You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I define my model structure, and i determine its parameters that consist of the Conditional Probabilities Tables (CPT). in this part, i decide to use a machine learning algorithm that is able to define
Bayesian Network parameters given the relative structure and a data set for training.
my question here, is when i run my code, i receive this result and i don't undrestund it
this is my code to create the structure of my bayesien network and the definition of parameters
`%Specify the number of nodes:
N=14;
%Create a Direct Acyclic Graph (DAG) matrix:
dag=zeros(N,N);
%Assign for each node a number:
Imm=1; Ssat=2; Pat=3; Disci=4; ResAut=5; Ambpos=6; RNL=7; Prud=8; CompJAM1=9; CompJAM4=10; CompJAM6=11; CorrupM1=12; CorrupM4=13; CorrupM6=14;
%Establish the links between parent nodes and its children
dag(Imm ,CompJAM1)=1;
dag(Ssat,CompJAM1)=1;
dag(Pat,CompJAM1)=1;
dag(ResAut,CompJAM4)=1;
dag(Prud ,CompJAM4)=1;
dag(Ambpos,CompJAM6)=1;
dag(RNL ,CompJAM6)=1;
dag(Prud ,CompJAM6)=1;
dag(ResAut ,CompJAM6)=1;
dag(CompJAM1 ,CorrupM1)=1;
dag(CompJAM4 , CorrupM4)=1;
dag(CompJAM6,CorrupM6)=1;
%Specify the discrete nodes
discrete_nodes=1:N;
%Specify the number of values of each node:
node_sizes(1)=2;
node_sizes(2)=2;
node_sizes(3)=2;
node_sizes(4)=2;
node_sizes(5)=2;
node_sizes(6)=2;
node_sizes(7)=2;
node_sizes(8)=2;
node_sizes(9)=2;
node_sizes(10)=2;
node_sizes(11)=2;
node_sizes(12)=4;
node_sizes(13)=4;
node_sizes(14)=4;
%Specify the observed nodes
onodes=[1 2 3 4 5 6 7 8 9 10 11];
%Create the Bayesian Network model
bnet = mk_bnet(dag, node_sizes,'names',{'Imm','Ssat','Pat','Disci','ResAut','Ambpos','RNL','Prud','CompJAM1','CompJAM4','CompJAM6','CorrupM1','CorrupM4','CorrupM6'},'discrete', discrete_nodes,'observed',onodes);
%The BN parameters estimation
%Load numeric data from an ASCII text file that contains the training set
subplot()
data = load('dataa.txt');
%Create a cell array that will contain the dataset of the loaded file
ncases=size(data,1);
cases=cell(N,ncases);
cases([1 2 3 7 6 5 8 4 9 10 11 12 13 14],:)=num2cell(data');
%Create another cell array containing the data of the previous one.
transposed_cases=cell2num(cases);
%Definition of the CPD initially with random CPDs
seed = 0;
rand('state', seed);
for i=1:N
bnet.CPD{i}=tabular_CPD(bnet, i, 'prior_type', 'dirichlet', 'dirichlet_type', 'unif');
end
%Call the BNT learning parameters routine
bnet1=learn_params(bnet,transposed_cases);`
The text was updated successfully, but these errors were encountered:
I define my model structure, and i determine its parameters that consist of the Conditional Probabilities Tables (CPT). in this part, i decide to use a machine learning algorithm that is able to define
Bayesian Network parameters given the relative structure and a data set for training.
my question here, is when i run my code, i receive this result and i don't undrestund it
this is my code to create the structure of my bayesien network and the definition of parameters
`%Specify the number of nodes:
N=14;
%Create a Direct Acyclic Graph (DAG) matrix:
dag=zeros(N,N);
%Assign for each node a number:
Imm=1; Ssat=2; Pat=3; Disci=4; ResAut=5; Ambpos=6; RNL=7; Prud=8; CompJAM1=9; CompJAM4=10; CompJAM6=11; CorrupM1=12; CorrupM4=13; CorrupM6=14;
%Establish the links between parent nodes and its children
dag(Imm ,CompJAM1)=1;
dag(Ssat,CompJAM1)=1;
dag(Pat,CompJAM1)=1;
dag(ResAut,CompJAM4)=1;
dag(Prud ,CompJAM4)=1;
dag(Ambpos,CompJAM6)=1;
dag(RNL ,CompJAM6)=1;
dag(Prud ,CompJAM6)=1;
dag(ResAut ,CompJAM6)=1;
dag(CompJAM1 ,CorrupM1)=1;
dag(CompJAM4 , CorrupM4)=1;
dag(CompJAM6,CorrupM6)=1;
%Specify the discrete nodes
discrete_nodes=1:N;
%Specify the number of values of each node:
node_sizes(1)=2;
node_sizes(2)=2;
node_sizes(3)=2;
node_sizes(4)=2;
node_sizes(5)=2;
node_sizes(6)=2;
node_sizes(7)=2;
node_sizes(8)=2;
node_sizes(9)=2;
node_sizes(10)=2;
node_sizes(11)=2;
node_sizes(12)=4;
node_sizes(13)=4;
node_sizes(14)=4;
%Specify the observed nodes
onodes=[1 2 3 4 5 6 7 8 9 10 11];
%Create the Bayesian Network model
bnet = mk_bnet(dag, node_sizes,'names',{'Imm','Ssat','Pat','Disci','ResAut','Ambpos','RNL','Prud','CompJAM1','CompJAM4','CompJAM6','CorrupM1','CorrupM4','CorrupM6'},'discrete', discrete_nodes,'observed',onodes);
%The BN parameters estimation
%Load numeric data from an ASCII text file that contains the training set
subplot()
data = load('dataa.txt');
%Create a cell array that will contain the dataset of the loaded file
ncases=size(data,1);
cases=cell(N,ncases);
cases([1 2 3 7 6 5 8 4 9 10 11 12 13 14],:)=num2cell(data');
%Create another cell array containing the data of the previous one.
transposed_cases=cell2num(cases);
%Definition of the CPD initially with random CPDs
seed = 0;
rand('state', seed);
for i=1:N
bnet.CPD{i}=tabular_CPD(bnet, i, 'prior_type', 'dirichlet', 'dirichlet_type', 'unif');
end
%Call the BNT learning parameters routine
bnet1=learn_params(bnet,transposed_cases);`
The text was updated successfully, but these errors were encountered: