forked from oreillymedia/Learning-OpenCV-3_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_15-03.cpp
308 lines (265 loc) · 7.92 KB
/
example_15-03.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
//Example 15-3. Computing the on and off-diagonal elements of a variance/covariance model
#include <opencv2/opencv.hpp>
#include <vector>
#include <iostream>
#include <cstdlib>
#include <fstream>
using namespace std;
vector<cv::Mat> planes(3);
vector<cv::Mat> sums(3);
vector<cv::Mat> xysums(6);
cv::Mat sum, sqsum;
int image_count = 0;
//A function to accumulate
// the information we need for our variance computation:
//
void accumulateVariance(
cv::Mat& I) {
if( sum.empty() ) {
sum = cv::Mat::zeros( I.size(), CV_32FC(I.channels()) );
sqsum = cv::Mat::zeros( I.size(), CV_32FC(I.channels()) );
image_count = 0;
}
cv::accumulate( I, sum );
cv::accumulateSquare( I, sqsum );
image_count++;
}
//The associated variance computation function would then be:
// (note that 'variance' is sigma^2)
//
void computeVariance(
cv::Mat& variance) {
double one_by_N = 1.0 / image_count;
variance = (one_by_N * sqsum) - ((one_by_N * one_by_N) * sum.mul(sum));
}
//Same as above function, but compute standard deviation
void computeStdev(
cv::Mat& std__) {
double one_by_N = 1.0 / image_count;
cv::sqrt(((one_by_N * sqsum) -((one_by_N * one_by_N) * sum.mul(sum))), std__);
}
//And avg images
void computeAvg(
cv::Mat& av) {
double one_by_N = 1.0 / image_count;
av = one_by_N * sum;
}
// ===================================================================//
void accumulateCovariance(
cv::Mat& I
) {
int i, j, n;
if( sum.empty() ) {
image_count = 0;
for( i=0; i<3; i++ ) {
// the r, g, and b sums
sums[i]
= cv::Mat::zeros( I.size(), CV_32FC1 );
}
for( n=0; n<6; n++ ) {
// the rr, rg, rb, gg, gb, and bb elements
xysums[n] = cv::Mat::zeros( I.size(), CV_32FC1 );
}
}
cv::split( I, planes );
for( i=0; i<3; i++ ) {
cv::accumulate( planes[i], sums[i] );
}
n = 0;
for( i=0; i<3; i++ ) {
// "row" of Sigma
for( j=i; j<3; j++ ) {
// "column" of Sigma
n++;
cv::accumulateProduct( planes[i], planes[j], xysums[n] );
}
}
image_count++;
}
//The corresponding compute function is also just a slight extension of
//the compute function for the variances we saw earlier.
// note that 'variance' is sigma^2
//
void computeCoariance(
cv::Mat& covariance
// a six-channel array, channels are the
// rr, rg, rb, gg, gb, and bb elements of Sigma_xy
) {
double one_by_N = 1.0 / image_count;
// reuse the xysum arrays as storage for individual entries
//
int n = 0;
for( int i=0; i<3; i++ ) {
// "row" of Sigma
for( int j=i; j<3; j++ ) {
// "column" of Sigma
n++;
xysums[n] = (one_by_N * xysums[n])
- ((one_by_N * one_by_N) * sums[i].mul(sums[j]));
}
}
// reassemble the six individual elements into a six-channel array
//
cv::merge( xysums, covariance );
}
////////////////////////////////////////////////////////////////////////
/////////////Utilities to run///////////////////////////////////////////
void help(char** argv ) {
cout << "\n"
<< "Compute mean and std on <#frames to train on> frames of an incoming video, then run the model\n"
<< argv[0] <<" <#frames to train on> <avi_path/filename>\n"
<< "For example:\n"
<< argv[0] << " 50 ../tree.avi\n"
<< "'a' to adjust thresholds, esc, 'q' or 'Q' to quit"
<< endl;
}
////////////// Borrowed code from example_15-02 //////////////////////
// Global storage
//
// Float, 3-channel images
//
cv::Mat image; // movie frame
cv::Mat IavgF, IdiffF, IhiF, IlowF; //threshold
cv::Mat tmp, mask; //scratch and our mask
// Float, 1-channel images
//
vector<cv::Mat> Igray(3); //scratch to split image
vector<cv::Mat> Ilow(3);//low per pixel thresh
vector<cv::Mat> Ihi(3); //high per pixel thresh
// Byte, 1-channel image
//
cv::Mat Imaskt; //Temp mask
// Thresholds
//
float high_thresh = 21.0; //scaling the thesholds in backgroundDiff()
float low_thresh = 2.0; //
// I is just a sample image for allocation purposes
// (passed in for sizing)
//
void AllocateImages( const cv::Mat& I ) {
cv::Size sz = I.size();
IavgF = cv::Mat::zeros(sz, CV_32FC3 );
IdiffF = cv::Mat::zeros(sz, CV_32FC3 );
IhiF = cv::Mat::zeros(sz, CV_32FC3 );
IlowF = cv::Mat::zeros(sz, CV_32FC3 );
tmp = cv::Mat::zeros( sz, CV_32FC3 );
Imaskt = cv::Mat( sz, CV_32FC1 );
}
void setHighThreshold( float scale ) {
IhiF = IavgF + (IdiffF * scale);
cv::split( IhiF, Ihi );
}
void setLowThreshold( float scale ) {
IlowF = IavgF - (IdiffF * scale);
cv::split( IlowF, Ilow );
}
void createModelsfromStats() {
//IavgF is already set;
//IdiffF is the standard deviation image...
// Make sure diff is always something
//
IdiffF += cv::Scalar( 0.1, 0.1, 0.1 );
setHighThreshold( high_thresh);
setLowThreshold( low_thresh);
}
// Create a binary: 0,255 mask where 255 (red) means foreground pixel
// I Input image, 3-channel, 8u
// Imask Mask image to be created, 1-channel 8u
//
void backgroundDiff(
cv::Mat& I,
cv::Mat& Imask) {
I.convertTo( tmp, CV_32F ); // To float
cv::split( tmp, Igray );
// Channel 1
//
cv::inRange( Igray[0], Ilow[0], Ihi[0], Imask );
// Channel 2
//
cv::inRange( Igray[1], Ilow[1], Ihi[1], Imaskt );
Imask = cv::min( Imask, Imaskt );
// Channel 3
//
cv::inRange( Igray[2], Ilow[2], Ihi[2], Imaskt );
Imask = cv::min( Imask, Imaskt );
// Finally, invert the results
//
Imask = 255 - Imask;
}
void showForgroundInRed( char** argv, const cv::Mat &img) {
cv::Mat rawImage;
cv::split( img, Igray );
Igray[2] = cv::max( mask, Igray[2] );
cv::merge( Igray, rawImage );
cv::imshow( argv[0], rawImage );
cv::imshow("Segmentation", mask);
}
void adjustThresholds(char** argv, cv::Mat &img) {
int key = 1;
while((key = cv::waitKey()) != 27 && key != 'Q' && key != 'q') // Esc or Q or q to exit
{
if(key == 'L') { low_thresh += 0.2;}
if(key == 'l') { low_thresh -= 0.2;}
if(key == 'H') { high_thresh += 0.2;}
if(key == 'h') { high_thresh -= 0.2;}
cout << "H or h, L or l, esq or q to quit; high_thresh = " << high_thresh << ", " << "low_thresh = " << low_thresh << endl;
setHighThreshold(high_thresh);
setLowThreshold(low_thresh);
backgroundDiff(img, mask);
showForgroundInRed(argv, img);
}
}
int main( int argc, char** argv) {
cv::namedWindow( argv[0], cv::WINDOW_AUTOSIZE );
cv::VideoCapture cap;
if((argc < 3)|| !cap.open(argv[2])) {
cerr << "Couldn't run the program" << endl;
help(argv);
cap.open(0);
return -1;
}
int number_to_train_on = atoi( argv[1] );
// FIRST PROCESSING LOOP (TRAINING):
//
int image_count = 0;
int key;
bool first_frame = true;
cout << "Total frames to train on = " << number_to_train_on << endl; //db
while(1) {
cout << "frame#: " << image_count << endl;
cap >> image;
if( !image.data ) exit(1); // Something went wrong, abort
if(image_count == 0) AllocateImages( image );
accumulateVariance(image);
cv::imshow( argv[0], image );
image_count++;
if( (key = cv::waitKey(7)) == 27 || key == 'q' || key == 'Q' || image_count >= number_to_train_on) break; //Allow early exit on space, esc, q
}
// We have accumulated our training, now create the models
//
cout << "Creating the background model" << endl;
computeAvg(IavgF);
computeStdev(IdiffF);
createModelsfromStats();
cout << "Done! Hit any key to continue into single step. Hit 'a' or 'A' to adjust thresholds, esq, 'q' or 'Q' to quit\n" << endl;
// SECOND PROCESSING LOOP (TESTING):
//
cv::namedWindow("Segmentation", cv::WINDOW_AUTOSIZE ); //For the mask image
while((key = cv::waitKey()) != 27 || key == 'q' || key == 'Q' ) { // esc, 'q' or 'Q' to exit
cap >> image;
if( !image.data ) exit(0);
cout << image_count++ << endl;
backgroundDiff( image, mask );
cv::imshow("Segmentation", mask);
// A simple visualization is to write to the red channel
//
showForgroundInRed( argv, image);
if(key == 'a') {
cout << "In adjust thresholds, 'H' or 'h' == high thresh up or down; 'L' or 'l' for low thresh up or down." << endl;
cout << " esq, 'q' or 'Q' to quit " << endl;
adjustThresholds(argv, image);
cout << "Done with adjustThreshold, back to frame stepping, esq, q or Q to quit." << endl;
}
}
exit(0);
}