-
Notifications
You must be signed in to change notification settings - Fork 2
/
run.py
231 lines (197 loc) · 11.1 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# Copyright (c) 2024 Robert Bosch GmbH
# SPDX-License-Identifier: AGPL-3.0
import os
import random
import argparse
from datetime import datetime
import torch
import numpy as np
import pytorch_lightning as lightning
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
from pytorch_lightning.loggers import TensorBoardLogger, MLFlowLogger
from pytorch_lightning.strategies import DDPStrategy
from open3dsg.config.config import CONF
from open3dsg.scripts.trainer import D3SSGModule
from open3dsg.util.lightning_callbacks import LRLoggingCallback
if os.name == 'posix':
import resource # unix specific
def get_args():
parser = argparse.ArgumentParser()
# system params
parser.add_argument('--gpus', type=int, default=-1)
parser.add_argument("--workers", type=int, default=8, help="number of workers per gpu")
parser.add_argument("--seed", type=int, default=42, help="random seed")
parser.add_argument("--run_name", type=str, help="dir name for tensorboard and checkpoints")
parser.add_argument('--mixed_precision', action="store_true", help="Use mixed precision training")
# optimizer params
parser.add_argument('--accumulate_grad_batches', type=int, default=1)
parser.add_argument("--epochs", type=int, help="number of epochs", default=50)
parser.add_argument("--batch_size", type=int, help="batch size", default=1)
parser.add_argument("--lr", type=float, help="learning rate", default=1e-4)
parser.add_argument("--lr_scheduler", type=str, default="reduce", help="lr_scheduler, options [cyclic, reduce]")
parser.add_argument("--wd", type=float, help="weight decay", default=1e-2)
parser.add_argument("--bn_momentum", type=float, default=0.9, help="Initial batch norm momentum [default: 0.9]")
parser.add_argument("--bn_decay", type=float, default=0.5, help="Batch norm momentum decay gamma [default: 0.5]")
parser.add_argument("--decay_step", type=float, default=1e5, help="Learning rate decay step [default: 20]",)
parser.add_argument('--w_obj', type=float, default=1.0)
parser.add_argument('--w_rel', type=float, default=1.0)
# model params
parser.add_argument('--use_rgb', action="store_true", help="Whether to use rgb features as input the the point net")
parser.add_argument("--gnn_layers", type=int, default=4, help="number of gnn layers")
parser.add_argument('--graph_backbone', default="message", nargs='?',
choices=['message', 'attention', 'transformer', 'mlp'])
parser.add_argument('--gconv_dim', type=int, default=512, help='embedding dim for point features')
parser.add_argument('--hidden_dim', type=int, default=1024, help='hidden dim for graph_convs')
parser.add_argument('--max_nodes', type=int, default=9, help='max number of nodes in the graph')
parser.add_argument('--max_edges', type=int, default=72,
help='max number of edges in the graph. Should correspond to n*(n-1) nodes')
# data params
parser.add_argument('--dataset', default='scannet', help="['scannet','3rscan']")
parser.add_argument('--mini_dataset', action='store_true',
help="only load a tiny fraction of data for faster debugging")
parser.add_argument('--augment', action="store_true",
help="use basic pcl augmentations that do not collide with scene graph properties")
parser.add_argument("--top_k_frames", type=int, default=5, help="number of frames to consider for each instance")
parser.add_argument("--scales", type=int, default=3, help="number of scales for each selected image")
parser.add_argument('--dump_features', action="store_true", help="precompute 2d features and dump to disk")
parser.add_argument('--load_features', default=None, help="path to precomputed 2d features")
# model variations params
parser.add_argument('--clip_model', default="OpenSeg", type=str,
choices=['ViT-B/32', 'ViT-B/16', 'ViT-L/14', 'ViT-L/14@336px', 'OpenSeg'])
parser.add_argument('--node_model', default='ViT-L/14@336px', type=str,
choices=['ViT-B/32', 'ViT-B/16', 'ViT-L/14', 'ViT-L/14@336px'])
parser.add_argument('--edge_model', default=None, type=str,
choices=['ViT-B/32', 'ViT-B/16', 'ViT-L/14', 'ViT-L/14@336px'])
parser.add_argument('--blip', action="store_true", help="Use blip for relation prediction")
parser.add_argument('--avg_blip_emb', action='store_true', help="Average the blip embeddings across patches")
parser.add_argument('--blip_proj_layers', type=int, default=3,
help="Number of projection layers to match blip embedding")
parser.add_argument('--llava', action="store_true", help="Use llava for relation prediction")
parser.add_argument('--avg_llava_emb', action="store_true", help="Average the llava embeddings across patches")
parser.add_argument('--pointnet2', action="store_true",
help="Use pointnet++ for feature extraction. However RGB input not working")
parser.add_argument("--clean_pointnet", action="store_true",
help="standard pretrained pointnet for feature extraction")
parser.add_argument('--supervised_edges', action="store_true", help="Train edges supervised instead of open-vocab")
# eval params
parser.add_argument("--test", action="store_true", help="test the model")
parser.add_argument("--checkpoint", type=str, help="Specify the checkpoint root", default=None)
parser.add_argument('--weight_2d', type=float, default=0.5, help="2d-3d feature fusion weight")
parser.add_argument('--n_beams', type=int, default=5, help="number of beams for beam search in LLM output")
parser.add_argument('--gt_objects', action="store_true", help="Use GT objects for predicate prediction")
parser.add_argument('--vis_graphs', action="store_true", help="save graph predictions to disk")
parser.add_argument('--predict_materials', action="store_true",
help="predict materials from 3rscan seperate testset")
parser.add_argument('--test_scans_3rscan', action="store_true",
help="test on 3rscan test set scans which are not labeled in 3dssg, it is needed for the material prediction")
parser.add_argument('--predict_from_2d', action="store_true", help="predict only using 2d models")
parser.add_argument('--quick_eval', action='store_true', help="only eval on a few samples")
parser.add_argument('--object_context', action="store_true", help="prompt clip with: A [object] in a scene")
parser.add_argument('--update_hparams', action="store_true", help="update hparams from checkpoint")
parser.add_argument('--manual_mapping', action="store_true", help="Manually map some known predicates to GT")
return parser.parse_args()
if __name__ == "__main__":
args = get_args()
# if os.name == 'posix':
# rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
# resource.setrlimit(resource.RLIMIT_NOFILE, (30000, rlimit[1]))
if args.gpus == -1:
num_gpus = torch.cuda.device_count()
else:
num_gpus = args.gpus
on_cluster = num_gpus > 1
print(f"CUDA device name: {torch.cuda.get_device_name(0)}")
hparams = vars(args)
hparams['gpus'] = num_gpus
if args.run_name is not None:
hparams['run_name'] = args.run_name
else:
hparams['run_name'] = ''
checkpoint: str = args.checkpoint
is_test_or_tmp_run = "test" in hparams.get("run_name", None) or "tmp" in hparams.get("run_name", None)
if args.test or is_test_or_tmp_run or hparams.get('mini_datatset', False):
run_name = "tmp"
logger = TensorBoardLogger(save_dir=CONF.PATH.TENSORBOARD, name=run_name, version=0)
else:
# generate a wandb like name for referenceing the runs
adj = random.choice([line.rstrip().lower() for line in open(os.path.join(
CONF.PATH.BASE, 'open3dsg', 'helpers', 'nature_adjectives.txt'), "r").readlines()])
noun = random.choice([line.rstrip().lower() for line in open(os.path.join(
CONF.PATH.BASE, 'open3dsg', 'helpers', 'nature_words.txt'), "r").readlines()])
n = str(random.randint(1, 10000))
run_name = '-'.join([adj, noun, n])
hparams["run_name"] = run_name
logger = MLFlowLogger(experiment_name="Open3DSG", run_name=run_name, tracking_uri=f"file:{CONF.PATH.MLFLOW}")
print(logger.save_dir)
print(logger.experiment_id)
print(logger.run_id)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
lightning.seed_everything(args.seed)
if checkpoint is not None:
print("checkpoint:", checkpoint)
if args.test or not args.update_hparams:
model = D3SSGModule.load_from_checkpoint(checkpoint_path=checkpoint, strict=False, map_location='cpu',
dataset=args.dataset,
supervised_edges=args.supervised_edges,
)
else:
model = D3SSGModule.load_from_checkpoint(checkpoint_path=checkpoint, strict=False,)
if num_gpus == 1:
glob_step = torch.load(checkpoint)['global_step']
model.it = glob_step
for k, v in hparams.items():
model.hparams[k] = v
else:
model = D3SSGModule(hparams)
model.it = 0
print("Args: %s" % args)
print("HParams: %s" % hparams)
checkpoint_callback = lightning.callbacks.ModelCheckpoint(
save_top_k=5,
verbose=True,
monitor='val/loss',
mode='min',
save_last=True,
# every_n_train_steps=10000,
)
bnm_clip = 1e-2
def bnm_lmbd(it):
return max(args.bn_momentum * args.bn_decay ** (int(it * args.batch_size / args.decay_step)), bnm_clip,)
precision = 32
if hparams['mixed_precision']:
if "A100" in torch.cuda.get_device_name(0):
precision = "bf16-mixed"
else:
precision = "16-mixed"
hparams['start_time'] = datetime.now()
trainer = lightning.Trainer(
min_epochs=args.epochs,
max_epochs=args.epochs,
devices=args.gpus, logger=logger,
accelerator='auto',
strategy=DDPStrategy(find_unused_parameters=True),
precision=precision,
sync_batchnorm=True,
callbacks=[
LRLoggingCallback(),
EarlyStopping(monitor="val/loss", mode="min", patience=10),
# GPUStatsMonitor(),
checkpoint_callback
],
deterministic=False,
check_val_every_n_epoch=1,
num_sanity_val_steps=0,
log_every_n_steps=1 if args.mini_dataset else 100,
accumulate_grad_batches=args.accumulate_grad_batches,
)
if args.test is False:
trainer.fit(model)
else:
if checkpoint is None:
raise ValueError("Please provide a checkpoint to test")
# import shutil
# shutil.copyfile(checkpoint, '/'.join(checkpoint.split('/')[:-2])+f'/eval_{glob_step}.ckpt')
model.eval()
trainer.test(model)