-
Notifications
You must be signed in to change notification settings - Fork 4
/
model.py
663 lines (573 loc) · 26.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
from torch.nn.utils import spectral_norm
from torchvision.models.video.resnet import r2plus1d_18
from miscc.config import cfg
from torch.autograd import Variable
import numpy as np
import pdb
if torch.cuda.is_available():
T = torch.cuda
else:
T = torch
def conv3x3(in_planes, out_planes, stride=1, use_spectral_norm=False):
"3x3 convolution with padding"
if use_spectral_norm:
return spectral_norm(nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False))
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
# Upsale the spatial size by a factor of 2
def upBlock(in_planes, out_planes):
#print("in_planes: {}, out_planes: {}".format(in_planes, out_planes))
block = nn.Sequential(
nn.Upsample(scale_factor=2, mode='nearest'),
#nn.functional.interpolate(scale_factor=2, mode='nearest'),
conv3x3(in_planes, out_planes),
nn.BatchNorm2d(out_planes),
nn.ReLU(True))
return block
class CA_NET(nn.Module):
# some code is modified from vae examples
# (https://github.com/pytorch/examples/blob/master/vae/main.py)
def __init__(self):
super(CA_NET, self).__init__()
self.t_dim = cfg.TEXT.DIMENSION * cfg.VIDEO_LEN
self.c_dim = cfg.GAN.CONDITION_DIM
self.fc = nn.Linear(self.t_dim, self.c_dim * 2, bias=True)
self.relu = nn.ReLU()
def encode(self, text_embedding):
x = self.relu(self.fc(text_embedding))
mu = x[:, :self.c_dim]
logvar = x[:, self.c_dim:]
return mu, logvar
def reparametrize(self, mu, logvar):
std = logvar.mul(0.5).exp_()
if cfg.CUDA:
eps = torch.cuda.FloatTensor(std.size()).normal_()
else:
eps = torch.FloatTensor(std.size()).normal_()
eps = Variable(eps)
return eps.mul(std).add_(mu)
def forward(self, text_embedding):
mu, logvar = self.encode(text_embedding)
c_code = self.reparametrize(mu, logvar)
return c_code, mu, logvar
class D_GET_LOGITS(nn.Module):
def __init__(self, ndf, nef, bcondition=True):
super(D_GET_LOGITS, self).__init__()
self.df_dim = ndf
self.ef_dim = nef
self.bcondition = bcondition
if bcondition:
self.outlogits = nn.Sequential(
conv3x3(ndf * 8 + nef, ndf * 8, use_spectral_norm=True),
nn.BatchNorm2d(ndf * 8),
nn.LeakyReLU(0.2, inplace=True),
spectral_norm(nn.Conv2d(ndf * 8, 1, kernel_size=4, stride=4)),
nn.Sigmoid())
else:
self.outlogits = nn.Sequential(
spectral_norm(nn.Conv2d(ndf * 8, 1, kernel_size=4, stride=4)),
nn.Sigmoid())
def forward(self, h_code, c_code=None):
# conditioning output
if self.bcondition and c_code is not None:
c_code = c_code.view(-1, self.ef_dim, 1, 1)
c_code = c_code.repeat(1, 1, 4, 4)
# state size (ngf+egf) x 4 x 4
h_c_code = torch.cat((h_code, c_code), 1)
else:
h_c_code = h_code
output = self.outlogits(h_c_code)
return output.view(-1)
class R2Plus1dStem(nn.Sequential):
"""R(2+1)D stem is different than the default one as it uses separated 3D convolution
"""
def __init__(self):
super(R2Plus1dStem, self).__init__(
spectral_norm(nn.Conv3d(3, 45, kernel_size=(1, 7, 7),
stride=(1, 2, 2), padding=(0, 3, 3),
bias=False)),
nn.BatchNorm3d(45),
nn.ReLU(inplace=True),
spectral_norm(nn.Conv3d(45, 64, kernel_size=(1, 1, 1),
stride=(1, 1, 1), padding=(1, 0, 0),
bias=False)),
nn.BatchNorm3d(64),
nn.ReLU(inplace=True))
class BasicBlock(nn.Module):
__constants__ = ['downsample']
expansion = 1
def __init__(self, inplanes, planes, conv_builder, stride=1, downsample=None):
midplanes = (inplanes * planes * 3 * 3 * 3) // (inplanes * 3 * 3 + 3 * planes)
super(BasicBlock, self).__init__()
self.conv1 = nn.Sequential(
conv_builder(inplanes, planes, midplanes, stride),
nn.BatchNorm3d(planes),
nn.ReLU(inplace=True)
)
self.conv2 = nn.Sequential(
conv_builder(planes, planes, midplanes),
nn.BatchNorm3d(planes)
)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.conv2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class VideoEncoder(nn.Module):
def __init__(self):
super(VideoEncoder, self).__init__()
video_resnet = r2plus1d_18(pretrained=False, progress=True)
padding= 1
block = [
R2Plus1dStem(),
spectral_norm(nn.Conv3d(64, 128, kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, padding, padding)
,bias=False)),
nn.BatchNorm3d(128),
nn.LeakyReLU(0.2),
spectral_norm(nn.Conv3d(128, 128, kernel_size=(3, 1, 1), stride=(2, 1, 1), padding=(padding, 0, 0),
bias=False)),
nn.BatchNorm3d(128),
nn.LeakyReLU(0.2),
spectral_norm(nn.Conv3d(128, 128, kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, padding, padding),
bias=False)),
nn.BatchNorm3d(128),
nn.LeakyReLU(0.2),
spectral_norm(nn.Conv3d(128, 256, kernel_size=(3, 1, 1), stride=(2, 1, 1), padding=(padding, 0, 0),
bias=False)),
nn.BatchNorm3d(256),
nn.LeakyReLU(0.2),
spectral_norm(nn.Conv3d(256, 256, kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, padding, padding),
bias=False)),
nn.BatchNorm3d(256),
nn.LeakyReLU(0.2),
spectral_norm(nn.Conv3d(256, 512, kernel_size=(3, 1, 1), stride=(2, 1, 1), padding=(padding, 0, 0),
bias=False)),
nn.BatchNorm3d(512),
nn.LeakyReLU(0.2),
spectral_norm(nn.Conv3d(512, 512, kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, padding, padding),
bias=False)),
nn.BatchNorm3d(512),
nn.LeakyReLU(0.2),
spectral_norm(nn.Conv3d(512, 512, kernel_size=(3, 1, 1), stride=(2, 1, 1), padding=(padding, 0, 0),
bias=False)),
nn.BatchNorm3d(512),
nn.LeakyReLU(0.2),
]
self.pool = nn.AdaptiveAvgPool3d(1)
self.story_encoder = nn.Sequential(*block)
self.detector = nn.Sequential(
spectral_norm(nn.Linear(512, 128)),
nn.BatchNorm1d(128),
nn.ReLU(),
spectral_norm(nn.Linear(128, 1)),
)
def forward(self, story):
'''
story: B x T X C X W X H
B: batch size, N : number of story, T story length
C: image channel, WxH width and height
'''
B = story.shape[0]
latents = self.story_encoder(story)
latents = self.pool(latents)
latents = latents.view(B, -1)
return self.detector(latents)
# ############# Networks for stageI GAN #############
class StoryGAN(nn.Module):
def __init__(self, video_len):
super(StoryGAN, self).__init__()
self.batch_size = cfg.TRAIN.IM_BATCH_SIZE
self.gf_dim = cfg.GAN.GF_DIM * 8 # 128*8=1024
self.gf_dim_seg = cfg.GAN.GF_SEG_DIM #512 #48
self.motion_dim = cfg.TEXT.DIMENSION + cfg.LABEL_NUM # (356+9=365)
self.content_dim = cfg.GAN.CONDITION_DIM # encoded text dim (124)
self.noise_dim = cfg.GAN.Z_DIM # noise (100)
self.recurrent = nn.GRUCell(self.noise_dim + self.motion_dim, self.motion_dim) # (465,365)
self.mocornn = nn.GRUCell(self.motion_dim, self.content_dim) # (365,124)
self.video_len = video_len
self.n_channels = 3
self.filter_num = 3
self.filter_size = 21
self.image_size = 124
self.out_num = 1
# for segment image v1
self.use_segment = cfg.SEGMENT_LEARNING
self.segment_size = 4*2*2*2*2 # inital size is 4, upsample 4 times = 64
self.segment_flat_size = 3*self.segment_size**2 # 12288
# v2
self.aux_size = 5
self.fix_input = 0.1*torch.tensor(range(self.aux_size)).float().cuda()
self.define_module()
def define_module(self):
from layers import DynamicFilterLayer1D as DynamicFilterLayer
ninput = self.motion_dim + self.content_dim + self.image_size # (365+124+124=613)
ngf = self.gf_dim # 128*8=1024
self.ca_net = CA_NET()
# -> ngf x 4 x 4
self.filter_net = nn.Sequential(
nn.Linear(self.content_dim, self.filter_size * self.filter_num * self.out_num),
nn.BatchNorm1d(self.filter_size * self.filter_num * self.out_num))
self.image_net = nn.Sequential(
nn.Linear(self.motion_dim, self.image_size * self.filter_num),
nn.BatchNorm1d(self.image_size * self.filter_num),
nn.Tanh())
# For generate final image
self.fc = nn.Sequential(
nn.Linear(ninput, ngf * 4 * 4, bias=False),
nn.BatchNorm1d(ngf * 4 * 4),
nn.ReLU(True))
self.upsample1 = upBlock(ngf, ngf//2)
# -> ngf/4 x 16 x 16
self.upsample2 = upBlock(ngf//2, ngf//4)
# -> ngf/8 x 32 x 32
self.upsample3 = upBlock(ngf//4, ngf//8)
# -> ngf/16 x 64 x 64
self.upsample4 = upBlock(ngf//8, ngf//16)
# -> 3 x 64 x 64
self.img = nn.Sequential(
conv3x3(ngf // 16, 3),
nn.Tanh())
if self.use_segment:
ngf_seg = self.gf_dim_seg
self.seg_c = conv3x3(ngf_seg, ngf)
self.seg_c1 = conv3x3(ngf_seg//2, ngf//2)
# self.seg_c2 = conv3x3(ngf_seg//4, ngf//4)
# self.seg_c3 = conv3x3(ngf_seg//8, ngf//8)
# self.seg_c4 = conv3x3(ngf_seg//16, ngf//16)
# For generate seg and img v4 and v5 and v6
self.fc_seg = nn.Sequential(
nn.Linear(ninput, ngf_seg * 4 * 4, bias=False),
nn.BatchNorm1d(ngf_seg * 4 * 4),
nn.ReLU(True))
# ngf x 4 x 4 -> ngf/2 x 8 x 8
self.upsample1_seg = upBlock(ngf_seg, ngf_seg // 2)
# -> ngf/4 x 16 x 16
self.upsample2_seg = upBlock(ngf_seg // 2, ngf_seg // 4)
# -> ngf/8 x 32 x 32
self.upsample3_seg = upBlock(ngf_seg // 4, ngf_seg // 8)
# -> ngf/16 x 64 x 64
self.upsample4_seg = upBlock(ngf_seg // 8, ngf_seg // 16)
# -> 3 x 64 x 64
self.img_seg = nn.Sequential(
conv3x3(ngf_seg // 16, 1),
nn.Tanh())
self.m_net = nn.Sequential(
nn.Linear(self.motion_dim, self.motion_dim),
nn.BatchNorm1d(self.motion_dim))
self.c_net = nn.Sequential(
nn.Linear(self.content_dim, self.content_dim),
nn.BatchNorm1d(self.content_dim))
self.dfn_layer = DynamicFilterLayer(self.filter_size,
pad = self.filter_size//2)
def get_iteration_input(self, motion_input):
num_samples = motion_input.shape[0]
noise = T.FloatTensor(num_samples, self.noise_dim).normal_(0,1)
return torch.cat((noise, motion_input), dim = 1)
def get_gru_initial_state(self, num_samples):
return Variable(T.FloatTensor(num_samples, self.motion_dim).normal_(0, 1))
def sample_z_motion(self, motion_input, video_len=None):
video_len = video_len if video_len is not None else self.video_len
num_samples = motion_input.shape[0]
h_t = [self.m_net(self.get_gru_initial_state(num_samples))]
for frame_num in range(video_len):
if len(motion_input.shape) == 2:
e_t = self.get_iteration_input(motion_input)
else:
e_t = self.get_iteration_input(motion_input[:,frame_num,:])
h_t.append(self.recurrent(e_t, h_t[-1]))
z_m_t = [h_k.view(-1, 1, self.motion_dim) for h_k in h_t]
z_motion = torch.cat(z_m_t[1:], dim=1).view(-1, self.motion_dim)
return z_motion
def motion_content_rnn(self, motion_input, content_input):
video_len = 1 if len(motion_input.shape) == 2 else self.video_len
h_t = [self.c_net(content_input)]
if len(motion_input.shape) == 2:
motion_input = motion_input.unsqueeze(1)
for frame_num in range(video_len):
h_t.append(self.mocornn(motion_input[:,frame_num, :], h_t[-1]))
c_m_t = [h_k.view(-1, 1, self.content_dim) for h_k in h_t]
mocornn_co = torch.cat(c_m_t[1:], dim=1).view(-1, self.content_dim)
return mocornn_co
def sample_videos(self, motion_input, content_input, seg=False):
###
# motion_input: batch_size, video_len, 365
# content_input: batch_size, video_len, 356
###
bs, video_len = motion_input.shape[0], motion_input.shape[1]
num_img = bs * video_len
content_input = content_input.view(-1, cfg.VIDEO_LEN * content_input.shape[2])
if content_input.shape[0] > 1:
content_input = torch.squeeze(content_input)
r_code, r_mu, r_logvar = self.ca_net(content_input) ## h0
#c_code = r_code.repeat(self.video_len, 1).view(-1, r_code.shape[1])
c_mu = r_mu.repeat(self.video_len, 1).view(-1, r_mu.shape[1])
#c_logvar = r_logvar.repeat(self.video_len, 1).view(-1, r_logvar.shape[1])
crnn_code = self.motion_content_rnn(motion_input, r_code) ## i_t = GRU(s_t)
temp = motion_input.view(-1, motion_input.shape[2])
m_code, m_mu, m_logvar = temp, temp, temp #self.ca_net(temp)
m_code = m_code.view(motion_input.shape[0], self.video_len, self.motion_dim)
zm_code = self.sample_z_motion(m_code, self.video_len) ## *
# one
zmc_code = torch.cat((zm_code, c_mu), dim = 1)
# two
m_image = self.image_net(m_code.view(-1, m_code.shape[2])) ## linearly transform motion(365) to image(372)
m_image = m_image.view(-1, self.filter_num, self.image_size)
c_filter = self.filter_net(crnn_code) ## Filter(i_t)
c_filter = c_filter.view(-1, self.out_num, self.filter_num, self.filter_size)
mc_image = self.dfn_layer([m_image, c_filter]) ## *
zmc_all_ = torch.cat((zmc_code, mc_image.squeeze(1)), dim = 1)
zmc_img = self.fc(zmc_all_).view(-1, self.gf_dim, 4, 4)
if self.use_segment:
zmc_seg = self.fc_seg(zmc_all_).view(-1, self.gf_dim_seg, 4, 4)
zmc_img = self.seg_c(zmc_seg) * zmc_img + zmc_img
h_seg = self.upsample1_seg(zmc_seg)
h_img = self.upsample1(zmc_img)
h_img = self.seg_c1(h_seg) * h_img + h_img
h_seg = self.upsample2_seg(h_seg)
h_img = self.upsample2(h_img)
# h_img = self.seg_c2(h_seg) * h_img + h_img
h_seg = self.upsample3_seg(h_seg)
h_img = self.upsample3(h_img)
# h_img = self.seg_c3(h_seg) * h_img + h_img
h_seg = self.upsample4_seg(h_seg)
h_img = self.upsample4(h_img)
# h_img = self.seg_c4(h_seg) * h_img + h_img
# generate seg
segm_video = self.img_seg(h_seg)
segm_temp = segm_video.view(-1, self.video_len, 1, self.segment_size, self.segment_size)
segm_temp = segm_temp.permute(0, 2, 1, 3, 4)
# generate video
fake_video = self.img(h_img)
fake_video = fake_video.view(-1, self.video_len, self.n_channels, self.segment_size, self.segment_size)
fake_video = fake_video.permute(0, 2, 1, 3, 4)
if seg==True:
return None, fake_video, m_mu, m_logvar, r_mu, r_logvar, segm_video # m_mu(60,365), m_logvar(60,365), r_mu(12,124), r_logvar(12,124)
else:
return None, fake_video, m_mu, m_logvar, r_mu, r_logvar, None # m_mu(60,365), m_logvar(60,365), r_mu(12,124), r_logvar(12,124)
else:
h_code = self.upsample1(zmc_img) # h_code: batch_size*video_len, 1024, 8, 8 *
h_code = self.upsample2(h_code) # h_code: batch_size*video_len, 512, 16, 16 *
h_code = self.upsample3(h_code) # h_code: batch_size*video_len, 256, 32, 32 *
h_code = self.upsample4(h_code) # h_code: batch_size*video_len=60, 128, 64, 64 *
# state size 3 x 64 x 64
h = self.img(h_code) ## *
fake_video = h.view( int(h.size(0)/self.video_len), self.video_len, self.n_channels, h.size(3), h.size(3)) # 12, 5, 3, 64, 64
fake_video = fake_video.permute(0, 2, 1, 3, 4) # 12, 3, 5, 64, 64
#pdb.set_trace()
return None, fake_video, m_mu, m_logvar, r_mu, r_logvar, None # m_mu(60,365), m_logvar(60,365), r_mu(12,124), r_logvar(12,124)
def sample_images(self, motion_input, content_input, seg=False):
### Adding segmenation result ###
bs, video_len = motion_input.shape[0], motion_input.shape[1]
num_img = bs
m_code, m_mu, m_logvar = motion_input, motion_input, motion_input
content_input = content_input.reshape(-1, cfg.VIDEO_LEN * content_input.shape[2])
c_code, c_mu, c_logvar = self.ca_net(content_input) ## h0
crnn_code = self.motion_content_rnn(motion_input, c_mu) ## GRU
zm_code = self.sample_z_motion(m_code, 1) ## Text2Gist
# one
zmc_code = torch.cat((zm_code, c_mu), dim = 1) # (60,365 ; 60,124)->(60,489)
# two
m_image = self.image_net(m_code) ## *
m_image = m_image.view(-1, self.filter_num, self.image_size) #(60,3,124)
c_filter = self.filter_net(crnn_code) ## *
c_filter = c_filter.view(-1, self.out_num, self.filter_num, self.filter_size)
mc_image = self.dfn_layer([m_image, c_filter]) ## * #(60,1,124)
zmc_all_ = torch.cat((zmc_code, mc_image.squeeze(1)), dim = 1) # (60,613)
zmc_img = self.fc(zmc_all_).view(-1, self.gf_dim, 4, 4)
if self.use_segment:
zmc_seg = self.fc_seg(zmc_all_).view(-1, self.gf_dim_seg, 4, 4)
zmc_img = self.seg_c(zmc_seg) * zmc_img + zmc_img
h_seg = self.upsample1_seg(zmc_seg)
h_img = self.upsample1(zmc_img)
h_img = self.seg_c1(h_seg) * h_img + h_img
h_seg = self.upsample2_seg(h_seg)
h_img = self.upsample2(h_img)
# h_img = self.seg_c2(h_seg) * h_img + h_img
h_seg = self.upsample3_seg(h_seg)
h_img = self.upsample3(h_img)
# h_img = self.seg_c3(h_seg) * h_img + h_img
h_seg = self.upsample4_seg(h_seg)
h_img = self.upsample4(h_img)
# h_img = self.seg_c4(h_seg) * h_img + h_img
# generate seg
segm_img = self.img_seg(h_seg)
# generatte video
fake_img = self.img(h_img)
fake_img = fake_img.view(-1, self.n_channels, self.segment_size, self.segment_size)
if seg==True:
return None, fake_img, m_mu, m_logvar, c_mu, c_logvar, segm_img
else:
return None, fake_img, m_mu, m_logvar, c_mu, c_logvar, None
else:
h_code = self.upsample1(zmc_img) ## *
h_code = self.upsample2(h_code) ## *
h_code = self.upsample3(h_code) ## *
h_code = self.upsample4(h_code) ## *
# state size 3 x 64 x 64
fake_img = self.img(h_code)
return None, fake_img, m_mu, m_logvar, c_mu, c_logvar, None
class STAGE1_D_IMG(nn.Module):
def __init__(self, use_categories = True):
super(STAGE1_D_IMG, self).__init__()
self.df_dim = cfg.GAN.DF_DIM
self.ef_dim = cfg.GAN.CONDITION_DIM
self.text_dim = cfg.TEXT.DIMENSION
self.label_num = cfg.LABEL_NUM
self.define_module(use_categories)
def define_module(self, use_categories):
ndf, nef = self.df_dim, self.ef_dim
self.encode_img = nn.Sequential(
nn.Conv2d(3, ndf, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf) x 32 x 32
spectral_norm(nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False)),
nn.BatchNorm2d(ndf * 2),
nn.LeakyReLU(0.2, inplace=True),
# state size (ndf*2) x 16 x 16
spectral_norm(nn.Conv2d(ndf*2, ndf * 4, 4, 2, 1, bias=False)),
nn.BatchNorm2d(ndf * 4),
nn.LeakyReLU(0.2, inplace=True),
# state size (ndf*4) x 8 x 8
spectral_norm(nn.Conv2d(ndf*4, ndf * 8, 4, 2, 1, bias=False)),
nn.BatchNorm2d(ndf * 8),
# state size (ndf * 8) x 4 x 4)
nn.LeakyReLU(0.2, inplace=True)
)
self.seq_consisten_model = None
self.get_cond_logits = D_GET_LOGITS(ndf, nef + self.text_dim + self.label_num)
self.get_uncond_logits = None
if use_categories:
self.cate_classify = nn.Conv2d(ndf * 8, self.label_num, 4, 4, 1, bias = False)
else:
self.cate_classify = None
def forward(self, image):
img_embedding = self.encode_img(image)
#(60,3,64,64) -> (60,992,4,4)
return img_embedding
class STAGE1_D_SEG(nn.Module):
def __init__(self, use_categories = True):
super(STAGE1_D_SEG, self).__init__()
self.df_dim = cfg.GAN.DF_DIM
self.ef_dim = cfg.GAN.CONDITION_DIM
self.text_dim = cfg.TEXT.DIMENSION
self.label_num = cfg.LABEL_NUM
self.define_module(use_categories)
def define_module(self, use_categories):
ndf, nef = self.df_dim, self.ef_dim
self.encode_img = nn.Sequential(
nn.Conv2d(1, ndf, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf) x 32 x 32
spectral_norm(nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False)),
nn.BatchNorm2d(ndf * 2),
nn.LeakyReLU(0.2, inplace=True),
# state size (ndf*2) x 16 x 16
spectral_norm(nn.Conv2d(ndf*2, ndf * 4, 4, 2, 1, bias=False)),
nn.BatchNorm2d(ndf * 4),
nn.LeakyReLU(0.2, inplace=True),
# state size (ndf*4) x 8 x 8
spectral_norm(nn.Conv2d(ndf*4, ndf * 8, 4, 2, 1, bias=False)),
nn.BatchNorm2d(ndf * 8),
# state size (ndf * 8) x 4 x 4)
nn.LeakyReLU(0.2, inplace=True)
)
self.seq_consisten_model = None
self.get_cond_logits = D_GET_LOGITS(int(ndf), nef + self.text_dim + self.label_num)
self.get_uncond_logits = None
if use_categories:
self.cate_classify = nn.Conv2d(ndf * 8, self.label_num, 4, 4, 1, bias = False)
else:
self.cate_classify = None
def forward(self, image):
img_embedding = self.encode_img(image)
#(60,3,64,64) -> (60,992,4,4)
return img_embedding
class STAGE1_D_STY_V2(nn.Module):
def __init__(self):
super(STAGE1_D_STY_V2, self).__init__()
self.df_dim = cfg.GAN.DF_DIM
self.ef_dim = cfg.GAN.CONDITION_DIM
self.text_dim = cfg.TEXT.DIMENSION
self.label_num = cfg.LABEL_NUM
self.define_module()
def define_module(self):
ndf, nef = self.df_dim, self.ef_dim
self.encode_img = nn.Sequential(
spectral_norm(nn.Conv2d(3, ndf, 4, 2, 1, bias=False)),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf) x 32 x 32
spectral_norm(nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False)),
nn.BatchNorm2d(ndf * 2),
nn.LeakyReLU(0.2, inplace=True),
# state size (ndf*2) x 16 x 16
spectral_norm(nn.Conv2d(ndf*2, ndf * 4, 4, 2, 1, bias=False)),
nn.BatchNorm2d(ndf * 4),
nn.LeakyReLU(0.2, inplace=True),
# state size (ndf*4) x 8 x 8
spectral_norm(nn.Conv2d(ndf*4, ndf * 8, 4, 2, 1, bias=False)),
nn.BatchNorm2d(ndf * 8),
# state size (ndf * 8) x 4 x 4)
nn.LeakyReLU(0.2, inplace=True)
)
self.seq_consisten_model = None
if cfg.USE_SEQ_CONSISTENCY:
self.seq_consisten_model = VideoEncoder()
# checkpoint = torch.load('logs/consistencybaseline_0.5/model.pt')
# self.seq_consisten_model.load_state_dict(checkpoint['model'].state_dict())
self.get_cond_logits = D_GET_LOGITS(ndf, nef + self.text_dim + self.label_num)
self.get_uncond_logits = None
self.cate_classify = None
def forward(self, story):
N, C, video_len, W, H = story.shape
story = story.permute(0,2,1,3,4)
story = story.contiguous().view(-1, C,W,H)
story_embedding = torch.squeeze(self.encode_img(story))
_, C1, W1, H1 = story_embedding.shape
story_embedding = story_embedding.view(N,video_len, C1, W1, H1)
story_embedding = story_embedding.mean(1).squeeze()
return story_embedding
"""
class GET_LOGITS():
def __init__(self):
super(GET_LOGITS, self).__init__()
self.project_dim = cfg.GAN.TEXT_CYC_DIS_PROJECT_DIM # 100
self.define_module()
def define_module(self):
self.get_logits = nn.Sequential(
nn.Linear(self.project_dim,1),
nn.Sigmoid())
def forward(self, input):
return self.get_logits(input).view(-1)
class STAGE1_D_TextCyc(nn.Module):
def __init__(self):
super(STAGE1_D_TextCyc, self).__init__()
self.text_dim = cfg.TEXT.DIMENSION # 356
self.project_dim = cfg.GAN.TEXT_CYC_DIS_PROJECT_DIM # 100
self.define_module()
def define_module(self):
self.embedding = nn.Sequential(
nn.Linear(self.text_dim, self.project_dim),
nn.BatchNorm1d(self.project_dim),
nn.LeakyReLU(0.2, inplace=True))
#self.get_uncond_logits = nn.Sequential(
# nn.Linear(self.project_dim,1),
# nn.Sigmoid())
self.get_uncond_logits = GET_LOGITS()
def forward(self, text):
return self.embedding(text)"""
if __name__ == "__main__":
img = torch.randn(3,3,5,64, 64)
m = VideoEncoder()
m(img)