-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathmeta.py
358 lines (326 loc) · 12.5 KB
/
meta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import utilityV2 as ut
import google_search_concurrent as gs
import re
import time
ABORT = False
CONTINUE = True
history = []
class history_entry:
def __init__(self, turn, vector=None):
self.message = turn.message.lower()
self.role = turn.role
def equal(self, he2):
return self.message == he2.message and self.role == turn.role
def add(turn):
he = history_entry(turn)
history.append(he)
def is_metaCyclic(turn):
he = history_entry(turn)
count = 0
for prior_he in history:
if he.equal(prior_he):
count += 1
return count > 1
def is_cyclic(turn):
he = history_entry(turn)
for prior_he in history:
if he.equal(prior_he):
return True
return False
def clear():
global history
history = []
return
def test_history():
he1 = history_entry(ut.turn(role="assistant", message="who is Noriel Roubini"))
he2 = history_entry(ut.turn(role="assistant", message="who was Noriel Roubini"))
he3 = history_entry(ut.turn(role="assistant", message="who was Nsriel Roubini"))
he4 = history_entry(ut.turn(role="assistant", message="where is the Pinnacles"))
for hea in (he1, he2, he3, he4):
for heb in (he1, he2, he3, he4):
print(cosine(hea, heb))
def test_parse_decomp():
test_text = """<Subquery 1>? What is the birthplace of Hugh Jackman?
<Subquery 2>? What is the Japanese name of the birthplace of Hugh Jackman?
<Keywords 1>: Hugh Jackman, birthplace
<Keywords 2>: Japanese name, birthplace, Hugh Jackman"""
decomp = parse_decomposition(test_text)
for subquery in decomp:
print("Subquery\n", subquery)
def parse_decomposition(text):
### expecting:
### <Subquery 1>
### Birthplace of Hugh Jackman
### <Subquery 2>
### Japanese name of Birthplace of Hugh Jackman
### note that 'Birthplace of Hugh Jackson' operates as both a strinq google query and a variable in subsequent occurences
subquery_indecies = re.finditer(
"<Subquery", text
) # Action: Ask {Google, User} "query"
subqueries = []
for index in subquery_indecies:
hdr_end = text[index.start() :].find(">") + index.start()
query_start = hdr_end + 1
query_end = text[query_start:].find("<")
if query_end < 0:
query = text[query_start:].strip()
else:
query = text[query_start : query_start + query_end].lstrip("?").strip()
print("Query:", query)
subqueries.append(query)
return subqueries
def query_keywords(query):
start_wall_time = time.time()
gpt_key_message = [
{
"role": "user",
"content": "Extract keywords and named-entities from the following text.",
},
{"role": "user", "content": query},
]
# for item in gpt_key_message:
# print(item)
gpt_parse = ut.ask_gpt_with_retries(
"gpt-3.5-turbo", gpt_key_message, tokens=25, temp=0, timeout=5, tries=2
)
# print(f'\n***** keywords and named-entities {gpt_parse}')
# parse result Keywords: {comma separated list}\n\nNamed-entities: {comma-separated-list}
keywords = []
# do named entities first, they might be compounds of keywords
ne_start = gpt_parse.find("Named-entities")
print(f"***** keyword extract {int((time.time()-start_wall_time)*10)/10} sec")
if ne_start > 0:
nes = gpt_parse[ne_start + len("Named-entities") + 1 :].split(
","
) # assume string ends with colon or space:].split(',')
# print(f'Named-entity candidates {nes}')
for ne in nes:
ne = ne.strip(" .,;:\n")
# print(f' appending {ne}')
if ne != "None":
keywords.append(ne)
else:
ne_start = len(gpt_parse) + 1
kwd_start = gpt_parse.find("Keywords")
if kwd_start > -1:
kwds = gpt_parse[kwd_start + len("Keywords") + 1 : ne_start].split(",")
# print(f'Keyword candidates {kwds}')
for kwd in kwds:
kwd = kwd.strip(" .\n,;:")
skip = False
for kwd2 in keywords:
if kwd in kwd2:
skip = True
if not skip:
# print('appending', kwd)
keywords.append(kwd)
# else: print("Keywords index < 0")
if len(keywords) > 0:
print(f"***** query_keywords found keywords {keywords}")
return keywords
# fallback - just use query words
candidates = query.split(" ")
for candidate in candidates:
candidate = candidate.strip()
if len(candidate) > 2:
keywords.append(candidate)
# print(f'***** query_keywords using default keywords {keywords}')
return keywords
def substitute(Q1, A1, Q2, debug=False):
gpt_sub_message = [
{
"role": "user",
"content": "replace '" + Q1 + "' with '" + A1 + "' in '" + Q2 + "'",
}
]
if debug:
print("\n\n**************")
for item in gpt_sub_message:
print(item)
google_tldr = ut.ask_gpt_with_retries(
"gpt-3.5-turbo", gpt_sub_message, tokens=25, temp=0.1, timeout=5, tries=2
)
print("\n\n**************")
if len(google_tldr) == 0 or "no information" in google_tldr:
print("Returning original Q2")
return Q2
print("Substituted", Q2, google_tldr)
return google_tldr
def meta(query, chat_history, debug=False):
print("***** entering meta")
turn = ut.turn(
role=ut.ASSISTANT, source=ut.ASSISTANT, message='Action: search "' + query + '"'
)
if is_metaCyclic(turn):
return [], ABORT
prompt = """Decompose a compound <Query> into two smaller <Subquery>. Use the following format for output:
<Subquery 1>
<Subquery 2>"""
gpt_message = [
{"role": "user", "content": prompt},
{"role": "user", "content": "<Query>\n" + query},
]
response_text = ""
completion = None
if debug:
for role in gpt_message:
print(role)
print("starting gpt decomp query")
response_text = ut.ask_gpt_with_retries(
"gpt-3.5-turbo", gpt_message, tokens=75, temp=0.1, timeout=5, tries=2
)
if debug:
print(f"initial gpt query response:\n{response_text}")
print("**** executing decomp ****")
subqueries = parse_decomposition(response_text)
meta_chat_history = []
prev_tldr = ""
google_tldr = ""
for n, subquery in enumerate(subqueries):
# do variable substituion into subquery
# ask google
# send google results as notes plus subquery to gpt to extract <answer i>
# return chat history extended with each subquery and its answer
# (or maybe just all google notes, let next level down do the rest?)
# bad idea, can exceed token limit!
if debug:
print(f'subquery {n}, "{subquery}"')
if n > 0:
subquery = substitute(subqueries[n - 1], prev_tldr, subquery)
keyword_set = query_keywords(subquery)
keyword_set = query_keywords(subquery)
print("*****Executing subquery", subquery, "\n with keywords", keyword_set)
gpt_initial_message = [
{
"role": "user",
"content": subquery + " If fact is unavailable, respond: 'Unknown'",
}
]
# for turn in meta_chat_history:
# gpt_initial_message.append({"role":"user","content":turn.tldr})
initial_gpt_answer = ut.ask_gpt_with_retries(
"gpt-3.5-turbo",
gpt_initial_message,
tokens=25,
temp=0.0,
timeout=5,
tries=2,
)
if debug:
print(f"***** google extract\n {initial_gpt_answer}\n")
if (
"unknown" not in initial_gpt_answer.lower()
and "cannot provide" not in initial_gpt_answer
and "do not have access" not in initial_gpt_answer
):
meta_chat_history.append(
ut.turn(
role="assistant",
message=subquery,
source=ut.ASSISTANT,
tldr=subquery,
keywords=keyword_set,
)
)
meta_chat_history.append(
ut.turn(
role="assistant",
message="<note>\n" + initial_gpt_answer + "\n<note>",
source=ut.GOOGLE,
tldr=initial_gpt_answer,
keywords=keyword_set,
)
)
prev_tldr = initial_gpt_answer
print(f"***** Answer to {subquery}: {initial_gpt_answer}\n")
google_tldr = initial_gpt_answer
continue
# ask google
(
google_text,
urls_all,
index,
urls_used,
tried_index,
urls_tried,
) = gs.search_google(
subquery,
gs.QUICK_SEARCH,
"",
ut.INFORMATION_QUERY,
keyword_set,
meta_chat_history,
)
if len(google_text) > 0:
# digest google response into an answer for this subquery
if debug:
print(f"***** search result\n{google_text}\n")
gpt_tldr_message = [
{
"role": "user",
"content": 'Summarize the set of <note> provided. Including only the direct answer to <Query>. Do not include any qualifiers or modifiers from the <Query> such as "where x was born".',
},
{"role": "user", "content": google_text},
{"role": "user", "content": "<Query>\n" + subquery},
]
# for turn in meta_chat_history:
# gpt_tldr_message.append({"role":"user","content":turn.tldr})
google_tldr = ut.ask_gpt_with_retries(
"gpt-3.5-turbo",
gpt_tldr_message,
tokens=150,
temp=0.1,
timeout=5,
tries=2,
)
# print('\n\n**************')
# for item in gpt_tldr_message:
# print(item)
print(f"***** Answer to {subquery}: {google_tldr}\n")
meta_chat_history.append(
ut.turn(
role="assistant",
message=subquery,
source=ut.ASSISTANT,
tldr=subquery,
keywords=keyword_set,
)
)
meta_chat_history.append(
ut.turn(
role="assistant",
message="Observation: " + google_tldr,
source=ut.GOOGLE,
tldr=google_tldr,
keywords=keyword_set,
)
)
prev_tldr = google_tldr
# print(f"\n******meta return: {google_tldr} *****\n")
return meta_chat_history, CONTINUE
if __name__ == "__main__":
# test_parse_decomp()
# meta("what is the Japanese name of the birthplace of Hugh Jackman", [])
# meta("What is the capital of the birthplace of Levy Mwanawasa?",[])
# meta("What is the (rounded down) latitude of the birthplace of Ferenc Puskas?",[])
# meta("What is the (rounded down) longitude of the birthplace of Juliane Koepcke?",[])
# meta("What is the top-level domain of the birthplace of Norodom Sihamoni?",[])
# meta("What is the 3166-1 numeric code for the birthplace of Gilgamesh?",[])
# meta("What is the currency in the birthplace of Joel Campbell?",[])
# meta("What is the currency abbreviation in the birthplace of Antonio Valencia?",[])
# meta("What is the currency symbol in the birthplace of Marek Hamsˇ´ık?",[])
# meta("What is the Japanese name of the birthplace of Hugh Jackman?",[])
# meta("What is the Spanish name of the birthplace of Fred´ eric Chopin? ",[])
# meta("What is the Russian name of the birthplace of Confucius?",[])
# meta("What is the Estonian name of the birthplace of Kofi Annan?",[])
# meta("What is the Urdu name of the birthplace of Nicki Minaj?",[])
# meta("What is the calling code of the birthplace of Milla Jovovich?",[])
# meta("Who was the champion of the Masters Tournament in the year that Bob Dylan was born?",[])
# meta("Who won the Nobel Prize in Literature in the year Matt Damon was born?",[])
# meta("Who was the President of the United States when Sting was born?",[])
meta(
"What are the latest reviewer opinions on Tesla Full Self Driving Beta version 11.3.4?",
[],
debug=True,
)
meta("Michael D'Ambrosio Hound Labs", [], debug=True)