Releases: brainpy/BrainPy
Version 2.3.7
- Fix bugs on population models in
brainpy.rate
module - Fix bug on
brainpy.LoopOverTime
- Add more synaptic models including DualExpoenetial model and Alpha model in
brainpy.experimental
module - Support call a module through right shift, such as
data >> module1 >> module2
Version 2.3.6
This release continues to add support for brain-inspired computation.
New Features
More flexible customization of surrogate gradient functions.
- brainpy.math.surrogate.Sigmoid
- brainpy.math.surrogate.PiecewiseQuadratic
- brainpy.math.surrogate.PiecewiseExp
- brainpy.math.surrogate.SoftSign
- brainpy.math.surrogate.Arctan
- brainpy.math.surrogate.NonzeroSignLog
- brainpy.math.surrogate.ERF
- brainpy.math.surrogate.PiecewiseLeakyRelu
- brainpy.math.surrogate.SquarewaveFourierSeries
- brainpy.math.surrogate.S2NN
- brainpy.math.surrogate.QPseudoSpike
- brainpy.math.surrogate.LeakyRelu
- brainpy.math.surrogate.LogTailedRelu
- brainpy.math.surrogate.ReluGrad
- brainpy.math.surrogate.GaussianGrad
- brainpy.math.surrogate.InvSquareGrad
- brainpy.math.surrogate.MultiGaussianGrad
- brainpy.math.surrogate.SlayerGrad
Fix bugs
brainpy.LoopOverTime
Version 2.3.5
This release continues to add support for brain-inspired computation.
New Features
1. brainpy.share
for sharing data across submodules
In this release, we abstract the shared data as a brainpy.share
object.
This object together with brainpy.Delay
we will introduce below constitutes the support that enables us to define SNN models like ANN ones.
2. brainpy.Delay
for delay processing
Delay
is abstracted as a dynamical system, which can be updated/retrieved by users.
import brainpy as bp
class EINet(bp.DynamicalSystemNS):
def __init__(self, scale=1.0, e_input=20., i_input=20., delay=None):
super().__init__()
self.bg_exc = e_input
self.bg_inh = i_input
# network size
num_exc = int(3200 * scale)
num_inh = int(800 * scale)
# neurons
pars = dict(V_rest=-60., V_th=-50., V_reset=-60., tau=20., tau_ref=5.,
V_initializer=bp.init.Normal(-55., 2.), input_var=False)
self.E = bp.neurons.LIF(num_exc, **pars)
self.I = bp.neurons.LIF(num_inh, **pars)
# synapses
we = 0.6 / scale # excitatory synaptic weight (voltage)
wi = 6.7 / scale # inhibitory synaptic weight
self.E2E = bp.experimental.Exponential(
bp.conn.FixedProb(0.02, pre=self.E.size, post=self.E.size),
g_max=we, tau=5., out=bp.experimental.COBA(E=0.)
)
self.E2I = bp.experimental.Exponential(
bp.conn.FixedProb(0.02, pre=self.E.size, post=self.I.size, ),
g_max=we, tau=5., out=bp.experimental.COBA(E=0.)
)
self.I2E = bp.experimental.Exponential(
bp.conn.FixedProb(0.02, pre=self.I.size, post=self.E.size),
g_max=wi, tau=10., out=bp.experimental.COBA(E=-80.)
)
self.I2I = bp.experimental.Exponential(
bp.conn.FixedProb(0.02, pre=self.I.size, post=self.I.size),
g_max=wi, tau=10., out=bp.experimental.COBA(E=-80.)
)
self.delayE = bp.Delay(self.E.spike, entries={'E': delay})
self.delayI = bp.Delay(self.I.spike, entries={'I': delay})
def update(self):
e_spike = self.delayE.at('E')
i_spike = self.delayI.at('I')
e_inp = self.E2E(e_spike, self.E.V) + self.I2E(i_spike, self.E.V) + self.bg_exc
i_inp = self.I2I(i_spike, self.I.V) + self.E2I(e_spike, self.I.V) + self.bg_inh
self.delayE(self.E(e_inp))
self.delayI(self.I(i_inp))
3. brainpy.checkpoints.save_pytree
and brainpy.checkpoints.load_pytree
for saving/loading target from the filename
Now we can directly use brainpy.checkpoints.save_pytree
to save a network state into the file path we specified.
Similarly, we can use brainpy.checkpoints.load_pytree
to load states from the given file path.
4. More ANN layers
- brainpy.layers.ConvTranspose1d
- brainpy.layers.ConvTranspose2d
- brainpy.layers.ConvTranspose3d
- brainpy.layers.Conv1dLSTMCell
- brainpy.layers.Conv2dLSTMCell
- brainpy.layers.Conv3dLSTMCell
5. More compatible dense operators
PyTorch operators:
- brainpy.math.Tensor
- brainpy.math.flatten
- brainpy.math.cat
- brainpy.math.abs
- brainpy.math.absolute
- brainpy.math.acos
- brainpy.math.arccos
- brainpy.math.acosh
- brainpy.math.arccosh
- brainpy.math.add
- brainpy.math.addcdiv
- brainpy.math.addcmul
- brainpy.math.angle
- brainpy.math.asin
- brainpy.math.arcsin
- brainpy.math.asinh
- brainpy.math.arcsin
- brainpy.math.atan
- brainpy.math.arctan
- brainpy.math.atan2
- brainpy.math.atanh
TensorFlow operators:
- brainpy.math.concat
- brainpy.math.reduce_sum
- brainpy.math.reduce_max
- brainpy.math.reduce_min
- brainpy.math.reduce_mean
- brainpy.math.reduce_all
- brainpy.math.reduce_any
- brainpy.math.reduce_logsumexp
- brainpy.math.reduce_prod
- brainpy.math.reduce_std
- brainpy.math.reduce_variance
- brainpy.math.reduce_euclidean_norm
- brainpy.math.unsorted_segment_sqrt_n
- brainpy.math.segment_mean
- brainpy.math.unsorted_segment_sum
- brainpy.math.unsorted_segment_prod
- brainpy.math.unsorted_segment_max
- brainpy.math.unsorted_segment_min
- brainpy.math.unsorted_segment_mean
- brainpy.math.segment_sum
- brainpy.math.segment_prod
- brainpy.math.segment_max
- brainpy.math.segment_min
- brainpy.math.clip_by_value
- brainpy.math.cast
Others
- Remove the hard requirements of
brainpylib
andnumba
.
Version 2.3.4
This release mainly focuses on the compatibility with other frameworks:
- Fix Jax import error when
jax>=0.4.2
- Backward compatibility of
brainpy.dyn
module - Start to implement and be compatible with operators in pytorch and tensorflow, so that user's pytorch/tensorflow models can be easily migrated to brainpy
Full Changelog: V2.3.3...V2.3.4
Version 2.3.3
Improve backward compatibility:
- monitors and inputs in
DSRunner
- models in
brainpy.dyn
- constants and function in
brainpy.analysis
Version 2.3.2
This release (under the branch of brainpy=2.3.x
) continues to add support for brain-inspired computation.
New Features
1. New package structure for stable API release
Unstable APIs are all hosted in brainpy._src
module.
Other APIs are stable and will be maintained for a long time.
2. New schedulers
brainpy.optim.CosineAnnealingWarmRestarts
brainpy.optim.CosineAnnealingLR
brainpy.optim.ExponentialLR
brainpy.optim.MultiStepLR
brainpy.optim.StepLR
3. Others
- support
static_argnums
inbrainpy.math.jit
- fix bugs of
reset_state()
andclear_input()
inbrainpy.channels
- fix jit error checking
Version 2.3.1
This release (under the release branch of brainpy=2.3.x
) continues to add supports for brain-inspired computation.
import brainpy as bp
import brainpy.math as bm
Backwards Incompatible Changes
1. Error: module 'brainpy' has no attribute 'datasets'
brainpy.datasets
module is now published as an independent package brainpy_datasets
.
Please change your dataset access from
bp.datasets.xxxxx
to
import brainpy_datasets as bp_data
bp_data.chaos.XXX
bp_data.vision.XXX
For a chaotic data series,
# old version
data = bp.datasets.double_scroll_series(t_warmup + t_train + t_test, dt=dt)
x_var = data['x']
y_var = data['y']
z_var = data['z']
# new version
data = bd.chaos.DoubleScrollEq(t_warmup + t_train + t_test, dt=dt)
x_var = data.xs
y_var = data.ys
z_var = data.zs
For a vision dataset,
# old version
dataset = bp.datasets.FashionMNIST(root, train=True, download=True)
# new version
dataset = bd.vision.FashionMNIST(root, split='train', download=True)
2. Error: DSTrainer must receive an instance with BatchingMode
This error will happen when using brainpy.OnlineTrainer
, brainpy.OfflineTrainer
, brainpy.BPTT
, brainpy.BPFF
.
From version 2.3.1, BrainPy explicitly consider the computing mode of each model. For trainers, all training target should be a model with BatchingMode
or TrainingMode
.
If you are training model with OnlineTrainer
or OfflineTrainer
,
# old version
class NGRC(bp.DynamicalSystem):
def __init__(self, num_in):
super(NGRC, self).__init__()
self.r = bp.layers.NVAR(num_in, delay=2, order=3)
self.di = bp.layers.Dense(self.r.num_out, num_in)
def update(self, sha, x):
di = self.di(sha, self.r(sha, x))
return x + di
# new version
bm.set_enviroment(mode=bm.batching_mode)
class NGRC(bp.DynamicalSystem):
def __init__(self, num_in):
super(NGRC, self).__init__()
self.r = bp.layers.NVAR(num_in, delay=2, order=3)
self.di = bp.layers.Dense(self.r.num_out, num_in, mode=bm.training_mode)
def update(self, sha, x):
di = self.di(sha, self.r(sha, x))
return x + di
If you are training models with BPTrainer
, adding the following line at the top of the script,
bm.set_enviroment(mode=bm.training_mode)
3. Error: inputs_are_batching is no longer supported.
This is because if the training target is in batching
mode, this has already indicated that the inputs should be batching.
Simple remove the inputs_are_batching
from your functional call of .predict()
will solve the issue.
New Features
1. brainpy.math
module upgrade
brainpy.math.surrogate
module for surrogate gradient functions.
Currently, we support
brainpy.math.surrogate.arctan
brainpy.math.surrogate.erf
brainpy.math.surrogate.gaussian_grad
brainpy.math.surrogate.inv_square_grad
brainpy.math.surrogate.leaky_relu
brainpy.math.surrogate.log_tailed_relu
brainpy.math.surrogate.multi_gaussian_grad
brainpy.math.surrogate.nonzero_sign_log
brainpy.math.surrogate.one_input
brainpy.math.surrogate.piecewise_exp
brainpy.math.surrogate.piecewise_leaky_relu
brainpy.math.surrogate.piecewise_quadratic
brainpy.math.surrogate.q_pseudo_spike
brainpy.math.surrogate.relu_grad
brainpy.math.surrogate.s2nn
brainpy.math.surrogate.sigmoid
brainpy.math.surrogate.slayer_grad
brainpy.math.surrogate.soft_sign
brainpy.math.surrogate.squarewave_fourier_series
New transformation function brainpy.math.to_dynsys
New transformation function brainpy.math.to_dynsys
supports to transform a pure Python function into a DynamicalSystem
. This will be useful when running a DynamicalSystem
with arbitrary customized inputs.
import brainpy.math as bm
hh = bp.neurons.HH(1)
@bm.to_dynsys(child_objs=hh)
def run_hh(tdi, x=None):
if x is not None:
hh.input += x
runner = bp.DSRunner(run_hhh, monitors={'v': hh.V})
runner.run(inputs=bm.random.uniform(3, 6, 1000))
Default data types
Default data types brainpy.math.int_
, brainpy.math.float_
and brainpy.math.complex_
are initialized according to the default x64
settings. Then, these data types can be set or get by brainpy.math.set_*
or brainpy.math.get_*
syntaxes.
Take default integer type int_
as an example,
# set the default integer type
bm.set_int_(jax.numpy.int64)
# get the default integer type
a1 = bm.asarray([1], dtype=bm.int_)
a2 = bm.asarray([1], dtype=bm.get_int()) # equivalent
Default data types are changed according to the x64
setting of JAX. For instance,
bm.enable_x64()
assert bm.int_ == jax.numpy.int64
bm.disable_x64()
assert bm.int_ == jax.numpy.int32
brainpy.math.float_
and brainpy.math.complex_
behaves similarly with brainpy.math.int_
.
Environment context manager
This release introduces a new concept computing environment
in BrainPy. Computing environment is a default setting for current computation jobs, including the default data type (int_
, float_
, complex_
), the default numerical integration precision (dt
), the default computing mode (mode
). All models, arrays, and computations using the default setting will be carried out under the environment setting.
Users can set a default environment through
brainpy.math.set_environment(mode, dt, x64)
However, ones can also construct models or perform computation through a temporal environment context manager, this can be implemented through:
# constructing a HH model with dt=0.1 and x64 precision
with bm.environment(mode, dt=0.1, x64=True):
hh1 = bp.neurons.HH(1)
# constructing a HH model with dt=0.05 and x32 precision
with bm.environment(mode, dt=0.05, x64=False):
hh2 = bp.neuron.HH(1)
Usually, users construct models for either brain-inspired computing (training mode
) or brain simulation (nonbatching mode
), therefore, there are shortcut context manager for setting a training environment or batching environment:
with bm.training_environment(dt, x64):
pass
with bm.batching_environment(dt, x64):
pass
2. brainpy.dyn
module
brainpy.dyn.transfom
module for transforming a DynamicalSystem
instance to a callable BrainPyObject
.
Specifically, we provide
LoopOverTime
for unrolling a dynamical system over time.NoSharedArg
for removing the dependency of shared arguments.
3. Running supports in BrainPy
All brainpy.Runner
now are subclasses of BrainPyObject
This means that all brainpy.Runner
can be used as a part of the high-level program or transformation.
Enable the continuous running of a differential equation (ODE, SDE, FDE, DDE, etc.) with IntegratorRunner
.
For example,
import brainpy as bp
# differential equation
a, b, tau = 0.7, 0.8, 12.5
dV = lambda V, t, w, Iext: V - V * V * V / 3 - w + Iext
dw = lambda w, t, V: (V + a - b * w) / tau
fhn = bp.odeint(bp.JointEq([dV, dw]), method='rk4', dt=0.1)
# differential integrator runner
runner = bp.IntegratorRunner(fhn, monitors=['V', 'w'], inits=[1., 1.])
# run 1
Iext, duration = bp.inputs.section_input([0., 1., 0.5], [200, 200, 200], return_length=True)
runner.run(duration, dyn_args=dict(Iext=Iext))
bp.visualize.line_plot(runner.mon.ts, runner.mon['V'], legend='V')
# run 2
Iext, duration = bp.inputs.section_input([0.5], [200], return_length=True)
runner.run(duration, dyn_args=dict(Iext=Iext))
bp.visualize.line_plot(runner.mon.ts, runner.mon['V'], legend='V-run2', show=True)
Enable call a customized function during fitting of brainpy.BPTrainer
.
This customized function (provided through fun_after_report
) will be useful to save a checkpoint during the training. For instance,
class CheckPoint:
def __init__(self, path='path/to/directory/'):
self.max_acc = 0.
self.path = path
def __call__(self, idx, metrics, phase):
if phase == 'test' and metrics['acc'] > self.max_acc:
self.max_acc = matrics['acc']
bp.checkpoints.save(self.path, net.state_dict(), idx)
trainer = bp.BPTT()
trainer.fit(..., fun_after_report=CheckPoint())
Enable data with data_first_axis
format when predicting or fitting in a brainpy.DSRunner
and brainpy.DSTrainer
.
Previous version of BrainPy only supports data with the batch dimension at the first axis. Currently, brainpy.DSRunner
and brainpy.DSTrainer
can support the data with the time dimension at the first axis. This can be set through data_first_axis='T'
when initializing a runner or trainer.
runner = bp.DSRunner(..., data_first_axis='T')
trainer = bp.DSTrainer(..., data_first_axis='T')
4. Utility in BrainPy
brainpy.encoding
module for encoding rate values into spike trains
Currently, we support
brainpy.encoding.LatencyEncoder
brainpy.encoding.PoissonEncoder
brainpy.encoding.WeightedPhaseEncoder
brainpy.checkpoints
module for model state serialization.
This version of BrainPy supports to save a checkpoint of the model into the physical disk. Inspired from the Flax API, we provide the following checkpoint APIs:
brainpy.checkpoints.save()
for saving a checkpoint of the model.brainpy.checkpoints.multiprocess_save()
for saving a checkpoint of the model in multi-process environment.brainpy.checkpoints.load()
for loadin...
Version 2.3.0
This branch of releases aims to provide a unified computing framework for brain simulation and brain-inspired computing.
New features
brainpy.BPTT
supportstrain_data
andtest_data
with general Python iterators. For instance, one can train a model with PyTorch dataloader or TensorFlow datasets.
import torchvision
from torch.utils.data import DataLoader
data = torchvision.datasets.CIFAR10("./CIFAR10", train=False, transform=torchvision.transforms.ToTensor())
loader = DataLoader(dataset=data, batch_size=4, shuffle=True, num_workers=0, drop_last=False)
# any generator can be used for train_data or test_data
trainer = bp.BPTT()
trainer.fit(loader)
-
Consolidated object-oriented transformation in
brainpy.math.object_transform
module. All brainpy transformations generate a newBrainPyObject
instance so that objects in brainpy can be composed hierarchically.brainpy.math.to_object()
transformation transforms a pure Python function into aBrainPyObject
. -
New documentation is currently online for introducing the consolidated BrainPy concept of object-oriented transformation.
-
Change
brainpy.math.JaxArray
tobrainpy.math.Array
.
Deprecations
brainpy.datasets
module is no longer supported. New APIs will be moved intobrainpy-datasets
package.brainpy.train.BPTT
no longer support to receive the train data[X, Y]
. Instead, users should provide a data generator such likepytorch
dataset ortensorflow
dataset.- The update function of
brainpy.math.TimeDealy
does not support receiving atime
index. Instead, one can update the new data by directly usingTimeDealy.update(data)
instead ofTimeDealy.update(time, data)
. - Fix the monitoring error of delay differential equations with
brainpy.integrators.IntegratorRunner
.
Bug Fixes
- Fix the bug on
One2One
connection. - Fix the bug in
eprop
example. - Fix
ij2csr
transformation error. - Fix test bugs
What's Changed
- fix eprop example error by @chaoming0625 in #305
- minor updates on API and DOC by @chaoming0625 in #306
- Add new optimizers by @chaoming0625 in #307
- add documentation of for random number generation by @chaoming0625 in #308
- consolidate the concept of OO transformation by @chaoming0625 in #309
- Upgrade documetations by @chaoming0625 in #310
- Ready for publish by @chaoming0625 in #311
Full Changelog: V2.2.4.0...V2.3.0
Version 2.2.4.0
This release has updated many functionalities and fixed several bugs in BrainPy.
New Features
- More ANN layers, including
brainpy.layers.Flatten
andbrainpy.layers.Activation
. - Optimized connection building for
brainpy.connect
module. - cifar dataset.
- Enhanced API and Doc for parallel simulations via
brainpy.running.cpu_ordered_parallel
,brainpy.running.cpu_unordered_parallel
,brainpy.running.jax_vectorize_map
andbrainpy.running.jax_parallelize_map
.
What's Changed
- add Activation and Flatten class by @LuckyHFC in #291
- optimizes the connect time when using gpu by @MamieZhu in #293
- datasets::vision: add cifar dataset by @hbelove in #292
- fix #294: remove VariableView in
dyn_vars
of a runner by @chaoming0625 in #295 - update issue template by @chaoming0625 in #296
- add multiprocessing functions for batch running of BrainPy functions by @chaoming0625 in #298
- upgrade connection apis by @chaoming0625 in #299
- fix #300: update parallelization api documentation by @chaoming0625 in #302
- update doc by @chaoming0625 in #303
New Contributors
- @LuckyHFC made their first contribution in #291
- @MamieZhu made their first contribution in #293
- @hbelove made their first contribution in #292
Full Changelog: V2.2.3.6...V2.2.4
Version 2.2.3.6
- fix bifurcation analysis bug
- fix synaptic delay bug