-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathget_laplacian.m
81 lines (46 loc) · 1.91 KB
/
get_laplacian.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
function [ L ] = get_laplacian( image )
%GET_LAPLACIAN
[m, n, c] = size(image);
img_size = m*n;
win_rad = 1;
epsilon = 0.0000001;
max_num_neigh = (win_rad*2+1)^2;
ind_mat = reshape( 1:img_size, m, n);
indices = 1 : (m*n);
num_ind = length(indices); %计算矩阵长度
max_num_vertex = max_num_neigh * num_ind;
%三维矩阵初始化
row_inds = zeros( max_num_vertex, 1 );
col_inds = zeros( max_num_vertex, 1 );
vals = zeros( max_num_vertex, 1 );
len = 0;
for k = 1 : length(indices)
ind = indices(k);
[i, j] = ind2sub( [m n], ind ); % 索引数组小标
m_min = max( 1, i - win_rad );
m_max = min( m, i + win_rad );
n_min = max( 1, j - win_rad );
n_max = min( n, j + win_rad );
win_inds = ind_mat( m_min : m_max, n_min : n_max );
win_inds = win_inds(:);
num_neigh = size( win_inds, 1 ); %窗口数量
win_image = image( m_min : m_max, n_min : n_max, : );
win_image = reshape( win_image, num_neigh, c );
win_mean = mean( win_image, 1 ); %均差
% 公式(15) inv:求逆矩阵 eye:单位矩阵
win_var = inv( (win_image' * win_image / num_neigh) - (win_mean' * win_mean) + (epsilon / num_neigh * eye(c) ) );
win_image = win_image - repmat( win_mean, num_neigh, 1 );
win_vals = ( 1 + win_image * win_var * win_image' ) / num_neigh;
sub_len = num_neigh * num_neigh;
win_inds = repmat(win_inds, 1, num_neigh); %4x1矩阵拓展为
row_inds(1+len: len+sub_len) = win_inds(:); %合并为列向量后付给row_inds
win_inds = win_inds';
col_inds(1+len: len+sub_len) = win_inds(:);
vals(1+len: len+sub_len) = win_vals(:);
len = len + sub_len;
end
A = sparse(row_inds(1:len),col_inds(1:len),vals(1:len),img_size,img_size);
%创建稀疏矩阵S = sparse(i,j,v,m,n) 将 S 的大小指定为 m×n
D = spdiags(sum(A,2),0,n*m,n*m); %通过获取sum(A,2)的列并沿2指定的对角线放置它们,创建一个(m*n)x(n*m)稀疏矩阵
L = D - A;
end