From b22a21ffac1fcf1a5d3e2f0c70b6b6263c5a152a Mon Sep 17 00:00:00 2001 From: Vadim Kantorov Date: Fri, 7 Jul 2023 22:11:16 +0200 Subject: [PATCH] rnnt_greedy_decoding.py: typos? auto-repressively -> auto-regressively (#6989) Signed-off-by: Vadim Kantorov --- .../parts/submodules/rnnt_greedy_decoding.py | 22 +++++++++---------- 1 file changed, 11 insertions(+), 11 deletions(-) diff --git a/nemo/collections/asr/parts/submodules/rnnt_greedy_decoding.py b/nemo/collections/asr/parts/submodules/rnnt_greedy_decoding.py index 42b14fd7b8bf..ac10e54bb249 100644 --- a/nemo/collections/asr/parts/submodules/rnnt_greedy_decoding.py +++ b/nemo/collections/asr/parts/submodules/rnnt_greedy_decoding.py @@ -241,7 +241,7 @@ def _joint_step(self, enc, pred, log_normalize: Optional[bool] = None): class GreedyRNNTInfer(_GreedyRNNTInfer): """A greedy transducer decoder. - Sequence level greedy decoding, performed auto-repressively. + Sequence level greedy decoding, performed auto-regressively. Args: decoder_model: rnnt_utils.AbstractRNNTDecoder implementation. @@ -326,7 +326,7 @@ def forward( partial_hypotheses: Optional[List[rnnt_utils.Hypothesis]] = None, ): """Returns a list of hypotheses given an input batch of the encoder hidden embedding. - Output token is generated auto-repressively. + Output token is generated auto-regressively. Args: encoder_output: A tensor of size (batch, features, timesteps). @@ -479,7 +479,7 @@ def _greedy_decode( class GreedyBatchedRNNTInfer(_GreedyRNNTInfer): """A batch level greedy transducer decoder. - Batch level greedy decoding, performed auto-repressively. + Batch level greedy decoding, performed auto-regressively. Args: decoder_model: rnnt_utils.AbstractRNNTDecoder implementation. @@ -571,7 +571,7 @@ def forward( partial_hypotheses: Optional[List[rnnt_utils.Hypothesis]] = None, ): """Returns a list of hypotheses given an input batch of the encoder hidden embedding. - Output token is generated auto-repressively. + Output token is generated auto-regressively. Args: encoder_output: A tensor of size (batch, features, timesteps). @@ -1034,7 +1034,7 @@ def __init__(self, encoder_model: str, decoder_joint_model: str, max_symbols_per def __call__(self, audio_signal: torch.Tensor, length: torch.Tensor): """Returns a list of hypotheses given an input batch of the encoder hidden embedding. - Output token is generated auto-repressively. + Output token is generated auto-regressively. Args: encoder_output: A tensor of size (batch, features, timesteps). @@ -1455,7 +1455,7 @@ def _get_initial_states(self, batchsize): class GreedyMultiblankRNNTInfer(GreedyRNNTInfer): """A greedy transducer decoder for multi-blank RNN-T. - Sequence level greedy decoding, performed auto-repressively. + Sequence level greedy decoding, performed auto-regressively. Args: decoder_model: rnnt_utils.AbstractRNNTDecoder implementation. @@ -1655,7 +1655,7 @@ def _greedy_decode( class GreedyBatchedMultiblankRNNTInfer(GreedyBatchedRNNTInfer): """A batch level greedy transducer decoder. - Batch level greedy decoding, performed auto-repressively. + Batch level greedy decoding, performed auto-regressively. Args: decoder_model: rnnt_utils.AbstractRNNTDecoder implementation. joint_model: rnnt_utils.AbstractRNNTJoint implementation. @@ -2207,7 +2207,7 @@ class GreedyBatchedRNNTInferConfig: class GreedyTDTInfer(_GreedyRNNTInfer): """A greedy TDT decoder. - Sequence level greedy decoding, performed auto-repressively. + Sequence level greedy decoding, performed auto-regressively. Args: decoder_model: rnnt_utils.AbstractRNNTDecoder implementation. @@ -2289,7 +2289,7 @@ def forward( partial_hypotheses: Optional[List[rnnt_utils.Hypothesis]] = None, ): """Returns a list of hypotheses given an input batch of the encoder hidden embedding. - Output token is generated auto-repressively. + Output token is generated auto-regressively. Args: encoder_output: A tensor of size (batch, features, timesteps). encoded_lengths: list of int representing the length of each sequence @@ -2459,7 +2459,7 @@ def _greedy_decode( class GreedyBatchedTDTInfer(_GreedyRNNTInfer): """A batch level greedy TDT decoder. - Batch level greedy decoding, performed auto-repressively. + Batch level greedy decoding, performed auto-regressively. Args: decoder_model: rnnt_utils.AbstractRNNTDecoder implementation. joint_model: rnnt_utils.AbstractRNNTJoint implementation. @@ -2547,7 +2547,7 @@ def forward( partial_hypotheses: Optional[List[rnnt_utils.Hypothesis]] = None, ): """Returns a list of hypotheses given an input batch of the encoder hidden embedding. - Output token is generated auto-repressively. + Output token is generated auto-regressively. Args: encoder_output: A tensor of size (batch, features, timesteps). encoded_lengths: list of int representing the length of each sequence