-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathhelper.py
190 lines (156 loc) · 6.87 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import numpy as np
import torch
import os
import matplotlib.pyplot as plt
from torch_geometric.data import Data
from config import *
#Create data objects for the DGN
#https://pytorch-geometric.readthedocs.io/en/latest/notes/introduction.html#data-handling-of-graphs
#Create data objects for the DGN
#https://pytorch-geometric.readthedocs.io/en/latest/notes/introduction.html#data-handling-of-graphs
def cast_data(array_of_tensors, subject_type = None, flat_mask = None):
N_ROI = array_of_tensors[0].shape[0]
CHANNELS = array_of_tensors[0].shape[2]
dataset = []
for mat in array_of_tensors: # mat.shape: (35, 35, 4)
#Allocate numpy arrays
edge_index = np.zeros((2, N_ROI * N_ROI))
edge_attr = np.zeros((N_ROI * N_ROI,CHANNELS))
x = np.zeros((N_ROI, 1))
x = np.zeros((N_ROI, 1))
y = np.zeros((1,))
counter = 0
for i in range(N_ROI):
for j in range(N_ROI):
edge_index[:, counter] = [i, j]
edge_attr[counter, :] = mat[i, j]
counter += 1
# Fill node feature matrix (no features every node is 1)
for i in range(N_ROI):
x[i,0] = 1
#Get graph labels
y[0] = None
if flat_mask is not None:
edge_index_masked = []
edge_attr_masked = []
for i,val in enumerate(flat_mask):
if val == 1:
edge_index_masked.append(edge_index[:,i])
edge_attr_masked.append(edge_attr[i,:])
edge_index = np.array(edge_index_masked).T
edge_attr = edge_attr_masked
edge_index = torch.tensor(edge_index, dtype = torch.long)
edge_attr = torch.tensor(edge_attr, dtype = torch.float)
x = torch.tensor(x, dtype = torch.float)
y = torch.tensor(y, dtype = torch.float)
con_mat = torch.tensor(mat, dtype=torch.float)
data = Data(x = x, edge_index=edge_index, edge_attr=edge_attr, con_mat = con_mat, y=y, label = subject_type)
dataset.append(data)
return dataset # graph list
def generate_cbt_median(model, train_data):
"""
Generate optimized CBT for the training set (use post training refinement)
Args:
model: trained DGN model
train_data: list of data objects
"""
model.eval()
cbts = []
train_data = [d.to(device) for d in train_data]
for data in train_data:
cbt = model(data)
cbts.append(np.array(cbt.cpu().detach()))
final_cbt = torch.tensor(np.median(cbts, axis = 0), dtype = torch.float32).to(device)
return final_cbt
def mean_frobenious_distance(generated_cbt, test_data):
"""
Calculate the mean Frobenious distance between the CBT and test subjects (all views)
Args:
generated_cbt: trained DGN model
test_data: list of data objects
"""
frobenius_all = []
for data in test_data:
views = data.con_mat
for index in range(views.shape[2]):
diff = torch.abs(views[:,:,index] - generated_cbt)
diff = diff*diff
sum_of_all = diff.sum()
d = torch.sqrt(sum_of_all)
frobenius_all.append(d)
return sum(frobenius_all) / len(frobenius_all)
def generate_subject_biased_cbts(model, train_data):
"""
Generates all possible CBTs for a given training set.
Args:
model: trained DGN model
train_data: list of data objects
"""
model.eval()
cbts = np.zeros((model.model_params["N_ROIs"],model.model_params["N_ROIs"], len(train_data)))
train_data = [d.to(device) for d in train_data]
for i, data in enumerate(train_data):
cbt = model(data)
cbts[:,:,i] = np.array(cbt.cpu().detach())
return cbts
#Clears the given directory
def clear_dir(dir_name):
for file in os.listdir(dir_name):
os.remove(os.path.join(dir_name, file))
def plotLosses(loss_table_list):
'''
This function plots every model's every fold's loss performance and saves them with their particular information written with their names.
'''
for i in range(n_folds):
cur_loss_table = loss_table_list[i]
for k in range(number_of_samples):
if isFederated:
fig1, ax1 = plt.subplots()
loss_lst = cur_loss_table['combining_local_loss_global_data_'+str(k)]
ax1.plot((np.arange(len(loss_lst)) + 1) * numEpoch, loss_lst)
ax1.set(xlabel='epochs', ylabel='rep loss', title='{}th Fold {}th Client Combining Local Loss Global Data {}'.format(i,k, "%.4f" %min(loss_lst)))
ax1.grid()
fig1.savefig('{}fold{}_{}th_client_combining_local_loss_global_data.png'.format(Path_output, i, k))
plt.show()
fig2, ax2 = plt.subplots()
loss_lst = cur_loss_table['local_loss_global_data_'+str(k)]
ax2.plot((np.arange(len(loss_lst)) + 1) * numEpoch, loss_lst)
ax2.set(xlabel='epochs', ylabel='rep loss', title='{}th Fold {}th Client Local Loss Global Data {}'.format(i,k, "%.4f" %min(loss_lst)))
ax2.grid()
fig2.savefig('{}fold{}_{}th_client_local_loss_global_data.png'.format(Path_output, i, k))
plt.show()
def show_image(img, i, k):
img = np.repeat(np.repeat(img, 10, axis=1), 10, axis=0)
plt.imshow(img)
plt.title("Fold " + str(i) + " Client " + str(k))
plt.axis('off')
if not os.path.exists('output/' + Dataset_name):
os.mkdir('output/' + Dataset_name)
if not os.path.exists('output/' + Dataset_name + '/' + Setup_name):
os.mkdir('output/' + Dataset_name + '/' + Setup_name)
plt.savefig('output/{}/{}/fold{}_cli_{}_{}_DGN_cbt.jpg'.format(Dataset_name, Setup_name, i, i, k, Setup_name), bbox_inches='tight')
#Antivectorize given vector (this gives a symmetric adjacency matrix)
def antiVectorize(vec, m):
#Old Code
M = np.zeros((m,m))
M[np.triu_indices(m)] = vec
M[np.tril_indices(m)] = vec
M[np.diag_indices(m)] = 0
return M
def simulate_dataset(N_Subjects, N_Nodes, N_views):
"""
Creates random dataset
Args:
N_Subjects: number of subjects
N_Nodes: number of region of interests
N_views: number of views
Return:
dataset: random dataset with shape [N_Subjects, N_Nodes, N_Nodes, N_views]
"""
features = np.triu_indices(N_Nodes)[0].shape[0]
views = []
for _ in range(N_views):
view = np.random.uniform(0.1,2, (N_Subjects, features))
view = np.array([antiVectorize(v, N_Nodes) for v in view])
views.append(view)
return np.stack(views, axis = 3)