-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
133 lines (109 loc) · 3.57 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import numpy as np
import random
class Ant:
def __init__(self, M, G, alpha, beta):
self.M = M
self.n = len(self.M)
self.G = G
self.alpha = alpha
self.beta = beta
self.path = []
self.current_node = 0
self.available_nodes = list(range(self.n))
self.cost = None
self.pheromone_delta = None
def add_assignment(self, agent):
if agent in self.path:
raise "Already used agent"
if self.current_node == self.n:
raise "Path completed"
self.path.append(agent)
self.current_node += 1
self.available_nodes.remove(agent)
def choose_node(self):
# Here we ignore dividing by the sum of all weights because we are using `random.choices`
weights = []
for node in self.available_nodes:
weights.append((self.G[self.current_node][node] ** self.alpha)
* (1/self.M[self.current_node][node] ** self.beta))
return random.choices(self.available_nodes, weights)[0]
def choose_best(self):
best_node = None
for node in self.available_nodes:
if best_node == None or self.G[self.current_node][node] > self.G[self.current_node][best_node]:
best_node = node
return best_node
def calculate_cost(self):
if self.cost is None:
self.cost = 0
for i, j in enumerate(self.path):
self.cost += self.M[i][j]
self.pheromone_delta = 1/self.cost
class AntColony:
def __init__(self, n_ants, initial_pheromone, alpha, beta, evaporation_rate, e):
self.initial_pheromone = initial_pheromone
self.n_ants = n_ants
self.alpha = alpha
self.beta = beta
self.evaporation_rate = evaporation_rate
self.e = e
def fit(self, M, goal, n_iterations):
self.M = M
self.n = len(self.M)
self.G = np.full((self.n, self.n), self.initial_pheromone)
best_ant = None
real_best_ant = None
for epoch in range(n_iterations):
self.ants = []
for _ in range(self.n_ants):
ant = Ant(self.M, self.G, self.alpha, self.beta)
self.ants.append(ant)
while len(ant.available_nodes) != 0:
ant.add_assignment(ant.choose_node())
self.evaluate_fitness()
self.evaporate_pheromone()
self.place_pheromone()
best_ant = self.best_ant()
if real_best_ant is None or best_ant.cost < real_best_ant.cost:
real_best_ant = best_ant
self.place_additional_pheromone(best_ant)
self.evaluate(epoch)
if best_ant.cost < goal:
return best_ant, real_best_ant
return best_ant, real_best_ant
def evaluate_fitness(self):
for ant in self.ants:
ant.calculate_cost()
def evaporate_pheromone(self):
self.G = self.G * (1-self.evaporation_rate)
def place_pheromone(self):
for ant in self.ants:
for i in range(self.n):
self.G[i][ant.path[i]] += ant.pheromone_delta
def best_way(self):
ant = Ant(self.M, self.G, self.alpha, self.beta)
while len(ant.available_nodes) != 0:
ant.add_assignment(ant.choose_best())
ant.calculate_cost()
return ant
def best_ant(self):
return self.best_way()
# return min(self.ants, key=lambda ant: ant.cost)
def evaluate(self, epoch):
ant = self.best_ant()
print(f'Epoch {epoch}:\t Best Ant Cost: {ant.cost}')
return ant
def place_additional_pheromone(self, best_ant):
for i in range(self.n):
self.G[i][best_ant.path[i]] += self.e*best_ant.pheromone_delta
def load_test(filename):
M = []
f = open(filename, "r")
for line in f:
M.append([int(x) for x in line.split()])
return M
M = load_test("./Assignment Problem Test Cases/job3.assign")
colony = AntColony(n_ants=10, initial_pheromone=1, alpha=0.4, beta=0.5, evaporation_rate=1/70, e=0.01)
best_ant, real_best_ant = colony.fit(M, 750, 10000)
print(best_ant.cost, best_ant.path)
print(real_best_ant.cost, real_best_ant.path)