-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathinference.py
488 lines (411 loc) · 17.4 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
##################
# Import modules #
##################
from typing import Callable, List, Dict, NoReturn, Tuple, Optional
import numpy as np
import os
import argparse
from datasets import (
load_metric,
load_from_disk,
Sequence,
Value,
Features,
Dataset,
DatasetDict,
)
from transformers import AutoConfig, AutoModelForQuestionAnswering, AutoTokenizer, RobertaModel, AutoConfig
from transformers import (
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TrainingArguments,
set_seed,
)
from model.Reader.RobertaCnn import RobertaCNNForQuestionAnswering
from utils.utils_qa import postprocess_qa_predictions, check_no_error
from model.Reader.trainer_qa import QuestionAnsweringTrainer
from model.Retrieval.retrieval import DenseRetrieval, SparseRetrieval, JointRetrieval
from utils.arguments import (
ModelArguments,
DataArguments,
DenseTrainingArguments,
inference_config_setting,
wandb_config_setting,
INFERENCE_DIR,
CONFIG_DIR,
LOG_DIR,
)
from utils.logger import get_logger
########################
# Set global variables #
########################
logger = None
CUSTOM_MODEL_NAMES = {
"RobertaCnn":RobertaCNNForQuestionAnswering,
}
#######################
# Classes & Functions #
#######################
def main():
global logger
# Load config json
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--config_file_path", help="Configure Json path")
parser.add_argument("-l", "--log_file_path", default="reader_train.log", help="Logger file path")
parser.add_argument("-n", "--inference_name", default=None, help="Inference file directory name")
parser.add_argument("-m", "--model_name_or_path", default=None, help="Reader model path for inference")
parser.add_argument("--do_predict",action="store_true")
config = parser.parse_args()
assert config.inference_name, "Output 파일 이름을 설정해 주세요"
config.config_file_path = os.path.join(CONFIG_DIR, config.config_file_path)
config.log_file_path = os.path.join(LOG_DIR, config.log_file_path)
config.inference_name = os.path.join(INFERENCE_DIR, config.inference_name)
model_args, data_args, dense_args, training_args =\
inference_config_setting(config)
training_args.do_train = True
training_args.do_predict = config.do_predict
logger = get_logger("logs/inference.log")
logger.info(f"model is from {model_args.model_name_or_path}")
logger.info(f"data is from {data_args.dataset_name}")
logger.info("Training/evaluation parameters %s", training_args)
# Set random seed
set_seed(training_args.seed)
datasets = load_from_disk(data_args.dataset_name)
logger.info(datasets)
# Load Config & tokenizer
config = AutoConfig.from_pretrained(
model_args.config_name
if model_args.config_name is not None
else model_args.model_name_or_path,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name
if model_args.tokenizer_name is not None
else model_args.model_name_or_path,
use_fast=True,
)
# Load Model
if model_args.model_name_or_path in CUSTOM_MODEL_NAMES:
model = CUSTOM_MODEL_NAMES[model_args.model_name_or_path].from_pretrained(
model_args.model_name_or_path,
config=config,
)
else:
model = AutoModelForQuestionAnswering.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
)
# True일 경우 : run passage retrieval
if data_args.eval_retrieval:
if data_args.kind_of_retrieval == "Sparse":
datasets = run_sparse_retrieval(
tokenizer.tokenize,
datasets,
training_args,
data_args,
)
elif data_args.kind_of_retrieval == "Dense":
datasets = run_dense_retrieval(
datasets,
training_args,
data_args,
dense_args,
)
elif data_args.kind_of_retrieval == "Joint":
datasets = run_joint_retrieval(
tokenizer.tokenize,
datasets,
training_args,
data_args,
dense_args,
)
# eval or predict mrc model
if training_args.do_eval or training_args.do_predict:
run_mrc(data_args, training_args, model_args, datasets, tokenizer, model)
def run_joint_retrieval(
tokenize_fn: Callable[[str], List[str]],
datasets: DatasetDict,
training_args: TrainingArguments,
dense_args: DenseTrainingArguments,
data_args: DataArguments,
data_path: str = "../data",
context_path: str = "wikipedia_documents.json",
embedding_form : Optional[str] = "BM25"
) -> DatasetDict:
p_tokenizer = AutoTokenizer.from_pretrained('klue/roberta-small')
q_tokenizer = AutoTokenizer.from_pretrained('klue/roberta-small')
p_encoder = RobertaModel.from_pretrained(dense_args.dense_passage_retrieval_name).to('cuda')
q_encoder = RobertaModel.from_pretrained(dense_args.dense_question_retrieval_name).to('cuda')
retriever = JointRetrieval(
sparse_tokenize_fn = tokenize_fn,
dense_tokenizer = (p_tokenizer, q_tokenizer),
encoders = (p_encoder, q_encoder),
data_path = data_path,
context_path = context_path,
embedding_form = embedding_form
)
df = retriever.retrieve(datasets["validation"], topk=data_args.top_k_retrieval)
# test data 에 대해선 정답이 없으므로 id question context 로만 데이터셋이 구성됩니다.
if training_args.do_predict:
f = Features(
{
"context": Value(dtype="string", id=None),
"id": Value(dtype="string", id=None),
"question": Value(dtype="string", id=None),
}
)
# train data 에 대해선 정답이 존재하므로 id question context answer 로 데이터셋이 구성됩니다.
elif training_args.do_eval:
f = Features(
{
"answers": Sequence(
feature={
"text": Value(dtype="string", id=None),
"answer_start": Value(dtype="int32", id=None),
},
length=-1,
id=None,
),
"context": Value(dtype="string", id=None),
"id": Value(dtype="string", id=None),
"question": Value(dtype="string", id=None),
}
)
datasets = DatasetDict({"validation": Dataset.from_pandas(df, features=f)})
return datasets
def run_sparse_retrieval(
tokenize_fn: Callable[[str], List[str]],
datasets: DatasetDict,
training_args: TrainingArguments,
data_args: DataArguments,
data_path: str = "../data",
context_path: str = "wikipedia_documents.json",
) -> DatasetDict:
# Query에 맞는 Passage들을 Retrieval 합니다.
retriever = SparseRetrieval(
tokenize_fn=tokenize_fn,
data_path=data_path,
context_path=context_path,
embedding_form="ES",
)
retriever.get_sparse_embedding()
if data_args.use_faiss:
retriever.build_faiss(num_clusters=data_args.num_clusters)
df = retriever.retrieve_faiss(
datasets["validation"], topk=data_args.top_k_retrieval
)
else:
df = retriever.retrieve(datasets["validation"], topk=data_args.top_k_retrieval)
# test data 에 대해선 정답이 없으므로 id question context 로만 데이터셋이 구성됩니다.
if training_args.do_predict:
f = Features(
{
"context": Value(dtype="string", id=None),
"id": Value(dtype="string", id=None),
"question": Value(dtype="string", id=None),
}
)
# train data 에 대해선 정답이 존재하므로 id question context answer 로 데이터셋이 구성됩니다.
elif training_args.do_eval:
f = Features(
{
"answers": Sequence(
feature={
"text": Value(dtype="string", id=None),
"answer_start": Value(dtype="int32", id=None),
},
length=-1,
id=None,
),
"context": Value(dtype="string", id=None),
"id": Value(dtype="string", id=None),
"question": Value(dtype="string", id=None),
}
)
datasets = DatasetDict({"validation": Dataset.from_pandas(df, features=f)})
return datasets
def run_dense_retrieval(
datasets: DatasetDict,
training_args: TrainingArguments,
data_args: DataArguments,
dense_args: DenseTrainingArguments,
data_path: str = "./data",
context_path: str = "wikipedia_documents.json",
) -> DatasetDict:
## 1. p 인코더, q 인코더 불러오기
# Query에 맞는 Passage들을 Retrieval 합니다.
p_tokenizer = AutoTokenizer.from_pretrained('Huffon/sentence-klue-roberta-base')#'klue/roberta-small')
q_tokenizer = AutoTokenizer.from_pretrained('Huffon/sentence-klue-roberta-base')#'klue/roberta-small')
p_encoder = RobertaModel.from_pretrained(dense_args.dense_passage_retrieval_name).to('cuda')
q_encoder = RobertaModel.from_pretrained(dense_args.dense_question_retrieval_name).to('cuda')
retriever = DenseRetrieval(
tokenizers=(p_tokenizer, q_tokenizer), encoders= (p_encoder, q_encoder), data_path=data_path, context_path=context_path)
## 2. passage embeddings 구하기
retriever.get_dense_passage_embedding()
del p_encoder # 메모리 확보
## 3. 각 쿼리 임베딩에 따른 passage 구하기
df = retriever.retrieve(q_encoder, datasets["validation"], topk=data_args.top_k_retrieval)
## 4. 반환하기
# test data 에 대해선 정답이 없으므로 id question context 로만 데이터셋이 구성됩니다.
if training_args.do_predict:
f = Features(
{
"context": Value(dtype="string", id=None),
"id": Value(dtype="string", id=None),
"question": Value(dtype="string", id=None),
}
)
# train data 에 대해선 정답이 존재하므로 id question context answer 로 데이터셋이 구성됩니다.
elif training_args.do_eval:
f = Features(
{
"answers": Sequence(
feature={
"text": Value(dtype="string", id=None),
"answer_start": Value(dtype="int32", id=None),
},
length=-1,
id=None,
),
"context": Value(dtype="string", id=None),
"id": Value(dtype="string", id=None),
"question": Value(dtype="string", id=None),
}
)
datasets = DatasetDict({"validation": Dataset.from_pandas(df, features=f)})
return datasets
def run_mrc(
data_args: DataArguments,
training_args: TrainingArguments,
model_args: ModelArguments,
datasets: DatasetDict,
tokenizer,
model,
) -> NoReturn:
# eval 혹은 prediction에서만 사용함
column_names = datasets["validation"].column_names
question_column_name = "question" if "question" in column_names else column_names[0]
context_column_name = "context" if "context" in column_names else column_names[1]
answer_column_name = "answers" if "answers" in column_names else column_names[2]
# Padding에 대한 옵션을 설정합니다.
# (question|context) 혹은 (context|question)로 세팅 가능합니다.
pad_on_right = tokenizer.padding_side == "right"
# 오류가 있는지 확인합니다.
last_checkpoint, max_seq_length = check_no_error(
data_args, training_args, datasets, tokenizer
)
# Validation preprocessing / 전처리를 진행합니다.
def prepare_validation_features(examples):
# truncation과 padding(length가 짧을때만)을 통해 toknization을 진행하며, stride를 이용하여 overflow를 유지합니다.
# 각 example들은 이전의 context와 조금씩 겹치게됩니다.
tokenized_examples = tokenizer(
examples[question_column_name if pad_on_right else context_column_name],
examples[context_column_name if pad_on_right else question_column_name],
truncation="only_second" if pad_on_right else "only_first",
max_length=max_seq_length,
stride=data_args.doc_stride,
return_overflowing_tokens=True,
return_offsets_mapping=True,
return_token_type_ids=False, # roberta모델을 사용할 경우 False, bert를 사용할 경우 True로 표기해야합니다.
padding="max_length" if data_args.pad_to_max_length else False,
)
# 길이가 긴 context가 등장할 경우 truncate를 진행해야하므로, 해당 데이터셋을 찾을 수 있도록 mapping 가능한 값이 필요합니다.
sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
# evaluation을 위해, prediction을 context의 substring으로 변환해야합니다.
# corresponding example_id를 유지하고 offset mappings을 저장해야합니다.
tokenized_examples["example_id"] = []
for i in range(len(tokenized_examples["input_ids"])):
# sequence id를 설정합니다 (to know what is the context and what is the question).
sequence_ids = tokenized_examples.sequence_ids(i)
context_index = 1 if pad_on_right else 0
# 하나의 example이 여러개의 span을 가질 수 있습니다.
sample_index = sample_mapping[i]
tokenized_examples["example_id"].append(examples["id"][sample_index])
# context의 일부가 아닌 offset_mapping을 None으로 설정하여 토큰 위치가 컨텍스트의 일부인지 여부를 쉽게 판별할 수 있습니다.
tokenized_examples["offset_mapping"][i] = [
(o if sequence_ids[k] == context_index else None)
for k, o in enumerate(tokenized_examples["offset_mapping"][i])
]
return tokenized_examples
eval_dataset = datasets["validation"]
# Validation Feature 생성
eval_dataset = eval_dataset.map(
prepare_validation_features,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
)
# Data collator
# flag가 True이면 이미 max length로 padding된 상태입니다.
# 그렇지 않다면 data collator에서 padding을 진행해야합니다.
data_collator = DataCollatorWithPadding(
tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None
)
# Post-processing:
def post_processing_function(
examples,
features,
predictions: Tuple[np.ndarray, np.ndarray],
training_args: TrainingArguments,
) -> EvalPrediction:
# Post-processing: start logits과 end logits을 original context의 정답과 match시킵니다.
predictions = postprocess_qa_predictions(
examples=examples,
features=features,
predictions=predictions,
max_answer_length=data_args.max_answer_length,
output_dir=training_args.output_dir,
)
# Metric을 구할 수 있도록 Format을 맞춰줍니다.
formatted_predictions = [
{"id": k, "prediction_text": v} for k, v in predictions.items()
]
if training_args.do_predict:
return formatted_predictions
elif training_args.do_eval:
references = [
{"id": ex["id"], "answers": ex[answer_column_name]}
for ex in datasets["validation"]
]
return EvalPrediction(
predictions=formatted_predictions, label_ids=references
)
metric = load_metric("squad")
def compute_metrics(p: EvalPrediction) -> Dict:
return metric.compute(predictions=p.predictions, references=p.label_ids)
logger.info("init trainer...")
# logger.info(model)
# exit(0)
# Trainer 초기화
trainer = QuestionAnsweringTrainer(
model=model,
args=training_args,
train_dataset=None,
eval_dataset=eval_dataset,
eval_examples=datasets["validation"],
tokenizer=tokenizer,
data_collator=data_collator,
post_process_function=post_processing_function,
compute_metrics=compute_metrics,
)
logger.info("*** Evaluate ***")
#### eval dataset & eval example - predictions.json 생성됨
training_args.per_device_eval_batch_size = 16
if training_args.do_predict:
predictions = trainer.predict(
test_dataset=eval_dataset, test_examples=datasets["validation"]
)
# predictions.json 은 postprocess_qa_predictions() 호출시 이미 저장됩니다.
logger.info(
"No metric can be presented because there is no correct answer given. Job done!"
)
if training_args.do_eval:
metrics = trainer.evaluate()
metrics["eval_samples"] = len(eval_dataset)
trainer.log_metrics("test", metrics)
trainer.save_metrics("test", metrics)
if __name__ == "__main__":
main()