Skip to content

Latest commit

 

History

History
314 lines (286 loc) · 17.8 KB

lab_journal.md

File metadata and controls

314 lines (286 loc) · 17.8 KB

2018-06-30 12:54

Loss doesnt go below 0.07. It looks like more epochs could help

Epoch 1693/1695 200/200 [==============================] - 0s - loss: 0.1971 Epoch 1694/1695 200/200 [==============================] - 0s - loss: 0.1032 Epoch 1695/1695 200/200 [==============================] - 0s - loss: 0.2520

Model drives almost straight and thus goes out on the right side

2018-06-30 12:54

Changes

  • Increased epochs from 5 to 7
  • samples_per_epoch=sample_size and nb_epochs=7

Observations

  • Now we have about 4 minutes per epoch and more constant loss result

Epoch 1/7 67800/67800 [==============================] - 262s - loss: 0.2152 Epoch 2/7 67800/67800 [==============================] - 258s - loss: 0.1921 Epoch 3/7 67800/67800 [==============================] - 258s - loss: 0.1811 Epoch 4/7 67800/67800 [==============================] - 258s - loss: 0.1761 Epoch 5/7 67800/67800 [==============================] - 258s - loss: 0.1882 Epoch 6/7 67800/67800 [==============================] - 258s - loss: 0.1760 Epoch 7/7 67800/67800 [==============================] - 258s - loss: 0.1665

So it still improves even in the 7th epoch

Model driving behavior has improved somewhat but still makes a pretty dumb impression

Conclusions

  • So probably no performance change from the reorganization
  • More epochs could still help

2018-06-30 13:31

Changes

  • Increased epochs from 7 to 10
  • Removed straight driving filter and left and right images

Observations

Epoch 1/10 37200/37200 [==============================] - 149s - loss: 0.1910 Epoch 2/10 37200/37200 [==============================] - 144s - loss: 0.1327 Epoch 3/10 37200/37200 [==============================] - 144s - loss: 0.1253 Epoch 4/10 37200/37200 [==============================] - 144s - loss: 0.1267 Epoch 5/10 37200/37200 [==============================] - 144s - loss: 0.1203 Epoch 6/10 37200/37200 [==============================] - 144s - loss: 0.1162 Epoch 7/10 37200/37200 [==============================] - 144s - loss: 0.1264 Epoch 8/10 37200/37200 [==============================] - 144s - loss: 0.1220 Epoch 9/10 37200/37200 [==============================] - 144s - loss: 0.1189 Epoch 10/10 37200/37200 [==============================] - 144s - loss: 0.1188

Model actively stears off to the right side.

Conclusions

  • While the loss itself is lower the behavior looked straight up wrong

2018-06-30 14:46

Changes

  • Increased epochs from 10 to 20
  • Readded left and right images (kept straight driving filter out)

Observations

Epoch 1/20 111600/111600 [==============================] - 437s - loss: 0.1716 Epoch 2/20 111600/111600 [==============================] - 436s - loss: 0.1527 Epoch 3/20 111600/111600 [==============================] - 438s - loss: 0.1435 Epoch 4/20 111600/111600 [==============================] - 442s - loss: 0.1529 Epoch 5/20 111600/111600 [==============================] - 435s - loss: 0.1394 Epoch 6/20 111600/111600 [==============================] - 446s - loss: 0.1498 Epoch 7/20 111600/111600 [==============================] - 443s - loss: 0.1495 Epoch 8/20 111600/111600 [==============================] - 436s - loss: 0.1489 Epoch 9/20 111600/111600 [==============================] - 433s - loss: 0.1421 Epoch 10/20 111600/111600 [==============================] - 433s - loss: 0.1405 Epoch 11/20 111600/111600 [==============================] - 436s - loss: 0.1502 Epoch 12/20 111600/111600 [==============================] - 448s - loss: 0.1500 Epoch 13/20 111600/111600 [==============================] - 458s - loss: 0.1539 Epoch 14/20 111600/111600 [==============================] - 447s - loss: 0.1528 Epoch 15/20 111600/111600 [==============================] - 460s - loss: 0.1512 Epoch 16/20 111600/111600 [==============================] - 477s - loss: 0.1371 Epoch 17/20 111600/111600 [==============================] - 478s - loss: 0.1243 Epoch 18/20 111600/111600 [==============================] - 444s - loss: 0.1269 Epoch 19/20 111600/111600 [==============================] - 446s - loss: 0.1192 Epoch 20/20 111600/111600 [==============================] - 438s - loss: 0.1124

Car steered crazily to the right side. It looks to me like this was the straight-ahead right/left copy that thought the model that.

Ideas to improve

These two are correlated

  • Try if it improves without filtering the straight driving

  • Try if it improves without left and right images

  • Make more data?

  • More dropout? Less dropout? Currently we drop 10 % twice

  • Is the shuffling really working? Is it important?

Bad ideas

  • Increase batch size a bit to squeeze out more performance. 200 works, 1000 does not. Naah nvidia-smi shows 3805MiB / 4036MiB

Best model so far

Epoch 1/10 78400/78400 [==============================] - 259s - loss: 0.2029 - val_loss: 0.1169 Epoch 2/10 78400/78400 [==============================] - 201s - loss: 0.1715 - val_loss: 0.1162 Epoch 3/10 78400/78400 [==============================] - 200s - loss: 0.1792 - val_loss: 0.1155 Epoch 4/10 78400/78400 [==============================] - 200s - loss: 0.1665 - val_loss: 0.1151 Epoch 5/10 78400/78400 [==============================] - 201s - loss: 0.1613 - val_loss: 0.1168 Epoch 6/10 78400/78400 [==============================] - 200s - loss: 0.1472 - val_loss: 0.0888 Epoch 7/10 78400/78400 [==============================] - 200s - loss: 0.1270 - val_loss: 0.0739 Epoch 8/10 78400/78400 [==============================] - 200s - loss: 0.1250 - val_loss: 0.0853 Epoch 9/10 78400/78400 [==============================] - 199s - loss: 0.1194 - val_loss: 0.0658 Epoch 10/10 78400/78400 [==============================] - 199s - loss: 0.1110 - val_loss: 0.0670

With left and right images, flipped and moar data Drives pretty okay but failed on bridge + dirtcorner (is too far left before the curve starts)

Without left and right it sucks

New best (by training longer)

78400/78400 [==============================] - 201s - loss: 0.1809 - val_loss: 0.1175 Epoch 2/20 78400/78400 [==============================] - 196s - loss: 0.1622 - val_loss: 0.1160 Epoch 3/20 78400/78400 [==============================] - 197s - loss: 0.1667 - val_loss: 0.1255 Epoch 4/20 78400/78400 [==============================] - 196s - loss: 0.1656 - val_loss: 0.1154 Epoch 5/20 78400/78400 [==============================] - 196s - loss: 0.1639 - val_loss: 0.1212 Epoch 6/20 78400/78400 [==============================] - 196s - loss: 0.1636 - val_loss: 0.1157 Epoch 7/20 78400/78400 [==============================] - 196s - loss: 0.1443 - val_loss: 0.0874 Epoch 8/20 78400/78400 [==============================] - 196s - loss: 0.1363 - val_loss: 0.0791 Epoch 9/20 78400/78400 [==============================] - 196s - loss: 0.1250 - val_loss: 0.0785 Epoch 10/20 78400/78400 [==============================] - 196s - loss: 0.1224 - val_loss: 0.0748 Epoch 11/20 78400/78400 [==============================] - 196s - loss: 0.1167 - val_loss: 0.0799 Epoch 12/20 78400/78400 [==============================] - 196s - loss: 0.1212 - val_loss: 0.0767 Epoch 13/20 78400/78400 [==============================] - 196s - loss: 0.1168 - val_loss: 0.0679 Epoch 14/20 78400/78400 [==============================] - 196s - loss: 0.1149 - val_loss: 0.0676 78400/78400 [==============================] - 196s - loss: 0.1102 - val_loss: 0.0663 Epoch 16/20 78400/78400 [==============================] - 196s - loss: 0.1106 - val_loss: 0.0638 Epoch 17/20 78400/78400 [==============================] - 196s - loss: 0.1093 - val_loss: 0.0664 Epoch 18/20 78400/78400 [==============================] - 196s - loss: 0.1089 - val_loss: 0.0663 Epoch 19/20 78400/78400 [==============================] - 196s - loss: 0.1078 - val_loss: 0.0637 Epoch 20/20 78400/78400 [==============================] - 196s - loss: 0.1078 - val_loss: 0.0642

slight improvement with relu instead of tanh and without dropout

Epoch 2/25 78400/78400 [==============================] - 186s - loss: 0.1204 - val_loss: 0.0823 Epoch 3/25 78400/78400 [==============================] - 185s - loss: 0.1162 - val_loss: 0.0640 Epoch 4/25 78400/78400 [==============================] - 185s - loss: 0.1120 - val_loss: 0.0757 Epoch 5/25 78400/78400 [==============================] - 185s - loss: 0.1073 - val_loss: 0.0615 Epoch 6/25 78400/78400 [==============================] - 185s - loss: 0.1089 - val_loss: 0.0714 Epoch 7/25 78400/78400 [==============================] - 185s - loss: 0.1074 - val_loss: 0.0625 Epoch 8/25 78400/78400 [==============================] - 185s - loss: 0.1060 - val_loss: 0.0667 Epoch 9/25 78400/78400 [==============================] - 185s - loss: 0.1021 - val_loss: 0.0610 Epoch 10/25 78400/78400 [==============================] - 184s - loss: 0.0997 - val_loss: 0.0602 Epoch 11/25 78400/78400 [==============================] - 184s - loss: 0.0979 - val_loss: 0.0631 Epoch 12/25 78400/78400 [==============================] - 184s - loss: 0.0974 - val_loss: 0.0613 Epoch 13/25 78400/78400 [==============================] - 184s - loss: 0.0944 - val_loss: 0.0610 Epoch 14/25 78400/78400 [==============================] - 184s - loss: 0.0944 - val_loss: 0.0870 Epoch 15/25 78400/78400 [==============================] - 184s - loss: 0.0940 - val_loss: 0.0601 Epoch 16/25 78400/78400 [==============================] - 184s - loss: 0.0929 - val_loss: 0.0590 Epoch 17/25 78400/78400 [==============================] - 184s - loss: 0.1036 - val_loss: 0.0627 Epoch 18/25 78400/78400 [==============================] - 184s - loss: 0.0949 - val_loss: 0.0616 Epoch 19/25 78400/78400 [==============================] - 186s - loss: 0.0909 - val_loss: 0.0600 Epoch 20/25 78400/78400 [==============================] - 184s - loss: 0.0898 - val_loss: 0.0597 Epoch 21/25 78400/78400 [==============================] - 188s - loss: 0.0890 - val_loss: 0.0689 Epoch 22/25 78400/78400 [==============================] - 189s - loss: 0.0887 - val_loss: 0.0596 Epoch 23/25 78400/78400 [==============================] - 190s - loss: 0.0877 - val_loss: 0.0604 Epoch 24/25 78400/78400 [==============================] - 191s - loss: 0.0862 - val_loss: 0.0592 Epoch 25/25 78400/78400 [==============================] - 190s - loss: 0.0849 - val_loss: 0.0603

got past the dirt corner but went off course afterwards

full round again with only one touch of the line

78400/78400 [==============================] - 150s - loss: 0.1394 - val_loss: 0.0840 Epoch 2/25 78400/78400 [==============================] - 150s - loss: 0.1204 - val_loss: 0.0813 Epoch 3/25 78400/78400 [==============================] - 150s - loss: 0.1163 - val_loss: 0.0723 Epoch 4/25 78400/78400 [==============================] - 150s - loss: 0.1112 - val_loss: 0.0675 Epoch 5/25 78400/78400 [==============================] - 149s - loss: 0.1105 - val_loss: 0.0734 Epoch 6/25 78400/78400 [==============================] - 150s - loss: 0.1139 - val_loss: 0.0847 Epoch 7/25 78400/78400 [==============================] - 149s - loss: 0.1094 - val_loss: 0.0655 Epoch 8/25 78400/78400 [==============================] - 149s - loss: 0.1062 - val_loss: 0.0687 Epoch 9/25 78400/78400 [==============================] - 149s - loss: 0.1048 - val_loss: 0.0662 Epoch 10/25 78400/78400 [==============================] - 149s - loss: 0.1024 - val_loss: 0.0679 Epoch 11/25 78400/78400 [==============================] - 149s - loss: 0.1009 - val_loss: 0.0659 Epoch 12/25 78400/78400 [==============================] - 149s - loss: 0.0987 - val_loss: 0.0665 Epoch 13/25 78400/78400 [==============================] - 149s - loss: 0.0992 - val_loss: 0.0652 Epoch 14/25 78400/78400 [==============================] - 149s - loss: 0.0967 - val_loss: 0.0650 Epoch 15/25 78400/78400 [==============================] - 149s - loss: 0.0947 - val_loss: 0.0658 Epoch 16/25 78400/78400 [==============================] - 149s - loss: 0.0923 - val_loss: 0.0650 Epoch 17/25 78400/78400 [==============================] - 148s - loss: 0.0935 - val_loss: 0.0631 Epoch 18/25 78400/78400 [==============================] - 149s - loss: 0.0945 - val_loss: 0.0644 Epoch 19/25 78400/78400 [==============================] - 148s - loss: 0.0921 - val_loss: 0.0637 Epoch 20/25 78400/78400 [==============================] - 149s - loss: 0.0900 - val_loss: 0.0634 Epoch 21/25 78400/78400 [==============================] - 148s - loss: 0.0905 - val_loss: 0.0613 Epoch 22/25 78400/78400 [==============================] - 147s - loss: 0.0884 - val_loss: 0.0628 Epoch 23/25 78400/78400 [==============================] - 148s - loss: 0.0932 - val_loss: 0.0601 Epoch 24/25 78400/78400 [==============================] - 148s - loss: 0.0883 - val_loss: 0.0608 Epoch 25/25 78400/78400 [==============================] - 147s - loss: 0.0876 - val_loss: 0.0666

Results with the Adam optimizer and without jungle

Epoch 2/15 59600/59800 [============================>.] - ETA: 0s - loss: 0.0826Epoch 00001: val_loss improved from 0.07488 to 0.07225, saving model to weights.01-0.07.hdf5 59800/59800 [==============================] - 114s - loss: 0.0824 - val_loss: 0.0722 Epoch 3/15 59600/59800 [============================>.] - ETA: 0s - loss: 0.0794Epoch 00002: val_loss improved from 0.07225 to 0.06842, saving model to weights.02-0.07.hdf5 59800/59800 [==============================] - 114s - loss: 0.0793 - val_loss: 0.0684 Epoch 4/15 59600/59800 [============================>.] - ETA: 0s - loss: 0.0764Epoch 00003: val_loss improved from 0.06842 to 0.06450, saving model to weights.03-0.06.hdf5 59800/59800 [==============================] - 114s - loss: 0.0763 - val_loss: 0.0645 Epoch 5/15 59600/59800 [============================>.] - ETA: 0s - loss: 0.0740Epoch 00004: val_loss improved from 0.06450 to 0.06250, saving model to weights.04-0.06.hdf5 59800/59800 [==============================] - 114s - loss: 0.0739 - val_loss: 0.0625 Epoch 6/15 59600/59800 [============================>.] - ETA: 0s - loss: 0.0722Epoch 00005: val_loss improved from 0.06250 to 0.06008, saving model to weights.05-0.06.hdf5 59800/59800 [==============================] - 114s - loss: 0.0720 - val_loss: 0.0601 Epoch 7/15 59600/59800 [============================>.] - ETA: 0s - loss: 0.0705Epoch 00006: val_loss improved from 0.06008 to 0.05909, saving model to weights.06-0.06.hdf5 59800/59800 [==============================] - 114s - loss: 0.0704 - val_loss: 0.0591 Epoch 8/15 59600/59800 [============================>.] - ETA: 0s - loss: 0.0693Epoch 00007: val_loss improved from 0.05909 to 0.05817, saving model to weights.07-0.06.hdf5 59800/59800 [==============================] - 114s - loss: 0.0692 - val_loss: 0.0582 Epoch 9/15 59600/59800 [============================>.] - ETA: 0s - loss: 0.0684Epoch 00008: val_loss improved from 0.05817 to 0.05760, saving model to weights.08-0.06.hdf5 59800/59800 [==============================] - 114s - loss: 0.0683 - val_loss: 0.0576 Epoch 10/15 59600/59800 [============================>.] - ETA: 0s - loss: 0.0677Epoch 00009: val_loss improved from 0.05760 to 0.05732, saving model to weights.09-0.06.hdf5 59800/59800 [==============================] - 114s - loss: 0.0676 - val_loss: 0.0573 Epoch 11/15 59600/59800 [============================>.] - ETA: 0s - loss: 0.0669Epoch 00010: val_loss improved from 0.05732 to 0.05730, saving model to weights.10-0.06.hdf5 59800/59800 [==============================] - 114s - loss: 0.0667 - val_loss: 0.0573 Epoch 12/15 59600/59800 [============================>.] - ETA: 0s - loss: 0.0663Epoch 00011: val_loss did not improve 59800/59800 [==============================] - 114s - loss: 0.0662 - val_loss: 0.0584 Epoch 13/15 59600/59800 [============================>.] - ETA: 0s - loss: 0.0653Epoch 00012: val_loss did not improve 59800/59800 [==============================] - 114s - loss: 0.0652 - val_loss: 0.0582

Going up to 0.20 correction factor

Epoch 2/15 59600/59800 [============================>.] - ETA: 0s - loss: 0.1137Epoch 00001: val_loss improved from 0.13082 to 0.12129, saving model to weights.01-0.12.hdf5 59800/59800 [==============================] - 117s - loss: 0.1137 - val_loss: 0.1213 Epoch 3/15 59600/59800 [============================>.] - ETA: 0s - loss: 0.1108Epoch 00002: val_loss improved from 0.12129 to 0.10900, saving model to weights.02-0.11.hdf5 59800/59800 [==============================] - 117s - loss: 0.1108 - val_loss: 0.1090 Epoch 4/15 59600/59800 [============================>.] - ETA: 0s - loss: 0.1066Epoch 00003: val_loss did not improve 59800/59800 [==============================] - 117s - loss: 0.1065 - val_loss: 0.1099 Epoch 5/15 59600/59800 [============================>.] - ETA: 0s - loss: 0.1044 j Epoch 00004: val_loss improved from 0.10900 to 0.10613, saving model to weights.04-0.11.hdf5 59800/59800 [==============================] - 118s - loss: 0.1043 - val_loss: 0.1061

=> A LOT WORSE! Aborting and reverting!

Converting training images to RGB from BGR

First perfect round!

Now trying the same with some dropout to make the reviewer happy