-
Notifications
You must be signed in to change notification settings - Fork 1
/
index.json
77 lines (77 loc) · 6.09 KB
/
index.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
{
"entries": [
{
"id": "tutorial-ecv-for-climate-change-global-temperature-change",
"title": "How to work with the Essential Climate Variables on Earth Data Hub",
"source": "https://github.com/SercoSPA/DESP-UserWorkflowService-Templates/blob/main/EarthDataHub/tutorial-ecv-for-climate-change-global-temperature-change.ipynb",
"try_on_insula": true,
"export": "./use-cases/tutorial-ecv-for-climate-change-global-temperature-change.html",
"thumbnail_url": "./use-cases/tutorial-ecv-for-climate-change-global-temperature-change.jpg"
},
{
"id": "tutorial-era5-land-floods-precipitation-anomaly-in-greece",
"title": "ERA5 land: storm Daniel flood, Greece 2023",
"description": "This notebook will provide you guidance on how to access and use the reanalysis-era5-land-no-antartica-v0.zarr dataset on Earth Data Hub. The first goal is to compute the total precipitation observed during the Storm Daniel event, from 6 to 7 September 2023, in Greece, and compare it with the average 1991-2020 precipitation in the same area. The second goal is to compare the 2023 cumulative precipitation on a specific location (Greece interland) with the cumulative precipitation of past years (1991-2022) for the same location.",
"source": "https://github.com/SercoSPA/DESP-UserWorkflowService-Templates/blob/main/EarthDataHub/tutorial-era5-land-floods-precipitation-anomaly-in-greece.ipynb",
"try_on_insula": true,
"export": "./use-cases/tutorial-era5-land-floods-precipitation-anomaly-in-greece.html",
"thumbnail_url": "./use-cases/tutorial-era5-land-floods-precipitation-anomaly-in-greece.jpg",
"collection": "era5",
"dataset": "reanalysis-era5-land"
},
{
"id": "tutorial-era5-single-levels-climatological-analysis-of-temperature-in-germany",
"title": "ERA5 single levels: climatological analysis of temperature in Germany",
"description": "This notebook will provide you guidance on how to access and use the reanalysis-era5-single-levels.zarr dataset on Earth Data Hub. The first goal is to compute the 2 metre temperature anomaly for the month of October 2023, in the Germany area, against the 1981-2010 reference period. The second goal is to compute the 2 metre temperature climatology (monthly means and standard deviations) in Berlin for the same reference period and compare it with the monthly averages of 2023.",
"source": "https://github.com/SercoSPA/DESP-UserWorkflowService-Templates/blob/main/EarthDataHub/tutorial-era5-single-levels-climatological-analysis-of-temperature-in-germany.ipynb",
"try_on_insula": true,
"export": "./use-cases/tutorial-era5-single-levels-climatological-analysis-of-temperature-in-germany.html",
"thumbnail_url": "./use-cases/tutorial-era5-single-levels-climatological-analysis-of-temperature-in-germany.jpg",
"collection": "era5",
"dataset": "reanalysis-era5-single-levels"
},
{
"id": "tutorial-copernicus-dem-europe",
"title": "How to work with the Copernicus DEM data on Earth Data Hub",
"source": "https://github.com/SercoSPA/DESP-UserWorkflowService-Templates/blob/main/EarthDataHub/tutorial-copernicus-dem-europe.ipynb",
"try_on_insula": true,
"export": "./use-cases/tutorial-copernicus-dem-europe.html",
"thumbnail_url": "./use-cases/tutorial-copernicus-dem-europe.jpg"
},
{
"id": "tutorial-hybrid-world-population",
"title": "How to work with Hybrid gridded demographic data on Earth Data Hub",
"source": "https://github.com/SercoSPA/DESP-UserWorkflowService-Templates/blob/main/EarthDataHub/tutorial-hybrid-world-population.ipynb",
"try_on_insula": true,
"export": "./use-cases/tutorial-hybrid-world-population.html",
"thumbnail_url": "./use-cases/tutorial-hybrid-world-population.jpg"
},
{
"id": "tutorial-population-weighted-temperature",
"title": "Multisource datasets integration: population weighted temperature",
"source": "https://github.com/SercoSPA/DESP-UserWorkflowService-Templates/blob/main/EarthDataHub/tutorial-population-weighted-temperature.ipynb",
"try_on_insula": true,
"export": "./use-cases/tutorial-population-weighted-temperature.html",
"thumbnail_url": "./use-cases/tutorial-population-weighted-temperature.jpg"
},
{
"id": "tutorial-climate-dt-single-levels-heating-degree-days",
"title": "Climate Adaptation Digital Twin: heating degree days",
"source": "https://github.com/SercoSPA/DESP-UserWorkflowService-Templates/blob/main/EarthDataHub/tutorial-climate-dt-single-levels-heating-degree-days.ipynb",
"try_on_insula": true,
"export": "./use-cases/tutorial-climate-dt-single-levels-heating-degree-days.html",
"thumbnail_url": "./use-cases/tutorial-climate-dt-single-levels-heating-degree-days.png"
},
{
"id": "tutorial-climate-dt-single-levels-high-resolution-climatological-analysis-of-temperature-in-germany",
"title": "Climate Adaptation Digital Twin: high resolution fields on a single level or surface",
"description": "This notebook will provide you guidance on how to access and use the SSP3-7.0-IFS-NEMO-0001-high-sfc-v0.zarr datset on Earth Data Hub. This is a sample dataset for the Destine Climate Adaptation Digital Twin.\n\nOur first goal is to plot the mean 2 metre temperature in January 2025 over Central Europe.\n\nOur second goal is to compute the 2 metre temperature climatology (monthly means and standard deviations) in Berlin for the 2020-2025 reference period.",
"source": "https://github.com/SercoSPA/DESP-UserWorkflowService-Templates/blob/main/EarthDataHub/tutorial-climate-dt-single-levels-high-resolution-climatological-analysis-of-temperature-in-germany.ipynb",
"try_on_insula": true,
"export": "./use-cases/tutorial-climate-dt-single-levels-high-resolution-climatological-analysis-of-temperature-in-germany.html",
"thumbnail_url": "./use-cases/tutorial-climate-dt-single-levels-high-resolution-climatological-analysis-of-temperature-in-germany.png",
"collection": "d1-climate-dt-ScenarioMIP-SSP3-7.0-IFS-NEMO",
"dataset": "0001-high-sfc"
}
]
}