forked from leichtle/computational-diagnostic-paths
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.r
267 lines (229 loc) · 10.9 KB
/
dataset.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
################################
# Description: Performs a chained imputation to impute missing data
# Reference: https://cran.r-project.org/web/packages/mi/vignettes/mi_vignette.pdf
# some imports are inline with their usage because their method names collide due R's lack of namespaces
library(optparse) # parse script arguments in a pythonic way
optionList = list(
make_option(c("--dataset"),
type = "character", default = "./data/raw/myocardial_ischemia_16.csv ", help = "Path to the dataset file", metavar = "character"),
make_option(c("--csvSeparator"),
type = "character", default = ",", help = "Separator for csv columns", metavar = "character"),
make_option(c("--imputationPackage"),
type = "character", default = "mice", help = "Package of imputation: mi or mice", metavar = "character"),
make_option(c("--imputationMethod"),
type = "character", default = "cart", help = "Method of imputation in mice: e.g. ppn or cart", metavar = "character"),
make_option(c("--processingCoreQty"),
type = "integer", default = 4, help = "Number of cores to run imputation on", metavar = "integer"),
make_option(c("--normalizedImputation"),
type = "logical", default = FALSE, help = "If data should be normalized before and denormalized after imputation", metavar = "logical"),
make_option(c("--chainQty"),
type = "integer", default = 4, help = "Number of separate imputation chains", metavar = "integer"),
make_option(c("--untilConvergence"),
type = "logical", default = TRUE, help = "If chains should be imputed until convergence", metavar = "logical"),
make_option(c("--rHatsConvergence"),
type = "double", default = 1.1, help = "Consider imputation converged if variance_across_chains/variance_within_chain <= rHatsConvergence", metavar = "double"),
make_option(c("--maxIterations"),
type = "integer", default = 100, help = "Total iterations of imputations per chain before imputation checks for convergence or finishes", metavar = "integer"),
make_option(c("--clusterSeed"),
type = "integer", default = 7, help = "The seed for randomness to generate random seeds for the different cluster nodes to randomize mice", metavar = "integer"),
make_option(c("--storeAllImputations"),
type = "logical", default = FALSE, help = "Save all imputations to disk with a ordinal postfix e.g. _1", metavar = "logical"),
make_option(c("--isDetailed"),
type = "logical", default = FALSE, help = "Perform extra prints and outputs", metavar = "logical"),
make_option(c("--showPlots"),
type = "logical", default = FALSE, help = "Show plots", metavar = "logical")
)
# parse script arguments
optParser = OptionParser(option_list=optionList)
opt = parse_args(optParser)
datasetPath <- opt$dataset
csvSeparator <- opt$csvSeparator
imputationPackage <- opt$imputationPackage
imputationMethod <- opt$imputationMethod
processingCoreQty <- opt$processingCoreQty
normalizedImputation <- opt$normalizedImputation
chainQty <- opt$chainQty
untilConvergence <- opt$untilConvergence
rHatsConvergence <- opt$rHatsConvergence
maxIterations <- opt$maxIterations
clusterSeed <- opt$clusterSeed
storeAllImputations <- opt$storeAllImputations
isDetailed <- opt$isDetailed
showPlots <- opt$showPlots
# load data from csv
cat("Loading data from csv...")
miData<-read.csv(datasetPath, sep=csvSeparator, header=TRUE)
cat("Done.\n")
if (isDetailed){
print("Show raw data before imputation")
print(miData) # print dataframe for inspection
}
# split data frame into non-numeric and numeric data frames
is.nonnumeric <- function(x) { !is.numeric(x)}
nonNumericColumns <- Filter(is.nonnumeric, miData)
numericColumns <- Filter(is.numeric, miData)
if (normalizedImputation){
print("Normalize data before imputation...")
numericColumns <- scale(numericColumns)
print("mean coefficients:")
print(attr(numericColumns, "scaled:center"))
print("variance coefficients:")
print(attr(numericColumns, "scaled:scale"))
}
epoch <- 1
imputedData <- NULL
if (imputationPackage == 'mi'){
library(mi) # multiple imputation method to complete missing values in datasets
options(mc.cores = processingCoreQty) # set the number of cores used for imputation
mdf <- missing_data.frame(numericColumns) # create missing data dataframe
if (isDetailed){
print("Inspect raw data for properties:")
summary(mdf) # summarize mdf by providing statistics
show(mdf) # show assumptions on the data types of the columns
}
if (showPlots){
image(mdf) # print an image of missing datapoints
hist(mdf) # show histogram of columns
summary(mdf) # show properties of miData
# histogram and visual representation of missing data
library(VIM)
aggr(mdf, col=c('navyblue','red'), numbers=TRUE, sortVars=TRUE, labels=names(data), cex.axis=.7, gap=3, ylab=c("Histogram of missing data", "Pattern"))
marginplot(mdf[c(1,2)]) # special box plot to compare missingness of two variables
}
# TODO: max.minutes seems to be not setable via a variable
mdf <- mi(mdf, n.chains = chainQty, n.iter = 0, max.minutes = 1000000) # initiate mutiple imputation
isNotConverged <- TRUE
isFirstRun <- TRUE
while (isFirstRun | untilConvergence & isNotConverged) {
print(paste0("Performing imputation epoch ", epoch, "..."))
then <- Sys.time()
mdf <- mi(mdf, n.iter = maxIterations) # run multiple imputation for indicated maximum iterations and minutes
latestRHat <-Rhats(mdf)
# calculate and print imputations per minute
now <- Sys.time()
diff <- as.numeric(difftime(now, then, units="secs"))
cat("Imputation speed:")
cat(maxIterations/diff*60)
print("/min")
# print rhat convergence
print(paste0("Rhat to measure convergence of imputation (should be < ", rHatsConvergence, "):"))
print(latestRHat)
isNotConverged <- any(latestRHat > rHatsConvergence)
if (isNotConverged){
print("Imputation not converged. Continuing...")
}
else{
print("Imputation converged.")
}
epoch <- epoch + 1
isFirstRun <- FALSE
}
cat("Done.\n")
cat("Check if enough iterations were performed...")
round(mipply(mdf, mean, to.matrix = TRUE), 3)
if (showPlots){
plot(mdf) # plot the match of imputed and observed data (used to debug convergence)
}
if (storeAllImputations){
imputedDatasets <- complete(mdf)
for (i in 1:chainQty){
imputedData[[i]] <- subset(imputedDatasets[[i]], select=colnames(numericColumns)) # stores all imputations
}
}else{
imputedData <- subset(complete(mdf, m = 1), select=colnames(numericColumns)) # m=1 just takes the first imputation chain
}
} else if (imputationPackage == 'mice'){
library(mice)
library(miceadds)
set.seed(clusterSeed)
if (processingCoreQty < 0){
processingCoreQty <- parallel::detectCores() - 1
}
if (isDetailed){
summary(numericColumns) # get an overview of the data
md.pattern(numericColumns) # check the missingness pattern
mdf$predictorMatrix # The predictor matrix is a square matrix that specifies the variables that are used to impute each incomplete variable
# Reference for mids members: https://rdrr.io/cran/mice/man/mids-class.html
}
print(paste0("Performing imputation..."))
then <- Sys.time()
# parlmice produces m = n.core * m.imp.core number of chains
print(paste0("Starting ", processingCoreQty, " cores, each imputing ", chainQty, " chains..."))
if (Sys.info()[['sysname']] == "Windows"){
mdf <- parlmice(numericColumns, method=imputationMethod, maxit = maxIterations, n.core = processingCoreQty, n.imp.core = chainQty, cluster.seed = clusterSeed, print = TRUE)
}
else{
mdf <- parlmice(numericColumns, method=imputationMethod, cl.type='FORK', maxit = maxIterations, n.core = processingCoreQty, n.imp.core = chainQty, cluster.seed = clusterSeed, print = TRUE)
}
latestRHat <- miceadds::Rhat.mice(mdf)
# calculate and print imputations per minute
now <- Sys.time()
diff <- as.numeric(difftime(now, then, units="secs"))
cat("Imputation speed:")
cat(maxIterations/diff*60)
print("/min")
# print rhat convergence
print(paste0("Rhat to measure convergence of imputation (should be < ", rHatsConvergence, "):"))
print(latestRHat)
isNotConverged <- any(na.omit(latestRHat["Rhat.M.imp"]) > rHatsConvergence)
if(isNotConverged){
print("Imputation not converged. Continuing...")
}
else{
print("Imputation converged.")
}
if (showPlots){
plot(mdf) # plot convergence of algorithm, mean and standard deviation
densityplot(mdf) # compare densities of different data
stripplot(mdf) # inspect quality of imputations
}
if (storeAllImputations){
chainQty <- processingCoreQty * chainQty # adjust total number of chains
for (i in 1:chainQty){
imputedData[[i]] <- complete(mdf, i) # stores all imputations
}
}else{
imputedData <- complete(mdf, 1)
}
}
if (normalizedImputation){
print("Denormalize data after imputation...")
if (storeAllImputations){
for (i in 1:chainQty){
imputedData[[i]] <-t(apply(imputedData[[i]], 1, function(r)r*attr(numericColumns,'scaled:scale') + attr(numericColumns, 'scaled:center')))
}
}else{
imputedData <-t(apply(imputedData, 1, function(r)r*attr(numericColumns,'scaled:scale') + attr(numericColumns, 'scaled:center')))
}
}
imputedDataFrame <- NULL
if (storeAllImputations){
for (i in 1:chainQty){
imputedDataFrame[[i]] <- cbind(nonNumericColumns, imputedData[[i]]) # merge non-numeric and imputed, numeric data together
}
}else{
imputedDataFrame <- cbind(nonNumericColumns, imputedData) # merge non-numeric and imputed, numeric data together
}
# write imputed data to file with timestamp
cat("Writing imputed data to file...")
fileName <- sub(pattern = "(.*?)\\.[a-zA-Z]*$", replacement = "\\1", basename(datasetPath))
# prepare dataset store path
path <- 'data/interim/'
if(!grepl("[0-9]{14}", fileName)){ # try to find a timestamp with 4 digit year and each 2 digits for month, day, hour, minute, second
# write imputed data to file with timestamp
cat("Writing imputed data to file...")
now <- Sys.time()
path <- paste0(path, format(now, "%Y%m%d%H%M%S"), "_")
}
if (storeAllImputations){
for (i in 1:chainQty){
filePath <- paste0(path, fileName, "_impType_",imputationPackage,"_nIter_", maxIterations*epoch, "_chains_", chainQty, "_rConv_", rHatsConvergence , "_", i , ".csv")
print(filePath)
write.csv(imputedDataFrame[[i]], file=filePath, row.names = FALSE)
}
}else{
path <- paste0(path, fileName, "_impType_",imputationPackage,"_nIter_", maxIterations*epoch, "_chains_", chainQty, "_rConv_", rHatsConvergence , ".csv")
print(path)
write.csv(imputedDataFrame, file=path, row.names = FALSE)
}
cat("Done.")