diff --git a/tao/doc/command-list.tex b/tao/doc/command-list.tex index 9e0e6cf661..3ac9da946a 100644 --- a/tao/doc/command-list.tex +++ b/tao/doc/command-list.tex @@ -2107,9 +2107,9 @@ \subsection{show chromaticity} If no universe is given, the current default universe (\sref{s:universe}) is used. -The \vn{-taylor} switch will show the Taylor series for the three normal mode tunes and spin tune -as functions of the phase space coordinates. The computation uses complex series. The imaginary part -should be zero (or very small). The spin Taylor series is only computed when spin tracking is on. +The \vn{-taylor} switch will show the Taylor series for the three normal mode tunes as functions +of the phase space coordinates. The computation uses complex series. The imaginary part should be +zero (or very small). %% show constraints -------------------------------------------------------------- @@ -3013,7 +3013,7 @@ \subsection{show spin} Syntax: \begin{example} show spin \{-element \{\} \} \{-flip_n_axis\} \{-g_map\} - \{-ignore_kinetic \} \{-isf\} + \{-ignore_kinetic \} \{-isf\} \{-spin_tune\} \{-l_axis , , \} \{-n_axis , , \} \{-x_zero \} \{-y_zero \} \{-z_zero \} \end{example} @@ -3067,6 +3067,11 @@ \subsection{show spin} for the three components of the spin $(S_x, S_y, S_z)$. The independent variables are the six orbital phase space coordinates $(x, p_x, y, p_y, z, p_z)$. +The \vn{-spin_tune} switch, if present, will print the amplitude-dependent spin tune. The output will +be a Taylor series in the phasor's basis, i.e. $x_{\pm k} = \sqrt{J_k}\exp{\pm i\phi_k}$. For example +the monomial ``[1 1 0 0 0 0]'' corresponds to $J_a$, and ``[1 1 2 2 3 3]'' corresponds to +$J_aJ_b^2J_c^3$. + The \vn{-x_zero}, \vn{-y_zero}, and \vn{-z_zero} options are for testing if supressing certain terms in the linear part of the spin transport map for a set of elements selected by the user will significantly affect the polarization. This is discussed in the section ``\vn{Linear dn/dpz