-
Notifications
You must be signed in to change notification settings - Fork 0
/
K Nearest Neighbors without sklearn.py
63 lines (50 loc) · 1.84 KB
/
K Nearest Neighbors without sklearn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import style
from collections import Counter
import warnings
import pandas as pd
import random
style.use('fivethirtyeight')
# Download this dataset from UCI ML Repo. Also uploaded with my github repo.
df = pd.read_csv('../datasets/UWMadisonBreastCancer.txt')
df.replace('?', -112233, inplace=True)
df.drop(['id'], 1, inplace=True)
# knn model:
def k_nearest_neighbors(data, predict, k=3):
if len(data) >= k:
warnings.warn('Dont be an idiot')
distances = []
for group in data:
for features in data[group]:
# euclidean_distance = np.sqrt(np.sum((np.array(features) - np.array(predict))**2))
euclidean_distance = np.linalg.norm(np.array(features) - np.array(predict))
distances.append([euclidean_distance, group])
votes = [i[1] for i in sorted(distances)[:k]]
votes_result = Counter(votes).most_common(1)[0][0]
confidence = (Counter(votes).most_common(1)[0][1] / k) * 100
return votes_result, confidence
# We need all floats, some show quotes. We need to remove that
full_data = df.astype(float).values.tolist()
random.shuffle(full_data)
# Get the data ready
test_size = 0.2
train_set = {2:[], 4:[]}
test_set = {2:[], 4:[]}
training_data = full_data[:-int(test_size * len(full_data))]
testing_data = full_data[-int(test_size * len(full_data)):]
# Fill the dictionaries
for i in training_data:
train_set[i[-1]].append(i[:-1])
for i in testing_data:
test_set[i[-1]].append(i[:-1])
correct = 0
total = 0
for group in test_set:
for data in test_set[group]:
vote, confidence = k_nearest_neighbors(train_set, data, k=5)
if group == vote:
correct += 1
total += 1
print('Accuracy: {}'.format((correct/total)*100))
print('Confidence: {}'.format(confidence))