-
Notifications
You must be signed in to change notification settings - Fork 0
/
slides-overview.qmd
187 lines (133 loc) · 5.04 KB
/
slides-overview.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
---
title: "Overview"
subtitle: "HDAT9700 Statistical Modelling II"
author: Mark Hanly
format:
revealjs:
chalkboard: true
preview-links: auto
logo: images/Landscape__1.Col_Pos_CBDRH.png
footer: "© UNSW 2023"
slide-number: c/t
theme: ["theme-hdat9700.scss"]
title-slide-attributes:
data-background-image: images/galaxy.jpeg
data-background-size: contain
---
## {background-image="https://media0.giphy.com/media/z3HLBSikmgCcIdjnCU/giphy.gif?cid=ecf05e47pvngwswmk3evn73jbr8k4a30x6rp0qvg9zxk7lb1&rid=giphy.gif&ct=g" background-size="contain"}
::: {.aside}
<a style="color: grey;" href="https://giphy.com/gifs/preguica-babybluecat-cocofofo-z3HLBSikmgCcIdjnCU">via GIPHY</a>
:::
## {background-image=images/slides/overview/cairns.jpg}
## {background-image=images/slides/overview/kayak.jpg}
## {background-image=images/slides/overview/leatherwork.jpg background-size=contain}
## {background-image=images/slides/overview/molly.png background-size=contain}
<!-- ![](images/slides/overview/kayak.jpg){.absolute top="50" left="0" height="300"} -->
<!-- ![](images/slides/overview/cairns.jpg){.absolute top="50" left="600" width="300"} -->
<!-- ![](images/slides/overview/molly.png){.absolute top="340" left="650" height="350"} -->
<!-- ![](images/slides/overview/leatherwork.jpg){.absolute top="390" left="100"} -->
## People
::: columns
::: {.column width="33%"}
![Dr Mark Hanly](images/mhanly.jpg){fig-align="left"}
- Course convenor
- Lecturer (Chapters 1-8)
:::
::: {.column width="33%"}
![Dr Xingzhong (Jason) Jin](images/jason.jpg){fig-align="left"}
- Guest lecture (Chapter 9)
:::
::: {.column width="33%"}
![Dr Md Shadejur Rahmon Shawon](images/shawon.png){fig-align="left"}
- Guest lecture (Chapter 10)
:::
:::
## Course content
::: {style="font-size: 0.85em;"}
| Chapter | Topic | Lecturer |
|---------|--------------------------------------------|----------|
| 1 | Directed Acyclic Graphs (DAGs) | Mark |
| 2 | Causal inference from observational data | Mark |
| 3 | Multilevel Modelling I (Introduction) | Mark |
| 4 | Multilevel Modelling I (Beyond the basics) | Mark |
| 5 | Multilevel Modelling I (Repeated measures) | Mark |
| 6 | Reading week | |
| 7 | Time series analysis | Mark |
| 8 | Interrupted time series analysis | Mark |
| 9 | Missing data and multiple imputation | Jason |
| 10 | Presenting and summarising model results | Shawon |
:::
## Assessments
| Assessment | Topic | Week | Weight |
|------------|----------------------|-------------|------------------|
| 1A | Causal inference | 1 - 2 | $\frac{50\%}{3}$ |
| 1B | Multilevel modelling | 3 - 5 | $\frac{50\%}{3}$ |
| 1C | Time series analysis | 7 - 8 | $\frac{50\%}{3}$ |
| 2 | Final report | Your choice | 50% |
## Software and platforms
<br>
### Microsoft Teams
::: columns
::: {.column width="50%"}
![](https://upload.wikimedia.org/wikipedia/commons/c/c9/Microsoft_Office_Teams_(2018%E2%80%93present).svg)
:::
::: {.column width="50%"}
- Announcements
- Questions
- Discussion
- Online tutorials
:::
:::
## Software and platforms
<br>
### RStudio
::: columns
::: {.column width="50%"}
![](https://www.rstudio.com/wp-content/uploads/2018/10/RStudio-Logo.svg)
:::
::: {.column width="50%"}
- `MatchIt` for propensity score matching
- `lme4` for multilevel modelling
- `forecast` for time series analysis
:::
:::
## Software and platforms
<br>
### RMarkdown
::: columns
::: {.column width="50%"}
![](https://pkgs.rstudio.com/rmarkdown/reference/figures/logo.png)
:::
::: {.column width="50%"}
- Getting started? Check out the [`RMarkdown` cheatsheet](https://www.rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf)
:::
:::
## Software and platforms
<br>
### GitHub
::: columns
::: {.column width="50%"}
![](https://i0.wp.com/linuxnewbieguide.org/wp-content/uploads/2017/03/github-logo.png?ssl=1)
:::
::: {.column width="50%"}
- Getting started? Check out [Happy Git and GitHub for the useR](https://happygitwithr.com/index.html)
:::
:::
<br>
## Course website
Visit [hdat9700.cbdrh.med.unsw.edu.au](https://hdat9700.cbdrh.med.unsw.edu.au/)
* Course outline
* Weekly schedule
* Content links
* Assessment and feedback download links
## Workflow
UNSW expectation is [**10-15 hours of study and learning activities per week**]{style="color: #18bc9c"} for a six-units-of-credit course.
You can use this time to
- Read core chapter readings
- Work through interactive learnr tutorials
- Attend weekly tutorial sessions
- Ask questions and join discussions on Teams
## Contact and questions
- Teams is best! But please \@ me for visibility
- Email is ok but I may repost your question to Teams (anonymously) if the response is of general interest
- Weekly office hours (flexible hours - message to arrange)