forked from daltskin/CustomVision-TensorFlow-CSharp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CustomVision.cs
72 lines (62 loc) · 2.66 KB
/
CustomVision.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
namespace CustomVisionCLI
{
using PowerArgs;
using System;
using System.Diagnostics;
using System.IO;
using TensorFlow;
[ArgExceptionBehavior(ArgExceptionPolicy.StandardExceptionHandling)]
[TabCompletion(HistoryToSave = 10)]
[ArgExample("CustomVision-TensorFlow.exe -m Assets\\model.pb -l Assets\\labels.txt -t Assets\\test.jpg", "using arguments", Title = "Classify image using relative paths")]
[ArgExample("CustomVision-TensorFlow.exe -m c:\\tensorflow\\model.pb -l c:\\tensorflow\\labels.txt -t c:\\tensorflow\\test.jpg", "using arguments", Title = "Classify image using full filepath")]
public class CustomVision
{
[ArgRequired(PromptIfMissing = true)]
[ArgDescription("CustomVision.ai TensorFlow exported model")]
[ArgShortcut("-m")]
public string TensorFlowModelFilePath { get; set; }
[ArgRequired(PromptIfMissing = true)]
[ArgDescription("CustomVision.ai TensorFlow exported labels")]
[ArgShortcut("-l")]
public string TensorFlowLabelsFilePath { get; set; }
[ArgRequired(PromptIfMissing = true)]
[ArgDescription("Image to classify (jpg)")]
[ArgShortcut("-t")]
public string TestImageFilePath { get; set; }
[HelpHook]
public bool Help { get; set; }
public void Main()
{
Stopwatch stopwatch = new Stopwatch();
stopwatch.Start();
var graph = new TFGraph();
var model = File.ReadAllBytes(TensorFlowModelFilePath);
var labels = File.ReadAllLines(TensorFlowLabelsFilePath);
graph.Import(model);
var bestIdx = 0;
float best = 0;
using (var session = new TFSession(graph))
{
var tensor = ImageUtil.CreateTensorFromImageFile(TestImageFilePath);
var runner = session.GetRunner();
runner.AddInput(graph["Placeholder"][0], tensor).Fetch(graph["loss"][0]);
var output = runner.Run();
var result = output[0];
var probabilities = ((float[][])result.GetValue(jagged: true))[0];
for (int i = 0; i < probabilities.Length; i++)
{
if (probabilities[i] > best)
{
bestIdx = i;
best = probabilities[i];
}
}
}
// fin
stopwatch.Stop();
Console.WriteLine($"{TestImageFilePath} = {labels[bestIdx]} ({best * 100.0}%)");
Console.WriteLine($"Total time: {stopwatch.Elapsed}");
Console.ReadKey();
}
}
}