From 7adea9e03c2a28ad7d2bc180858fffd40aa3df59 Mon Sep 17 00:00:00 2001 From: BHUVAN M <121122109+bhuvanmdev@users.noreply.github.com> Date: Thu, 2 May 2024 22:34:34 +0530 Subject: [PATCH] Update modeling_altclip.py by adding interpolate_pos_encoding to altclip vision model This commit introduces the `interpolate_pos_encoding` function to the `altclip` classes. It allows for high resolution images to be processed without image resizing. partially solves Issue #30579 --- .../models/altclip/modeling_altclip.py | 59 +++++++++++++++++-- 1 file changed, 55 insertions(+), 4 deletions(-) diff --git a/src/transformers/models/altclip/modeling_altclip.py b/src/transformers/models/altclip/modeling_altclip.py index 3e184085331720..c0dd26fb6279fd 100755 --- a/src/transformers/models/altclip/modeling_altclip.py +++ b/src/transformers/models/altclip/modeling_altclip.py @@ -102,6 +102,8 @@ output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. + interpolate_pos_encoding (`bool`, *optional*): + Whether to interpolate the pre-trained position encodings. Defaults to `False`. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @@ -139,6 +141,8 @@ output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. + interpolate_pos_encoding (`bool`, *optional*): + Whether to interpolate the pre-trained position encodings. Defaults to `False`. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @@ -1013,15 +1017,54 @@ def __init__(self, config: AltCLIPVisionConfig): self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) - def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: + def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: + """ + This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher + resolution images. + + Source: + https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 + """ + + num_patches = embeddings.shape[1] - 1 + temp_pos_embed = self.position_embedding(self.position_ids) + num_positions = temp_pos_embed.shape[1] - 1 + if num_patches == num_positions and height == width: + return self.position_embedding(self.position_ids) + + class_pos_embed = temp_pos_embed[:, 0,:] + patch_pos_embed = temp_pos_embed[:, 1:,:] + dim = embeddings.shape[-1] + h0 = height // self.config.patch_size + w0 = width // self.config.patch_size + # we add a small number to avoid floating point error in the interpolation + # see discussion at https://github.com/facebookresearch/dino/issues/8 + h0, w0 = h0 + 0.1, w0 + 0.1 + patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) + patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) + patch_pos_embed = nn.functional.interpolate( + patch_pos_embed, + scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)), + mode="bicubic", + align_corners=False, + ) + assert int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1] + patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) + return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) + + def forward(self, pixel_values: torch.FloatTensor,interpolate_pos_encoding: bool = False) -> torch.Tensor: batch_size = pixel_values.shape[0] target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid] patch_embeds = patch_embeds.flatten(2).transpose(1, 2) - + class_embeds = self.class_embedding.expand(batch_size, 1, -1) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) - embeddings = embeddings + self.position_embedding(self.position_ids) + if interpolate_pos_encoding: + embeddings = embeddings + self.interpolate_pos_encoding(embeddings, pixel_values.shape[-2], pixel_values.shape[-1]) + else: + embeddings = embeddings + self.position_embedding(self.position_ids) + return embeddings @@ -1102,6 +1145,7 @@ def forward( output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, + interpolate_pos_encoding: Optional[bool] = False, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: @@ -1116,7 +1160,7 @@ def forward( if pixel_values is None: raise ValueError("You have to specify pixel_values") - hidden_states = self.embeddings(pixel_values) + hidden_states = self.embeddings(pixel_values,interpolate_pos_encoding=interpolate_pos_encoding) hidden_states = self.pre_layrnorm(hidden_states) encoder_outputs = self.encoder( @@ -1162,6 +1206,7 @@ def forward( output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, + interpolate_pos_encoding: Optional[bool] = False, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: @@ -1192,6 +1237,7 @@ def forward( output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, + interpolate_pos_encoding=interpolate_pos_encoding, ) @@ -1552,6 +1598,7 @@ def get_image_features( output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, + interpolate_pos_encoding: Optional[bool] = False, ) -> torch.FloatTensor: r""" Returns: @@ -1584,6 +1631,7 @@ def get_image_features( output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, + interpolate_pos_encoding=interpolate_pos_encoding, ) pooled_output = vision_outputs[1] # pooled_output @@ -1604,6 +1652,7 @@ def forward( output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, + interpolate_pos_encoding: Optional[bool] = False, ) -> Union[Tuple, AltCLIPOutput]: r""" Returns: @@ -1648,6 +1697,7 @@ def forward( output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, + interpolate_pos_encoding=interpolate_pos_encoding, ) image_embeds = vision_outputs[1] @@ -1699,3 +1749,4 @@ def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_l mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask return incremental_indices.long() + padding_idx +