-
Notifications
You must be signed in to change notification settings - Fork 3
/
SIG_WNV_Flow_Data_Plotting.r
71 lines (53 loc) · 3.5 KB
/
SIG_WNV_Flow_Data_Plotting.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
## Load functions for plotting the flow cytometry data
source('./scripts/flow_data_plotting_functions.r')
## Note: you may have to change the file paths
data_dir = '/Users/mooneymi/Documents/SIG/WNV/Cleaned_Data_Releases/23-Mar-2016/'
## Load data from an Excel spreadsheet (Warning: this can take a few minutes)
flow_full = read.xls(file.path(data_dir, 'Lund_Flow_Full_21-Mar-2016_final.xlsx'),
header=T, as.is=T, na.strings=c(""," ", "NA", "#DIV/0!"))
describe(flow_boxplot_data)
## Aggregate the data for boxplots
boxplot_data = flow_boxplot_data(flow_full, c(7,8,9), 'brain', 'treg_T_regs', c('7','12','21','28'))
## Create a list of additional options for the boxplot
opts = list(rm_outliers=F, show_data=F, y_min=0, y_max=60)
## Create the boxplot (the 'cex' parameter controls the size of the x-axis text)
bp = flow_boxplots(c(boxplot_data, opts), cex=0.7)
describe(flow_multiline_plot_data)
lineplot_data = flow_multiline_plot_data(flow_full, c(30,8,36,38), 'brain', 'treg_T_regs_count', 1)
## Create a list of additional options for the lineplot
## data_type values: 1 = percentages, 2 = cell counts, 3 = percent ratio, 4 = count ratio
opts2 = list(data_type=2, y_min=NA, y_max=NA)
## Create a lineplot that compares a single variable across multiple lines
lp = flow_multiline_plots(c(lineplot_data, opts2))
lineplot_data2 = flow_multiline_plot_data(flow_full, c(9), 'brain', c('treg_T_regs', 'tcell_d7_CD8'), 2)
## Create a list of additional options for the lineplot
## data_type values: 1 = percentages, 2 = cell counts, 3 = percent ratio, 4 = count ratio
opts3 = list(data_type=1, y_min=0, y_max=50)
## Create a lineplot that compares multiple variables for a single line
lp2 = flow_multiline_plots(c(lineplot_data2, opts3))
## Load weight, clinical score, and heritability data from the latest data release
## Note: you may have to change the file paths
weights = read.xls(file.path(data_dir, 'Lund_Weight_22-Mar-2016_final.xlsx'),
header=T, as.is=T, na.strings=c(""," ", "NA", "#DIV/0!"))
scores = read.xls(file.path(data_dir, 'Lund_Scores_22-Mar-2016_final.xlsx'),
header=T, as.is=T, na.strings=c(""," ", "NA", "#DIV/0!"))
heritability = read.xls(file.path(data_dir, 'Lund_Flow_Heritability_21-Mar-2016_final.xlsx'),
header=T, as.is=T, na.strings=c(""," ", "NA", "#DIV/0!"))
## Set the rownames of the heritability dataframe
rownames(heritability) = heritability$variable
describe(flow_heatmap_data)
describe(flow_heatmap_plot)
## Heatmap with custom labels, mocks collapsed, and no heritability annotations
heatmap_data = flow_heatmap_data(flow_full, lines=c(11,12,14,30,8,36,38),
line_labels=c('CC(017x004)F1','CC(011x042)F1','CC(032x017)F1','CC(032x013)F1','CC(005x001)F1','CC(061x026)F1','CC(016x038)F1'),
tissue='brain',
flow_vars=c('treg_T_regs', 'tcell_d7_CD3', 'tcell_d7_CD4', 'tcell_d7_CD8'),
var_labels=c('Tregs', 'CD3+ Tcell', 'CD4+ Tcell', 'CD8+ Tcell'),
tp=c('7','12','21','28'), collapse_mocks=T)
## Create the heatmap
hm = flow_heatmap_plot(heatmap_data, weights, scores, collapse_mocks=T, annotations=T)
## The heatmap without any annotations
heatmap_data2 = flow_heatmap_data(flow_full, lines=c(7,8,9), tissue='brain',
flow_vars=c('treg_T_regs', 'tcell_d7_CD3', 'tcell_d7_CD4', 'tcell_d7_CD8'),
tp=c('7','12','21','28'), annotations=F)
hm2 = flow_heatmap_plot(heatmap_data2, annotations=F)