diff --git a/tests/python/test_docexamples.py b/tests/python/test_docexamples.py index 080f324..669b5a8 100644 --- a/tests/python/test_docexamples.py +++ b/tests/python/test_docexamples.py @@ -95,7 +95,7 @@ def test_module_example3(): stds = np.array([6.2, 5.3, 3.8, 3.2, 4.7], dtype=np.float64) entropy_model1 = constriction.stream.model.QuantizedGaussian(-50, 50) entropy_model2 = constriction.stream.model.Categorical( - np.array([0.2, 0.5, 0.3], dtype=np.float32), # Probabilities of the symbols 0,1,2. + np.array([0.2, 0.5, 0.3], dtype=np.float64), # Probabilities of the symbols 0,1,2. perfect=False ) diff --git a/tests/python/test_lazy_f32.py b/tests/python/test_lazy_f32.py new file mode 100644 index 0000000..3c08c10 --- /dev/null +++ b/tests/python/test_lazy_f32.py @@ -0,0 +1,448 @@ +import constriction +import numpy as np +import sys +import scipy + +def test_chain_independence(): + data = np.array([0x80d1_4131, 0xdda9_7c6c, + 0x5017_a640, 0x0117_0a3e], np.uint32) + probabilities = np.array([ + [0.1, 0.7, 0.1, 0.1], + [0.2, 0.2, 0.1, 0.5], + [0.2, 0.1, 0.4, 0.3], + ]) + model = constriction.stream.model.Categorical(lazy=True) + + ansCoder = constriction.stream.stack.AnsCoder(data, True) + assert np.all(ansCoder.decode(model, probabilities) == [0, 0, 2]) + + probabilities[0, :] = np.array([0.09, 0.71, 0.1, 0.1]) + ansCoder = constriction.stream.stack.AnsCoder(data, True) + assert np.all(ansCoder.decode(model, probabilities) == [1, 0, 0]) + + probabilities[0, :] = np.array([0.1, 0.7, 0.1, 0.1]) + chainCoder = constriction.stream.chain.ChainCoder(data, False, True) + assert np.all(chainCoder.decode(model, probabilities) == [0, 3, 3]) + + probabilities[0, :] = np.array([0.09, 0.71, 0.1, 0.1]) + chainCoder = constriction.stream.chain.ChainCoder(data, False, True) + assert np.all(chainCoder.decode(model, probabilities) == [1, 3, 3]) + + + +def test_module_example3(): + # Same message as above, but a complex entropy model consisting of two parts: + message = np.array( + [6, 10, -4, 2, 5, 2, 1, 0, 2], dtype=np.int32) + means = np.array([2.3, 6.1, -8.5, 4.1, 1.3], dtype=np.float32) + stds = np.array([6.2, 5.3, 3.8, 3.2, 4.7], dtype=np.float32) + entropy_model1 = constriction.stream.model.QuantizedGaussian(-50, 50) + entropy_model2 = constriction.stream.model.Categorical( + np.array([0.2, 0.5, 0.3], dtype=np.float32), # Probabilities of the symbols 0,1,2. + lazy=True + ) + + # Simply encode both parts in sequence with their respective models: + encoder = constriction.stream.queue.RangeEncoder() + # per-symbol params. + encoder.encode(message[0:5], entropy_model1, means, stds) + encoder.encode(message[5:9], entropy_model2) + + compressed = encoder.get_compressed() + print(f"compressed representation: {compressed}") + print(f"(in binary: {[bin(word) for word in compressed]})") + + decoder = constriction.stream.queue.RangeDecoder(compressed) + decoded_part1 = decoder.decode(entropy_model1, means, stds) + decoded_part2 = decoder.decode(entropy_model2, 4) + assert np.all(np.concatenate((decoded_part1, decoded_part2)) == message) + + +def test_chain2(): + # Some sample binary data and sample probabilities for our entropy models + data = np.array( + [0x80d14131, 0xdda97c6c, 0x5017a640, 0x01170a3e], np.uint32) + probabilities = np.array( + [[0.1, 0.7, 0.1, 0.1], # (<-- probabilities for first decoded symbol) + [0.2, 0.2, 0.1, 0.5], # (<-- probabilities for second decoded symbol) + [0.2, 0.1, 0.4, 0.3]], dtype=np.float32) # (<-- probabilities for third decoded symbol) + model_family = constriction.stream.model.Categorical(lazy=True) + + # Decoding `data` with an `AnsCoder` results in the symbols `[0, 0, 2]`: + ansCoder = constriction.stream.stack.AnsCoder(data, seal=True) + assert np.all(ansCoder.decode(model_family, probabilities) + == np.array([0, 0, 2], dtype=np.int32)) + + # Even if we change only the first entropy model (slightly), *all* decoded + # symbols can change: + probabilities[0, :] = np.array([0.09, 0.71, 0.1, 0.1], dtype=np.float32) + ansCoder = constriction.stream.stack.AnsCoder(data, seal=True) + assert np.all(ansCoder.decode(model_family, probabilities) + == np.array([1, 0, 0], dtype=np.int32)) + + +def test_chain3(): + # Same compressed data and original entropy models as in our first example + data = np.array( + [0x80d14131, 0xdda97c6c, 0x5017a640, 0x01170a3e], np.uint32) + probabilities = np.array( + [[0.1, 0.7, 0.1, 0.1], + [0.2, 0.2, 0.1, 0.5], + [0.2, 0.1, 0.4, 0.3]], dtype=np.float32) + model_family = constriction.stream.model.Categorical(lazy=True) + + # Decode with the original entropy models, this time using a `ChainCoder`: + chainCoder = constriction.stream.chain.ChainCoder(data, seal=True) + assert np.all(chainCoder.decode(model_family, probabilities) + == np.array([0, 3, 3], dtype=np.int32)) + + # We obtain different symbols than for the `AnsCoder`, of course, but that's + # not the point here. Now let's change the first model again: + probabilities[0, :] = np.array([0.09, 0.71, 0.1, 0.1], dtype=np.float32) + chainCoder = constriction.stream.chain.ChainCoder(data, seal=True) + assert np.all(chainCoder.decode(model_family, probabilities) + == np.array([1, 3, 3], dtype=np.int32)) + + +def test_stack1(): + # Define the two parts of the message and their respective entropy models: + message_part1 = np.array([1, 2, 0, 3, 2, 3, 0], dtype=np.int32) + probabilities_part1 = np.array([0.2, 0.4, 0.1, 0.3], dtype=np.float32) + model_part1 = constriction.stream.model.Categorical(probabilities_part1, lazy=True) + # `model_part1` is a categorical distribution over the (implied) alphabet + # {0,1,2,3} with P(X=0) = 0.2, P(X=1) = 0.4, P(X=2) = 0.1, and P(X=3) = 0.3; + # we will use it below to encode each of the 7 symbols in `message_part1`. + + message_part2 = np.array([6, 10, -4, 2], dtype=np.int32) + means_part2 = np.array([2.5, 13.1, -1.1, -3.0], dtype=np.float32) + stds_part2 = np.array([4.1, 8.7, 6.2, 5.4], dtype=np.float32) + model_family_part2 = constriction.stream.model.QuantizedGaussian(-100, 100) + # `model_family_part2` is a *family* of Gaussian distributions, quantized to + # bins of width 1 centered at the integers -100, -99, ..., 100. We could + # have provided a fixed mean and standard deviation to the constructor of + # `QuantizedGaussian` but we'll instead provide individual means and standard + # deviations for each symbol when we encode and decode `message_part2` below. + + print( + f"Original message: {np.concatenate([message_part1, message_part2])}") + + # Encode both parts of the message in sequence (in reverse order): + coder = constriction.stream.stack.AnsCoder() + coder.encode_reverse( + message_part2, model_family_part2, means_part2, stds_part2) + coder.encode_reverse(message_part1, model_part1) + + # Get and print the compressed representation: + compressed = coder.get_compressed() + print(f"compressed representation: {compressed}") + print(f"(in binary: {[bin(word) for word in compressed]})") + + # You could save `compressed` to a file using `compressed.tofile("filename")`, + # read it back in: `compressed = np.fromfile("filename", dtype=np.uint32) and + # then re-create `coder = constriction.stream.stack.AnsCoder(compressed)`. + + # Decode the message: + decoded_part1 = coder.decode(model_part1, 7) # (decodes 7 symbols) + decoded_part2 = coder.decode(model_family_part2, means_part2, stds_part2) + print(f"Decoded message: {np.concatenate([decoded_part1, decoded_part2])}") + assert np.all(decoded_part1 == message_part1) + assert np.all(decoded_part2 == message_part2) + + +def test_ans_decode1(): + # Define a concrete categorical entropy model over the (implied) + # alphabet {0, 1, 2}: + probabilities = np.array([0.1, 0.6, 0.3], dtype=np.float32) + model = constriction.stream.model.Categorical(probabilities, lazy=True) + + # Decode a single symbol from some example compressed data: + compressed = np.array([2514924296, 114], dtype=np.uint32) + coder = constriction.stream.stack.AnsCoder(compressed) + symbol = coder.decode(model) + assert symbol == 2 + + +def test_ans_decode2(): + # Use the same concrete entropy model as in the previous example: + probabilities = np.array([0.1, 0.6, 0.3], dtype=np.float32) + model = constriction.stream.model.Categorical(probabilities, lazy=True) + + # Decode 9 symbols from some example compressed data, using the + # same (fixed) entropy model defined above for all symbols: + compressed = np.array([2514924296, 114], dtype=np.uint32) + coder = constriction.stream.stack.AnsCoder(compressed) + symbols = coder.decode(model, 9) + assert np.all(symbols == np.array( + [2, 0, 0, 1, 2, 2, 1, 2, 2], dtype=np.int32)) + + + +def test_ans_decode4(): + # Define 2 categorical models over the alphabet {0, 1, 2, 3, 4}: + probabilities = np.array( + [[0.1, 0.2, 0.3, 0.1, 0.3], # (for first decoded symbol) + [0.3, 0.2, 0.2, 0.2, 0.1]], # (for second decoded symbol) + dtype=np.float32) + model_family = constriction.stream.model.Categorical(lazy=True) + + # Decode 2 symbols: + compressed = np.array([2142112014, 31], dtype=np.uint32) + coder = constriction.stream.stack.AnsCoder(compressed) + symbols = coder.decode(model_family, probabilities) + assert np.all(symbols == np.array([3, 1], dtype=np.int32)) + + +def test_ans_encode_reverse1(): + # Define a concrete categorical entropy model over the (implied) + # alphabet {0, 1, 2}: + probabilities = np.array([0.1, 0.6, 0.3], dtype=np.float32) + model = constriction.stream.model.Categorical(probabilities, lazy=True) + + # Encode a single symbol with this entropy model: + coder = constriction.stream.stack.AnsCoder() + coder.encode_reverse(2, model) # Encodes the symbol `2`. + + +def test_ans_encode_reverse2(): + # Use the same concrete entropy model as in the previous example: + probabilities = np.array([0.1, 0.6, 0.3], dtype=np.float32) + model = constriction.stream.model.Categorical(probabilities, lazy=True) + + # Encode an example message using the above `model` for all symbols: + symbols = np.array([0, 2, 1, 2, 0, 2, 0, 2, 1], dtype=np.int32) + coder = constriction.stream.stack.AnsCoder() + coder.encode_reverse(symbols, model) + assert np.all(coder.get_compressed() == np.array( + [1276732052, 172], dtype=np.uint32)) + + + + +def test_ans_encode_reverse4(): + # Define 2 categorical models over the alphabet {0, 1, 2, 3, 4}: + probabilities = np.array( + [[0.1, 0.2, 0.3, 0.1, 0.3], # (for symbols[0]) + [0.3, 0.2, 0.2, 0.2, 0.1]], # (for symbols[1]) + dtype=np.float32) + model_family = constriction.stream.model.Categorical(lazy=True) + + # Encode 2 symbols (needs `len(symbols) == probabilities.shape[0]`): + symbols = np.array([3, 1], dtype=np.int32) + coder = constriction.stream.stack.AnsCoder() + coder.encode_reverse(symbols, model_family, probabilities) + assert np.all(coder.get_compressed() == np.array( + [45298482], dtype=np.uint32)) + + +def test_ans_seek(): + probabilities = np.array([0.2, 0.4, 0.1, 0.3], dtype=np.float32) + model = constriction.stream.model.Categorical(probabilities, lazy=True) + message_part1 = np.array([1, 2, 0, 3, 2, 3, 0], dtype=np.int32) + message_part2 = np.array([2, 2, 0, 1, 3], dtype=np.int32) + + # Encode both parts of the message (in reverse order, because ANS + # operates as a stack) and record a checkpoint in-between: + coder = constriction.stream.stack.AnsCoder() + coder.encode_reverse(message_part2, model) + (position, state) = coder.pos() # Records a checkpoint. + coder.encode_reverse(message_part1, model) + + # We could now call `coder.get_compressed()` but we'll just decode + # directly from the original `coder` for simplicity. + + # Decode first symbol: + assert coder.decode(model) == 1 + + # Jump to part 2 and decode it: + coder.seek(position, state) + decoded_part2 = coder.decode(model, 5) + assert np.all(decoded_part2 == message_part2) + + +def test_range_coding_mod(): + # Define the two parts of the message and their respective entropy models: + message_part1 = np.array([1, 2, 0, 3, 2, 3, 0], dtype=np.int32) + probabilities_part1 = np.array([0.2, 0.4, 0.1, 0.3], dtype=np.float32) + model_part1 = constriction.stream.model.Categorical(probabilities_part1, lazy=True) + # `model_part1` is a categorical distribution over the (implied) alphabet + # {0,1,2,3} with P(X=0) = 0.2, P(X=1) = 0.4, P(X=2) = 0.1, and P(X=3) = 0.3; + # we will use it below to encode each of the 7 symbols in `message_part1`. + + message_part2 = np.array([6, 10, -4, 2], dtype=np.int32) + means_part2 = np.array([2.5, 13.1, -1.1, -3.0], dtype=np.float32) + stds_part2 = np.array([4.1, 8.7, 6.2, 5.4], dtype=np.float32) + model_family_part2 = constriction.stream.model.QuantizedGaussian(-100, 100) + # `model_family_part2` is a *family* of Gaussian distributions, quantized to + # bins of width 1 centered at the integers -100, -99, ..., 100. We could + # have provided a fixed mean and standard deviation to the constructor of + # `QuantizedGaussian` but we'll instead provide individual means and standard + # deviations for each symbol when we encode and decode `message_part2` below. + + print( + f"Original message: {np.concatenate([message_part1, message_part2])}") + + # Encode both parts of the message in sequence: + encoder = constriction.stream.queue.RangeEncoder() + encoder.encode(message_part1, model_part1) + encoder.encode(message_part2, model_family_part2, means_part2, stds_part2) + + # Get and print the compressed representation: + compressed = encoder.get_compressed() + print(f"compressed representation: {compressed}") + print(f"(in binary: {[bin(word) for word in compressed]})") + + # You could save `compressed` to a file using `compressed.tofile("filename")` + # and read it back in: `compressed = np.fromfile("filename", dtype=np.uint32). + + # Decode the message: + decoder = constriction.stream.queue.RangeDecoder(compressed) + decoded_part1 = decoder.decode(model_part1, 7) # (decodes 7 symbols) + decoded_part2 = decoder.decode(model_family_part2, means_part2, stds_part2) + print(f"Decoded message: {np.concatenate([decoded_part1, decoded_part2])}") + assert np.all(decoded_part1 == message_part1) + assert np.all(decoded_part2 == message_part2) + + +def test_range_coder_encode1(): + # Define a concrete categorical entropy model over the (implied) + # alphabet {0, 1, 2}: + probabilities = np.array([0.1, 0.6, 0.3], dtype=np.float32) + model = constriction.stream.model.Categorical(probabilities, lazy=True) + + # Encode a single symbol with this entropy model: + encoder = constriction.stream.queue.RangeEncoder() + encoder.encode(2, model) # Encodes the symbol `2`. + # ... then encode some more symbols ... + + +def test_range_coder_encode2(): + # Use the same concrete entropy model as in the previous example: + probabilities = np.array([0.1, 0.6, 0.3], dtype=np.float32) + model = constriction.stream.model.Categorical(probabilities, lazy=True) + + # Encode an example message using the above `model` for all symbols: + symbols = np.array([0, 2, 1, 2, 0, 2, 0, 2, 1], dtype=np.int32) + encoder = constriction.stream.queue.RangeEncoder() + encoder.encode(symbols, model) + assert np.all(encoder.get_compressed() == + np.array([369323598], dtype=np.uint32)) + + + +def test_range_coder_encode4(): + # Define 2 categorical models over the alphabet {0, 1, 2, 3, 4}: + probabilities = np.array( + [[0.1, 0.2, 0.3, 0.1, 0.3], # (for first encoded symbol) + [0.3, 0.2, 0.2, 0.2, 0.1]], # (for second encoded symbol) + dtype=np.float32) + model_family = constriction.stream.model.Categorical(lazy=True) + + # Encode 2 symbols (needs `len(symbols) == probabilities.shape[0]`): + symbols = np.array([3, 1], dtype=np.int32) + encoder = constriction.stream.queue.RangeEncoder() + encoder.encode(symbols, model_family, probabilities) + assert np.all(encoder.get_compressed() == + np.array([2705829510], dtype=np.uint32)) + + +def test_range_coding_decode1(): + # Define a concrete categorical entropy model over the (implied) + # alphabet {0, 1, 2}: + probabilities = np.array([0.1, 0.6, 0.3], dtype=np.float32) + model = constriction.stream.model.Categorical(probabilities, lazy=True) + + # Decode a single symbol from some example compressed data: + compressed = np.array([3089773345, 1894195597], dtype=np.uint32) + decoder = constriction.stream.queue.RangeDecoder(compressed) + symbol = decoder.decode(model) + assert symbol == 2 + + +def test_range_coding_decode2(): + # Use the same concrete entropy model as in the previous example: + probabilities = np.array([0.1, 0.6, 0.3], dtype=np.float32) + model = constriction.stream.model.Categorical(probabilities, lazy=True) + + # Decode 9 symbols from some example compressed data, using the + # same (fixed) entropy model defined above for all symbols: + compressed = np.array([369323598], dtype=np.uint32) + decoder = constriction.stream.queue.RangeDecoder(compressed) + symbols = decoder.decode(model, 9) + assert np.all(symbols == np.array( + [0, 2, 1, 2, 0, 2, 0, 2, 1], dtype=np.int32)) + + +def test_range_coding_seek(): + probabilities = np.array([0.2, 0.4, 0.1, 0.3], dtype=np.float32) + model = constriction.stream.model.Categorical(probabilities, lazy=True) + message_part1 = np.array([1, 2, 0, 3, 2, 3, 0], dtype=np.int32) + message_part2 = np.array([2, 2, 0, 1, 3], dtype=np.int32) + + # Encode both parts of the message and record a checkpoint in-between: + encoder = constriction.stream.queue.RangeEncoder() + encoder.encode(message_part1, model) + (position, state) = encoder.pos() # Records a checkpoint. + encoder.encode(message_part2, model) + + compressed = encoder.get_compressed() + decoder = constriction.stream.queue.RangeDecoder(compressed) + + # Decode first symbol: + assert decoder.decode(model) == 1 + + # Jump to part 2 and decode it: + decoder.seek(position, state) + decoded_part2 = decoder.decode(model, 5) + assert np.all(decoded_part2 == message_part2) + + +def test_range_coding_decode4(): + # Define 2 categorical models over the alphabet {0, 1, 2, 3, 4}: + probabilities = np.array( + [[0.1, 0.2, 0.3, 0.1, 0.3], # (for first decoded symbol) + [0.3, 0.2, 0.2, 0.2, 0.1]], # (for second decoded symbol) + dtype=np.float32) + model_family = constriction.stream.model.Categorical(lazy=True) + + # Decode 2 symbols: + compressed = np.array([2705829510], dtype=np.uint32) + decoder = constriction.stream.queue.RangeDecoder(compressed) + symbols = decoder.decode(model_family, probabilities) + assert np.all(symbols == np.array([3, 1], dtype=np.int32)) + + + +def test_categorical1(): + # Define a categorical distribution over the (implied) alphabet {0,1,2,3} + # with P(X=0) = 0.2, P(X=1) = 0.4, P(X=2) = 0.1, and P(X=3) = 0.3: + probabilities = np.array([0.2, 0.4, 0.1, 0.3], dtype=np.float32) + model = constriction.stream.model.Categorical(probabilities, lazy=True) + + # Encode and decode an example message: + symbols = np.array([0, 3, 2, 3, 2, 0, 2, 1], dtype=np.int32) + coder = constriction.stream.stack.AnsCoder() # (RangeEncoder also works) + coder.encode_reverse(symbols, model) + assert np.all(coder.get_compressed() == np.array( + [2484720979, 175], dtype=np.uint32)) + + reconstructed = coder.decode(model, 8) # (decodes 8 i.i.d. symbols) + assert np.all(reconstructed == symbols) # (verify correctness) + + +def test_categorical2(): + # Define 3 categorical distributions, each over the alphabet {0,1,2,3,4}: + model_family = constriction.stream.model.Categorical(lazy=True) + probabilities = np.array( + [[0.3, 0.1, 0.1, 0.3, 0.2], # (for symbols[0]) + [0.1, 0.4, 0.2, 0.1, 0.2], # (for symbols[1]) + [0.4, 0.2, 0.1, 0.2, 0.1]], # (for symbols[2]) + dtype=np.float32) + + symbols = np.array([0, 4, 1], dtype=np.int32) + coder = constriction.stream.stack.AnsCoder() # (RangeEncoder also works) + coder.encode_reverse(symbols, model_family, probabilities) + assert np.all(coder.get_compressed() == np.array( + [104018743], dtype=np.uint32)) + + reconstructed = coder.decode(model_family, probabilities) + assert np.all(reconstructed == symbols) # (verify correctness) diff --git a/tests/python/test_lazy_f64.py b/tests/python/test_lazy_f64.py new file mode 100644 index 0000000..3cd05fa --- /dev/null +++ b/tests/python/test_lazy_f64.py @@ -0,0 +1,420 @@ +import constriction +import numpy as np +import sys +import scipy + +def test_module_example3(): + # Same message as above, but a complex entropy model consisting of two parts: + message = np.array( + [6, 10, -4, 2, 5, 2, 1, 0, 2], dtype=np.int32) + means = np.array([2.3, 6.1, -8.5, 4.1, 1.3], dtype=np.float64) + stds = np.array([6.2, 5.3, 3.8, 3.2, 4.7], dtype=np.float64) + entropy_model1 = constriction.stream.model.QuantizedGaussian(-50, 50) + entropy_model2 = constriction.stream.model.Categorical( + np.array([0.2, 0.5, 0.3], dtype=np.float32), # Probabilities of the symbols 0,1,2. + lazy=True + ) + + # Simply encode both parts in sequence with their respective models: + encoder = constriction.stream.queue.RangeEncoder() + # per-symbol params. + encoder.encode(message[0:5], entropy_model1, means, stds) + encoder.encode(message[5:9], entropy_model2) + + compressed = encoder.get_compressed() + print(f"compressed representation: {compressed}") + print(f"(in binary: {[bin(word) for word in compressed]})") + + decoder = constriction.stream.queue.RangeDecoder(compressed) + decoded_part1 = decoder.decode(entropy_model1, means, stds) + decoded_part2 = decoder.decode(entropy_model2, 4) + assert np.all(np.concatenate((decoded_part1, decoded_part2)) == message) + + + +def test_chain2(): + # Some sample binary data and sample probabilities for our entropy models + data = np.array( + [0x80d14131, 0xdda97c6c, 0x5017a640, 0x01170a3e], np.uint32) + probabilities = np.array( + [[0.1, 0.7, 0.1, 0.1], # (<-- probabilities for first decoded symbol) + [0.2, 0.2, 0.1, 0.5], # (<-- probabilities for second decoded symbol) + [0.2, 0.1, 0.4, 0.3]]) # (<-- probabilities for third decoded symbol) + model_family = constriction.stream.model.Categorical(lazy=True) + + # Decoding `data` with an `AnsCoder` results in the symbols `[0, 0, 2]`: + ansCoder = constriction.stream.stack.AnsCoder(data, seal=True) + assert np.all(ansCoder.decode(model_family, probabilities) + == np.array([0, 0, 2], dtype=np.int32)) + + # Even if we change only the first entropy model (slightly), *all* decoded + # symbols can change: + probabilities[0, :] = np.array([0.09, 0.71, 0.1, 0.1]) + ansCoder = constriction.stream.stack.AnsCoder(data, seal=True) + assert np.all(ansCoder.decode(model_family, probabilities) + == np.array([1, 0, 0], dtype=np.int32)) + + +def test_chain3(): + # Same compressed data and original entropy models as in our first example + data = np.array( + [0x80d14131, 0xdda97c6c, 0x5017a640, 0x01170a3e], np.uint32) + probabilities = np.array( + [[0.1, 0.7, 0.1, 0.1], + [0.2, 0.2, 0.1, 0.5], + [0.2, 0.1, 0.4, 0.3]]) + model_family = constriction.stream.model.Categorical(lazy=True) + + # Decode with the original entropy models, this time using a `ChainCoder`: + chainCoder = constriction.stream.chain.ChainCoder(data, seal=True) + assert np.all(chainCoder.decode(model_family, probabilities) + == np.array([0, 3, 3], dtype=np.int32)) + + # We obtain different symbols than for the `AnsCoder`, of course, but that's + # not the point here. Now let's change the first model again: + probabilities[0, :] = np.array([0.09, 0.71, 0.1, 0.1]) + chainCoder = constriction.stream.chain.ChainCoder(data, seal=True) + assert np.all(chainCoder.decode(model_family, probabilities) + == np.array([1, 3, 3], dtype=np.int32)) + + +def test_stack1(): + # Define the two parts of the message and their respective entropy models: + message_part1 = np.array([1, 2, 0, 3, 2, 3, 0], dtype=np.int32) + probabilities_part1 = np.array([0.2, 0.4, 0.1, 0.3], dtype=np.float64) + model_part1 = constriction.stream.model.Categorical(probabilities_part1, lazy=True) + # `model_part1` is a categorical distribution over the (implied) alphabet + # {0,1,2,3} with P(X=0) = 0.2, P(X=1) = 0.4, P(X=2) = 0.1, and P(X=3) = 0.3; + # we will use it below to encode each of the 7 symbols in `message_part1`. + + message_part2 = np.array([6, 10, -4, 2], dtype=np.int32) + means_part2 = np.array([2.5, 13.1, -1.1, -3.0], dtype=np.float64) + stds_part2 = np.array([4.1, 8.7, 6.2, 5.4], dtype=np.float64) + model_family_part2 = constriction.stream.model.QuantizedGaussian(-100, 100) + # `model_family_part2` is a *family* of Gaussian distributions, quantized to + # bins of width 1 centered at the integers -100, -99, ..., 100. We could + # have provided a fixed mean and standard deviation to the constructor of + # `QuantizedGaussian` but we'll instead provide individual means and standard + # deviations for each symbol when we encode and decode `message_part2` below. + + print( + f"Original message: {np.concatenate([message_part1, message_part2])}") + + # Encode both parts of the message in sequence (in reverse order): + coder = constriction.stream.stack.AnsCoder() + coder.encode_reverse( + message_part2, model_family_part2, means_part2, stds_part2) + coder.encode_reverse(message_part1, model_part1) + + # Get and print the compressed representation: + compressed = coder.get_compressed() + print(f"compressed representation: {compressed}") + print(f"(in binary: {[bin(word) for word in compressed]})") + + # You could save `compressed` to a file using `compressed.tofile("filename")`, + # read it back in: `compressed = np.fromfile("filename", dtype=np.uint32) and + # then re-create `coder = constriction.stream.stack.AnsCoder(compressed)`. + + # Decode the message: + decoded_part1 = coder.decode(model_part1, 7) # (decodes 7 symbols) + decoded_part2 = coder.decode(model_family_part2, means_part2, stds_part2) + print(f"Decoded message: {np.concatenate([decoded_part1, decoded_part2])}") + assert np.all(decoded_part1 == message_part1) + assert np.all(decoded_part2 == message_part2) + + +def test_ans_decode1(): + # Define a concrete categorical entropy model over the (implied) + # alphabet {0, 1, 2}: + probabilities = np.array([0.1, 0.6, 0.3], dtype=np.float64) + model = constriction.stream.model.Categorical(probabilities, lazy=True) + + # Decode a single symbol from some example compressed data: + compressed = np.array([2514924296, 114], dtype=np.uint32) + coder = constriction.stream.stack.AnsCoder(compressed) + symbol = coder.decode(model) + assert symbol == 2 + + +def test_ans_decode2(): + # Use the same concrete entropy model as in the previous example: + probabilities = np.array([0.1, 0.6, 0.3], dtype=np.float64) + model = constriction.stream.model.Categorical(probabilities, lazy=True) + + # Decode 9 symbols from some example compressed data, using the + # same (fixed) entropy model defined above for all symbols: + compressed = np.array([1441153686, 108], dtype=np.uint32) + coder = constriction.stream.stack.AnsCoder(compressed) + symbols = coder.decode(model, 9) + assert np.all(symbols == np.array( + [2, 0, 0, 1, 2, 2, 1, 2, 2], dtype=np.int32)) + + + +def test_ans_decode4(): + # Define 2 categorical models over the alphabet {0, 1, 2, 3, 4}: + probabilities = np.array( + [[0.1, 0.2, 0.3, 0.1, 0.3], # (for first decoded symbol) + [0.3, 0.2, 0.2, 0.2, 0.1]], # (for second decoded symbol) + dtype=np.float64) + model_family = constriction.stream.model.Categorical(lazy=True) + + # Decode 2 symbols: + compressed = np.array([2142112014, 31], dtype=np.uint32) + coder = constriction.stream.stack.AnsCoder(compressed) + symbols = coder.decode(model_family, probabilities) + assert np.all(symbols == np.array([3, 1], dtype=np.int32)) + + +def test_ans_encode_reverse1(): + # Define a concrete categorical entropy model over the (implied) + # alphabet {0, 1, 2}: + probabilities = np.array([0.1, 0.6, 0.3], dtype=np.float64) + model = constriction.stream.model.Categorical(probabilities, lazy=True) + + # Encode a single symbol with this entropy model: + coder = constriction.stream.stack.AnsCoder() + coder.encode_reverse(2, model) # Encodes the symbol `2`. + + +def test_ans_encode_reverse2(): + # Use the same concrete entropy model as in the previous example: + probabilities = np.array([0.1, 0.6, 0.3], dtype=np.float64) + model = constriction.stream.model.Categorical(probabilities, lazy=True) + + # Encode an example message using the above `model` for all symbols: + symbols = np.array([0, 2, 1, 2, 0, 2, 0, 2, 1], dtype=np.int32) + coder = constriction.stream.stack.AnsCoder() + coder.encode_reverse(symbols, model) + assert np.all(coder.get_compressed() == np.array( + [1276728145, 172], dtype=np.uint32)) + + + +def test_ans_encode_reverse4(): + # Define 2 categorical models over the alphabet {0, 1, 2, 3, 4}: + probabilities = np.array( + [[0.1, 0.2, 0.3, 0.1, 0.3], # (for symbols[0]) + [0.3, 0.2, 0.2, 0.2, 0.1]], # (for symbols[1]) + dtype=np.float64) + model_family = constriction.stream.model.Categorical(lazy=True) + + # Encode 2 symbols (needs `len(symbols) == probabilities.shape[0]`): + symbols = np.array([3, 1], dtype=np.int32) + coder = constriction.stream.stack.AnsCoder() + coder.encode_reverse(symbols, model_family, probabilities) + assert np.all(coder.get_compressed() == np.array( + [45298481], dtype=np.uint32)) + + +def test_ans_seek(): + probabilities = np.array([0.2, 0.4, 0.1, 0.3], dtype=np.float64) + model = constriction.stream.model.Categorical(probabilities, lazy=True) + message_part1 = np.array([1, 2, 0, 3, 2, 3, 0], dtype=np.int32) + message_part2 = np.array([2, 2, 0, 1, 3], dtype=np.int32) + + # Encode both parts of the message (in reverse order, because ANS + # operates as a stack) and record a checkpoint in-between: + coder = constriction.stream.stack.AnsCoder() + coder.encode_reverse(message_part2, model) + (position, state) = coder.pos() # Records a checkpoint. + coder.encode_reverse(message_part1, model) + + # We could now call `coder.get_compressed()` but we'll just decode + # directly from the original `coder` for simplicity. + + # Decode first symbol: + assert coder.decode(model) == 1 + + # Jump to part 2 and decode it: + coder.seek(position, state) + decoded_part2 = coder.decode(model, 5) + assert np.all(decoded_part2 == message_part2) + + +def test_range_coding_mod(): + # Define the two parts of the message and their respective entropy models: + message_part1 = np.array([1, 2, 0, 3, 2, 3, 0], dtype=np.int32) + probabilities_part1 = np.array([0.2, 0.4, 0.1, 0.3], dtype=np.float64) + model_part1 = constriction.stream.model.Categorical(probabilities_part1, lazy=True) + # `model_part1` is a categorical distribution over the (implied) alphabet + # {0,1,2,3} with P(X=0) = 0.2, P(X=1) = 0.4, P(X=2) = 0.1, and P(X=3) = 0.3; + # we will use it below to encode each of the 7 symbols in `message_part1`. + + message_part2 = np.array([6, 10, -4, 2], dtype=np.int32) + means_part2 = np.array([2.5, 13.1, -1.1, -3.0], dtype=np.float64) + stds_part2 = np.array([4.1, 8.7, 6.2, 5.4], dtype=np.float64) + model_family_part2 = constriction.stream.model.QuantizedGaussian(-100, 100) + # `model_family_part2` is a *family* of Gaussian distributions, quantized to + # bins of width 1 centered at the integers -100, -99, ..., 100. We could + # have provided a fixed mean and standard deviation to the constructor of + # `QuantizedGaussian` but we'll instead provide individual means and standard + # deviations for each symbol when we encode and decode `message_part2` below. + + print( + f"Original message: {np.concatenate([message_part1, message_part2])}") + + # Encode both parts of the message in sequence: + encoder = constriction.stream.queue.RangeEncoder() + encoder.encode(message_part1, model_part1) + encoder.encode(message_part2, model_family_part2, means_part2, stds_part2) + + # Get and print the compressed representation: + compressed = encoder.get_compressed() + print(f"compressed representation: {compressed}") + print(f"(in binary: {[bin(word) for word in compressed]})") + + # You could save `compressed` to a file using `compressed.tofile("filename")` + # and read it back in: `compressed = np.fromfile("filename", dtype=np.uint32). + + # Decode the message: + decoder = constriction.stream.queue.RangeDecoder(compressed) + decoded_part1 = decoder.decode(model_part1, 7) # (decodes 7 symbols) + decoded_part2 = decoder.decode(model_family_part2, means_part2, stds_part2) + print(f"Decoded message: {np.concatenate([decoded_part1, decoded_part2])}") + assert np.all(decoded_part1 == message_part1) + assert np.all(decoded_part2 == message_part2) + + +def test_range_coder_encode1(): + # Define a concrete categorical entropy model over the (implied) + # alphabet {0, 1, 2}: + probabilities = np.array([0.1, 0.6, 0.3], dtype=np.float64) + model = constriction.stream.model.Categorical(probabilities, lazy=True) + + # Encode a single symbol with this entropy model: + encoder = constriction.stream.queue.RangeEncoder() + encoder.encode(2, model) # Encodes the symbol `2`. + # ... then encode some more symbols ... + + +def test_range_coder_encode2(): + # Use the same concrete entropy model as in the previous example: + probabilities = np.array([0.1, 0.6, 0.3], dtype=np.float64) + model = constriction.stream.model.Categorical(probabilities, lazy=True) + + # Encode an example message using the above `model` for all symbols: + symbols = np.array([0, 2, 1, 2, 0, 2, 0, 2, 1], dtype=np.int32) + encoder = constriction.stream.queue.RangeEncoder() + encoder.encode(symbols, model) + assert np.all(encoder.get_compressed() == + np.array([369323576], dtype=np.uint32)) + + + +def test_range_coder_encode4(): + # Define 2 categorical models over the alphabet {0, 1, 2, 3, 4}: + probabilities = np.array( + [[0.1, 0.2, 0.3, 0.1, 0.3], # (for first encoded symbol) + [0.3, 0.2, 0.2, 0.2, 0.1]], # (for second encoded symbol) + dtype=np.float64) + model_family = constriction.stream.model.Categorical(lazy=True) + + # Encode 2 symbols (needs `len(symbols) == probabilities.shape[0]`): + symbols = np.array([3, 1], dtype=np.int32) + encoder = constriction.stream.queue.RangeEncoder() + encoder.encode(symbols, model_family, probabilities) + assert np.all(encoder.get_compressed() == + np.array([2705829254], dtype=np.uint32)) + + +def test_range_coding_decode1(): + # Define a concrete categorical entropy model over the (implied) + # alphabet {0, 1, 2}: + probabilities = np.array([0.1, 0.6, 0.3], dtype=np.float64) + model = constriction.stream.model.Categorical(probabilities, lazy=True) + + # Decode a single symbol from some example compressed data: + compressed = np.array([3089773345, 1894195597], dtype=np.uint32) + decoder = constriction.stream.queue.RangeDecoder(compressed) + symbol = decoder.decode(model) + assert symbol == 2 + + +def test_range_coding_decode2(): + # Use the same concrete entropy model as in the previous example: + probabilities = np.array([0.1, 0.6, 0.3], dtype=np.float64) + model = constriction.stream.model.Categorical(probabilities, lazy=True) + + # Decode 9 symbols from some example compressed data, using the + # same (fixed) entropy model defined above for all symbols: + compressed = np.array([369323576], dtype=np.uint32) + decoder = constriction.stream.queue.RangeDecoder(compressed) + symbols = decoder.decode(model, 9) + assert np.all(symbols == np.array( + [0, 2, 1, 2, 0, 2, 0, 2, 1], dtype=np.int32)) + + +def test_range_coding_seek(): + probabilities = np.array([0.2, 0.4, 0.1, 0.3], dtype=np.float64) + model = constriction.stream.model.Categorical(probabilities, lazy=True) + message_part1 = np.array([1, 2, 0, 3, 2, 3, 0], dtype=np.int32) + message_part2 = np.array([2, 2, 0, 1, 3], dtype=np.int32) + + # Encode both parts of the message and record a checkpoint in-between: + encoder = constriction.stream.queue.RangeEncoder() + encoder.encode(message_part1, model) + (position, state) = encoder.pos() # Records a checkpoint. + encoder.encode(message_part2, model) + + compressed = encoder.get_compressed() + decoder = constriction.stream.queue.RangeDecoder(compressed) + + # Decode first symbol: + assert decoder.decode(model) == 1 + + # Jump to part 2 and decode it: + decoder.seek(position, state) + decoded_part2 = decoder.decode(model, 5) + assert np.all(decoded_part2 == message_part2) + + +def test_range_coding_decode4(): + # Define 2 categorical models over the alphabet {0, 1, 2, 3, 4}: + probabilities = np.array( + [[0.1, 0.2, 0.3, 0.1, 0.3], # (for first decoded symbol) + [0.3, 0.2, 0.2, 0.2, 0.1]], # (for second decoded symbol) + dtype=np.float64) + model_family = constriction.stream.model.Categorical(lazy=True) + + # Decode 2 symbols: + compressed = np.array([2705829535], dtype=np.uint32) + decoder = constriction.stream.queue.RangeDecoder(compressed) + symbols = decoder.decode(model_family, probabilities) + assert np.all(symbols == np.array([3, 1], dtype=np.int32)) + + +def test_categorical1(): + # Define a categorical distribution over the (implied) alphabet {0,1,2,3} + # with P(X=0) = 0.2, P(X=1) = 0.4, P(X=2) = 0.1, and P(X=3) = 0.3: + probabilities = np.array([0.2, 0.4, 0.1, 0.3], dtype=np.float64) + model = constriction.stream.model.Categorical(probabilities, lazy=True) + + # Encode and decode an example message: + symbols = np.array([0, 3, 2, 3, 2, 0, 2, 1], dtype=np.int32) + coder = constriction.stream.stack.AnsCoder() # (RangeEncoder also works) + coder.encode_reverse(symbols, model) + assert np.all(coder.get_compressed() == np.array( + [488222996, 175], dtype=np.uint32)) + + reconstructed = coder.decode(model, 8) # (decodes 8 i.i.d. symbols) + assert np.all(reconstructed == symbols) # (verify correctness) + + +def test_categorical2(): + # Define 3 categorical distributions, each over the alphabet {0,1,2,3,4}: + model_family = constriction.stream.model.Categorical(lazy=True) + probabilities = np.array( + [[0.3, 0.1, 0.1, 0.3, 0.2], # (for symbols[0]) + [0.1, 0.4, 0.2, 0.1, 0.2], # (for symbols[1]) + [0.4, 0.2, 0.1, 0.2, 0.1]], # (for symbols[2]) + dtype=np.float64) + + symbols = np.array([0, 4, 1], dtype=np.int32) + coder = constriction.stream.stack.AnsCoder() # (RangeEncoder also works) + coder.encode_reverse(symbols, model_family, probabilities) + assert np.all(coder.get_compressed() == np.array( + [104018741], dtype=np.uint32)) + + reconstructed = coder.decode(model_family, probabilities) + assert np.all(reconstructed == symbols) # (verify correctness)