + "\n", + "# Copy all val.py from repo to root\n", + "!cp road-detection/TwinLiteNet/val.py ./" + ], + "metadata": { + "id": "sQGZMaLUnYye" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "## Load the pretrained model" + ], + "metadata": { + "id": "QrOBDJi87Amz" + } + }, + { + "cell_type": "code", + "source": [ + "import TwinLite as net\n", + "\n", + "\n", + "model = net.TwinLiteNet()\n", + "model = torch.nn.DataParallel(model)\n", + "model = model.cuda()\n", + "model.load_state_dict(torch.load('best.pth'))\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Et8TxQbdh-jl", + "outputId": "01230fba-89e9-46a3-d354-141c7e51fcdf" + }, + "execution_count": 67, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 67 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Intialize loss and optimizer.\n", + "\n", + "- This is based on the original code from paper author" + ], + "metadata": { + "id": "n0X1UQbA7EzP" + } + }, + { + "cell_type": "code", + "source": [ + "from tqdm import tqdm\n", + "from loss import TotalLoss\n", + "\n", + "lr = 5e-4\n", + "optimizer = torch.optim.Adam(model.parameters(), lr, (0.9, 0.999), eps=1e-08, weight_decay=5e-4)\n", + "\n", + "criteria = TotalLoss()" + ], + "metadata": { + "id": "QfBEZ0m2yJdZ" + }, + "execution_count": 68, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "args = dict()\n", + "\n", + "args[\"lr\"] = lr\n", + "args[\"max_epochs\"] = 8\n", + "args[\"onGPU\"] = True" + ], + "metadata": { + "id": "ZjDD0kdoxsBl" + }, + "execution_count": 69, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "args" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "yK-XipnNyg6-", + "outputId": "6e46b2ce-dd63-438f-b092-55a22dcc9d99" + }, + "execution_count": 70, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'lr': 0.0005, 'max_epochs': 8, 'onGPU': True}" + ] + }, + "metadata": {}, + "execution_count": 70 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Intialize Polynomial Learning Rate Scheduler\n", + "\n", + "- By Paper Author" + ], + "metadata": { + "id": "6HloyA_M7aZD" + } + }, + { + "cell_type": "code", + "source": [ + "def poly_lr_scheduler(args, optimizer, epoch, power=2):\n", + " lr = round(args[\"lr\"] * (1 - epoch / args[\"max_epochs\"]) ** power, 8)\n", + " for param_group in optimizer.param_groups:\n", + " param_group['lr'] = lr\n", + "\n", + " return lr" + ], + "metadata": { + "id": "57m3r9mrw32u" + }, + "execution_count": 71, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "## Write a trainer function for each epoch\n", + "\n", + "- By Paper Author" + ], + "metadata": { + "id": "gJz_8_Ff7eL5" + } + }, + { + "cell_type": "code", + "source": [ + "def train(args, train_loader, model, criterion, optimizer, epoch):\n", + " model.train()\n", + "\n", + " total_batches = len(train_loader)\n", + " pbar = enumerate(train_loader)\n", + " pbar = tqdm(pbar, total=total_batches, bar_format='{l_bar}{bar:10}{r_bar}')\n", + " j = 0\n", + " avg_train_loss = 0\n", + " for i, (_, _, input, target) in pbar:\n", + " if args[\"onGPU\"] == True:\n", + " input = input.cuda().float() / 255.0\n", + " output = model(input)\n", + "\n", + " # target=target.cuda()\n", + " optimizer.zero_grad()\n", + "\n", + " focal_loss,tversky_loss,loss = criterion(output,target)\n", + " avg_train_loss += loss.item()\n", + "\n", + " optimizer.zero_grad()\n", + " loss.backward()\n", + " optimizer.step()\n", + " pbar.set_description(('%13s' * 1 + '%13.4g' * 3) %\n", + " (f'{epoch}/{args[\"max_epochs\"] - 1}', tversky_loss, focal_loss, loss.item()))\n", + " j += 1\n", + " return avg_train_loss/j, loss.item()" + ], + "metadata": { + "id": "QMqLJaF8xRAn" + }, + "execution_count": 72, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "## Train the model with custom data and also print the loss\n", + "\n", + "- This loss is based on the paper" + ], + "metadata": { + "id": "Dx0ZjFpZ7j2x" + } + }, + { + "cell_type": "code", + "source": [ + "print(\"------------------------------------------\")\n", + "training_loss_last_batch = []\n", + "validation_loss_last_batch = []\n", + "for epoch in range(0, args[\"max_epochs\"]):\n", + " print(f\"Epoch: {epoch + 1}/{args['max_epochs']}\")\n", + " poly_lr_scheduler(args, optimizer, epoch)\n", + " for param_group in optimizer.param_groups:\n", + " lr = param_group['lr']\n", + " print(\"Learning rate: \" + str(lr))\n", + " print()\n", + "\n", + " # train for one epoch\n", + " model.train()\n", + " avg_train_loss, loss_for_last_batch_train = train( args, train_dataloader, model, criteria, optimizer, epoch)\n", + " model.eval()\n", + "\n", + " avg_val_loss = 0\n", + " i = 0\n", + " for batch in val_dataloader:\n", + " _, _, input, target = batch\n", + " if args[\"onGPU\"] == True:\n", + " input = input.cuda().float() / 255.0\n", + " output = model(input)\n", + " focal_loss, tversky_loss, loss = criteria(output, target)\n", + " avg_val_loss += loss.item()\n", + " i += 1\n", + "\n", + " print()\n", + " print(f\"Average Training Loss: {avg_train_loss}\")\n", + " print(f\"Average Validation Loss: {avg_val_loss/i}\")\n", + " print()\n", + " print(f\"Training loss for last batch: {loss_for_last_batch_train}\")\n", + " print(f\"Validation loss for last batch: {loss.item()}\")\n", + " print(\"------------------------------------------\")\n", + " training_loss_last_batch.append(loss_for_last_batch_train)\n", + " validation_loss_last_batch.append(loss.item())\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ji-d8PG1xKVG", + "outputId": "a7f6f6ba-59e8-4e12-a903-e803496202cc" + }, + "execution_count": 73, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "------------------------------------------\n", + "Epoch: 1/8\n", + "Learning rate: 0.0005\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 0/7 0.1699 0.1075 0.2774: 100%|██████████| 20/20 [00:09<00:00, 2.19it/s]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "Average Training Loss: 0.37254337817430494\n", + "Average Validation Loss: 0.3985534608364105\n", + "\n", + "Training loss for last batch: 0.2773999869823456\n", + "Validation loss for last batch: 0.3867541253566742\n", + "------------------------------------------\n", + "Epoch: 2/8\n", + "Learning rate: 0.00038281\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 1/7 0.2103 0.06577 0.2761: 100%|██████████| 20/20 [00:09<00:00, 2.19it/s]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "Average Training Loss: 0.27785795703530314\n", + "Average Validation Loss: 0.27806347608566284\n", + "\n", + "Training loss for last batch: 0.2760956585407257\n", + "Validation loss for last batch: 0.2722281217575073\n", + "------------------------------------------\n", + "Epoch: 3/8\n", + "Learning rate: 0.00028125\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 2/7 0.1389 0.05824 0.1971: 100%|██████████| 20/20 [00:08<00:00, 2.36it/s]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "Average Training Loss: 0.2262256920337677\n", + "Average Validation Loss: 0.25204700728257495\n", + "\n", + "Training loss for last batch: 0.1971188187599182\n", + "Validation loss for last batch: 0.3023596405982971\n", + "------------------------------------------\n", + "Epoch: 4/8\n", + "Learning rate: 0.00019531\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 3/7 0.1078 0.04385 0.1517: 100%|██████████| 20/20 [00:09<00:00, 2.17it/s]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "Average Training Loss: 0.19270427376031876\n", + "Average Validation Loss: 0.23231724401315054\n", + "\n", + "Training loss for last batch: 0.15166451036930084\n", + "Validation loss for last batch: 0.2639728784561157\n", + "------------------------------------------\n", + "Epoch: 5/8\n", + "Learning rate: 0.000125\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 4/7 0.09583 0.05792 0.1538: 100%|██████████| 20/20 [00:09<00:00, 2.17it/s]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "Average Training Loss: 0.16028463132679463\n", + "Average Validation Loss: 0.19568767150243124\n", + "\n", + "Training loss for last batch: 0.15375079214572906\n", + "Validation loss for last batch: 0.24625156819820404\n", + "------------------------------------------\n", + "Epoch: 6/8\n", + "Learning rate: 7.031e-05\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 5/7 0.08385 0.04618 0.13: 100%|██████████| 20/20 [00:08<00:00, 2.38it/s]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "Average Training Loss: 0.1617955170571804\n", + "Average Validation Loss: 0.19566503167152405\n", + "\n", + "Training loss for last batch: 0.1300331950187683\n", + "Validation loss for last batch: 0.16308508813381195\n", + "------------------------------------------\n", + "Epoch: 7/8\n", + "Learning rate: 3.125e-05\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 6/7 0.1078 0.07069 0.1784: 100%|██████████| 20/20 [00:08<00:00, 2.25it/s]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "Average Training Loss: 0.15240405797958373\n", + "Average Validation Loss: 0.18688194453716278\n", + "\n", + "Training loss for last batch: 0.17844918370246887\n", + "Validation loss for last batch: 0.15327155590057373\n", + "------------------------------------------\n", + "Epoch: 8/8\n", + "Learning rate: 7.81e-06\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 7/7 0.08908 0.04886 0.1379: 100%|██████████| 20/20 [00:09<00:00, 2.14it/s]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "Average Training Loss: 0.15412542335689067\n", + "Average Validation Loss: 0.18836524585882822\n", + "\n", + "Training loss for last batch: 0.13794226944446564\n", + "Validation loss for last batch: 0.2271018773317337\n", + "------------------------------------------\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "\n", + "x = list(range(len(training_loss_last_batch)))\n", + "y = training_loss_last_batch\n", + "\n", + "plt.plot(x, y)" + ], + "metadata": { + "id": "e_t6Im7KPKCf", + "outputId": "d1ac48a8-eace-434a-8749-cce634d3017c", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 447 + } + }, + "execution_count": 74, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 74 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABM50lEQVR4nO3deVzUdf4H8Nd3ZhgGEIZLORTF++IyUCI1ayPNzGvTzJ+Fa9vl2mFUq7SrWKagUVnpatlWbqtpW+GRhQerduEF4YF4HyAyIIoz3DPMzO8PYJRVlOGY7xyv5+PxfRBfvt/vvL+EzIvv9/P9vAWj0WgEERERkRWTiF0AERER0Z0wsBAREZHVY2AhIiIiq8fAQkRERFaPgYWIiIisHgMLERERWT0GFiIiIrJ6DCxERERk9WRiF9BWDAYDLl26BHd3dwiCIHY5RERE1AxGoxFlZWUIDAyERNL0dRS7CSyXLl1CUFCQ2GUQERFRC+Tn56NLly5Nft1uAou7uzuAuhP28PAQuRoiIiJqDo1Gg6CgINP7eFPsJrA03Aby8PBgYCEiIrIxdxrOwUG3REREZPUYWIiIiMjqMbAQERGR1WtRYFmxYgWCg4OhUCgQHR2N/fv3N7nt6tWrMXz4cHh5ecHLywuxsbE3bV9eXo4XXngBXbp0gYuLCwYMGIBVq1a1pDQiIiKyQ2YHlg0bNiA+Ph6JiYnIyspCeHg4Ro0aheLi4ltuv3v3bkydOhW7du1CRkYGgoKCMHLkSBQUFJi2iY+PR1paGv79738jNzcXs2fPxgsvvIDNmze3/MyIiIjIbghGo9Fozg7R0dEYPHgwli9fDqBuwragoCC8+OKLmDt37h331+v18PLywvLlyxEXFwcACAkJwZQpUzBv3jzTdpGRkRg9ejTefvvtZtWl0WigVCqhVqv5lBAREZGNaO77t1lXWLRaLTIzMxEbG3v9ABIJYmNjkZGR0axjVFZWQqfTwdvb27TunnvuwebNm1FQUACj0Yhdu3bh5MmTGDlypDnlERERkZ0yax6WkpIS6PV6+Pn5NVrv5+eH48ePN+sYc+bMQWBgYKPQ89FHH+HZZ59Fly5dIJPJIJFIsHr1atx7771NHqempgY1NTWmzzUajTmnQkRERDbEohPHJScnY/369di9ezcUCoVp/UcffYS9e/di8+bN6NatG3766SfMmjXrpmBzo6SkJLz55puWKp2IiIhEZNYYFq1WC1dXV3zzzTeYMGGCaf306dNx7do1bNq0qcl9U1JS8Pbbb2Pnzp2Iiooyra+qqoJSqURqairGjBljWv/000/j4sWLSEtLu+XxbnWFJSgoiGNYiIiIbEi7jGGRy+WIjIxEenq6aZ3BYEB6ejpiYmKa3G/p0qVYuHAh0tLSGoUVANDpdNDpdDd1aJRKpTAYDE0e09nZ2TQNP6fjJyIism9m3xKKj4/H9OnTERUVhSFDhmDZsmWoqKjAjBkzAABxcXHo3LkzkpKSAABLlizB/PnzsW7dOgQHB0OlUgEAOnTogA4dOsDDwwMjRozA66+/DhcXF3Tr1g179uzBv/71L7z33ntteKpERERkq8wOLFOmTMHly5cxf/58qFQqREREIC0tzTQQNy8vr9HVkpUrV0Kr1WLSpEmNjpOYmIgFCxYAANavX4+EhARMmzYNV69eRbdu3bBo0SI8//zzrTi1tpGy7QSqdXq4OsvgJpde/yiXwlUug5tz/Ue5DC5yKdycpXBxkt6xiRMRERE1n9nzsFir9pqHJertnSgpr7nzhjcQBMDV6Xq4cZH/b9iR1QUeZync6v/bzVl2PQTJb9y3fhtnKeRSCYMQERHZlea+f1v0KSFb9PTw7iit1KKyRo9KrR6V2lpUaPWorKn7WPU/nwOA0QhUaPWo0OpxuQ1rkUkEU7gxBZlGYed/r/rUh6P/CUY3hiBXJylkUraUIiIi68bAcgfPj+jZ7G0NBiOqa/WoqNGjSqtHhba2LuDU6K9/1F0PN6aP2trrYaim8cdKrR41tXWDj2sNRmiqa6Gprm3Tc3SWSeqCjJP0ethxvn4lyNPFCX8e1gNdfVzb9HWJiIiai4GlDUkkQv2bfNt+W2v1hvqgUx+CbggzDZ9X3Cr01IeiuvU3b6s31N0NrKk1oKZWe9saVJpqfPxk1G23ISIiai8MLDZAJpXAQyqBh8KpzY5pNBqh1RsaBZiKG8JNQ/ApLqvGsp2nsOv4ZagrdVC6tl0NREREzcXA4qAEQYCzTApnmRRebvLbbpt2VIXjqjL8cLQQU4d0tVCFRERE13G0Jd3RhEGdAQCpvxeIXAkRETkqBha6o3HhgRAEYP+5q7hYWil2OURE5IAYWOiOAj1dEN3dGwCw+dAlkashIiJHxMBCzTKx/rbQxt8LYCdzDRIRkQ1hYKFmeSgkAHKpBCeLypFbWCZ2OURE5GAYWKhZlC5OeKB/JwDAxmwOviUiIstiYKFmGx9Rd1toc/Yl06RzRERElsDAQs12f7+O8FDIoNJUY9/ZK2KXQ0REDoSBhZrNWSbFmLBAAJyThYiILIuBhcwyIaIusKQdVaFapxe5GiIichQMLGSWwcHe6OzpgrKaWqTnFotdDhEROQgGFjKLRCJgXP1VFj4tRERElsLAQmZrmERu94liXKvUilwNERE5AgYWMlsfP3cMCPCATm/E1iOFYpdDREQOgIGFWmTCoPrbQnxaiIiILICBhVpkXHhnCAJw4Hwp8q+ygzMREbUvBhZqEX+lAjE9fACwgzMREbU/BhZqsQn1g29T2cGZiIjaGQMLtdhDIf6QyyQ4XVyOnEsascshIiI7xsBCLeahcMKD/f0AcPAtERG1LwYWapWG20KbD7GDMxERtR8GFmqVEX06wtPVCcVlNcg4ww7ORETUPhhYqFXkMgnGhAYAYAdnIiJqPwws1GoNt4W25ahQpWUHZyIiansMLNRqkV290MXLBeU1tdiZWyR2OUREZIcYWKjVJBIB4+s7OG9iB2ciImoHDCzUJiZENHRwvoyrFezgTEREbYuBhdpEbz93hHT2QK3BiK2HOVU/ERG1LQYWajMNV1k2ZjOwEBFR22JgoTYzNjwQEgHIvFCKvCvs4ExERG2nRYFlxYoVCA4OhkKhQHR0NPbv39/ktqtXr8bw4cPh5eUFLy8vxMbG3nL73NxcjBs3DkqlEm5ubhg8eDDy8vJaUh6JxM9DgXt6+gLg4FsiImpbZgeWDRs2ID4+HomJicjKykJ4eDhGjRqF4uLiW26/e/duTJ06Fbt27UJGRgaCgoIwcuRIFBRcf0M7c+YMhg0bhn79+mH37t04fPgw5s2bB4VC0fIzI1GYOjhns4MzERG1HcFo5rtKdHQ0Bg8ejOXLlwMADAYDgoKC8OKLL2Lu3Ll33F+v18PLywvLly9HXFwcAODxxx+Hk5MTvvzyyxacQh2NRgOlUgm1Wg0PD48WH4dap6xah8GLdqJaZ8CWF4YhtItS7JKIiMiKNff926wrLFqtFpmZmYiNjb1+AIkEsbGxyMjIaNYxKisrodPp4O3tDaAu8GzduhV9+vTBqFGj0KlTJ0RHR2Pjxo23PU5NTQ00Gk2jhcTnrnBCbH0HZ07VT0REbcWswFJSUgK9Xg8/P79G6/38/KBSqZp1jDlz5iAwMNAUeoqLi1FeXo7k5GQ89NBD2L59OyZOnIg//vGP2LNnT5PHSUpKglKpNC1BQUHmnAq1o4k3dHCu1RtEroaIiOyBRZ8SSk5Oxvr165Gammoan2Iw1L2hjR8/Hq+88goiIiIwd+5cPPLII1i1alWTx0pISIBarTYt+fn5FjkHurN7+3SEl6sTSspr8Bs7OBMRURswK7D4+vpCKpWiqKhxv5iioiL4+/vfdt+UlBQkJydj+/btCAsLa3RMmUyGAQMGNNq+f//+t31KyNnZGR4eHo0Wsg5OUgkeCaubqn8jbwsREVEbMCuwyOVyREZGIj093bTOYDAgPT0dMTExTe63dOlSLFy4EGlpaYiKirrpmIMHD8aJEycarT958iS6detmTnlkRSYMqgss23JUqNTWilwNERHZOpm5O8THx2P69OmIiorCkCFDsGzZMlRUVGDGjBkAgLi4OHTu3BlJSUkAgCVLlmD+/PlYt24dgoODTWNdOnTogA4dOgAAXn/9dUyZMgX33nsv7r//fqSlpWHLli3YvXt3G50mWdpdXb0Q5O2C/KtV2HGsCOPrZ8ElIiJqCbPHsEyZMgUpKSmYP38+IiIikJ2djbS0NNNA3Ly8PBQWFpq2X7lyJbRaLSZNmoSAgADTkpKSYtpm4sSJWLVqFZYuXYrQ0FB8+umn+PbbbzFs2LA2OEUSgyAImNgwVT9vCxERUSuZPQ+LteI8LNbnzOVyPPDuHkglAva/8QB8OjiLXRIREVmZdpmHhcgcPTt2QFgXJfQGI74/XHjnHYiIiJrAwELtarypgzNvCxERUcsxsFC7GhseAIkA/J53DedLKsQuh4iIbBQDC7WrTu4KDO3V0MH5ksjVEBGRrWJgoXbXMFX/RnZwJiKiFmJgoXY3aqA/XJykOFdSgUMX1WKXQ0RENoiBhdqdm7MMDw6om6eHc7IQEVFLMLCQRTTcFvr+MDs4ExGR+RhYyCKG9faFt5scJeVa/HK6ROxyiIjIxjCwkEU4SSUYGxYAgLeFiIjIfAwsZDHj628LbcspQkUNOzgTEVHzMbCQxQwK8kQ3H1dU6fTYcaxI7HKIiMiGMLCQxQiCgAn1U/Wn8rYQERGZgYGFLGpC/W2hX06X4HJZjcjVEBGRrWBgIYvq7uuG8CDP+g7OnKqfiIiah4GFLG5CRCAAYCN7CxERUTMxsJDFPRIWCKlEwKH8azh7uVzscoiIyAYwsJDFdXR3xvDedR2ceZWFiIiag4GFRNHwtNAmdnAmIqJmYGAhUYwc6AdXuRQXrlTi9/xrYpdDRERWjoGFROEql2FkfQfnTZyThYiI7oCBhUTTMCfLlsOF0LGDMxER3QYDC4lmWC9f+HaQ42qFFr+cYgdnIiJqGgMLiUYmleCRsLo5WThVPxER3Q4DC4lqYv1toe3HVChnB2ciImoCAwuJKqyLEt193VCtM2B7jkrscoiIyEoxsJCo2MGZiIiag4GFRDe+vrfQr6dLUFxWLXI1RERkjRhYSHTBvm4Y1NUTBiOw5VCh2OUQEZEVYmAhq3DjVP1ERET/i4GFrMIjYQGQSgQcvqjG6WJ2cCYiosYYWMgq+HRwxog+HQHwKgsREd2MgYWsRsPg243s4ExERP+DgYWsxsgB/nCTS5F/tQpZeaVil0NERFaEgYWshotcilED/QEAG3+/JHI1RERkTVoUWFasWIHg4GAoFApER0dj//79TW67evVqDB8+HF5eXvDy8kJsbOxtt3/++echCAKWLVvWktLIxjV0cP7+8CVoa9nBmYiI6pgdWDZs2ID4+HgkJiYiKysL4eHhGDVqFIqLi2+5/e7duzF16lTs2rULGRkZCAoKwsiRI1FQcPPAytTUVOzduxeBgYHmnwnZhXt6+qCjuzNKK3X46eRlscshIiIrYXZgee+99/DMM89gxowZGDBgAFatWgVXV1d89tlnt9x+7dq1+Mtf/oKIiAj069cPn376KQwGA9LT0xttV1BQgBdffBFr166Fk5NTy86GbJ5MKsHYsOuDb4mIiAAzA4tWq0VmZiZiY2OvH0AiQWxsLDIyMpp1jMrKSuh0Onh7e5vWGQwGPPnkk3j99dcxcODAZh2npqYGGo2m0UL2oaGD845jRSir1olcDRERWQOzAktJSQn0ej38/Pwarffz84NK1bxOu3PmzEFgYGCj0LNkyRLIZDK89NJLza4lKSkJSqXStAQFBTV7X7JuIZ090KOjG2pqDdiWUyR2OUREZAUs+pRQcnIy1q9fj9TUVCgUCgBAZmYmPvjgA3zxxRcQBKHZx0pISIBarTYt+fn57VU2WZggCJhYP1X/RnZwJiIimBlYfH19IZVKUVTU+K/eoqIi+Pv733bflJQUJCcnY/v27QgLCzOt//nnn1FcXIyuXbtCJpNBJpPhwoULePXVVxEcHNzk8ZydneHh4dFoIfsxvj6w/HamBEUadnAmInJ0ZgUWuVyOyMjIRgNmGwbQxsTENLnf0qVLsXDhQqSlpSEqKqrR15588kkcPnwY2dnZpiUwMBCvv/46tm3bZubpkL3o6uOKyG5e9R2cOScLEZGjk5m7Q3x8PKZPn46oqCgMGTIEy5YtQ0VFBWbMmAEAiIuLQ+fOnZGUlASgbnzK/PnzsW7dOgQHB5vGunTo0AEdOnSAj48PfHx8Gr2Gk5MT/P390bdv39aeH9mwCYM6I/NCKVJ/L8DTw3uIXQ4REYnI7DEsU6ZMQUpKCubPn4+IiAhkZ2cjLS3NNBA3Ly8PhYWFpu1XrlwJrVaLSZMmISAgwLSkpKS03VmQXRoTGgCZREDOJQ1OFZWJXQ4REYlIMNpJlzmNRgOlUgm1Ws3xLHbk6TUHsDO3GLPu74nXR/UTuxwiImpjzX3/Zi8hsmoNg283ZV+CwWAX2ZqIiFqAgYWsWmx/P3RwluFiaRUy2cGZiMhhMbCQVWvcwZlzshAROSoGFrJ6E00dnAvZwZmIyEExsJDVi+npg07uzlBX6bD7xK27ghMRkX1jYCGrJ5UIGBde18F5UzYnkSMickQMLGQTJjR0cM4tgoYdnImIHA4DC9mEgYEe6NWpA7S1BqQdbV5ncCIish8MLGQTBEEwDb7l00JERI6HgYVsRsM4loyzV6BSs4MzEZEjYWAhmxHk7YrBwV4wGoHNh3iVhYjIkTCwkE1pGHyb+jufFiIiciQMLGRTxoQGwEkqILdQgxMqdnAmInIUDCxkUzxd5bivbycAwMZs3hYiInIUDCxkcybUd3DezA7OREQOg4GFbM4D/TvB3VmGgmtVOHD+qtjlEBGRBTCwkM1ROEkxOrS+gzNvCxEROQQGFrJJDbeFth4uRE2tXuRqiIiovTGwkE2K7uEDfw8FNNW12HX8stjlEBFRO2NgIZsklQgYF9HQwZm3hYiI7B0DC9mshttC6bnFUFexgzMRkT1jYCGb1T/AHX38OkCrNyDtaKHY5RARUTtiYCGbJQjCDVP187YQEZE9Y2Ahmza+/rbQ3rNXcelalcjVEBFRe2FgIZvW2dMFQ7p7AwA2H2JDRCIie8XAQjZvYv1toY28LUREZLcYWMjmPRwSALlUguOqMuQWasQuh4iI2gEDC9k8pasT7u/XEQCn6icislcMLGQX2MGZiMi+MbCQXbi/Xye4K2QoVFdj3zl2cCYisjcMLGQXFE5SjAkNAMDBt0RE9oiBhexGw5wsPxwtRLWOHZyJiOwJAwvZjeju3ghQKlBWXYtdx4vFLoeIiNoQAwvZDckNHZz5tBARkX1pUWBZsWIFgoODoVAoEB0djf379ze57erVqzF8+HB4eXnBy8sLsbGxjbbX6XSYM2cOQkND4ebmhsDAQMTFxeHSJc5aSuZrmERu1/HLuFapFbkaIiJqK2YHlg0bNiA+Ph6JiYnIyspCeHg4Ro0aheLiW1+C3717N6ZOnYpdu3YhIyMDQUFBGDlyJAoK6v4CrqysRFZWFubNm4esrCx89913OHHiBMaNG9e6MyOH1M/fA/383aHVG/DDEZXY5RARURsRjEajWZNWREdHY/DgwVi+fDkAwGAwICgoCC+++CLmzp17x/31ej28vLywfPlyxMXF3XKbAwcOYMiQIbhw4QK6du3arLo0Gg2USiXUajU8PDyaf0Jkd1btOYPkH49jSHdvfP1cjNjlEBHRbTT3/dusKyxarRaZmZmIjY29fgCJBLGxscjIyGjWMSorK6HT6eDt7d3kNmq1GoIgwNPTs8ltampqoNFoGi1EADAuPBCCAOw/dxUXSyvFLoeIiNqAWYGlpKQEer0efn5+jdb7+flBpWre5fc5c+YgMDCwUei5UXV1NebMmYOpU6feNmklJSVBqVSalqCgoOafCNm1QE8XRLODMxGRXbHoU0LJyclYv349UlNToVAobvq6TqfDY489BqPRiJUrV972WAkJCVCr1aYlPz+/vcomG3RjB2cz73oSEZEVMiuw+Pr6QiqVoqioqNH6oqIi+Pv733bflJQUJCcnY/v27QgLC7vp6w1h5cKFC9ixY8cdx6E4OzvDw8Oj0ULU4KH6Ds4ni8qRW1gmdjlERNRKZgUWuVyOyMhIpKenm9YZDAakp6cjJqbpwY1Lly7FwoULkZaWhqioqJu+3hBWTp06hZ07d8LHx8ecsohuonRxwgP9OwHgnCxERPbA7FtC8fHxWL16NdasWYPc3FzMnDkTFRUVmDFjBgAgLi4OCQkJpu2XLFmCefPm4bPPPkNwcDBUKhVUKhXKy8sB1IWVSZMm4eDBg1i7di30er1pG62W82hQy02ovy20KbsAenZwJiKyaTJzd5gyZQouX76M+fPnQ6VSISIiAmlpaaaBuHl5eZBIrueglStXQqvVYtKkSY2Ok5iYiAULFqCgoACbN28GAERERDTaZteuXbjvvvvMLZEIAHBf347wUMhQpKnBvrNXcE8vX7FLIiKiFjJ7HhZrxXlY6FYSvjuCr/bnYXJkF7wzOVzscoiI6H+0yzwsRLZmQn1vobSjKnZwJiKyYQwsZNcGB3ujs6cLympqkZ7LDs5ERLaKgYXs2o0dnFN/59NCRES2ioGF7F7DJHJ7ThajtIJPnhER2SIGFrJ7ffzcMSDAAzq9EVuPFIpdDhERtQADCzmECYPqbgtt4iRyREQ2iYGFHMK48M4QBODA+VLkX2UHZyIiW8PAQg7BX6lATI+6lg/s4ExEZHsYWMhhNEzV/13WRXZwJiKyMQws5DAeCvGHs0yCM5crkHNJI3Y5RERkBgYWchgeCifE9q/rebWRc7IQEdkUBhZyKA23hTYfusQOzkRENoSBhRzKiD4d4enqhOKyGmScuSJ2OURE1EwMLORQ5DIJxoQGAOBU/UREtoSBhRxOw22hbTkqVGnZwZmIyBYwsJDDiezqhS5eLiivqcXO3CKxyyEiomZgYCGHI5EImBBRd5WFTwsREdkGBhZySA29hfacvIyr7OBMRGT1GFjIIfXq5I6Qzh6oNRix9TCn6icisnYMLOSwTLeFshlYiIisHQMLOayx4YGQCEDmhVLkXWEHZyIia8bAQg7Lz0OBe3r6AgA2ZnPwLRGRNWNgIYfWMCfLxuwCdnAmIrJiDCzk0EYN9IPCSYKzlytwpEAtdjlERNQEBhZyaO6NOjhz8C0RkbViYCGHN/GGDs61eoPI1RAR0a0wsJDDu7dPR3i5OqGkvAa/sYMzEZFVYmAhh+ckleCRsLqZbzlVPxGRdWJgIcL1qfrTclSo1NaKXA0REf0vBhYiAHd19UKQtwsqtXrsOMYOzkRE1oaBhQiAIAiYyA7ORERWi4GFqN74+qeFfjpVgivlNSJXQ0REN2JgIarXs2MHhHVRQm8w4vvDhWKXQ0REN2BgIbrB+IjrU/UTEZH1YGAhusHY8ABIBOD3vGs4X1IhdjlERFSvRYFlxYoVCA4OhkKhQHR0NPbv39/ktqtXr8bw4cPh5eUFLy8vxMbG3rS90WjE/PnzERAQABcXF8TGxuLUqVMtKY2oVTq5KzCsd0cAvMpCRGRNzA4sGzZsQHx8PBITE5GVlYXw8HCMGjUKxcXFt9x+9+7dmDp1Knbt2oWMjAwEBQVh5MiRKCi4/mawdOlSfPjhh1i1ahX27dsHNzc3jBo1CtXV1S0/M6IWmhBRNyfLpuxL7OBMRGQlBKOZv5Gjo6MxePBgLF++HABgMBgQFBSEF198EXPnzr3j/nq9Hl5eXli+fDni4uJgNBoRGBiIV199Fa+99hoAQK1Ww8/PD1988QUef/zxZtWl0WigVCqhVqvh4eFhzikRNVJRU4uot3eiSqfHxllDERHkKXZJRER2q7nv32ZdYdFqtcjMzERsbOz1A0gkiI2NRUZGRrOOUVlZCZ1OB29vbwDAuXPnoFKpGh1TqVQiOjr6tsesqamBRqNptBC1BTdnGR4c0NDBmbeFiIisgVmBpaSkBHq9Hn5+fo3W+/n5QaVSNesYc+bMQWBgoCmgNOxn7jGTkpKgVCpNS1BQkDmnQnRbDR2ctxy6BB07OBMRic6iTwklJydj/fr1SE1NhUKhaNWxEhISoFarTUt+fn4bVUkEDOvtC283Oa5UaPHL6RKxyyEicnhmBRZfX19IpVIUFTXutVJUVAR/f//b7puSkoLk5GRs374dYWFhpvUN+5l7TGdnZ3h4eDRaiNqKk1SCsWEBAIBNvC1ERCQ6swKLXC5HZGQk0tPTTesMBgPS09MRExPT5H5Lly7FwoULkZaWhqioqEZf6969O/z9/RsdU6PRYN++fbc9JlF7m1B/W2hbThEqatjBmYhITGbfEoqPj8fq1auxZs0a5ObmYubMmaioqMCMGTMAAHFxcUhISDBtv2TJEsybNw+fffYZgoODoVKpoFKpUF5eDqCu6dzs2bPx9ttvY/PmzThy5Aji4uIQGBiICRMmtM1ZErVARJAnuvm4okrHDs5ERGKTmbvDlClTcPnyZcyfPx8qlQoRERFIS0szDZrNy8uDRHI9B61cuRJarRaTJk1qdJzExEQsWLAAAPDXv/4VFRUVePbZZ3Ht2jUMGzYMaWlprR7nQtQagiBgQkRnfJB+Cqm/F5iuuBARkeWZPQ+LteI8LNQezpVU4P6U3RAEYNOsoQjr4il2SUREdqVd5mEhcjTdfd0wPiIQRiPwt9Sj0BvsIt8TEdkcBhaiO/jbmP7wUMhwpECNf2WcF7scIiKHxMBCdAed3BWYM7ofAODd7SehUrPHFRGRpTGwEDXD1MFdcVdXT5TX1OLNLTlil0NE5HAYWIiaQSIRsGhiKKQSAT8eVSE9l485ExFZEgMLUTP1D/DA08O6AwDmb8pBpZaTyRERWQoDC5EZXo7tjc6eLii4VoUPdp4SuxwiIofBwEJkBle5DG+NHwgA+PSXc8gt1IhcERGRY2BgITLTA/398NBAf+gNRryRegQGzs1CRNTuGFiIWiBx3AC4yaX4Pe8avjqQJ3Y5RER2j4GFqAUClC54bVRfAMCSH4/jclmNyBUREdk3BhaiFoqLCUZoZyU01bV4e+sxscshIrJrDCxELSSVCFg8MRQSAdiUfQk/n7osdklERHaLgYWoFUK7KBEXEwwA+PvGo6jW6cUtiIjITjGwELXSqyP7wM/DGReuVGLFrtNil0NEZJcYWIhayV3hhAVj6+ZmWbXnDE4Xl4lcERGR/WFgIWoDD4X44w/9OkGnN+JvqUdhNHJuFiKitsTAQtQGBEHAm+MGQuEkwb5zV/FN5kWxSyIisisMLERtJMjbFbNj+wAAFv+Qi6sVWpErIiKyHwwsRG3oz8O6o5+/O0ordUj6IVfscoiI7AYDC1EbcpJKsGhiKAQB+E/mRew7e0XskoiI7AIDC1Ebi+zmhalDugIA3kg9gppazs1CRNRaDCxE7WDOqH7w7SDHmcsV+GTPWbHLISKyeQwsRO1A6eqEeY8MAAB8tOs0zpdUiFwREZFtY2AhaifjwgMxrJcvtLUGzNvEuVmIiFqDgYWonQiCgLcnhEAuk+DnUyXYfOiS2CUREdksBhaidhTs64YX7u8FAFj4fS7UVTqRKyIisk0MLETt7LkRPdCjoxtKymuwNO242OUQEdkkBhaiduYsk2LxxFAAwLr9ecjKKxW5IiIi28PAQmQBd/fwwaTILjAagTe+OwKd3iB2SURENoWBhchC3ni4P7xcnXBcVYbPfz0ndjlERDaFgYXIQrzd5Eh4uD8A4P0dp3CxtFLkioiIbAcDC5EFTY7sgiHdvVGl0yNxUw7nZiEiaiYGFiILEgQBiyeGwEkqIP14MbblqMQuiYjIJrQosKxYsQLBwcFQKBSIjo7G/v37m9w2JycHjz76KIKDgyEIApYtW3bTNnq9HvPmzUP37t3h4uKCnj17YuHChfzrk+xSr07ueO7engCABZuPobymVuSKiIisn9mBZcOGDYiPj0diYiKysrIQHh6OUaNGobi4+JbbV1ZWokePHkhOToa/v/8tt1myZAlWrlyJ5cuXIzc3F0uWLMHSpUvx0UcfmVsekU144Q+90M3HFSpNNd7dfkLscoiIrJ7ZgeW9997DM888gxkzZmDAgAFYtWoVXF1d8dlnn91y+8GDB+Odd97B448/Dmdn51tu89tvv2H8+PEYM2YMgoODMWnSJIwcOfK2V26IbJnCSYqF40MAAGt+O4+jBWqRKyIism5mBRatVovMzEzExsZeP4BEgtjYWGRkZLS4iHvuuQfp6ek4efIkAODQoUP45ZdfMHr06BYfk8ja3dunI8aFB8JgBN5IPQK9gbdAiYiaIjNn45KSEuj1evj5+TVa7+fnh+PHWz7l+Ny5c6HRaNCvXz9IpVLo9XosWrQI06ZNa3Kfmpoa1NTUmD7XaDQtfn0isfz9kf7YdaIYhy+q8WXGefxpaHexSyIiskpW8ZTQ119/jbVr12LdunXIysrCmjVrkJKSgjVr1jS5T1JSEpRKpWkJCgqyYMVEbaOTuwJzHuoHAEjZfhIqdbXIFRERWSezAouvry+kUimKiooarS8qKmpyQG1zvP7665g7dy4ef/xxhIaG4sknn8Qrr7yCpKSkJvdJSEiAWq02Lfn5+S1+fSIx/d+QrhjU1RPlNbV4c0uO2OUQEVklswKLXC5HZGQk0tPTTesMBgPS09MRExPT4iIqKyshkTQuRSqVwmBout+Ks7MzPDw8Gi1EtkgiEbB4YiikEgE/HlXhv8eL7rwTEVnM4YvXMHzpf9lSQ2Rm3xKKj4/H6tWrsWbNGuTm5mLmzJmoqKjAjBkzAABxcXFISEgwba/VapGdnY3s7GxotVoUFBQgOzsbp0+fNm0zduxYLFq0CFu3bsX58+eRmpqK9957DxMnTmyDUySyfv0DPPDnYXXjV+ZtzEGllnOzEFkDvcGIhO+OIP9qFd7emovf2W1dNIKxBbOzLV++HO+88w5UKhUiIiLw4YcfIjo6GgBw3333ITg4GF988QUA4Pz58+je/eaBhCNGjMDu3bsBAGVlZZg3bx5SU1NRXFyMwMBATJ06FfPnz4dcLm9WTRqNBkqlEmq1mldbyCZVamvx4Hs/oeBaFZ4b0QMJo/uLXRKRw/tqfx4Svjti+ry7rxu2vjQMrnKznlmh22ju+3eLAos1YmAhe7DzWBGe/tdByCQCvn9pGPr582eZSCzqSh3uf3c3rlZo8fIDvfH1wXwUqqsxLborFk0MFbs8u9Hc92+reEqIiOrEDvDDQwP9UWsw4o3vjsDAuVmIRLMs/SSuVmjRu1MHvPCHXkiZHA4AWLsvD7uO33p2d2o/DCxEViZx3AC4yaXIyruG9Qf49BuRGE4VleFfGRcAAPPHDoCTVIKhvXzxVP1cSa9/cxhXymtudwhqYwwsRFYmQOmCV0f2BQAk/5iLy2X8pUhkSUajEW9uOQa9wYiRA/wwvHdH09f++lBf9O7UASXlNUj47gib9FoQAwuRFZp+TzBCOntAU12Lt7ceE7scIoey/VgRfjldArlMgr+PGdDoawonKZY9HgEnqYDtx4rwn8yLIlXpeBhYiKyQtH5uFokAbMq+hJ9PXRa7JCKHUK3Tm/5IeHZ4D3T1cb1pm4GBSsQ/WHcV9M3NOci7UmnRGh0VAwuRlQrr4om4mGAAwLyNR1Gt04tbEJED+PTns8i/WgV/DwX+cn/PJrd79t4eGBLsjQqtHvFfZ7N5qQUwsBBZsVdH9oGfhzPOX6nEP3advvMORNRiheoqrNh1BgCQ8HC/2861IpUIePexcHRwluHghVKs2nPGUmU6LAYWIivmrnBC4tiBAICVe87gdHG5yBUR2a+kH46jSqfH4GAvjAsPvOP2Qd6uSBxbN8bl/R0ncbRA3d4lOjQGFiIrNzrEH/f37Qid3oi/pfKpBKL2cOD8VWw+dAmCACSOHQhBEJq136TILqa5k2ZvyOat23bEwEJk5QRBwFvjQ6BwkmDfuav4NqtA7JKI7IreYMSCzXWd0h8f3BUhnZXN3lcQBCz+Yyg6ujvjdHE5lqQdb68yHR4DC5ENCPJ2xezYPgCAxT/korRCK3JFRPZjw4F85FzSwF0hw2sj+5i9v7ebHEsnhQEAPv/1PJ/qaycMLEQ24s/DuqOfvzuuVmiR9GOu2OUQ2QV1pQ4p208AAOIf7AOfDs4tOs79fTvhybu7AQBe+88hXKvkHxVtjYGFyEY4SSVYNDEEAPD1wYvYd/aKyBUR2b73d17vF/REfeBoqTce7o8evm4o0tTg7xuPcrxZG2NgIbIhkd28MXVIVwDA3zYehbbWIHJFRLbrZFEZvtxb1y8ocexAOElb95boIpfi/SkRkEoEfH+4EJuyL7VFmVSPgYXIxsx9qB98O8hxurgcn/zEuR+IWqKuX1AO9AYjRg30w7Devm1y3PAgT7z0h94AgHmbjqLgWlWbHJcYWIhsjtLVydTf5KP/nsaFKxUiV0Rke7blFOHX01du2S+otWbd3xMRQZ4oq67Fa18fgoGz4LYJBhYiGzQ+IhDDevmiptbAe+VEZqrW6bHoh+v9goK8b+4X1BoyqQTvT4mAi5MUGWev4LNfz7Xp8R0VAwuRDRIEAQsnhEAuk+DnUyXYcrhQ7JKIbEZz+wW1RndfN8x7pO7KzdK0Eziu0rTL6zgSBhYiG9Xd1w0v3N8LAPDWlmNQV+lErojI+pnTL6i1pg4JwgP9OkGrN2D2+mzU1HIW3NZgYCGyYc+N6IEeHd1QUl6Dd7Zxhk2iOzG3X1BrCIKA5EfD4O0mx3FVGd7bfrJdX8/eMbAQ2TBnmRSLJoQCANbuy0NWXqnIFRFZr/3nWtYvqDU6ujsj+Y91/0Y/+fks9nL+pBZjYCGycTE9ffDoXV1gNAJvfHcEOj3nZiH6X63pF9RaIwf6Y0pUEIxG4NWvD0FTzdu3LcHAQmQH/jamPzxdnXBcVYbP+UQC0U02HMjHsUINPFrYL6i15o0dgK7erii4VoUFm3Is/vr2gIGFyA54u8nxxuj+AID3d5zCxdJKkSsish7qSp1pjNcrregX1BodnGV4f0o4JALw3e8F2Mon+8zGwEJkJyZHdcGQYG9U6fRYsDmHc7MQ1Xt/50mUVurapF9Qa0R288Zf7qt7su9vG4+gSFMtWi22iIGFyE4IgoBFE0PgJBWwM7cY23KKxC6JSHQnVG3bL6i1XnqgN0I6e+BapQ6v/ecQ/7AwAwMLkR3p7eeOZ+/tAQBYsDkH5TW1IldEJB6j0Yi3vm/7fkGtIZdJsGxKBJzrJ338V8YFsUuyGQwsRHbmxT/0RldvV6g01Zz3gRxae/YLao1endyRMLofAGDxD7k4XVwuckW2gYGFyM4onKR4e0IIAOCL387haIFa5IqILK9ap8fbW+v6BT13b9v3C2qtuJhgDO9d1w/slQ3Z0NZyOoI7YWAhskP39umIseGBMBiBN1KPQM9useRgVv90FhdLqxCgVGDmfe3TL6g1JBIB70wKh9LFCUcK1Pjov6fELsnqMbAQ2al5j/SHu0KGwxfV+DLjvNjlEFnMpWtV+Mfuhn5B/du1X1Br+CsVWDyxbhbcFbtOI/PCVZErsm4MLER2qpO7An99qO4+ecr2k1Cp+QglOYakH+v6BQ0J9sbYsACxy7mtMWEB+OOgzjAYgVc2HEIFB8o3iYGFyI5NG9IVEUGeKK+pxVvfc3ZNsn/7z13Flvp+QfPHDrBIv6DWWjB+IDp7uiDvaiUWfn9M7HKsFgMLkR2TSAQsnhgKqUTAD0dU2HW8WOySiNqN3mBEYn2/oKlDLNsvqDU8FE5497FwCAKw/kA+dhzjHEq3wsBCZOcGBHrgqaHBAIB5m46iSqsXtyCidrL+QB5yTf2C+opdjlnu7uGDZ4bXzaE099vDuFxWI3JF1qdFgWXFihUIDg6GQqFAdHQ09u/f3+S2OTk5ePTRRxEcHAxBELBs2bJbbldQUIAnnngCPj4+cHFxQWhoKA4ePNiS8ojof8yO7YPOni64WFqFD9L5NALZH3WlDinbTgAA4h/sA283ucgVme/VkX3Qz98dVyq0mPvtYc6C+z/MDiwbNmxAfHw8EhMTkZWVhfDwcIwaNQrFxbe+1FxZWYkePXogOTkZ/v7+t9ymtLQUQ4cOhZOTE3788UccO3YM7777Lry8vMwtj4huwc1ZhjfHDQQAfPrzWZxQlYlcEVHbaugX1MdP3H5BreEsk2LZ4xGQSyVIP16M9QfyxS7JqghGMyNcdHQ0Bg8ejOXLlwMADAYDgoKC8OKLL2Lu3Lm33Tc4OBizZ8/G7NmzG62fO3cufv31V/z888/mVX8DjUYDpVIJtVoNDw+PFh+HyJ499+VBbMspQmQ3L/znuRhIJNY/IJHoTk6oyvDwhz9DbzBi7dPRGNpL/Cn4W2P1T2ex6IdcuMql+OGl4Qj2dRO7pHbV3Pdvs66waLVaZGZmIjY29voBJBLExsYiIyOjxcVu3rwZUVFRmDx5Mjp16oRBgwZh9erVt92npqYGGo2m0UJEt7dg3EC4yaXIvFDKv97ILtzYL+ihgf42H1YA4M/DuuPuHt6o1OrxytfZqNVzFlzAzMBSUlICvV4PPz+/Ruv9/PygUqlaXMTZs2excuVK9O7dG9u2bcPMmTPx0ksvYc2aNU3uk5SUBKVSaVqCgoJa/PpEjiJA6YL4+sGIyT/mcmAf2bxtOSpTv6C/jekvdjltQiIR8O5jEXB3luH3vGumSfAcnVU8JWQwGHDXXXdh8eLFGDRoEJ599lk888wzWLVqVZP7JCQkQK1Wm5b8fP61SNQc02O6YWCgBzTVtVi0lXM+kO2q6xeUCwB43gr7BbVGZ08XvDWhbtzZB+mncCj/mrgFWQGzAouvry+kUimKiho/I15UVNTkgNrmCAgIwIABjTtp9u/fH3l5eU3u4+zsDA8Pj0YLEd2ZTCrB4omhEARgY/Yl/HKqROySiFrkkxv6BT1vhf2CWmtCRGeMCQuA3mDEK19nO/yUBGYFFrlcjsjISKSnp5vWGQwGpKenIyYmpsVFDB06FCdOnGi07uTJk+jWzTZHehNZu/AgT8TVP0kxb9NRVOsc+xch2Z66fkGnAVh3v6DWEAQBiyaEwM/DGWcvV2DxD7lilyQqs28JxcfHY/Xq1VizZg1yc3Mxc+ZMVFRUYMaMGQCAuLg4JCQkmLbXarXIzs5GdnY2tFotCgoKkJ2djdOnT5u2eeWVV7B3714sXrwYp0+fxrp16/DJJ59g1qxZbXCKRHQrr47qi07uzjhXUsF75GRzkn48jmqdwSb6BbWGp6scKZPDAQBf7r2AXSccd7ZqswPLlClTkJKSgvnz5yMiIgLZ2dlIS0szDcTNy8tDYWGhaftLly5h0KBBGDRoEAoLC5GSkoJBgwbh6aefNm0zePBgpKam4quvvkJISAgWLlyIZcuWYdq0aW1wikR0Kx4KJyyon5tl1e4zOHO5XOSKiJpn39kr2HLoEiQCkDjONvoFtcbw3h3xp3uCAQB//eYwrlZoxS1IJGbPw2KtOA8LkfmMRiOe+uIAdp24jLt7eOOrZ+62+1/+ZNv0BiMe+egX5BZq8H/RXbF4YqjYJVlEtU6PRz76BaeLy/HQQH+sfOIuu/m32i7zsBCRfREEAW+ND4HCSYK9Z6/iu6wCsUsiuq2v9ttuv6DWUDhJsWxKBGQSAWk5KnzrgP9WGViIHFyQtytefqAPAGDRD7koddDLzWT91JU6vLvdtvsFtUZIZyVeebDu3+qCzTnIv1opckWWxcBCRHh6eHf09XPH1Qotkn507CcRyHrZQ7+g1np+RE9EdvNCeU0tXv36EPQGuxjV0SwMLEQEJ6kEi/8YAgD4+uBF7D93VeSKiBo7oSrDl3svAAAWjB0ImdQx376kEgHvPxYBN7kU+89fxeqfz4pdksU45v9xIrpJZDdvTB1S1+LijdQj0NayfwlZB6PRiDe3XO8XdI8d9Atqja4+rkgcW/eE37vbTyDnklrkiiyDgYWITOY81A8+bnKcLi53qL/cyLpty1HhtzNX4GxH/YJaa3JUF4wc4Aed3ohXNmQ7xOSP9jc1IBG1mKerHH9/pD9e2XAIH6afwiNhAejmY9+t7YG6R0avVepQWqlFaaXW9N/XKnUordCirLoW9/XtiNGh9jtBmbWq1umx8Pu6cVXP2Vm/oNYQBAFJfwxFVt41nCwqxzvbTmDeIwPuvKMNY2AhokYmRHTGN5kX8evpK5i3KQdrZgy2mfkeDAYj1FX1YaNKh2uVWpRW6G4OIZValFbWf71Si2rdnW9/bTiYj2fv7YE5D/WDVGIb3w978MlPZ1FwzX77BbWGTwdnLJ0Uiqe+OIh//nIOf+jXCUPt+HYZJ44jopucK6nAqGU/QVtrwEdTB2FseKDFa6jS6m+64lFaqYO6/uOtQoi6SoeW/kaTSgR4ujjB09UJXq5yeLrK4eXqBC83OTRVOqw/UNcRPra/Hz54PAJuzvx7r70VXKvCA+/uRrVOvJ9DW/BG6hGs25eHAKUCaS/fC6Wrk9glmaW579/8F0dEN+nu64ZZ9/XC+ztP4q3vj+HePh2hdGnZL0H9jVc9bnHFo7RSB3XVzetrWjHot4Oz7Ibgcf2jKYTcsN7LVQ5PNye4O8tueyUppqcPXv/mMHbmFuHRlb/hn38ajM6eLi2uke4s6Yfcun5B3b3xiB33C2qtv4/pj99Ol+D8lUrM23QUH04dJHZJ7YJXWIjolmpq9Rj9wc84e7kCT9zdFQvHh6BKp6+7ulFx49WNm6943HglRFPd8qseMolwy5Dh6dYQNupCiKdL3ZUQT1cneLrIIZe1z/MEmRdK8dyXB1FSroVvB2d8EheJu7p6tctrObp9Z69gyid7IRGALS8Ow8BApdglWbXf80oxaVUG9AYjPng8AuMjOotdUrM19/2bgYWImvTbmRL83+p9AAC5TNKqR53dFbLGIeMWV0BMVzzqb8W4yaVWN37mYmklnl5zEMdVZZDLJHhnUphNvTnYghv7BU2L7opFDtIvqLXe33ESH6SfgodChrTZ9yLQRq4AMrAQUZuY881hbDiYb/pcLpXcHDLcrt9uufGKx42f29NEX+U1tXj5q9+RfrwYAPDSA70x+4HekHAwbpv4994L+PvGo/BQyLD79fsdbgr+ltLpDZi08jccuqjG0F4++PKpaJv4mWRgIaI2Uas34FxJBVydZfBydYKLk/Vd9RCD3mDEkrTj+OSnuvlqxoQF4N3J4VA4SUWuzLZdq9Ti/pTdKK3U4c1xAzH9nmCxS7IpZy+X4+EPf0a1zoB5jwzAn4d1F7ukO2K3ZiJqEzKpBL393NHZ0wWu8tsPTHUkUomANx7ujyWPhkImEbD1cCGmfJyBYk212KXZtPd31PUL6uvnjmnRXcUux+b06NgBfxtTNx/LkrTjOFlUJnJFbYeBhYioFaYM7op/Px0NT1cnHLqoxvgVv+JogWNMld7Wjqs0+Pe+PABA4tgBdnUb0ZKeiO6K+/p2hLbWgNnrs+2mzQZ/GoiIWunuHj7Y+Jeh6NnRDYXqakxelYFtOSqxy7IpRqMRb24+Br3BiNEh7BfUGoIgYOmjYfBydcKxQg3e23FS7JLaBAMLEVEbCPZ1w3d/GYrhvX1RpdPj+X9nYuXuM7CTYYLtLu2oChln6/oFvfEw+wW1VicPBZL+GAYA+PinM3bRgZ2BhYiojShdnPD5nwbjybu7wWisG0Pw2n8Oo6bW/hvTtUa1To+3t9b3CxrRk/2C2shDIf6YHNkFRiPwyoZslFXrxC6pVRhYiIjakEwqwcIJIXhr/EBIJQK+zbqIJz7dhyvlNWKXZrU+3lPXLyhQqcDMEewX1Jbmjx2ALl4uKLhWhTe3HBO7nFZhYCEiagdxMcH4/E+D4e4sw4HzpZjwj1/t6omNtlJwrQor95wGACQ83B8ucj4W3pbcFU54f0oEBAH4JvMi0o4Wil1SizGwEBG1k3v7dMR3f7kHXb1dkX+1Co/+4zfsPlEsdllWZTH7BbW7wcHeeL7+ylXCd0ds9tF7BhYionbU288dG2cNxZBgb5TV1OKpLw7g81/PcTAugL1nr2Dr4UJIBGDB2IGc46cdvRLbBwMCPFBaqcNfvz1skz9/DCxERO3M202OL58egkmRXWAwAm9uOYa/bzwKnd4+5sdoiVq9AQs25wAA/i+6KwYEcoby9iSXSbDs8QjIZRLsPnHZNN+NLWFgISKyAGeZFO9MCkPC6H4QBGDtvjz86fP9UFfa9pMbLfXVgXwcV5VB6eKEVx/sK3Y5DqGPnzvmPtQPALBo6zGcuVwuckXmYWAhIrIQQRDw3Iie+PiJSLjKpfj19BVM/MevOFdSIXZpFnWtUot3t58AAMQ/2AdebG5oMX+6JxhDe/mgWmfAKxuybeoqHwMLEZGFjRzoj/88H4NApQJnSyowYcWv+O1MidhlWcz7O07iGvsFiUIiEZAyORweChkOX1Tjo/+eFrukZmNgISISwcBAJTa+MBThQZ5QV+kQ98/9WL/f9sYVmOu4SoMv914AACSOY78gMQQoXfD2xFAAwIpdp5GVVypyRc3DnxQiIpF0cldgw7N3Y2x4IGoNRsz97gje/r6un449augXZDCirl9QT/YLEsu48ECMjwiE3mBE/IZsVNTUil3SHTGwEBGJSOEkxYePR2B2bG8AwKe/nMOz/zqIcht4AzHXj+wXZFXeGh+CAKUC569UmlojWDMGFiIikQmCgNmxffDR1EFwlkmQfrwYk1b+houllWKX1maqdXosYr8gq6J0ccK7k8MBAF/tz0N6bpHIFd0eAwsRkZUYGx6IDc/FoKO7M46ryjBhxa/IvGD7XXYB9guyVvf08sXTw7oDAOZ8exglVtzzioGFiMiKRAR5YtOsoRgQ4IGSci2mfrIPG38vELusVrmxX9AbY9gvyNq8Nqov+vq5o6Rci4TvjljtLLgMLEREVibQ0wX/eT4GIwf4Qas3YPaGbKRsOwGDjQ7GbegXFN3dG2NC2S/I2iicpHh/SgScpAJ2HCvC1wfzxS7plhhYiIiskJuzDKueiDQ1rVu+6zRe+CoLVVq9yJWZJ+PM9X5BiewXZLUGBHrg1ZF1Mw6/ueUYLlyxvskMWxRYVqxYgeDgYCgUCkRHR2P//v1NbpuTk4NHH30UwcHBEAQBy5Ytu+2xk5OT6wagzZ7dktKIiOyGRCJg7uh+eGdSGJykAn44osJjH2dApbaNbru1egPe3MJ+QbbimeE9MKS7Nyq1eryyIRu1VjYLrtmBZcOGDYiPj0diYiKysrIQHh6OUaNGobj41i3TKysr0aNHDyQnJ8Pf3/+2xz5w4AA+/vhjhIWFmVsWEZHdmhwVhLVP3w0vVyccKVBj/IpfcOSiWuyy7oj9gmyLVCLg3cnh6OAsQ1beNazac0bskhoxO7C89957eOaZZzBjxgwMGDAAq1atgqurKz777LNbbj948GC88847ePzxx+Hs7NzkccvLyzFt2jSsXr0aXl5e5pZFRGTXhnT3xqZZw9CrUwcUaWow+ePf8OORQrHLatKN/YJeHcl+QbYiyNsVb44bCABYtvOUVQVjswKLVqtFZmYmYmNjrx9AIkFsbCwyMjJaVcisWbMwZsyYRse+nZqaGmg0mkYLEZE96+rjiu/+cg/u7dMR1ToDZq7NwvL/nrLKpzreq+8X1M/fHf83hP2CbMkf7+qMh0P9UWswYvaG361m3JRZgaWkpAR6vR5+fn6N1vv5+UGlUrW4iPXr1yMrKwtJSUnN3icpKQlKpdK0BAUFtfj1iYhshYfCCZ9Nj8Kf7gkGAKRsP4n4rw+hWmcdbypAXb+gf9f3C5o/lv2CbI0gCFg0IRSd3J1x5nIFlqQdF7skAFbwlFB+fj5efvllrF27FgqFotn7JSQkQK1Wm5b8fOt8DIuIqK3JpBIsGDcQCyeEQCoRkPp7AaZ9us8qJv0yGo1YsDkHBiPwcCj7BdkqLzc53qmfBfeL387jp5OXRa7IzMDi6+sLqVSKoqLG0/cWFRXdcUBtUzIzM1FcXIy77roLMpkMMpkMe/bswYcffgiZTAa9/tZ/NTg7O8PDw6PRQkTkSJ68uxu+mDEY7goZMi+UYsKKX3FCVSZqTT8eVWHv2avsF2QHRvTpiLiYbgCA1/5zCKUVWlHrMSuwyOVyREZGIj093bTOYDAgPT0dMTExLSrggQcewJEjR5CdnW1aoqKiMG3aNGRnZ0Mq5YyIRERNGd67I1L/MhTdfFxxsbQKj678DbuO3/qpzfZWpb3eL+j5ET3RxYv9gmxdwuj+6NHRDcVlNfj7xqOijpcy+5ZQfHw8Vq9ejTVr1iA3NxczZ85ERUUFZsyYAQCIi4tDQkKCaXutVmsKIlqtFgUFBcjOzsbp03XTNLu7uyMkJKTR4ubmBh8fH4SEhLTRaRIR2a9enTpg41+G4u4e3iivqcWf1xzApz+ftfiby8c/nTH1C3qe/YLsgotcimVTIiCTCNh6pBC/nC4RrRaZuTtMmTIFly9fxvz586FSqRAREYG0tDTTQNy8vDxIJNdz0KVLlzBo0CDT5ykpKUhJScGIESOwe/fu1p8BERHBy02Ofz0VjfmbjmL9gXy8vTUXZy6X463xIXCywKDXi6WVWLm7bt4O9guyL2FdPPHXh/qig7MThvUSb0ySYLTG5+FaQKPRQKlUQq1WczwLETkso9GIf/5yDot+yIXRCMT08MHKJ+6Cp2v7zoMya20Wth4pRHR3b6x/9m5OwU/N1tz3b9GfEiIiorYjCAKeHt4Dn8ZFwU0uRcbZK5j4j99w9nJ5u71mxpkr2Hqkrl/QgnHsF0Ttg4GFiMgOPdDfD9/MvAedPV1wrqQCE1b8il/bYfzBjf2CpkV3Q/8AXuGm9sHAQkRkp/oHeGDjrKG4q6snNNW1iPtsP9buu9Cmr/HV/jxTv6D4B/u06bGJbsTAQkRkxzq6O2PdM3djQkQg9AYj/pZ6FG9uyWmTTrylFVq8u+MkAPYLovbHwEJEZOcUTlK8PyUCr42suwLy+a/n8fS/DkJTrWvVcdkviCyJgYWIyAEIgoAX/tAb/5h2FxROEuw+cRmP/uM35F+tbNHxcgs1pttLiWMHsl8QtTv+hBEROZCHQwPw9XMx8PNwxqnicoxf8SsOnL9q1jGMRiPe3FLXL2hMaABievq0U7VE1zGwEBE5mLAuntg0axhCOnvgaoUW01bvw7eZF5u9/w9HrvcLSni4XztWSnQdAwsRkQPyVyrw9XMxeGigP7R6A179zyEsTTsOg+H2c4lWafVY/AP7BZHlMbAQETkoV7kM/5h2F2bdX9f35x+7z2Dm2kxUamub3GfVnrp+QZ09XdgviCyKgYWIyIFJJAJeH9UP7z0WDrlUgm05RZi8KgOF6qqbtr1YWolVe+r7BT3MfkFkWQwsRESEP97VBeueiYaPmxw5lzQYv/xXHMq/1mibpB+Oo6bWgOju3ng41F+cQslhMbAQEREAICrYGxtnDUUfvw4oLqvBYx9nYOvhQgDAb2dK2C+IRMXAQkREJkHervh25j24v29H1NQaMGtdFj7YeQpvbTkGgP2CSDwMLERE1Ii7wgmfTh+Mp4Z2BwC8v/MkjqvK4OnKfkEkHgYWIiK6iVQiYP7YAVg8MRQySd3tn1cfZL8gEo9M7AKIiMh6/V90V4R2VuL05TKMD+8sdjnkwBhYiIjotkK7KBHaRSl2GeTgeEuIiIiIrB4DCxEREVk9BhYiIiKyegwsREREZPUYWIiIiMjqMbAQERGR1WNgISIiIqvHwEJERERWj4GFiIiIrB4DCxEREVk9BhYiIiKyegwsREREZPUYWIiIiMjq2U23ZqPRCADQaDQiV0JERETN1fC+3fA+3hS7CSxlZWUAgKCgIJErISIiInOVlZVBqVQ2+XXBeKdIYyMMBgMuXboEd3d3CILQZsfVaDQICgpCfn4+PDw82uy4tsTRvwc8f8c+f4DfA0c/f4Dfg/Y8f6PRiLKyMgQGBkIiaXqkit1cYZFIJOjSpUu7Hd/Dw8Mhf0hv5OjfA56/Y58/wO+Bo58/wO9Be53/7a6sNOCgWyIiIrJ6DCxERERk9RhY7sDZ2RmJiYlwdnYWuxTROPr3gOfv2OcP8Hvg6OcP8HtgDedvN4NuiYiIyH7xCgsRERFZPQYWIiIisnoMLERERGT1GFiIiIjI6jGw3MGKFSsQHBwMhUKB6Oho7N+/X+ySLOann37C2LFjERgYCEEQsHHjRrFLsqikpCQMHjwY7u7u6NSpEyZMmIATJ06IXZbFrFy5EmFhYaaJomJiYvDjjz+KXZZokpOTIQgCZs+eLXYpFrNgwQIIgtBo6devn9hlWVRBQQGeeOIJ+Pj4wMXFBaGhoTh48KDYZVlMcHDwTT8DgiBg1qxZFq+FgeU2NmzYgPj4eCQmJiIrKwvh4eEYNWoUiouLxS7NIioqKhAeHo4VK1aIXYoo9uzZg1mzZmHv3r3YsWMHdDodRo4ciYqKCrFLs4guXbogOTkZmZmZOHjwIP7whz9g/PjxyMnJEbs0iztw4AA+/vhjhIWFiV2KxQ0cOBCFhYWm5ZdffhG7JIspLS3F0KFD4eTkhB9//BHHjh3Du+++Cy8vL7FLs5gDBw40+v+/Y8cOAMDkyZMtX4yRmjRkyBDjrFmzTJ/r9XpjYGCgMSkpScSqxAHAmJqaKnYZoiouLjYCMO7Zs0fsUkTj5eVl/PTTT8Uuw6LKysqMvXv3Nu7YscM4YsQI48svvyx2SRaTmJhoDA8PF7sM0cyZM8c4bNgwscuwKi+//LKxZ8+eRoPBYPHX5hWWJmi1WmRmZiI2Nta0TiKRIDY2FhkZGSJWRmJRq9UAAG9vb5ErsTy9Xo/169ejoqICMTExYpdjUbNmzcKYMWMa/S5wJKdOnUJgYCB69OiBadOmIS8vT+ySLGbz5s2IiorC5MmT0alTJwwaNAirV68WuyzRaLVa/Pvf/8ZTTz3Vpk2Gm4uBpQklJSXQ6/Xw8/NrtN7Pzw8qlUqkqkgsBoMBs2fPxtChQxESEiJ2ORZz5MgRdOjQAc7Oznj++eeRmpqKAQMGiF2Wxaxfvx5ZWVlISkoSuxRRREdH44svvkBaWhpWrlyJc+fOYfjw4SgrKxO7NIs4e/YsVq5cid69e2Pbtm2YOXMmXnrpJaxZs0bs0kSxceNGXLt2DX/6059EeX276dZM1J5mzZqFo0ePOtT9ewDo27cvsrOzoVar8c0332D69OnYs2ePQ4SW/Px8vPzyy9ixYwcUCoXY5Yhi9OjRpv8OCwtDdHQ0unXrhq+//hp//vOfRazMMgwGA6KiorB48WIAwKBBg3D06FGsWrUK06dPF7k6y/vnP/+J0aNHIzAwUJTX5xWWJvj6+kIqlaKoqKjR+qKiIvj7+4tUFYnhhRdewPfff49du3ahS5cuYpdjUXK5HL169UJkZCSSkpIQHh6ODz74QOyyLCIzMxPFxcW46667IJPJIJPJsGfPHnz44YeQyWTQ6/Vil2hxnp6e6NOnD06fPi12KRYREBBwUzjv37+/Q90Wa3DhwgXs3LkTTz/9tGg1MLA0QS6XIzIyEunp6aZ1BoMB6enpDncP31EZjUa88MILSE1NxX//+190795d7JJEZzAYUFNTI3YZFvHAAw/gyJEjyM7ONi1RUVGYNm0asrOzIZVKxS7R4srLy3HmzBkEBASIXYpFDB069KapDE6ePIlu3bqJVJF4Pv/8c3Tq1AljxowRrQbeErqN+Ph4TJ8+HVFRURgyZAiWLVuGiooKzJgxQ+zSLKK8vLzRX1Lnzp1DdnY2vL290bVrVxErs4xZs2Zh3bp12LRpE9zd3U1jl5RKJVxcXESurv0lJCRg9OjR6Nq1K8rKyrBu3Trs3r0b27ZtE7s0i3B3d79pvJKbmxt8fHwcZhzTa6+9hrFjx6Jbt264dOkSEhMTIZVKMXXqVLFLs4hXXnkF99xzDxYvXozHHnsM+/fvxyeffIJPPvlE7NIsymAw4PPPP8f06dMhk4kYGyz+XJKN+eijj4xdu3Y1yuVy45AhQ4x79+4VuySL2bVrlxHATcv06dPFLs0ibnXuAIyff/652KVZxFNPPWXs1q2bUS6XGzt27Gh84IEHjNu3bxe7LFE52mPNU6ZMMQYEBBjlcrmxc+fOxilTphhPnz4tdlkWtWXLFmNISIjR2dnZ2K9fP+Mnn3widkkWt23bNiMA44kTJ0StQzAajUZxohIRERFR83AMCxEREVk9BhYiIiKyegwsREREZPUYWIiIiMjqMbAQERGR1WNgISIiIqvHwEJERERWj4GFiIiIrB4DCxEREVk9BhYiIiKyegwsREREZPUYWIiIiMjq/T/3ZntT7bliaAAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "\n", + "x = list(range(len(validation_loss_last_batch)))\n", + "y = validation_loss_last_batch\n", + "\n", + "plt.plot(x, y)" + ], + "metadata": { + "id": "2QDxi9wdPtXO", + "outputId": "139744a0-a68b-439e-bc0a-f29b1145250a", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 447 + } + }, + "execution_count": 75, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 75 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHIElEQVR4nO3deVzUdf4H8Nd3ZmCGcwCR4T488T5ACM9aUTQrrTRsazVrazPrl1FZ7m5a2Ya1HW7patmWbpdoqdkhHpjagYLgLeKBCsitwnDINfP9/TGCsp4ozGeO1/PxmMdjG2e+vIbt4bz6fj+f71uSZVkGERERkQVTiA5AREREdD0sLERERGTxWFiIiIjI4rGwEBERkcVjYSEiIiKLx8JCREREFo+FhYiIiCweCwsRERFZPJXoAG3BaDSioKAAbm5ukCRJdBwiIiK6AbIso7KyEv7+/lAorn0OxSYKS0FBAYKCgkTHICIiopuQl5eHwMDAa77GJgqLm5sbANMHdnd3F5yGiIiIboRer0dQUFDz9/i12ERhaboM5O7uzsJCRERkZW5kOQcX3RIREZHFY2EhIiIii8fCQkRERBaPhYWIiIgsHgsLERERWTwWFiIiIrJ4LCxERERk8VhYiIiIyOKxsBAREZHFY2EhIiIii8fCQkRERBaPhYWIiIgsHgvLNehrG/DJLzl46Zt9oqMQERHZNRaWa6iua8SbP2UhaVceckqrRMchIiKyWyws1+CndcLt3X0AAEm78gSnISIisl8sLNcRPygIAPBtRj4aDEbBaYiIiOwTC8t1/CHcB96uapRV1SMlq0R0HCIiIrvEwnIdDkoFJkYEAgCS0nMFpyEiIrJPLCw3oOmy0LYjpSgoPy84DRERkf1hYbkBYd4uiA7zglEGvsnIFx2HiIjI7rCw3KDJUaazLEnpeTAaZcFpiIiI7AsLyw0a29sPbhoVTpefx2/Hy0THISIisissLDdI46DEvQMCAAAr0nlPFiIiInNiYWmFpsW3Gw8W4Wx1veA0RERE9oOFpRV6+WvRJ0CLBoOM1ZlcfEtERGQuLCytdOniW1nm4lsiIiJzYGFppXv6+cPJQYmjJVXIzC0XHYeIiMgusLC0kpvGAeP6+gHgnW+JiIjMhYXlJky+sPj2+72FqKxtEJyGiIjI9rGw3ISIEE907uiC8w0GfL+3UHQcIiIim8fCchMkScLkQcEAeFmIiIjIHFhYbtK9AwPgoJSwN78Chwr0ouMQERHZNBaWm+TtqsaonjoAwMpdvPMtERFRe2JhuQXxFy4Lrc7MR22DQXAaIiIi28XCcguGdvFGgIcT9LWN2HCwSHQcIiIim8XCcguUCgmTIgMBACvSeFmIiIiovbCw3KJJkUGQJCA15wxOllWLjkNERGSTWFhuUYCHE4Z37QiAi2+JiIjaCwtLG2i68+2qjHw0GoyC0xAREdkeFpY2MLKHDh1cHFFaWYefs0tFxyEiIrI5LCxtwFGlwP0RpsW3vPMtERFR22NhaSPxFy4LbTlcgqKKWsFpiIiIbAsLSxvp3NEVUaFeMMrAt5n5ouMQERHZFBaWNtR0liUpPQ9Goyw4DRERke1gYWlDd/bxg5tahdyzNdiRc0Z0HCIiIpvBwtKGnByVGD/AHwCwIp33ZCEiImorLCxtbPKFgYjJB4pwrrpecBoiIiLbwMLSxnoHaNHL3x31BiPW7D4tOg4REZFNYGFpB5MvWXwry1x8S0REdKtYWNrBPf0DoFYpkF1ciT155aLjEBERWT0WlnagdXLAuD5+AExnWYiIiOjWsLC0k6Z7sqzbW4CqukbBaYiIiKwbC0s7iQrzQpi3C2rqDfhxX4HoOERERFaNhaWdSJLUfJaF92QhIiK6NSws7ei+gQFQKSTszi1HdlGl6DhERERWi4WlHfm4aTCyhw8ALr4lIiK6FSws7azpzrerd+ejrtEgOA0REZF1YmFpZ8O7dYSfVoPymgZsPFgsOg4REZFVYmFpZ0qFhEmRF+98S0RERK3HwmIGkyICIUnAr8fKkHe2RnQcIiIiq8PCYgZBXs4Y2sUbALByF8+yEBERtRYLi5k0Lb5dtSsfjQaj4DRERETW5aYKy6JFixAaGgqNRoPo6GikpaVd9bWrV69GZGQkPDw84OLigv79++Pzzz9v8ZpHHnkEkiS1eIwZM+Zmolms2J4+8HJxRJG+FtuPloqOQ0REZFVaXViSkpKQkJCAuXPnIjMzE/369UNcXBxKSkqu+HovLy/87W9/Q2pqKvbt24dp06Zh2rRp2LBhQ4vXjRkzBoWFhc2Pr7/++uY+kYVSq5S4b0AAAGBFGi8LERERtUarC8t7772Hxx9/HNOmTUPPnj2xZMkSODs749NPP73i62+//Xbce++96NGjBzp37oxnn30Wffv2xa+//tridWq1Gr6+vs0PT0/Pm/tEFqzpVv0ph0tQUlkrOA0REZH1aFVhqa+vR0ZGBmJjYy8eQKFAbGwsUlNTr/t+WZaRkpKC7OxsDB8+vMWfbd26FT4+PujevTumT5+OM2fOXPU4dXV10Ov1LR7WoKvODREhnjAYZXyTkS86DhERkdVoVWEpKyuDwWCATqdr8bxOp0NRUdFV31dRUQFXV1c4Ojpi3Lhx+PDDDzFq1KjmPx8zZgz++9//IiUlBW+99Ra2bduGsWPHwmC48p1hExMTodVqmx9BQUGt+RhCNZ1lSUrPgyzLgtMQERFZB5U5foibmxv27NmDqqoqpKSkICEhAZ06dcLtt98OAJg8eXLza/v06YO+ffuic+fO2Lp1K0aOHHnZ8WbPno2EhITmf9br9VZTWsb18cPr3x/CqTM12JFzFjGdO4iOREREZPFadYbF29sbSqUSxcUtbzFfXFwMX1/fq/8QhQJdunRB//798fzzz2PixIlITEy86us7deoEb29vHDt27Ip/rlar4e7u3uJhLVzUKtzdzx8AkJSeKzgNERGRdWhVYXF0dERERARSUlKanzMajUhJSUFMTMwNH8doNKKuru6qf56fn48zZ87Az8+vNfGsxuQLl4V+OlCEipoGwWmIiIgsX6t3CSUkJGDp0qVYvnw5srKyMH36dFRXV2PatGkAgClTpmD27NnNr09MTMSmTZuQk5ODrKwsvPvuu/j888/x8MMPAwCqqqrw4osvYseOHTh58iRSUlIwfvx4dOnSBXFxcW30MS1L30Atwn3dUN9oxNo9p0XHISIisnitXsMSHx+P0tJSzJkzB0VFRejfvz+Sk5ObF+Lm5uZCobjYg6qrq/HUU08hPz8fTk5OCA8PxxdffIH4+HgAgFKpxL59+7B8+XKUl5fD398fo0ePxrx586BWq9voY1oWSZIweVAQXv3+EL5Oy8WUmBBIkiQ6FhERkcWSZBvYqqLX66HValFRUWE161nKa+oR9WYK6huNWPf0EPQN9BAdiYiIyKxa8/3NWUKCeDg7Ymxv00LlFem88y0REdG1sLAI1HRPlnV7ClBT3yg4DRERkeViYREoplMHhHZwRlVdI37cVyg6DhERkcViYRFIkiQ8cMmdb4mIiOjKWFgEmzgwEEqFhF2nzuFYSaXoOERERBaJhUUwH3cN/hDuA4BnWYiIiK6GhcUCNN359tvM06hvNApOQ0REZHlYWCzAiG4doXNX42x1PTZnFV//DURERHaGhcUCqJQKTIownWXhPVmIiIgux8JiIR6INBWWX46WIv9cjeA0REREloWFxUIEd3DGkC4dIMvAyl35ouMQERFZFBYWCxI/KBgAsGpXHgxGqx/xRERE1GZYWCzI6J46eDg7oLCiFtuPloqOQ0REZDFYWCyIxkGJewcEAACS0rj4loiIqAkLi4VpGoi4OasYpZV1gtMQERFZBhYWCxPu647+QR5oNMpYncnFt0RERAALi0WafMlARFnm4lsiIiIWFgt0Vz9/ODsqkVNWjfST50THISIiEo6FxQK5qlW4u68/AGBFeq7gNEREROKxsFioyVGmy0I/7S9ExfkGwWmIiIjEYmGxUP2DPNBd54baBiPW7S0QHYeIiEgoFhYLJUlS8xbnJF4WIiIiO8fCYsHuHRAAR6UCB07rceB0heg4REREwrCwWDBPF0fE9fYFYNriTEREZK9YWCxc0z1Z1u45jfP1BsFpiIiIxGBhsXAxnTogyMsJlbWNWH+gUHQcIiIiIVhYLJxCISE+0nSWZQUvCxERkZ1iYbECEyOCoJCAtBNnkVNaJToOERGR2bGwWAFfrQZ3dPcBwMW3RERkn1hYrETTPVm+zcxHfaNRcBoiIiLzYmGxEneE+6CjmxplVfXYcrhYdBwiIiKzYmGxEg5KBSZGBALg4lsiIrI/LCxW5IELu4W2HSlFQfl5wWmIiIjMh4XFioR5u+C2Tl6QZWDVrnzRcYiIiMyGhcXKTB4UDABYuSsPBqMsOA0REZF5sLBYmTG9feGuUeF0+Xn8dqxMdBwiIiKzYGGxMhoHJe4baFp8y3uyEBGRvWBhsUJN92TZeKgIZ6rqBKchIiJqfywsVqiHnzv6BWrRYJCxZvdp0XGIiIjaHQuLlYq/sPh2RXoeZJmLb4mIyLaxsFipu/v5wclBiWMlVcjMPSc6DhERUbtiYbFSbhoH3NXXDwCwIo2Lb4mIyLaxsFixyVGmxbc/7CtEZW2D4DRERETth4XFig0M9kQXH1ecbzDg+72FouMQERG1GxYWKyZJEiZf2OKclJ4rOA0REVH7YWGxcvcOCICDUsLe/AocKtCLjkNERNQuWFisXAdXNUb39AVgmi9ERERki1hYbEDTnW9XZ+ajtsEgOA0REVHbY2GxAUO7eCPAwwn62kYkHygSHYeIiKjNsbDYAIVCwgORprMsK7j4loiIbBALi42YFBkISQJ25JzFibJq0XGIiIjaFAuLjfD3cMKIbh0BcPEtERHZHhYWGzL5wkDEbzLy0WAwCk5DRETUdlhYbMjIHj7wdnVEaWUdfj5cIjoOERFRm2FhsSEOSgXujwgEACSl87IQERHZDhYWGxN/YbfQz9klKKqoFZyGiIiobbCw2JhOHV0RFeYFowx8k8GzLEREZBtYWGxQ80DEXXkwGmXBaYiIiG4dC4sNGtvbD24aFfLOnkdqzhnRcYiIiG4ZC4sNcnJUYkL/AADACi6+JSIiG8DCYqOaBiJuOFCEc9X1gtNYt9oGAy+tEREJdlOFZdGiRQgNDYVGo0F0dDTS0tKu+trVq1cjMjISHh4ecHFxQf/+/fH555+3eI0sy5gzZw78/Pzg5OSE2NhYHD169Gai0QW9A7ToHeCOeoMRa3afFh3HKhmNMpb9dgID523CnR/8gryzNaIjERHZrVYXlqSkJCQkJGDu3LnIzMxEv379EBcXh5KSK9+ozMvLC3/729+QmpqKffv2Ydq0aZg2bRo2bNjQ/Jq3334bH3zwAZYsWYKdO3fCxcUFcXFxqK3lttxbEX/hzrdJ6XmQZZ4haI28szX44yc78Or3h1BTb8Dhokrc++/fsCevXHQ0IiK7JMmt/CaLjo7GoEGDsHDhQgCA0WhEUFAQnnnmGbz88ss3dIyBAwdi3LhxmDdvHmRZhr+/P55//nm88MILAICKigrodDosW7YMkydPvu7x9Ho9tFotKioq4O7u3pqPY9Mqzjcg+s3NqG0wYs1TgzEg2FN0JIsnyzK+3JmLN3/KQk29AU4OSsyM7Yq1ewqQVaiHWqXAgvj+GNvHT3RUIiKr15rv71adYamvr0dGRgZiY2MvHkChQGxsLFJTU6/7flmWkZKSguzsbAwfPhwAcOLECRQVFbU4plarRXR09FWPWVdXB71e3+JBl9M6OeDOC1+svPPt9Z0uP48//ScNf197ADX1BkSFeiF55jD8ZURnrHoyBn8I90FdoxHTv8zER9uO86wVEZEZtaqwlJWVwWAwQKfTtXhep9OhqKjoqu+rqKiAq6srHB0dMW7cOHz44YcYNWoUADS/rzXHTExMhFarbX4EBQW15mPYlaaBiOv2FqCqrlFwGsskyzKS0nMR9/52/HqsDGqVAq/c1RMrnrgNIR1cAACuahU+/lMEpsaEAAAS1x/GX9cc4JBJIiIzMcsuITc3N+zZswfp6en4xz/+gYSEBGzduvWmjzd79mxUVFQ0P/LyePbgagaFeqKTtwtq6g34YW+B6DgWp6iiFtOWpeOlb/ejqq4RA4M9sP7ZYXhsaBgUCqnFa1VKBV4b3xtz7+4JSQK+TsvFo8vSoa9tEJSeiMh+tKqweHt7Q6lUori4uMXzxcXF8PX1vfoPUSjQpUsX9O/fH88//zwmTpyIxMREAGh+X2uOqVar4e7u3uJBVyZJUvMWZ96T5SJZlvFtRj5Gvb8NW7NL4ahS4K93hmPVk4PRqaPrNd87bUgYlv4pEk4OSvxytAwTF/+O/HPcQURE1J5aVVgcHR0RERGBlJSU5ueMRiNSUlIQExNzw8cxGo2oq6sDAISFhcHX17fFMfV6PXbu3NmqY9LV3TcwECqFhD155ThcxPU+JZW1ePy/u/D8qr2orG1Ev0AtfnxmKJ4Y3hnK/zmrcjWxPXVY9WQMdO5qHCmuwoRFv3MHERFRO2r1JaGEhAQsXboUy5cvR1ZWFqZPn47q6mpMmzYNADBlyhTMnj27+fWJiYnYtGkTcnJykJWVhXfffReff/45Hn74YQCmMwAzZ87EG2+8gXXr1mH//v2YMmUK/P39MWHChLb5lHauo5sao3qa1gjZ8+JbWZbx3Z7TGP3+dmzOKoGDUsKLcd3x7fTB6Kpza/XxegdosXbGEPTwc0dZVR0mf5yK5AOF7ZCciIhUrX1DfHw8SktLMWfOHBQVFaF///5ITk5uXjSbm5sLheJiD6qursZTTz2F/Px8ODk5ITw8HF988QXi4+ObXzNr1ixUV1fjiSeeQHl5OYYOHYrk5GRoNJo2+IgEmO58u/5AEdbsPo2XxoRD46AUHcmsyqrq8Pc1B5B80LSQu5e/O959oB/CfW/tcqKf1gmrnozBM19l4ufsUkz/MhOzx4bj8WGdIEk3draGiIiur9X3YbFEvA/L9RmMMoa9tQUFFbX44MEBuKefv+hIZvPT/kL8fe0BnK2uh0oh4Zk/dMVTd3SGg7Lt1pw3Gox4/YdD+G/qKQDAg1HBeH18rzb9GUREtqbd7sNC1kupkDAp0rT4Nik9V3Aa8zhXXY+nv8rEU19m4mx1PcJ93bB2xhA8G9u1zYuESqnAa/f0wpy7uIOIiKg9sLDYkUmRgZAk4LdjZ5B7xrZ3tWw8WIRR72/HD/sKoVRIeOYPXbDu6aHoHaBtt58pSRIeHRqGj7mDiIiozbGw2JFAT2cM69oRALByl20uvq2oaUBC0h488XkGyqrq0NXHFaunD8bzo7vDUWWef91H9dRh5V9i4ON2cQfRXu4gIiK6JSwsdmbyhXuyrMrIQ6ON3aV1y+FijHp/G1bvPg2FBDw5ojO+f2Yo+gV5mD1Ln0DTDqJwXzeUVdUh/uNUJB+4+t2giYjo2lhY7ExsDx28XBxRrK/DtiOlouO0CX1tA15ctRePLtuFkso6dPJ2waonB+PlsWJ3Q/l7OOGb6YNxe/eOqG0wYvqXGfh4O2cQERHdDBYWO+OoUuD+gQEAbOPOt9uPlCLu/e1YlZEPSQL+PDQMPz07DBEhljGZ2lWtwidTIvGn20Igy8CbPx3G39YesLmzW0RE7Y2FxQ413ap/y+ESlOhrBae5OVV1jZi9ej+mfJqGwopahHRwRtITMfj7XT0t7h4zKqUCr4/vhVcu7CD6amcuHl2+C5XcQUREdMNYWOxQFx83RIZ4wmCU8U1mvug4rfb7sTLEvb8dX6eZtmc/MjgU658dhqgwL8HJrk6SJDw2NAwfPRwBJwclth8pxcTFqThdfl50NCIiq8DCYqeazrIkpedZzZqKmvpGzPnuAP74yU6cLj+PQE8nfP34bXj1nl5wdmz1TZuFGN3Lt3kHUXZxJSYs+g378stFxyIisngsLHZqXF8/uKpVOHWmBjtyzoqOc11pJ85izIJfmu8k+1B0MJJnDkdM5w6Ck7XepTuISivr8MBH3EFERHQ9LCx2ytlRhXv6m27Pb8l3vj1fb8Dr3x9C/MepyD1bA3+tBp8/FoV/3NsHrmrrOKtyJf4ephlEI7pd3EG0dHuO1ZztIiIyNxYWO9Z0T5afDhShvKZecJrLZZw6h3Ef/IJPfzsBWQbiI4OQ/Nzw5pvfWTs3jQP+MzUSD98WDFkG/vFTFv7OHURERFfEwmLH+gRo0cPPHfWNRqzdfVp0nGa1DQYk/pSFSUt+R05ZNXTuanw2bRDemtgX7hoH0fHalEqpwLzxvfH3cT0gScCX3EFERHRFLCx2TJKk5rMsKyxk8e3evHLc9eGv+Gh7DowycN/AAGycOQJ3dPcRHa3dSJKEPw/r1GIH0aQl3EFERHQpFhY7N6F/ANQqBQ4XVWJffoWwHHWNBvxzw2Hct/h3HCupgrerGkunROK9B/pD62xbZ1WupmkHUUc3NQ4XcQcREdGlWFjsnNbZAXf28QMg7s63B05XYPzC37Do5+MwGGXc088fm54bjlE9dULyiHSlHUQbDnIHERERCws135Nl3Z7TqK5rNNvPbTAYsWDzEUxY9BsOF1XCy8URix8aiA8eHABPF0ez5bA0Af+zg+jJLzLwyS/cQURE9o2FhRAd5oXQDs6orjfgx/2FZvmZWYV6jF/4GxZsPopGo4yxvX2x8bnhGHvhbI+9a9pB9FC0aQfRGz9m4ZXvuIOIiOwXCwtBkiTEDwoGYLrzbXtqNBixcMtR3LPwVxwq1MPD2QEfPjgA/35oILxd1e36s62NSqnAGxMu7iD6YkcuHuMOIiKyUywsBAC4PyIASoWEjFPncLS4sl1+xtHiSty3+He8s/EIGgwyYnvosPG54bi7nz8kSWqXn2ntmnYQLXk4AhoHBbZd2EFUwB1ERGRnWFgIAODjpsHIcNPW4bY+y2Iwyvho23GM+/BX7MuvgLtGhffj+2HplAj4uGna9GfZqrgr7CDaL3BXFxGRubGwULPJUabFt6t3n0Zdo6FNjnm8tAoTl/yOxPWHUd9oxB3dO2JTwgjcOyCQZ1VaqW+gB9bOGILuOjeUXNhBtJE7iIjITrCwULPhXTvC112Ds9X12Hyo5JaOZTTK+OSXHNz5r1+wO7ccbmoV3p7YF58+Mgg6d55VuVkBHk74ZnoMhnfriPMNBvyFO4iIyE6wsFAzlVKBSZGBAIAVtzAQ8WRZNSZ/vANv/JiFukYjhnX1RvJzw/FAZBDPqrQBN40DPp0aiT9esoNozncHuYOIiGwaCwu18ECk6bLQr8fKkHe2plXvNRplLP/9JMb+6xeknTwLF0cl3ry3D/77aBQCPJzaI67dUikV+MeE3vjbnaYdRJ/vOIU//5c7iIjIdrGwUAtBXs4Y2sUbsgysysi/4fflna3BQ5/sxNx1B3G+wYCYTh2QPHM4/hgdzLMq7USSJDw+vBMWP2TaQbQ1mzuIiMh2sbDQZZrufLtqVx4MxmuvjZBlGV/tzMWYBduRmnMGTg5KvHZPL3z552gEeTmbI67dG9PbF0lPcAcREdk2Fha6zOheOng4O6Cwohbbj5Ze9XUF5ecx5dM0/HXNflTXGzAo1BPrnx2GqYNDoVDwrIo59QvywJqnBrfYQbTpULHoWEREbYaFhS6jVilx3wDT4tuktMvvySLLMlam5yHu/e345WgZ1CoFXrmrJ5KeiEGot4u549IFgZ7OWDU9BsO6euN8gwFPfL4L//n1BHcQEZFNYGGhK2q6LLQ5qxillXXNzxfra/HosnTM+nYfKusaMSDYAz89OwyPDQ3jWRUL4K5xwKePDGreQTTvh0OYu447iIjI+rGw0BV193XDgGAPNBplfJuZD1mWsTozH6Pe24afs0vhqFJg9thwfPPkYHTu6Co6Ll3C4X92EP031bSDqMqMk7iJiNqaJNvA+WK9Xg+tVouKigq4u7uLjmMzVqbnYda3+xDSwRnddG7NayL6BWrxzqR+6KpzE5yQrif5QBFmJu1GbYMR4b5u+GzaIPhpucWciCxDa76/eYaFrmpcXz+4OCpx6kwNNh0qhoNSwotx3fHt9MEsK1aiaQeRt6tpB9H4hb/hwGnuICIi68PCQlflolZh0oUbyfXyd8e6p4dixh1doFLyXxtr0i/IA2tnDEY3nStKKuswaUkqNnMHERFZGV4SomtqNBixN78CfQO1cGBRsWr62gbM+DITvxwtgyQBr4zriWlDQnljPyIShpeEqM2olApEhHiyrNiAph1ED0aZdhC9/sMhvModRERkJfgtRGRHHJQKvHlvb/z1znBIErA89RQe5w4iIrICLCxEdkaSJDwxvDMWPzQQGgcFfr4wg6iwgjOIiMhysbAQ2akxvf2w4sIOoqxCPSYs4g4iIrJcLCxEdqz/JTuIivWmGUTcQUREloiFhcjOBXo645vpgzGsqzdq6k0ziD777YToWERELbCwENElO4iCYJSB174/hLnfHeAOIiKyGCwsRASgaQdRH8weGw7AtIPoic8zuIOIiCwCCwsRNZMkCX8ZYdpBpFYpsOVwCXcQEZFFYGEhosuM7eOHFU/cBm9XR2QV6nHPwt+weOtxlFbWiY5GRHaKt+YnoqvKO1uDR5el42hJFQBApZAwqqcOD0YFY2gXbygUvK0/Ed281nx/s7AQ0TXVNhiwbm8Bvk7Lxe7c8ubnAz2dEB8ZhEmRQfDVasQFJCKrxcJCRO3icJEeK9LysDozH/pa02JchQT8IVyHB6OCcHt3Hyh51oWIbhALCxG1q9oGA9YfKMTXO/OQdvJs8/N+Wg0mRQYhflAQAjycBCYkImvAwkJEZnOspApJ6bn4JiMf52oaAACSBIzo1hGTBwVjZA8fTvsmoitiYSEis6trNGDjwWJ8nZaL34+faX6+o5sakyICMXlQMII7OAtMSESWhoWFiIQ6WVaNpF15WLUrH2VVF7dCD+nSAQ9GBWNUTx3UKqXAhERkCVhYiMgiNBiMSMkqxtdpedh+tBRNf9t4uTji/oEBmBwVjM4dXcWGJCJhWFiIyOLkna3Bql15WLkrH0X62ubno8K88GBUEMb29oPGgWddiOwJCwsRWaxGgxFbs0uxIj0XWw6XwHjhbyCtkwPuHRCAB6OC0d3XTWxIIjILFhYisgqFFeexalc+ktLzcLr84ryigcEemBwVjLv6+sHZUSUwIRG1JxYWIrIqBqOMX46WYkVaHjZnFaPxwmkXN7UK4wf4Y/KgYPQO0ApOSURtjYWFiKxWSWUtvskwnXU5daam+fm+gVpMHhSMe/r7w1XNsy5EtoCFhYisntEoY0fOGXyVlosNB4vQYDD9VeXsqMQ9/fwxOSoY/QK1kCSOAiCyViwsRGRTzlTVYXXmaXydnouc0urm58N93fDH6GCM7x8ArZODwIREdDNYWIjIJsmyjPST57AiLRc/7i9EXaMRAKBxUODOPn74Y1QwIkI8edaFyEq05vv7pgZ8LFq0CKGhodBoNIiOjkZaWtpVX7t06VIMGzYMnp6e8PT0RGxs7GWvf+SRRyBJUovHmDFjbiYaEdkwSZIQFeaF9+L7I+2vsXj17p7ornNDbYMRqzNPY+KSVIx6fzs++SUH56rrRcclojbU6jMsSUlJmDJlCpYsWYLo6GgsWLAAq1atQnZ2Nnx8fC57/UMPPYQhQ4Zg8ODB0Gg0eOutt7BmzRocPHgQAQEBAEyFpbi4GJ999lnz+9RqNTw9PW8oE8+wENkvWZaxO68cK9Jy8f3eQpxvMAAAHJUKjOnti8lRQYjp1IFnXYgsULteEoqOjsagQYOwcOFCAIDRaERQUBCeeeYZvPzyy9d9v8FggKenJxYuXIgpU6YAMBWW8vJyrF27tjVRmrGwEBEAVNY24Ls9Bfg6LRcHC/TNz4d5uyB+UBAmRgTC21UtMCERXardLgnV19cjIyMDsbGxFw+gUCA2Nhapqak3dIyamho0NDTAy8urxfNbt26Fj48PunfvjunTp+PMmTNXOQJQV1cHvV7f4kFE5KZxwMO3heDH/xuG758eij9GB8NVrcKJsmrMX38Yt72Zgqe+zMD2I6UwGq1++R6RXWnVzQzKyspgMBig0+laPK/T6XD48OEbOsZLL70Ef3//FqVnzJgxuO+++xAWFobjx4/jr3/9K8aOHYvU1FQolZfPFklMTMRrr73WmuhEZGf6BGrRJ7AP/nZnD/ywrwBfp+VhT145ftpfhJ/2FyHIywnxkUGYFBkEnbtGdFwiuo5WXRIqKChAQEAAfv/9d8TExDQ/P2vWLGzbtg07d+685vvnz5+Pt99+G1u3bkXfvn2v+rqcnBx07twZmzdvxsiRIy/787q6OtTVXRxZr9frERQUxEtCRHRNWYV6rEjLxerdp1FZ2wgAUCok3NHdB3+MDsKIbj5QKrjWhchcWnNJqFVnWLy9vaFUKlFcXNzi+eLiYvj6+l7zve+88w7mz5+PzZs3X7OsAECnTp3g7e2NY8eOXbGwqNVqqNW8Dk1ErdPDzx2vje+Nl8f2wE/7C7EiPRfpJ89hc1YxNmcVw0+rwQORQXhgUBACPJxExyWiS7RqDYujoyMiIiKQkpLS/JzRaERKSkqLMy7/6+2338a8efOQnJyMyMjI6/6c/Px8nDlzBn5+fq2JR0R0Q5wclbg/IhCrnhyMzQnD8djQMHg6O6Cwohb/SjmKoW9twSOfpV24w65RdFwiwk1ua546dSo++ugjREVFYcGCBVi5ciUOHz4MnU6HKVOmICAgAImJiQCAt956C3PmzMFXX32FIUOGNB/H1dUVrq6uqKqqwmuvvYb7778fvr6+OH78OGbNmoXKykrs37//hs6kcJcQEd2qukYDNhwsxtc7c5Gac3HRf0c3NSZFBOKJ4Z3g4ewoMCGR7Wm3S0IAEB8fj9LSUsyZMwdFRUXo378/kpOTmxfi5ubmQqG4eOJm8eLFqK+vx8SJE1scZ+7cuXj11VehVCqxb98+LF++HOXl5fD398fo0aMxb948XvYhIrNRq0wziu7p548TZdVISs/DNxl5KK2sw7+3Hkf6ybNY+ZcY3s+FSBDemp+I6CrqG43YnFWMhJV7UNtgxMd/isDoXtder0dEN67db81PRGQPHFWmGUWPDgkDAPxzQzYauaaFSAgWFiKi6/jLiM7wcHbA0ZIqrM48LToOkV1iYSEiug6tkwOevqMLAOC9TUdQe2FeERGZDwsLEdENePi2EAR4OKFIX4tlv58UHYfI7rCwEBHdAI2DEs+N6gYA+PfPx1BR0yA4EZF9YWEhIrpB9w4IQHedG/S1jfj3tmOi4xDZFRYWIqIbpFRIeGlsdwDAZ7+dREH5ecGJiOwHCwsRUSvc0d0HUWFeqG80YsHmI6LjENkNFhYiolaQJAkvjw0HAHyTkY+jxZWCExHZBxYWIqJWGhjsibheOhhl4O0N2aLjENkFFhYiopvwYlw4FBKw6VAxdp08KzoOkc1jYSEiugldfFwRPygIADB//WHYwFg2IovGwkJEdJOeHdkNGgcFdp06h81ZJaLjENk0FhYiopvkq9Vg2oXBiG8nH4bByLMsRO2FhYWI6BY8OaIztE6mwYjfZuaLjkNks1hYiIhuwaWDEd/nYESidsPCQkR0i/4UEwJ/rQaFFbVYzsGIRO2ChYWI6BZpHJRIGG26Zf8iDkYkahcsLEREbeDSwYiLtx0XHYfI5rCwEBG1AaVCwqwxTYMRT6CwgoMRidoSCwsRURv5Q7gPokK9UNdoxIJNR0XHIbIpLCxERG1EkiS8dGEw4qqMPA5GJGpDLCxERG0oIuTiYMR/cjAiUZthYSEiamMvxnWHQgI2HipGxikORiRqCywsRERtrIuPGx6I5GBEsh3VdY2iI7CwEBG1h5mx3aBWKZB+8hxSOBiRrFh9oxETFv2GmSt240xVnbAcLCxERO3AV6vBo0MvDEbcwMGIZL0+/e0EjpZU4ZejZVApxNUGFhYionbSNBjxSHEVVnMwIlmhgvLz+Ndm0xb9l8eGQ+vsICwLCwsRUTvROjlgxh2dAQDvcTAiWaF5PxzC+QYDIkM8cf/AQKFZWFiIiNrRlJjQ5sGI/009KToO0Q3bdqQU6w8UQamQMG9CbygUktA8LCxERO1I46DEc6O6AQAW/XycgxHJKtQ2GDD3uwMAgKkxoejh5y44EQsLEVG7u29gILrpXFFxvoGDEckqfLQtByfP1MDHTY3nRnUVHQcACwsRUbtTKiTMijPdsv+z306gqKJWcCKiq8s9U4N/bz0GAPj7XT3hphG30PZSLCxERGYwsocPBoV6mgYjbj4iOg7RFcmyjFe/P4i6RiMGd+6Au/v6iY7UjIWFiMgMJEnCyxcGI67clYdjJRyMSJZn06FibDlcAgelhNfH94YkiV1oeykWFiIiM4kI8cLonqbBiG8nczAiWZaa+ka89v0hAMCfh3VCFx9XwYlaYmEhIjKjWWMuHYx4TnQcomYLtxzD6fLzCPBwwjN/6CI6zmVYWIiIzKiLjxsmRZgGI77FwYhkIY6VVGHpLzkAgDl394Szo0pwosuxsBARmdnMUV2hVimQdvIsthzmYEQSS5ZlzF13AA0GGXd074jRPXWiI10RCwsRkZn5aZ0wbYhpMOJbyRyMSGL9sK8Qvx07A0eVAq/e08uiFtpeioWFiEiA6RyMSBagsrYB834wLbR96vbOCOngIjjR1bGwEBEJoHW+OBjxfQ5GJEEWbD6Kkso6hHRwxpMjOouOc00sLEREgkyJCYWfVoOCilp8nnpKdByyM4eL9Fj2+0kAwGv39ILGQSk20HWwsBARCXLpYMSFPx9DxXkORiTzkGUZr6w9AINRxphevri9u4/oSNfFwkJEJND9lwxGXMLBiGQm32aeRvrJc3ByUGLO3T1Fx7khLCxERAJxMCKZW0VNAxJ/ygIA/N/IrvD3cBKc6MawsBARCdY0GLG2wYh/pXAwIrWvf248jDPV9eji44rHhoaJjnPDWFiIiAS7dDBiUnoejpVUCU5Etmpffjm+3JkLAJg3vjccVdZTA6wnKRGRDYsI8cKoC4MR/7nhsOg4ZIMMRtNCW1kGxvf3R0znDqIjtQoLCxGRhZgVZxqMuOEgByNS21uRnou9+RVwU6vwtzt7iI7TaiwsREQWoquOgxGpfZypqsPbydkAgOdGdYOPu0ZwotZjYSEisiCXDkb8OZuDEaltzF9/GBXnG9DDzx1TYkJEx7kpLCxERBbET+uER4aEAgDeWp/NwYh0y3adPItVGaZ5VW9M6A2V0jq/+q0zNRGRDXtqRBe4a1TILq7Emt2nRcchK9ZoMOLvaw8AAB6IDEREiKfgRDePhYWIyMKYBiN2AcDBiHRr/pt6CoeLKqF1csBLY8JFx7klLCxERBZo6mDTYMTT5efxxQ4ORqTWK9HX4r1NphsRvjQmHB1c1YIT3RoWFiIiC6RxUOK5WA5GpJv3xo9ZqKprRL8gD0weFCQ6zi1jYSEislD3DQxAVx9XlNc04CMORqRW+P1YGdbtLYAkAW+M7w2FQhId6ZaxsBARWSiVUoFZF9YdfPrbCRTrORiRrq++0YhXvjMttH04OgR9ArWCE7UNFhYiIgsW28MHkSGmwYgLNh8VHYeswH9+PYHjpdXo4OKIF0Z3Fx2nzbCwEBFZsEsHI67cxcGIdG2ny8/jgxRTsf3rnT2gdXYQnKjt3FRhWbRoEUJDQ6HRaBAdHY20tLSrvnbp0qUYNmwYPD094enpidjY2MteL8sy5syZAz8/Pzg5OSE2NhZHj/K/JIiIACAy1AuxPXQwGGW8syFbdByyYK9/fxDnGwyICvXCfQMDRMdpU60uLElJSUhISMDcuXORmZmJfv36IS4uDiUlV76F9NatW/Hggw/i559/RmpqKoKCgjB69GicPn3xZkhvv/02PvjgAyxZsgQ7d+6Ei4sL4uLiUFvL67VERAAwa4xpMGLywSJk5nIwIl3u5+wSbDhYDKVCwusTekGSrH+h7aUkuZXTtaKjozFo0CAsXLgQAGA0GhEUFIRnnnkGL7/88nXfbzAY4OnpiYULF2LKlCmQZRn+/v54/vnn8cILLwAAKioqoNPpsGzZMkyePPm6x9Tr9dBqtaioqIC7u3trPg4RkdWY9c1erNyVj6gwLyQ9cZvNfSHRzattMCBuwXacOlODPw8Nw9/v6ik60g1pzfd3q86w1NfXIyMjA7GxsRcPoFAgNjYWqampN3SMmpoaNDQ0wMvLCwBw4sQJFBUVtTimVqtFdHT0VY9ZV1cHvV7f4kFEZOtmxnYzDUY8cRZbs0tFxyELsmTbcZw6UwOduxozR3UTHaddtKqwlJWVwWAwQKfTtXhep9OhqKjoho7x0ksvwd/fv7mgNL2vNcdMTEyEVqttfgQFWf8NcYiIrsff45LBiMmHORiRAACnzlTj31tN9+l55a6ecFWrBCdqH2bdJTR//nysWLECa9asgUajuenjzJ49GxUVFc2PvLy8NkxJRGS5mgYjHi6qxFoORrR7sixj7rqDqG80YmgXb4zr4yc6UrtpVWHx9vaGUqlEcXFxi+eLi4vh6+t7zfe+8847mD9/PjZu3Ii+ffs2P9/0vtYcU61Ww93dvcWDiMgeaJ0d8NSFwYjvcTCi3dtwsBhbs0vhoJTw2njbW2h7qVYVFkdHR0RERCAlJaX5OaPRiJSUFMTExFz1fW+//TbmzZuH5ORkREZGtvizsLAw+Pr6tjimXq/Hzp07r3lMIiJ79cjgUPi6czCivaupb8Tr3x8EADwxvBM6d3QVnKh9tfqSUEJCApYuXYrly5cjKysL06dPR3V1NaZNmwYAmDJlCmbPnt38+rfeeguvvPIKPv30U4SGhqKoqAhFRUWoqjLd/EiSJMycORNvvPEG1q1bh/3792PKlCnw9/fHhAkT2uZTEhHZEI2DEgmjLg5G1NdyMKI9+nDLMRRU1CLAwwlP39FVdJx21+qVOfHx8SgtLcWcOXNQVFSE/v37Izk5uXnRbG5uLhSKiz1o8eLFqK+vx8SJE1scZ+7cuXj11VcBALNmzUJ1dTWeeOIJlJeXY+jQoUhOTr6ldS5ERLbsvoEBWPpLDo6WVOGjbcfxYly46EhkRsdKKrF0ew4A4NV7esHJUSk4Uftr9X1YLBHvw0JE9mjjwSI88XkGNA4KbHvxDujc+R959kCWZfxx6U6k5pzByHAf/OeRQaIj3bR2uw8LERFZjlE9dYjgYES7s25vAVJzzkCtUuDVe3qJjmM2LCxERFbqfwcjHi/lYERbV1nbgH/8mAUAmHFHFwR5OQtOZD4sLEREVmwQByPalfc3HUVJZR1COzjjieGdRMcxKxYWIiIr1zQYcf0BDka0ZYcK9Fj2+wkAwOvje0PjYPsLbS/FwkJEZOW66dxw/8BAAMBb6w/DBvZS0P8wGmW88t0BGGXgzj6+GN6to+hIZsfCQkRkA54b1Q2OKgV2njiLrUc4GNHWfJOZj4xT5+DsqMQrVjKJua2xsBAR2QB/DydMGxwKwHSWhYMRbUd5TT3mrz8MAHh2ZFf4aZ0EJxKDhYWIyEZMv71z82DE7/ZwMKKt+OeGbJytrkdXH1c8OjRMdBxhWFiIiGyEh7Mjpt9uGoz47kYORrQFe/PK8VVaLgBg3oTecFDa79e2/X5yIiIbNG0IByPaCoNRxt/XHoAsA/cOCMBtnTqIjiQUCwsRkQ3ROCjx3CjTILxFHIxo1b5Ky8X+0xVwU6sw+07OimJhISKyMfcPDEQXH1ecq2nAx9tyRMehm1BWVYd/JpsW2j4/uht83DgnioWFiMjGqJQKzIrrDgD45NcclOhrBSei1pq//jD0tY3o5e+Oh28LER3HIrCwEBHZoBaDEVM4GNGapJ88i28y8gGYFtqq7Hih7aX4WyAiskGSJOGlMaZ1D0npecjhYESr0Ggw4pW1BwAAkwcFYWCwp+BEloOFhYjIRkWFeSG2h49pMOJGDka0Bst+P4nDRZXwcHbArDFcaHspFhYiIhv2Ylw4FBLw0/4i7OZgRItWrK/Fgs2my3cvjQmHl4uj4ESWhYWFiMiGdfe9OBhxPgcjWrQ3fsxCVV0j+gd5ID4ySHQci8PCQkRk4zgY0fL9dqwM3+8tgEIC3pjQGwqFJDqSxWFhISKycf4eTnjkksGIRg5GtCh1jQa88p1poe2fbgtB7wCt4ESWiYWFiMgOPHV7Z7g1DUbcy8GIluSTX04gp7Qa3q5qJIzuLjqOxWJhISKyAx7OjnjqwmDEdzYcQV0jByNagvxzNfhwi2mh7V/vDIfWyUFwIsvFwkJEZCdaDkbMFR2HALz+/SHUNhgRFeaFewcEiI5j0VhYiIjshMZBiZmxpsGIC7cc5WBEwbYcLsbGQ8VQKSS8MaE3JIkLba+FhYWIyI5MjAhE544uOFfTgKXbORhRlNoGA+auOwgAeHRoGLrp3AQnsnwsLEREdkSlVDTfQfWTX05wMKIg/956HHlnz8PXXYNnR3YVHccqsLAQEdmZ0T11GBjsgfMNBvyLgxHN7mRZNZZsOw4AeOWunnBRqwQnsg4sLEREdkaSJLw8tgcAYAUHI5qVLMuYs+4g6huNGNbVG3f28RUdyWqwsBAR2aGoMC+MDDcNRnx34xHRcexG8oEibD9SCkelAq+P50Lb1mBhISKyU7PGhEOSgB/3F2JPXrnoODavuq4Rr/9wCADwlxGdEObtIjiRdWFhISKyUy0HI2ZxMGI7+2DLURRW1CLQ06n5Jn5041hYiIjsWNNgxB05Z7GNgxHbzdHiSvznlxMAgFfv7gUnR6XgRNaHhYWIyI4FeDhhakwIAOCt5GwORmwHsizjle8OoNEoI7aHDrE9daIjWSUWFiIiO/fU7V3gplEhq1CPdXsLRMexOd/tKcCOnLPQOCgw9+6eouNYLRYWIiI75+niiOm3dwYAvLMxm4MR25C+tgFv/JgFAHj6ji4I8nIWnMh6sbAQERGmDQ6Dzl2N/HPn8SUHI7aZ9zYeQVlVHTp5u+Dx4Z1Ex7FqLCxERAQnRyWei+0GAFj48zFUcjDiLTtYUIH/pp4EALw2vhfUKi60vRUsLEREBODiYMSz1fUcjHiLjEYZr6w9AKMMjOvrh2FdO4qOZPVYWIiICIBpMOKLcabBiEt/OYGSSg5GvFmrMvKQmVsOF0clXhnHhbZtgYWFiIiaxfXSYcCFwYgfcDDiTTlXXY/56w8DAGbGdoOvViM4kW1gYSEiomaSJOHlMaazLF+ncTDizXh7QzbO1TSgm84VjwwJFR3HZrCwEBFRC9GdOnAw4k3ak1eOFemmXVZvTOgDByW/ZtsKf5NERHSZF8d0bx6MuJeDEW+IwSjj72v3Q5aB+wYGICrMS3Qkm8LCQkRElwn3dcd9A5oGIx7mYMQb8OXOUzhwWg83jQqzx/YQHcfmsLAQEdEVJYw2DUZMzTmD7UfLRMexaKWVdfjnhmwAwItx3dHRTS04ke1hYSEioiu6dDDia+sO4sudp3CoQI9Gg1FwMsuTuD4LlbWN6B3gjoeiQ0THsUkq0QGIiMhyPXV7F6zclY+csmr8bc0BAICzoxJ9A7UYEOyJAUEeGBDsaddnFNJOnMXqzNOQJGDe+N5QKiTRkWwSCwsREV2Vp4sj1s4YgjWZ+didV449ueWorGvEjpyz2JFztvl1gZ5OGBjsiQHBpgLT088djirbP4nfYDDilbWmIjd5UDAGBHsKTmS7WFiIiOiawrxdkDC6OwDTLeePl1YhM/ccdueWY3duOY6UVCL/3HnknzuPdXsLAACOKgV6+7ubzsIEe2BgsCf8tBpIkm2dfVj220lkF1fC09kBs+K6i45j01hYiIjohikUErrq3NBV54b4QcEAgMraBuzLr8DuphKTV46z1fXIzC1HZm5583t17moMCLp4FqZPgBZOjtY7ELCoohYLNpvuU/Py2HB4ujgKTmTbJNkG9qrp9XpotVpUVFTA3d1ddBwiIrsmyzJOnanB7ryLZ2GyCvVoNLb8ulEqJPTwc2suMQODPRHSwdlqzsLM+CoTP+4rxMBgD3zz5GAouHal1Vrz/c3CQkRE7e58vQEHCi6ehcnMPYdifd1lr/N0dmixmLdvkBbuGgcBia/t16NlePg/O6GQgO+fGYpe/lrRkaxSa76/eUmIiIjanZOjEoNCvTAo1HT3V1mWUVhRe+EMzDnszivH/tMVOFfTgC2HS7DlcAkAQJKArj6uF8/ChHiiS0dXoWcz6hoNmPOdaaHtlJhQlhUzYWEhIiKzkyQJ/h5O8Pdwwri+fgCA+kYjsgr1Fxf05p1D3tnzOFJchSPFVUjalQcAcFOr0C/I48JaGA/0D/KElxnXjyzdnoOcsmp0dFMjYXQ3s/1ce8dLQkREZLFKK+uwJ6+8+VLS3vxy1NQbLntdaAdnDAj2xMALC3q7+7q1y+DBvLM1GPX+NtQ2GLEgvj8mDAho859hT7iGhYiIbFKjwYgjxVWXLOg9h+Ol1Ze9TuOgQN+Ai2dhBgR7QueuueWf/+flu7A5qxi3dfLC14/fZjULhC0VCwsREdmNipoG7Mk3lZfM3HLsyT0HfW3jZa/z12qa7wszINgTvfzdoXG48W3VKVnFeGz5LqgUEtY/OwxddW5t+THsEhfdEhGR3dA6O2BEt44Y0a0jANPN7XLKqpsX8+7OLUd2kR4FFbUo2F+IH/cXAgAclBJ6+msv7EgybasO9HS64lmT8/UGzF13EADw2LAwlhUBeIaFiIhsXnVdI/bmlzffF2ZP3jmUVdVf9jpvV/XFy0hBnugbqIWLWoV3N2bjwy3H4KfVYHPCCLio+d/7bYGXhIiIiK5BlmXknzt/yY6kchwqqECDoeVXokICuvu643hJFeoNRix+aCDG9vETlNr28JIQERHRNUiShCAvZwR5OWN8f9NOn9oGAw4WVDSfhdmdew4FFbXIKtQDAIZ364gxvX1FxrZrN7Xna9GiRQgNDYVGo0F0dDTS0tKu+tqDBw/i/vvvR2hoKCRJwoIFCy57zauvvgpJklo8wsPDbyYaERHRTdE4KBER4oU/D+uERQ8NxO+zR2LH7JFY8vBAvDw2HAvi+3NXkECtPsOSlJSEhIQELFmyBNHR0ViwYAHi4uKQnZ0NHx+fy15fU1ODTp06YdKkSXjuueeuetxevXph8+bNF4OpePKHiIjE8tVqMEbLS0CWoNVnWN577z08/vjjmDZtGnr27IklS5bA2dkZn3766RVfP2jQIPzzn//E5MmToVarr3pclUoFX1/f5oe3t3droxEREZGNalVhqa+vR0ZGBmJjYy8eQKFAbGwsUlNTbynI0aNH4e/vj06dOuGhhx5Cbm7uVV9bV1cHvV7f4kFERES2q1WFpaysDAaDATqdrsXzOp0ORUVFNx0iOjoay5YtQ3JyMhYvXowTJ05g2LBhqKysvOLrExMTodVqmx9BQUE3/bOJiIjI8rX9oIWbMHbsWEyaNAl9+/ZFXFwcfvrpJ5SXl2PlypVXfP3s2bNRUVHR/MjLyzNzYiIiIjKnVq1s9fb2hlKpRHFxcYvni4uL4evbdlu9PDw80K1bNxw7duyKf65Wq6+5HoaIiIhsS6vOsDg6OiIiIgIpKSnNzxmNRqSkpCAmJqbNQlVVVeH48ePw8+PKbCIiIrqJbc0JCQmYOnUqIiMjERUVhQULFqC6uhrTpk0DAEyZMgUBAQFITEwEYFqoe+jQoeb/ffr0aezZsweurq7o0qULAOCFF17A3XffjZCQEBQUFGDu3LlQKpV48MEH2+pzEhERkRVrdWGJj49HaWkp5syZg6KiIvTv3x/JycnNC3Fzc3OhUFw8cVNQUIABAwY0//M777yDd955ByNGjMDWrVsBAPn5+XjwwQdx5swZdOzYEUOHDsWOHTvQsWPHW/x4REREZAs4S4iIiIiEaM33t0XsEiIiIiK6FhYWIiIisngsLERERGTxWFiIiIjI4tnESOSmdcOcKURERGQ9mr63b2T/j00UlqaZQ5wpREREZH0qKyuh1Wqv+Rqb2NZsNBpRUFAANzc3SJLUpsfW6/UICgpCXl6eXW6ZtvfPD/B3YO+fH+DvwN4/P8DfQXt9flmWUVlZCX9//xb3cLsSmzjDolAoEBgY2K4/w93d3S7/JW1i758f4O/A3j8/wN+BvX9+gL+D9vj81zuz0oSLbomIiMjisbAQERGRxWNhuQ61Wo25c+dCrVaLjiKEvX9+gL8De//8AH8H9v75Af4OLOHz28SiWyIiIrJtPMNCREREFo+FhYiIiCweCwsRERFZPBYWIiIisngsLNexaNEihIaGQqPRIDo6GmlpaaIjmc327dtx9913w9/fH5IkYe3ataIjmU1iYiIGDRoENzc3+Pj4YMKECcjOzhYdy6wWL16Mvn37Nt8oKiYmBuvXrxcdS5j58+dDkiTMnDlTdBSzefXVVyFJUotHeHi46Fhmdfr0aTz88MPo0KEDnJyc0KdPH+zatUt0LLMJDQ297N8BSZIwY8YMs2dhYbmGpKQkJCQkYO7cucjMzES/fv0QFxeHkpIS0dHMorq6Gv369cOiRYtERzG7bdu2YcaMGdixYwc2bdqEhoYGjB49GtXV1aKjmU1gYCDmz5+PjIwM7Nq1C3/4wx8wfvx4HDx4UHQ0s0tPT8dHH32Evn37io5idr169UJhYWHz49dffxUdyWzOnTuHIUOGwMHBAevXr8ehQ4fw7rvvwtPTU3Q0s0lPT2/x//+mTZsAAJMmTTJ/GJmuKioqSp4xY0bzPxsMBtnf319OTEwUmEoMAPKaNWtExxCmpKREBiBv27ZNdBShPD095U8++UR0DLOqrKyUu3btKm/atEkeMWKE/Oyzz4qOZDZz586V+/XrJzqGMC+99JI8dOhQ0TEsyrPPPit37txZNhqNZv/ZPMNyFfX19cjIyEBsbGzzcwqFArGxsUhNTRWYjESoqKgAAHh5eQlOIobBYMCKFStQXV2NmJgY0XHMasaMGRg3blyLvwvsydGjR+Hv749OnTrhoYceQm5uruhIZrNu3TpERkZi0qRJ8PHxwYABA7B06VLRsYSpr6/HF198gUcffbTNBw3fCBaWqygrK4PBYIBOp2vxvE6nQ1FRkaBUJILRaMTMmTMxZMgQ9O7dW3Qcs9q/fz9cXV2hVqvx5JNPYs2aNejZs6foWGazYsUKZGZmIjExUXQUIaKjo7Fs2TIkJydj8eLFOHHiBIYNG4bKykrR0cwiJycHixcvRteuXbFhwwZMnz4d//d//4fly5eLjibE2rVrUV5ejkceeUTIz7eJac1E7WnGjBk4cOCAXV27b9K9e3fs2bMHFRUV+OabbzB16lRs27bNLkpLXl4enn32WWzatAkajUZ0HCHGjh3b/L/79u2L6OhohISEYOXKlXjssccEJjMPo9GIyMhIvPnmmwCAAQMG4MCBA1iyZAmmTp0qOJ35/ec//8HYsWPh7+8v5OfzDMtVeHt7Q6lUori4uMXzxcXF8PX1FZSKzO3pp5/GDz/8gJ9//hmBgYGi45ido6MjunTpgoiICCQmJqJfv37417/+JTqWWWRkZKCkpAQDBw6ESqWCSqXCtm3b8MEHH0ClUsFgMIiOaHYeHh7o1q0bjh07JjqKWfj5+V1Wznv06GFXl8WanDp1Cps3b8af//xnYRlYWK7C0dERERERSElJaX7OaDQiJSXF7q7h2yNZlvH0009jzZo12LJlC8LCwkRHsghGoxF1dXWiY5jFyJEjsX//fuzZs6f5ERkZiYceegh79uyBUqkUHdHsqqqqcPz4cfj5+YmOYhZDhgy57HYGR44cQUhIiKBE4nz22Wfw8fHBuHHjhGXgJaFrSEhIwNSpUxEZGYmoqCgsWLAA1dXVmDZtmuhoZlFVVdXiv6ROnDiBPXv2wMvLC8HBwQKTtb8ZM2bgq6++wnfffQc3N7fmdUtarRZOTk6C05nH7NmzMXbsWAQHB6OyshJfffUVtm7dig0bNoiOZhZubm6XrVlycXFBhw4d7GYt0wsvvIC7774bISEhKCgowNy5c6FUKvHggw+KjmYWzz33HAYPHow333wTDzzwANLS0vDxxx/j448/Fh3NrIxGIz777DNMnToVKpXA2mD2fUlW5sMPP5SDg4NlR0dHOSoqSt6xY4foSGbz888/ywAue0ydOlV0tHZ3pc8NQP7ss89ERzObRx99VA4JCZEdHR3ljh07yiNHjpQ3btwoOpZQ9ratOT4+Xvbz85MdHR3lgIAAOT4+Xj527JjoWGb1/fffy71795bVarUcHh4uf/zxx6Ijmd2GDRtkAHJ2drbQHJIsy7KYqkRERER0Y7iGhYiIiCweCwsRERFZPBYWIiIisngsLERERGTxWFiIiIjI4rGwEBERkcVjYSEiIiKLx8JCREREFo+FhYiIiCweCwsRERFZPBYWIiIisngsLERERGTx/h9Nts66iXDX7gAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Calculating loss on Test data" + ], + "metadata": { + "id": "KfM6G_AMKfdc" + } + }, + { + "cell_type": "code", + "source": [ + "avg_test_loss = 0\n", + "i = 0\n", + "for batch in test_dataloader:\n", + " _, _, input, target = batch\n", + " if args[\"onGPU\"] == True:\n", + " input = input.cuda().float() / 255.0\n", + " output = model(input)\n", + " focal_loss, tversky_loss, loss = criteria(output, target)\n", + " avg_test_loss += loss.item()\n", + " i += 1\n", + "\n", + "print(\"------------------------------------------\")\n", + "print(f\"Average Testing Loss: {avg_test_loss/i}\")\n", + "print(f\"Testing loss for last batch: {loss.item()}\")\n", + "print(\"------------------------------------------\")" + ], + "metadata": { + "id": "GF3nWi76-qkw", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "73cb8002-989a-4aed-9f71-a7a2bff3d776" + }, + "execution_count": 76, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "------------------------------------------\n", + "Average Testing Loss: 0.22908470531304678\n", + "Testing loss for last batch: 0.16646476089954376\n", + "------------------------------------------\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "# Defining functions to calculate Pixel Accuracy and Intersection of Union\n", + "\n", + "- by paper author" + ], + "metadata": { + "id": "zkys4SPQLsvR" + } + }, + { + "cell_type": "code", + "source": [ + "class SegmentationMetric(object):\n", + " '''\n", + " imgLabel [batch_size, height(144), width(256)]\n", + " confusionMatrix [[0(TN),1(FP)],\n", + " [2(FN),3(TP)]]\n", + " '''\n", + " def __init__(self, numClass):\n", + " self.numClass = numClass\n", + " self.confusionMatrix = np.zeros((self.numClass,)*2)\n", + "\n", + " def pixelAccuracy(self):\n", + " # return all class overall pixel accuracy\n", + " # acc = (TP + TN) / (TP + TN + FP + TN)\n", + " acc = np.diag(self.confusionMatrix).sum() / self.confusionMatrix.sum()\n", + " return acc\n", + "\n", + "\n", + " def classPixelAccuracy(self):\n", + " # return each category pixel accuracy(A more accurate way to call it precision)\n", + " # acc = (TP) / TP + FP\n", + " classAcc = np.diag(self.confusionMatrix) / (self.confusionMatrix.sum(axis=0) + 1e-12)\n", + " return classAcc\n", + "\n", + " def meanPixelAccuracy(self):\n", + " classAcc = self.classPixelAccuracy()\n", + " meanAcc = np.nanmean(classAcc)\n", + " return meanAcc\n", + "\n", + " def meanIntersectionOverUnion(self):\n", + " # Intersection = TP Union = TP + FP + FN\n", + " # IoU = TP / (TP + FP + FN)\n", + " intersection = np.diag(self.confusionMatrix)\n", + " union = np.sum(self.confusionMatrix, axis=1) + np.sum(self.confusionMatrix, axis=0) - np.diag(self.confusionMatrix)\n", + " IoU = intersection / union\n", + " IoU[np.isnan(IoU)] = 0\n", + " mIoU = np.nanmean(IoU)\n", + " return mIoU\n", + "\n", + " def IntersectionOverUnion(self):\n", + " intersection = np.diag(self.confusionMatrix)\n", + " union = np.sum(self.confusionMatrix, axis=1) + np.sum(self.confusionMatrix, axis=0) - np.diag(self.confusionMatrix)\n", + " IoU = intersection / union\n", + " IoU[np.isnan(IoU)] = 0\n", + " return IoU[1]\n", + "\n", + " def genConfusionMatrix(self, imgPredict, imgLabel):\n", + " # remove classes from unlabeled pixels in gt image and predict\n", + " # print(imgLabel.shape)\n", + " mask = (imgLabel >= 0) & (imgLabel < self.numClass)\n", + " label = self.numClass * imgLabel[mask] + imgPredict[mask]\n", + " count = np.bincount(label, minlength=self.numClass**2)\n", + " confusionMatrix = count.reshape(self.numClass, self.numClass)\n", + " return confusionMatrix\n", + "\n", + " def Frequency_Weighted_Intersection_over_Union(self):\n", + " # FWIOU = [(TP+FN)/(TP+FP+TN+FN)] *[TP / (TP + FP + FN)]\n", + " freq = np.sum(self.confusionMatrix, axis=1) / np.sum(self.confusionMatrix)\n", + " iu = np.diag(self.confusionMatrix) / (\n", + " np.sum(self.confusionMatrix, axis=1) + np.sum(self.confusionMatrix, axis=0) -\n", + " np.diag(self.confusionMatrix))\n", + " FWIoU = (freq[freq > 0] * iu[freq > 0]).sum()\n", + " return FWIoU\n", + "\n", + "\n", + " def addBatch(self, imgPredict, imgLabel):\n", + " assert imgPredict.shape == imgLabel.shape\n", + " self.confusionMatrix += self.genConfusionMatrix(imgPredict, imgLabel)\n", + "\n", + " def reset(self):\n", + " self.confusionMatrix = np.zeros((self.numClass, self.numClass))" + ], + "metadata": { + "id": "WCIMCTEUJhm9" + }, + "execution_count": 77, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "class AverageMeter(object):\n", + " \"\"\"Computes and stores the average and current value\"\"\"\n", + " def __init__(self):\n", + " self.reset()\n", + "\n", + " def reset(self):\n", + " self.val = 0\n", + " self.avg = 0\n", + " self.sum = 0\n", + " self.count = 0\n", + "\n", + " def update(self, val, n=1):\n", + " self.val = val\n", + " self.sum += val * n\n", + " self.count += n\n", + " self.avg = self.sum / self.count if self.count != 0 else 0" + ], + "metadata": { + "id": "wGovMunAJnFP" + }, + "execution_count": 78, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "@torch.no_grad()\n", + "def val(val_loader, model):\n", + "\n", + " model.eval()\n", + "\n", + "\n", + " DA=SegmentationMetric(2)\n", + " LL=SegmentationMetric(2)\n", + "\n", + " da_acc_seg = AverageMeter()\n", + " da_IoU_seg = AverageMeter()\n", + " da_mIoU_seg = AverageMeter()\n", + "\n", + " ll_acc_seg = AverageMeter()\n", + " ll_IoU_seg = AverageMeter()\n", + " ll_mIoU_seg = AverageMeter()\n", + " total_batches = len(val_loader)\n", + "\n", + " total_batches = len(val_loader)\n", + " pbar = enumerate(val_loader)\n", + " pbar = tqdm(pbar, total=total_batches)\n", + " for i, (_, _,input, target) in pbar:\n", + " input = input.cuda().float() / 255.0\n", + " # target = target.cuda()\n", + "\n", + " input_var = input\n", + " target_var = target\n", + "\n", + " # run the mdoel\n", + " with torch.no_grad():\n", + " output = model(input_var)\n", + "\n", + " out_da,out_ll=output\n", + " target_da,target_ll=target\n", + "\n", + " _,da_predict=torch.max(out_da, 1)\n", + " _,da_gt=torch.max(target_da, 1)\n", + "\n", + " _,ll_predict=torch.max(out_ll, 1)\n", + " _,ll_gt=torch.max(target_ll, 1)\n", + " DA.reset()\n", + " DA.addBatch(da_predict.cpu(), da_gt.cpu())\n", + "\n", + "\n", + " da_acc = DA.pixelAccuracy()\n", + " da_IoU = DA.IntersectionOverUnion()\n", + " da_mIoU = DA.meanIntersectionOverUnion()\n", + "\n", + " da_acc_seg.update(da_acc,input.size(0))\n", + " da_IoU_seg.update(da_IoU,input.size(0))\n", + " da_mIoU_seg.update(da_mIoU,input.size(0))\n", + "\n", + "\n", + " LL.reset()\n", + " LL.addBatch(ll_predict.cpu(), ll_gt.cpu())\n", + "\n", + "\n", + " ll_acc = LL.pixelAccuracy()\n", + " ll_IoU = LL.IntersectionOverUnion()\n", + " ll_mIoU = LL.meanIntersectionOverUnion()\n", + "\n", + " ll_acc_seg.update(ll_acc,input.size(0))\n", + " ll_IoU_seg.update(ll_IoU,input.size(0))\n", + " ll_mIoU_seg.update(ll_mIoU,input.size(0))\n", + "\n", + " da_segment_result = (da_acc_seg.avg,da_IoU_seg.avg,da_mIoU_seg.avg)\n", + " ll_segment_result = (ll_acc_seg.avg,ll_IoU_seg.avg,ll_mIoU_seg.avg)\n", + " return da_segment_result,ll_segment_result" + ], + "metadata": { + "id": "9en7RPXYI5FI" + }, + "execution_count": 79, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "# Evaluating metrics" + ], + "metadata": { + "id": "cvucz6n-L3Jn" + } + }, + { + "cell_type": "code", + "source": [ + "model.eval()\n", + "example = torch.rand(1, 3, 360, 640).cuda()\n", + "model = torch.jit.trace(model, example)\n", + "da_segment_results,ll_segment_results = val(test_dataloader, model)\n", + "\n", + "msg = 'Driving area Segment: Acc({da_seg_acc:.3f}) IOU ({da_seg_iou:.3f}) mIOU({da_seg_miou:.3f})\\n' \\\n", + " 'Lane line Segment: Acc({ll_seg_acc:.3f}) IOU ({ll_seg_iou:.3f}) mIOU({ll_seg_miou:.3f})'.format(\n", + " da_seg_acc=da_segment_results[0],da_seg_iou=da_segment_results[1],da_seg_miou=da_segment_results[2],\n", + " ll_seg_acc=ll_segment_results[0],ll_seg_iou=ll_segment_results[1],ll_seg_miou=ll_segment_results[2])" + ], + "metadata": { + "id": "tsq1DL5AHIHA", + "outputId": "ec29e441-f66a-4447-b406-e177b3b81dd9", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "execution_count": 80, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 3/3 [00:04<00:00, 1.57s/it]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "print(msg)" + ], + "metadata": { + "id": "iTIDpE7CHupX", + "outputId": "dd35d378-6d98-48ce-fd1a-f3ddd84d6541", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "execution_count": 81, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Driving area Segment: Acc(0.959) IOU (0.748) mIOU(0.851)\n", + "Lane line Segment: Acc(0.984) IOU (0.197) mIOU(0.591)\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "# Metrics\n", + "\n", + "- Evaluation metrics are pixel accuracy and IoU(Intersection over Union).\n", + "- We have achieved an accuracy of 95.9% for Driving area segment\n", + "- We have achieved an accuracy of 98.4% for Lane Line segment.\n", + "- An average of 97.15 % pixel accuracy is achieved which is comparable to the original model's accuracy." + ], + "metadata": { + "id": "iaV6MYx-KvEp" + } + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "LwaTSTHkSIFt" + }, + "execution_count": null, + "outputs": [] + } + ], + "metadata": { + "colab": { + "provenance": [], + "gpuType": "T4", + "authorship_tag": "ABX9TyOOesalZ1LpNlr8iA1qMdW9", + "include_colab_link": true + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + }, + "accelerator": "GPU" + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/submissions/Final Submission/Transfer Learning and Deployment/Update_2.pdf b/submissions/Final Submission/Transfer Learning and Deployment/Update_2.pdf new file mode 100644 index 0000000..bac0477 Binary files /dev/null and b/submissions/Final Submission/Transfer Learning and Deployment/Update_2.pdf differ