This repository has been archived by the owner on Jul 15, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlightning_train.py
795 lines (681 loc) · 34.1 KB
/
lightning_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
import io
import os
import cv2
import random
import shutil
import argparse
import traceback
import numpy as np
from datetime import datetime
import matplotlib.pyplot as plt
import torch
from torch.utils.data import DataLoader
import pytorch_lightning as lightning
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
from tensorboardX import SummaryWriter
if os.name == 'posix':
import resource # unix specific
from common import Config, ConfigRandLA
from models.loss import OFLoss, SymOFLoss, SymMultiOFLoss, FocalLoss
from datasets.ycb.ycb_dataset import YcbDataset
from datasets.mv_ycb_dataset import MvYcbDataset
from utils.basic_utils import Basic_Utils
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.callbacks import GPUStatsMonitor
from utils.run_utils import get_current_git_hash, get_pip_packages
from utils.lightning_hacks import increase_filedesc_limit, MyDDP
from utils.lightning_callbacks import LRLoggingCallback
from utils.validation_interval_callback import ValidationIntervalScheduler
from utils.batchnorm_scheduler_callback import BNMomentumScheduler
from contextlib import redirect_stdout
np.set_printoptions(linewidth=150, suppress=True)
torch.set_printoptions(linewidth=150, sci_mode=False)
def worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0] + worker_id)
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
def get_n_batches_per_epoch(dataset_name):
if dataset_name == "ycb":
Dataset_desc = YcbDataset
kwargs = {}
elif dataset_name == 'SymMovCam':
Dataset_desc = MvYcbDataset
kwargs = {'variant': dataset_name, 'multi_view': False, 'noisy_cam_pose': False}
return Dataset_desc('train', **kwargs).n_batches_per_epoch
def cal_view_pred_pose(model, config, bs_utils, cu_dt, end_points, dataset,obj_id=-1):
_, classes_rgbd = torch.max(end_points['pred_rgbd_segs'], 1)
pcld = cu_dt['cld_rgb_nrm'][:, :3, :].permute(0, 2, 1).contiguous()
if dataset == "ycb":
pred_cls_ids, pred_pose_lst, _ = cal_frame_poses(
pcld[0], classes_rgbd[0], end_points['pred_ctr_ofs'][0],
end_points['pred_kp_ofs'][0], True, config.n_objects, True,
None, None
)
elif dataset == 'SymMovCam':
pred_cls_ids, pred_pose_lst, _ = cal_frame_poses_scape(
pcld=pcld[0], mask=classes_rgbd[0], ctr_of=end_points['pred_ctr_ofs'][0],
pred_kp_of=end_points['pred_kp_ofs'][0], use_ctr=True, n_cls=config.n_objects, use_ctr_clus_flter=True,
gt_kps=None, gt_ctrs=None, ds=dataset
)
np_rgb = cu_dt['rgb'].cpu().numpy().astype("uint8")[0].transpose(1, 2, 0).copy()
if dataset == 'ycb' or dataset == 'SymMovCam':
np_rgb = np_rgb[:, :, ::-1].copy()
for cls_id in cu_dt['cls_ids'][0].cpu().numpy():
idx = np.where(pred_cls_ids == cls_id)[0]
if len(idx) == 0:
continue
pose = pred_pose_lst[idx[0]]
if dataset == 'ycb' or dataset == 'SymMovCam':
obj_id = int(cls_id[0])
mesh_pts = bs_utils.get_pointxyz(obj_id, ds_type=dataset).copy()
mesh_pts = np.dot(mesh_pts, pose[:, :3].T) + pose[:, 3]
if dataset == "ycb":
K = config.intrinsic_matrix["ycb_K1"]
elif dataset == 'SymMovCam':
K = config.intrinsic_matrix['scape']
mesh_p2ds = bs_utils.project_p3d(mesh_pts, 1.0, K)
color = bs_utils.get_label_color(obj_id, n_classes=22, mode=2)
np_rgb = bs_utils.draw_p2ds(np_rgb, mesh_p2ds, color=color)
if dataset == 'ycb' or dataset == 'SymMovCam':
bgr = np_rgb
return bgr[:, :, ::-1]
def model_fn_decorator(criterion, criterion_of, criterion_of_sym, criterion_of_sym_multi, config, hparams):
def model_fn(model, data):
cu_dt = {}
for key in data.keys():
if type(data[key]) is dict:
cu_dt[key] = data[key]
elif type(data[key]) is list:
if type(data[key][0]) is not torch.tensor:
cu_dt[key] = data[key]
else:
cu_dt[key] = [[obj.cuda() for obj in sub_list] for sub_list in data[key]]
elif data[key].dtype in [np.float32, np.uint8]:
cu_dt[key] = torch.from_numpy(data[key].astype(np.float32)).cuda()
elif data[key].dtype in [np.int32, np.uint32]:
cu_dt[key] = torch.LongTensor(data[key].astype(np.int32)).cuda()
elif data[key].dtype in [torch.uint8, torch.float32]:
cu_dt[key] = data[key].float().cuda()
elif data[key].dtype in [torch.int32, torch.int16]:
cu_dt[key] = data[key].long().cuda()
else:
cu_dt[key] = data[key].to('cuda')
end_points = model(cu_dt)
labels = cu_dt['labels']
loss_rgbd_seg = criterion(
end_points['pred_rgbd_segs'], labels.view(-1)
).sum()
if hparams['symmetry']:
if hparams['multi_instance']:
loss_kp_of = criterion_of_sym_multi(
end_points['pred_kp_ofs'], cu_dt['kp_targ_ofst_sym_kp'], cu_dt['labels_instance'], cld_rgb_nrm=cu_dt['cld_rgb_nrm']
).sum()
else:
loss_kp_of = criterion_of_sym(
end_points['pred_kp_ofs'], cu_dt['kp_targ_ofst_sym_kp'], labels
).sum()
if hparams['dataset'] == 'ycb':
loss_ctr_of = criterion_of_sym(
end_points['pred_ctr_ofs'], cu_dt['ctr_targ_ofst_sym_kp'].unsqueeze(-2), labels
).sum()
else:
loss_ctr_of = criterion_of(
end_points['pred_ctr_ofs'], cu_dt['ctr_targ_ofst'], labels
).sum()
else:
loss_kp_of = criterion_of(
end_points['pred_kp_ofs'], cu_dt['kp_targ_ofst'], labels
).sum()
loss_ctr_of = criterion_of(
end_points['pred_ctr_ofs'], cu_dt['ctr_targ_ofst'], labels
).sum()
loss_lst = [
(loss_rgbd_seg, hparams["loss_weights"][0]),
(loss_kp_of, hparams["loss_weights"][1]),
(loss_ctr_of, hparams["loss_weights"][2]),
]
loss = sum([ls * w for ls, w in loss_lst])
loss_unweighted = sum([ls for ls, w in loss_lst])
_, cls_rgbd = torch.max(end_points['pred_rgbd_segs'], 1)
acc_rgbd = (cls_rgbd == labels).float().sum() / labels.numel()
acc_dict = {
'acc_rgbd': acc_rgbd
}
loss_dict = {
'loss_rgbd_seg': loss_rgbd_seg,
'loss_kp_of': loss_kp_of,
'loss_ctr_of': loss_ctr_of,
'loss_all': loss,
'loss_target': loss,
'loss_unweighted': loss_unweighted
}
info_dict = loss_dict.copy()
info_dict.update(acc_dict)
return (
end_points, loss, info_dict
)
return model_fn
class SyMFM6DModule(lightning.LightningModule):
def __init__(self, hparams):
super().__init__()
self.save_hyperparameters(hparams)
self.batch_size = hparams['mini_batch_size']
self.config = self._get_hparam('config')
self.bs_utils = self._get_hparam('bs_utils')
self.symmetry = self._get_hparam('symmetry')
self.criterion = FocalLoss(gamma=2)
if self.symmetry:
self.criterion_of_sym = SymOFLoss()
self.criterion_of_sym_multi = SymMultiOFLoss()
self.criterion_of = OFLoss()
else:
self.criterion_of_sym = None
self.criterion_of_sym_multi = None
self.criterion_of = OFLoss()
from utils.pvn3d_eval_utils_kpls import TorchEval
self.teval = TorchEval(self._get_hparam('n_classes'))
self.rndla_cfg = self._get_hparam('rndla_cfg')
from models.SyMFM6D import SyMFM6D
self.model = SyMFM6D(n_classes=self.config.n_objects, n_pts=self.config.n_sample_points,
rndla_cfg=self.rndla_cfg, n_kps=self.config.n_keypoints,
multi_view=self._get_hparam('multi_view'))
self.model_fn = model_fn_decorator(self.criterion, self.criterion_of, self.criterion_of_sym, self.criterion_of_sym_multi, self.config, self.hparams)
self.it = -1 # for the initialize value of `LambdaLR` and `BNMomentumScheduler`
self.viz = self._get_hparam('viz')
def _get_hparam(self, key):
"""
default value: None
"""
if key in self.hparams.keys():
return self.hparams[key]
else:
print("? %s is not defined -> use default value" % key)
return None
def setup(self, stage: str):
if self.hparams['dataset'] == 'ycb':
Dataset_desc = YcbDataset
views = 1 if self.hparams['set_views'] is None else int(self.hparams['set_views'])
kwargs = {'multi_view': self.hparams['multi_view'],
'set_views': views,
'symmetries': self.hparams['symmetry'],
'n_rot_sym': self.hparams['n_rot_sym'],
'syn_train_data_ratio': self.hparams['syn_train_data_ratio']}
elif self.hparams['dataset'] == 'SymMovCam':
Dataset_desc = MvYcbDataset
views = None if self.hparams['set_views'] is None else int(self.hparams['set_views'])
kwargs = {'variant': self.hparams['dataset'],
'sift_fps': self.hparams['sift_fps_kps'],
'multi_view': self.hparams['multi_view'],
'noisy_cam_pose': self.hparams['noisy_cam_pose'],
'set_views': views,
'symmetries': self.hparams['symmetry'],
'n_rot_sym': self.hparams['n_rot_sym'],
'rotationals': (not self.hparams['no_rotationals'] and self.hparams['symmetry']),
'sym_classes': self.hparams['sym_classes'],
'new': self.hparams['new_sym']}
else:
raise NotImplementedError("dataset %s is not supported" % self.hparams['dataset'])
if stage == 'fit':
self.train_ds = Dataset_desc('train', **kwargs)
self.val_ds = Dataset_desc('test', **kwargs)
elif stage == 'test':
self.test_ds = Dataset_desc('test', **kwargs)
def collate_batch(self, batch_in):
# batch_in is list of samples
batch_out = {k: [] for k in batch_in[0].keys()}
for sample in batch_in:
# sample is dict of tensors and lists
for k, v in sample.items():
if type(v) is list:
batch_out[k].append(v)
elif type(v) is dict:
batch_out[k].append(v)
else:
if type(batch_out[k]) is list:
batch_out[k] = v.unsqueeze(0)
else:
if k == 'labels_instance':
dim_diff = v.shape[0] - batch_out[k].shape[1]
if dim_diff > 0:
pad = torch.zeros(batch_out[k].shape[0], abs(dim_diff), batch_out[k].shape[-1])
batch_out[k] = torch.cat((batch_out[k], pad), dim=1)
elif dim_diff < 0:
pad = torch.zeros(abs(dim_diff), v.shape[-1])
v = torch.cat((v, pad), dim=0)
batch_out[k] = torch.cat((batch_out[k], v.unsqueeze(0)), dim=0)
return batch_out
def train_dataloader(self) -> DataLoader:
training_params = {"batch_size": self.config.mini_batch_size,
"shuffle": True,
"drop_last": True,
"pin_memory": True,
"num_workers": self.hparams['number_workers']}
if self.hparams['multi_instance']:
train_loader = DataLoader(self.train_ds, collate_fn=self.collate_batch, **training_params)
else:
train_loader = DataLoader(self.train_ds, **training_params)
return train_loader
def val_dataloader(self) -> DataLoader:
val_params = {"batch_size": self.config.val_mini_batch_size,
"shuffle": False,
"drop_last": False,
"num_workers": self.hparams['number_workers']}
if self.hparams['multi_instance']:
val_loader = DataLoader(self.val_ds, collate_fn=self.collate_batch, **val_params)
else:
val_loader = DataLoader(self.val_ds, **val_params)
return val_loader
def test_dataloader(self) -> DataLoader:
test_params = {"batch_size": self.config.test_mini_batch_size,
"shuffle": False,
"num_workers": self.hparams['number_workers']}
if self.hparams['multi_instance']:
test_loader = DataLoader(self.test_ds, collate_fn=self.collate_batch, **test_params)
else:
test_loader = DataLoader(self.test_ds, **test_params)
return test_loader
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.model.parameters(), self.hparams['lr'], weight_decay=self.hparams['weight_decay'])
if self.hparams['lr_scheduler'] == 'cyclic':
lr_mode = self.hparams['lr_mode'] if self.hparams['lr_mode'] else "triangular"
lr_scheduler = torch.optim.lr_scheduler.CyclicLR(
optimizer, base_lr=self.hparams['lr'], max_lr=self.hparams['lr']*100,
cycle_momentum=False,
step_size_up=7,
step_size_down=7,
mode=lr_mode
)
else:
lr_mode = self.hparams['lr_mode'] if self.hparams['lr_mode'] else "min"
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, mode=lr_mode, factor=0.5, patience=3, threshold=0.0001, threshold_mode='rel',
)
return {
"optimizer": optimizer,
"lr_scheduler": lr_scheduler,
"monitor": "val/loss",
"interval": "step"
}
def training_step(self, batch, batch_idx):
self.it += 1
_, loss, res = self.model_fn(self.model, batch)
logs = {
"train/loss": loss,
"train/loss_rgbd_seg": res['loss_rgbd_seg'],
"train/loss_target": res['loss_target'],
"train/loss_unweighted": res['loss_unweighted'],
"train/loss_kp_of": res['loss_kp_of'],
"train/loss_ctr_of": res['loss_ctr_of'],
"train/acc_rgbd": res['acc_rgbd'],
}
for k, v in logs.items():
self.log(k, v, sync_dist=True)
if self.viz is not None:
self.viz.update("train", self.it, res)
return {
'loss': loss,
}
def training_epoch_end(self, outputs):
pass
@torch.no_grad()
def validation_step(self, batch, batch_idx):
self.it += 1
eval_dict = {}
total_loss = 0.0
count = 1
count += 1
torch.cuda.empty_cache()
with torch.no_grad():
_, loss, eval_res = self.model_fn(self.model, batch)
if 'loss_target' in eval_res.keys():
total_loss += eval_res['loss_target']
else:
total_loss += loss.item()
for k, v in eval_res.items():
if v is not None:
eval_dict[k] = eval_dict.get(k, []) + [v.item()]
return {'val_loss': loss,
"val_loss_rgbd_seg": eval_res['loss_rgbd_seg'],
'val_loss_target': eval_res['loss_target'],
'val_loss_unweighted': eval_res['loss_unweighted'],
'val_loss_kp_of': eval_res['loss_kp_of'],
'val_loss_ctr_of': eval_res['loss_ctr_of'],
'val_acc_rgbd': eval_res['acc_rgbd'],
}
@torch.no_grad()
def validation_epoch_end(self, outputs):
loss = torch.stack([o['val_loss'] for o in outputs]).mean().detach()
loss_rgbd_seg = torch.stack([o['val_loss_rgbd_seg'] for o in outputs]).mean().detach()
loss_target = torch.stack([o['val_loss_target'] for o in outputs]).mean().detach()
loss_unweighted = torch.stack([o['val_loss_unweighted'] for o in outputs]).mean().detach()
loss_kp_of = torch.stack([o['val_loss_kp_of'] for o in outputs]).mean().detach()
loss_ctr_of = torch.stack([o['val_loss_ctr_of'] for o in outputs]).mean().detach()
val_acc_rgbd = torch.stack([o['val_acc_rgbd'] for o in outputs]).mean().detach()
torch.cuda.empty_cache()
delta = datetime.now() - self.hparams['start_time']
logs = {
"hours": 24*delta.days + delta.seconds / 3600,
"val/loss": loss,
"val/loss_rgbd_seg": loss_rgbd_seg,
"val/loss_target": loss_target,
"val/loss_unweighted": loss_unweighted,
"val/loss_kp_of": loss_kp_of,
"val/loss_ctr_of": loss_ctr_of,
"val/acc_rgbd": val_acc_rgbd,
}
for k, v in logs.items():
self.log(k, v, on_epoch=True, sync_dist=True)
return {
"val_loss": loss,
'val_acc': val_acc_rgbd,
}
@torch.no_grad()
def on_test_start(self) -> None:
self.cls_add_dis = [list() for _ in range(self.hparams['n_classes'])]
self.cls_adds_dis = [list() for _ in range(self.hparams['n_classes'])]
self.cls_add_s_dis = [list() for _ in range(self.hparams['n_classes'])]
@torch.no_grad()
def test_step(self, batch, batch_idx):
cu_dt = {}
for key in batch.keys():
if type(batch[key]) is dict:
cu_dt[key]=batch[key]
elif type(batch[key]) is list:
if type(batch[key][0]) is not torch.tensor:
cu_dt[key]=batch[key]
else:
cu_dt[key] = [[obj.cuda() for obj in sub_list] for sub_list in batch[key]]
elif batch[key].dtype in [np.float32, np.uint8]:
cu_dt[key] = torch.from_numpy(batch[key].astype(np.float32)).cuda()
elif batch[key].dtype in [np.int32, np.uint32]:
cu_dt[key] = torch.LongTensor(batch[key].astype(np.int32)).cuda()
elif batch[key].dtype in [torch.uint8, torch.float32]:
cu_dt[key] = batch[key].float().cuda()
elif batch[key].dtype in [torch.int32, torch.int16]:
cu_dt[key] = batch[key].long().cuda()
else:
cu_dt[key] = batch[key].to('cuda')
with torch.no_grad():
end_points = self.model(cu_dt)
labels = cu_dt['labels']
_, cls_rgbd = torch.max(end_points['pred_rgbd_segs'], 1)
cld = cu_dt['cld_rgb_nrm'][:, :3, :].permute(0, 2, 1).contiguous()
kp_type = 'sift_fps_kps' if hparams['sift_fps_kps'] else 'farthest'
with torch.no_grad():
if self.hparams['multi_instance']:
self.teval.eval_pose_parallel_mimo(
cld, cu_dt['rgb'], cls_rgbd, end_points['pred_ctr_ofs'],
cu_dt['ctr_targ_ofst'], labels, self.current_epoch, cu_dt['cls_ids'],
cu_dt['RTs'], end_points['pred_kp_ofs'],
cu_dt['kp_3ds'], cu_dt['ctr_3ds'],
ds=self.hparams['dataset'], obj_id=config.cls_id,
min_cnt=1, use_ctr_clus_flter=False, use_ctr=True, kp_type=kp_type, n_objs=cu_dt['n_objs']
)
elif self.hparams['gt_masks']:
print('using gt masks')
self.teval.eval_pose_parallel(
cld, cu_dt['rgb'], labels, end_points['pred_ctr_ofs'],
cu_dt['ctr_targ_ofst'], labels, self.current_epoch, cu_dt['cls_ids'],
cu_dt['RTs'], end_points['pred_kp_ofs'],
cu_dt['kp_3ds'], cu_dt['ctr_3ds'],
ds=self.hparams['dataset'], obj_id=config.cls_id,
min_cnt=1, use_ctr_clus_flter=True, use_ctr=True, kp_type=kp_type
)
else:
pass
with torch.no_grad():
self.teval.eval_pose_parallel(
cld, cu_dt['rgb'], cls_rgbd, end_points['pred_ctr_ofs'],
cu_dt['ctr_targ_ofst'], labels, self.current_epoch, cu_dt['cls_ids'],
cu_dt['RTs'], end_points['pred_kp_ofs'],
cu_dt['kp_3ds'], cu_dt['ctr_3ds'],
ds=hparams['dataset'], obj_id=config.cls_id,
min_cnt=1, use_ctr_clus_flter=True, use_ctr=True, kp_type=kp_type
)
return torch.tensor([1])
@torch.no_grad()
def on_test_end(self) -> None:
if hasattr(self.config, 'out_dir'):
save_path = ""
else:
save_path = self.hparams['logger_name'] + '/' + self.hparams['logger_version']
f = io.StringIO()
with redirect_stdout(f):
if self.hparams['dataset'] == 'ycb' or self.hparams['dataset'] == 'SymMovCam':
eval_dict = self.teval.cal_auc(save_path=save_path)
if not self.hparams['multi_view']:
self.teval.save_csv(save_path=save_path)
out = f.getvalue()
print(out)
md_out = out.replace('\n','<br>')
md_out = md_out.replace('\t', ' ')
md_out = md_out.replace('*', '\*')
self.logger.experiment.add_text("eval", md_out, self.it)
self.trainer.save_checkpoint(os.path.join(self.config.log_eval_dir, self.hparams['logger_name'] + '/' + self.hparams['logger_version'],
f"checkpoint_{eval_dict['adds_auc_lst'][0]}_{eval_dict['add_auc_lst'][0]}_{eval_dict['add_s_auc_lst'][0]}.ckpt"))
def forward(self, x):
return self.model_fn(self.model, x)
def get_args():
parser = argparse.ArgumentParser(description="Arg parser")
parser.add_argument('--dataset', type=str, default='dataset to be used [ycb, SymMovCam]', required=True)
parser.add_argument('--run_name', type=str, default="SyMFM6D_test_run", help='The name of the run and log dir')
parser.add_argument("--weight_decay", type=float, default=0, help="L2 regularization coefficient [default: 0.0]")
parser.add_argument("--lr", type=float, default=1e-4, help="Initial learning rate [default: 1e-4]")
parser.add_argument("--lr_decay", type=float, default=0.5, help="Learning rate decay gamma [default: 0.5]")
parser.add_argument("--decay_step", type=float, default=2e5, help="Learning rate decay step [default: 2e5]")
parser.add_argument("--bn_momentum", type=float, default=0.9, help="Initial batch norm momentum [default: 0.9]")
parser.add_argument("--bn_decay", type=float, default=0.5, help="Batch norm momentum decay gamma [default: 0.5]")
parser.add_argument("--checkpoint", type=str, default=None, help="Checkpoint to start from")
parser.add_argument("--run_eval", type=int, default=0, help="Run evaluation.")
parser.add_argument('--non_deterministic', type=int, default=0)
parser.add_argument('--opt_level', default="O0", type=str, help='opt level of apex mix precision training.')
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--batch_size_per_gpu", type=int, default=3, help="The number of images per batch")
parser.add_argument("--epochs", type=int, default=25, help="The number of total epochs to be trained")
parser.add_argument("--workers_per_gpu", type=int, default=8, help="Number of workers for dataloader")
parser.add_argument("--logger_version", type=int, default=None, help="Use the this to reuse a specific tensorboard log version")
parser.add_argument("--checkpoint_logger", type=str, default=None, help="Path to the logger of the checkpoint")
parser.add_argument('--sift_fps_kps', type=int, default=0, help="Use SIFT-FPS instead of FPS keypoints for YCB objects")
parser.add_argument("--multi_view", type=int, default=0, help="Uses multi-view data")
parser.add_argument("--set_views", default=None, help="determines how many views are used for muli view training, if not set the standard number of views for each dataset are used")
parser.add_argument("--loss_weights", type=float, nargs='+', default=[2.0, 1.0, 1.0], help="Weighting of segmentation, keypoint offset, and keypoint center loss")
parser.add_argument("--accumulate_grad_batches", type=int, default=1, help="accumulate gradient to simulate larger batch size")
parser.add_argument("--noisy_cam_pose", type=int, default=0, help="Whether or not the cam poses have a small random offset")
parser.add_argument("--new_optimizer", type=int, default=0, help="Whether use a fresh optimizer and lr scheduler when loading a checkpoint instead of loading the old one")
parser.add_argument("--symmetry", type=int, default=0, help="Whether to include symmetric keypoints in the learning regime")
parser.add_argument("--n_rot_sym", type=int, default=16, help="Number of discrete rotational symmetries for infinite rotational symmetries")
parser.add_argument("--no_rotationals", type=int, default=0, help="Whether to include rotational symmetric keypoints in the learning regime")
parser.add_argument("--custom", type=int, default=0, help="CAUTION: this might execute unwanted code. Configure this in the code before and only use this for experiments")
parser.add_argument("--sym_classes", type=int, nargs='+', default=None)
parser.add_argument('--new_sym', type=int, default=0, help='use updated symmetries')
parser.add_argument('--lr_scheduler', type=str, default="reduce", help="options: cyclic, reduce, ..")
parser.add_argument("--lr_mode", type=str, default="", help="Learning rate mode, e.g. triangular2")
parser.add_argument('--multi_instance', action='store_true')
parser.add_argument('--gt_masks', action='store_true')
parser.add_argument('--out_dir', type=str, default="")
parser.add_argument('--short_test', type=int, default=0, help="run a short test training with a small fraction of the dataset")
parser.add_argument('--syn_train_data_ratio', type=float, default=0.0, help="ratio of synthetic data in addition to real data for multi-view training")
args = parser.parse_args()
return args
if __name__ == "__main__":
increase_filedesc_limit()
args = get_args()
config = Config(ds_name=args.dataset)
config.update(args)
bs_utils = Basic_Utils(config)
# config has to be created before these imports
from utils.pvn3d_eval_utils_kpls import TorchEval
from models.SyMFM6D import SyMFM6D
from utils.pvn3d_eval_utils_kpls import cal_frame_poses, cal_frame_poses_scape, eval_metric
if os.name == 'posix':
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (30000, rlimit[1]))
num_gpus = torch.cuda.device_count()
on_cluster = num_gpus > 1
print(torch.cuda.get_device_name(0))
# fix the seed for reproducibility
seed = args.seed
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
backend = 'ddp'
if backend == 'dp':
args.batch_size_per_gpu *= num_gpus
print("# Adapt batchsize with the gpu count: %i" % args.batch_size_per_gpu)
config.mini_batch_size = args.batch_size_per_gpu
config.val_mini_batch_size = args.batch_size_per_gpu
config.n_total_epoch = args.epochs
hparams = vars(args)
config_dict = dict((name, getattr(config, name)) for name in dir(config) if not name.startswith('__'))
hparams.update(config_dict)
rndla_cfg = ConfigRandLA
rndla_cfg_dict = dict((name, getattr(rndla_cfg, name)) for name in dir(rndla_cfg) if not name.startswith('__'))
hparams.update(rndla_cfg_dict)
# store some run information
hparams['config'] = config
hparams['rndla_cfg'] = rndla_cfg
hparams['bs_utils'] = bs_utils
hparams['viz'] = None
hparams['git_id'] = get_current_git_hash()
hparams['network'] = args.run_name
hparams['dataset'] = args.dataset
hparams['number_workers'] = args.workers_per_gpu
hparams['gpus'] = num_gpus
hparams['run_eval'] = args.run_eval
hparams['floating16'] = False
hparams['start_time'] = datetime.now()
logger = TensorBoardLogger(save_dir=config.tb_dir, name=hparams['run_name'], version=args.logger_version)
print(f"Logger Dir: {logger.log_dir}")
print(f"Logger Name: {logger.name}")
print(f"Logger Root Dir: {logger.root_dir}")
print(f"Logger Save Dir: {logger.save_dir}")
print(f"Logger Version: {logger.version}")
hparams['logger_name'] = logger.name
hparams['logger_version'] = 'version_' + str(logger.version)
if args.checkpoint:
print("checkpoint: " + args.checkpoint)
model = SyMFM6DModule.load_from_checkpoint(args.checkpoint, strict=False)
if num_gpus == 1:
ckpt = torch.load(args.checkpoint)
glob_step = ckpt['global_step']
model.it = glob_step
for k, v in hparams.items():
model.hparams[k] = v
if hparams['multi_view']:
model.model.multi_view = True
model.model.views = 3
if hparams['symmetry']: # to train non sym models as sym model
model.criterion_of_sym = SymOFLoss()
model.criterion_of_sym_multi = SymMultiOFLoss()
model.model_fn = model_fn_decorator(model.criterion, model.criterion_of, model.criterion_of_sym, model.criterion_of_sym_multi, model.config, model.hparams)
model.config = config
model.bs_utils = bs_utils
# backward compatibility
if 'multi_view' not in model.hparams.keys():
model.hparams['multi_view'] = False
if 'symmetry' not in model.hparams.keys():
model.hparams['symmetry'] = False
else:
print("Don't load checkpoint.")
args.checkpoint = None
model = SyMFM6DModule(hparams)
print("Args: %s" % args)
print("HParams: %s" % hparams)
checkpoint_callback = lightning.callbacks.ModelCheckpoint(
save_top_k=6,
verbose=True,
monitor='val/loss',
mode='min',
save_last=True,
)
bnm_clip = 1e-2
bnm_lmbd = lambda it: max(
args.bn_momentum
* args.bn_decay ** (int(it * config.mini_batch_size / args.decay_step)),
bnm_clip,
)
if args.checkpoint:
restore_optimizer = not args.new_optimizer
else:
restore_optimizer = None
# float for fraction of dataset (1.0 = 100% of dataset)
# int for specific number of batches (500 = 500 batches)
limit_train_batches = 1.0
limit_val_batches = 1.0
limit_test_batches = 1.0
max_epochs = 1000 # config.n_total_epoch
if args.short_test:
limit_train_batches = 5 # 5
limit_val_batches = 5 # 5
limit_test_batches = 5
max_epochs = 42 # 2
trainer = lightning.Trainer(default_root_dir=config.tb_dir,
min_epochs=config.n_total_epoch,
max_epochs=max_epochs,
gpus=-1, logger=logger,
distributed_backend=backend,
checkpoint_callback=True,
precision=16 if hparams['floating16'] else 32,
sync_batchnorm=True,
callbacks=[LRLoggingCallback(),
EarlyStopping(monitor="val/loss", mode="min", patience=10),
ValidationIntervalScheduler(tot_iter=config.n_total_epoch*get_n_batches_per_epoch(args.dataset)//num_gpus, clr_div=2),
BNMomentumScheduler(model.model, bnm_lmbd),
checkpoint_callback],
plugins=[MyDDP(find_unused_parameters=True)],
deterministic=not args.non_deterministic,
resume_from_checkpoint=args.checkpoint,
amp_backend="apex",
amp_level=args.opt_level,
check_val_every_n_epoch=1,
num_sanity_val_steps=1,
log_every_n_steps=50,
accumulate_grad_batches=args.accumulate_grad_batches,
restore_optimizer=restore_optimizer,
limit_train_batches=limit_train_batches,
limit_val_batches=limit_val_batches,
limit_test_batches=limit_test_batches,
)
if not args.run_eval:
try:
trainer.fit(model)
except Exception as e:
print("Error occurred in trainer.fit(model)!")
traceback.print_exc()
output_file = os.path.join(config.log_dir, 'error.log')
with open(output_file, 'a+') as f:
f.write(traceback.format_exc())
raise e
print("trainer.fit(model) done!")
try:
_ = config.cls_id
except:
config.cls_id = None
try:
trainer.test(model)
except Exception as e:
print("Error occurred in trainer.test(model)!")
traceback.print_exc()
output_file = os.path.join(config.log_dir, 'error.log')
with open(output_file, 'a+') as f:
f.write(traceback.format_exc())
raise e
print("trainer.test(model) done!")
else:
if args.checkpoint is None:
raise ValueError("Please provide a checkpoint to test")
try:
_ = config.cls_id
except:
config.cls_id = None
try:
trainer.test(model)
except Exception as e:
print("Error occurred in trainer.test(model)!")
traceback.print_exc()
output_file = os.path.join(config.log_dir, 'error.log')
with open(output_file, 'a+') as f:
f.write(traceback.format_exc())
raise e
print("trainer.test(model) done!")