forked from fastai/course-nlp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
seq2seq.py
77 lines (67 loc) · 3.77 KB
/
seq2seq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from fastai.text import *
def seq2seq_collate(samples:BatchSamples, pad_idx:int=1, pad_first:bool=True, backwards:bool=False) -> Tuple[LongTensor, LongTensor]:
"Function that collect samples and adds padding. Flips token order if needed"
samples = to_data(samples)
max_len_x,max_len_y = max([len(s[0]) for s in samples]),max([len(s[1]) for s in samples])
res_x = torch.zeros(len(samples), max_len_x).long() + pad_idx
res_y = torch.zeros(len(samples), max_len_y).long() + pad_idx
if backwards: pad_first = not pad_first
for i,s in enumerate(samples):
if pad_first:
res_x[i,-len(s[0]):],res_y[i,-len(s[1]):] = LongTensor(s[0]),LongTensor(s[1])
else:
res_x[i,:len(s[0]):],res_y[i,:len(s[1]):] = LongTensor(s[0]),LongTensor(s[1])
if backwards: res_x,res_y = res_x.flip(1),res_y.flip(1)
return res_x,res_y
class Seq2SeqDataBunch(TextDataBunch):
"Create a `TextDataBunch` suitable for training an RNN classifier."
@classmethod
def create(cls, train_ds, valid_ds, test_ds=None, path:PathOrStr='.', bs:int=32, val_bs:int=None, pad_idx=1,
dl_tfms=None, pad_first=False, device:torch.device=None, no_check:bool=False, backwards:bool=False, **dl_kwargs) -> DataBunch:
"Function that transform the `datasets` in a `DataBunch` for classification. Passes `**dl_kwargs` on to `DataLoader()`"
datasets = cls._init_ds(train_ds, valid_ds, test_ds)
val_bs = ifnone(val_bs, bs)
collate_fn = partial(seq2seq_collate, pad_idx=pad_idx, pad_first=pad_first, backwards=backwards)
train_sampler = SortishSampler(datasets[0].x, key=lambda t: len(datasets[0][t][0].data), bs=bs//2)
train_dl = DataLoader(datasets[0], batch_size=bs, sampler=train_sampler, drop_last=True, **dl_kwargs)
dataloaders = [train_dl]
for ds in datasets[1:]:
lengths = [len(t) for t in ds.x.items]
sampler = SortSampler(ds.x, key=lengths.__getitem__)
dataloaders.append(DataLoader(ds, batch_size=val_bs, sampler=sampler, **dl_kwargs))
return cls(*dataloaders, path=path, device=device, collate_fn=collate_fn, no_check=no_check)
class Seq2SeqTextList(TextList):
_bunch = Seq2SeqDataBunch
_label_cls = TextList
def seq2seq_loss(out, targ, pad_idx=1):
bs,targ_len = targ.size()
_,out_len,vs = out.size()
if targ_len>out_len: out = F.pad(out, (0,0,0,targ_len-out_len,0,0), value=pad_idx)
if out_len>targ_len: targ = F.pad(targ, (0,out_len-targ_len,0,0), value=pad_idx)
return CrossEntropyFlat()(out, targ)
def seq2seq_acc(out, targ, pad_idx=1):
bs,targ_len = targ.size()
_,out_len,vs = out.size()
if targ_len>out_len: out = F.pad(out, (0,0,0,targ_len-out_len,0,0), value=pad_idx)
if out_len>targ_len: targ = F.pad(targ, (0,out_len-targ_len,0,0), value=pad_idx)
out = out.argmax(2)
return (out==targ).float().mean()
class TeacherForcing(LearnerCallback):
def __init__(self, learn, end_epoch):
super().__init__(learn)
self.end_epoch = end_epoch
def on_batch_begin(self, last_input, last_target, train, **kwargs):
if train: return {'last_input': [last_input, last_target]}
def on_epoch_begin(self, epoch, **kwargs):
self.learn.model.pr_force = 1 - epoch/self.end_epoch
def get_predictions(learn, ds_type=DatasetType.Valid):
learn.model.eval()
inputs, targets, outputs = [],[],[]
with torch.no_grad():
for xb,yb in progress_bar(learn.dl(ds_type)):
out = learn.model(xb)
for x,y,z in zip(xb,yb,out):
inputs.append(learn.data.train_ds.x.reconstruct(x))
targets.append(learn.data.train_ds.y.reconstruct(y))
outputs.append(learn.data.train_ds.y.reconstruct(z.argmax(1)))
return inputs, targets, outputs