-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
147 lines (121 loc) · 4.05 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import itertools
import math
import numpy as np
def mhsample(start, nsamples, pdf, proppdf, proprnd, rng=None, max_tries=5e5):
"""
Metropolis-Hastings sampler.
Note:
- proppdf(x, y) = P(x | y), NOT P(y | x).
"""
if rng is None:
rng = np.random.default_rng()
x = start
accepted = []
rejected = []
while len(rejected) + len(accepted) < max_tries:
x_ = proprnd(x)
A = min(1, pdf(x_)*proppdf(x, x_)/(pdf(x)*proppdf(x_, x)))
u = rng.random()
if u <= A:
x = x_
accepted.append(x)
else:
rejected.append(x)
if len(accepted) == nsamples:
break
if len(rejected) + len(accepted) >= max_tries:
raise RuntimeError('Maximal tries exceeded in MCMC.')
return np.array(accepted), np.array(rejected)
def compute_PD_dist(X, Y):
""" Compute the hyperbolic distance on the Poincare Disk.
"""
ret = 2*(np.linalg.norm(X - Y)**2)/ ((1 - np.linalg.norm(X)**2)*(1 - np.linalg.norm(Y)**2))
ret = np.arccosh(1 + ret)
return ret
def compute_PD_norm_factor(sigma):
"""
Formula taken from:
S. Said, L. Bombrun, and Y. Berthoumieu. New riemannian priors on the univariate normal model.
"""
const = (2*math.pi)*((math.pi*.5)**.5)
exp = math.exp(.5*(sigma**2))
erf = math.erf(sigma/(2**(.5)))
return const*sigma*exp*erf
def compute_PDGauss_pdf(x, centroid, sigma):
norm_factor = compute_PD_norm_factor(sigma)
dist = compute_PD_dist(x, centroid)
return math.exp(-(dist**2)/(2*(sigma**2)))/norm_factor
def is_SPD(X):
"""Check if a given matrix is (very nearly) an SPD matrix.
NOTE:
1. Check symmetric only up to 2 decimal places.
"""
is_symmetric = (np.round(X, 2) == np.round(X.T, 2)).all()
is_positive = np.all(np.linalg.eigvals(X) > 0)
if not (is_positive and is_symmetric):
print(X)
print(np.linalg.eigvals(X))
print(is_symmetric)
print(is_positive)
return is_positive and is_symmetric
def SPD_ize(M):
"""Return a copy of M that has been projected to the SPD manifold."""
ret = M.copy()
p = M.shape[0]
# Force symmetrize the matrix:
ret[np.tril_indices(p, k=-1)] = ret.T[np.tril_indices(p, k=-1)]
# Set negative eigenvalues to a small positive value:
eigvals, eigvecs = np.linalg.eig(ret)
eigvals = eigvals.real
eigvals[eigvals <= 0] = .01
ret = eigvecs @ np.diag(eigvals) @ eigvecs.T
return ret
def SPD_sqrt(M, check_SPD=False, proj_to_SPD=True):
"""Compute the square root of a SPD matrix.
"""
if check_SPD:
assert(is_SPD(M))
if proj_to_SPD:
M = SPD_ize(M)
u, s, vh = np.linalg.svd(M)
# print("M is {}, u is {}, s is {}. vh is {}".format(M, u, s, vh))
ret = u @ (np.diag(s)**.5) @ vh
# print("{} has shape {}".format(ret, ret.shape))
return ret
def unifpdf_vect(x, lower, upper):
too_low = x < lower
too_high = x > upper
just_right = (x >= lower) & (x <= upper)
ret = x.copy()
ret[too_low] = 0
ret[too_high] = 0
ret[just_right] = 1/(upper - lower)
return ret
def unifpdf(x, lower, upper):
if x < lower or x > upper:
return 0
else:
return 1/(upper - lower)
def match_permutation(true, predicted, num_states, dist):
''' Find the permutation that minimizes the average distance between true and predicted.
'''
curr_min_cost, curr_min_permutation = float('inf'), None
for perm in itertools.permutations(np.arange(num_states)):
perm = list(perm)
curr_cost = 0
for s in range(num_states):
curr_perm_pred = predicted[perm]
curr_cost += dist(true[s], curr_perm_pred[s])
curr_cost /= num_states
if curr_cost < curr_min_cost:
curr_min_cost = curr_cost
curr_min_permutation = perm
return list(curr_min_permutation)
def permute_matrix(matrix, permutation):
ret = matrix.copy()
dim = matrix.shape[0]
for i in range(dim):
ret[:, i] = ret[permutation, i]
for i in range(dim):
ret[i, :] = ret[i, permutation]
return ret