-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel.py
186 lines (164 loc) · 6.88 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as cvmodels
import timm
import math
class ArcModule(nn.Module):
def __init__(self, in_features, out_features, s = 10, m = 0.5):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.s = s
self.m = m
self.weight = nn.Parameter(torch.FloatTensor(out_features, in_features))
nn.init.xavier_normal_(self.weight)
self.cos_m = math.cos(m)
self.sin_m = math.sin(m)
self.th = torch.tensor(math.cos(math.pi - m))
self.mm = torch.tensor(math.sin(math.pi - m) * m)
def forward(self, inputs, labels):
cos_th = F.linear(inputs, F.normalize(self.weight))
cos_th = cos_th.clamp(-1, 1)
cos_th = cos_th.type(torch.float32)
sin_th = torch.sqrt(1.0 - torch.pow(cos_th, 2))
cos_th_m = cos_th * self.cos_m - sin_th * self.sin_m
cos_th_m = torch.where(cos_th > self.th, cos_th_m, cos_th - self.mm)
cond_v = cos_th - self.th
cond = cond_v <= 0
cos_th_m[cond] = (cos_th - self.mm)[cond]
if labels.dim() == 1:
labels = labels.unsqueeze(-1)
onehot = torch.zeros(cos_th.size()).cuda()
labels = labels.type(torch.LongTensor).cuda()
onehot.scatter_(1, labels, 1.0)
outputs = onehot * cos_th_m + (1.0 - onehot) * cos_th
outputs = outputs * self.s
return outputs
class SHOPEEDenseNet(nn.Module):
def __init__(self, channel_size, out_feature, dropout=0.5, backbone='efficientnet_b3a', pretrained=True):
super(SHOPEEDenseNet, self).__init__()
self.backbone = timm.create_model(backbone, pretrained=pretrained)
self.backbone.global_pool = nn.Identity()
self.backbone.classifier = nn.Identity()
self.channel_size = channel_size
self.out_feature = out_feature
self.in_features = 1536
self.margin = ArcModule(in_features=self.channel_size, out_features = self.out_feature)
self.bn1 = nn.BatchNorm2d(self.in_features)
self.dropout = nn.Dropout2d(dropout, inplace=True)
self.fc1 = nn.Linear(self.in_features * 7 * 7 , self.channel_size)
self.bn2 = nn.BatchNorm1d(self.channel_size)
def forward(self, x, labels=None):
features = self.backbone(x)
features = self.bn1(features)
features = self.dropout(features)
#print(features.shape)
features = features.view(features.size(0), -1)
features = self.fc1(features)
features = self.bn2(features)
features = F.normalize(features)
if labels is not None:
return self.margin(features, labels)
return features
class MyModel(nn.Module):
def __init__(self, num_classes: int = 1000):
super(MyModel, self).__init__()
self.pretrained = cvmodels.resnet50(pretrained=True)
self.pretrained.fc = nn.Sequential(
nn.Dropout(),
nn.Linear(2048, 1000),
)
self.classifier = nn.Sequential(
nn.Linear(1000, 256),
nn.ReLU(inplace=True),
nn.Linear(256, num_classes),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.pretrained(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
class Efficientnet(nn.Module):
def __init__(self, num_classes: int = 1000):
super().__init__()
self.pretrained = timm.create_model('efficientnet_b3a', pretrained=True)
self.pretrained.classifier = nn.Sequential(
nn.Linear(1536, 512, bias=True),
nn.LeakyReLU(0.3),
nn.Linear(512, num_classes, bias=True),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.pretrained(x)
return x
class SWSLResnext50(nn.Module):
def __init__(self, num_classes: int = 1000):
super().__init__()
self.pretrained = timm.create_model('swsl_resnext50_32x4d', pretrained=True)
self.pretrained.fc = nn.Sequential(
nn.Linear(2048, 512, bias=True),
nn.LeakyReLU(0.3),
nn.Linear(512, num_classes, bias=True),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.pretrained(x)
return x
class MobilenetV2(nn.Module):
def __init__(self, num_classes: int = 1000):
super().__init__()
self.pretrained = timm.create_model('mobilenetv2_100', pretrained=True)
self.pretrained.classifier = nn.Sequential(
nn.Linear(1280, num_classes, bias=True),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.pretrained(x)
return x
class VIT(nn.Module):
def __init__(self, num_classes: int = 1000):
super().__init__()
self.pretrained = timm.create_model('vit_base_patch16_384', pretrained=True)
self.pretrained.head = nn.Sequential(
nn.Linear(768, 256, bias=True),
nn.LeakyReLU(0.3),
nn.Linear(256, num_classes, bias=True),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.pretrained(x)
return x
class VGG19(nn.Module):
def __init__(self, num_classes: int = 1000):
super().__init__()
self.pretrained = timm.create_model('vgg19_bn', pretrained=True)
self.pretrained.head.fc = nn.Sequential(
nn.Linear(4096, 512, bias=True),
nn.LeakyReLU(0.3),
nn.Linear(512, num_classes, bias=True),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.pretrained(x)
return x
class Efficientnet_b0(nn.Module):
def __init__(self, num_classes: int = 1000):
super().__init__()
self.pretrained = timm.create_model('efficientnet_b0', pretrained=True)
self.pretrained.classifier = nn.Sequential(
nn.Linear(1280, 512, bias=True),
nn.LeakyReLU(0.3),
nn.Linear(512, num_classes, bias=True),
)
def get_model(config):
if config.model_name == 'efficientnet_b3a':
model = Efficientnet(num_classes=config.num_classes).to(config.device)
elif config.model_name == 'Efficientnet_b0':
model = Efficientnet_b0(num_classes=config.num_classes).to(config.device)
elif config.model_name == 'swsl_resnext50_32x4d':
model = SWSLResnext50(num_classes=config.num_classes).to(config.device)
elif config.model_name == 'mobilenetv2_100':
model = MobilenetV2(num_classes=config.num_classes).to(config.device)
elif config.model_name == 'vgg19_bn':
model = VGG19(num_classes=config.num_classes).to(config.device)
elif config.model_name == 'vit_base_patch16_384':
model = VIT(num_classes=config.num_classes).to(config.device)
elif config.model_name == 'SHOPEEDenseNet':
model = SHOPEEDenseNet(224, out_feature=config.num_classes).to(config.device)
return model