forked from dapowan/LIMU-BERT-Public
-
Notifications
You must be signed in to change notification settings - Fork 0
/
classifier.py
85 lines (68 loc) · 3.51 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2020/9/16 11:20
# @Author : Huatao
# @Email : 735820057@qq.com
# @File : classifier.py
# @Description :
import argparse
import numpy as np
import torch
import torch.nn as nn
from sklearn.metrics import f1_score
from torch.utils.data import DataLoader
from sklearn.metrics.pairwise import cosine_similarity
from scipy import stats
import train
from config import load_dataset_label_names
from embedding import load_embedding_label
from models import fetch_classifier
from plot import plot_matrix
from statistic import stat_acc_f1, stat_results
from utils import get_device, handle_argv \
, IMUDataset, load_classifier_config, prepare_classifier_dataset
def classify_embeddings(args, data, labels, label_index, training_rate, label_rate, balance=False, method=None):
train_cfg, model_cfg, dataset_cfg = load_classifier_config(args)
label_names, label_num = load_dataset_label_names(dataset_cfg, label_index)
data_train, label_train, data_vali, label_vali, data_test, label_test \
= prepare_classifier_dataset(data, labels, label_index=label_index, training_rate=training_rate
, label_rate=label_rate, merge=model_cfg.seq_len, seed=train_cfg.seed
, balance=balance)
data_set_train = IMUDataset(data_train, label_train)
data_set_vali = IMUDataset(data_vali, label_vali)
data_set_test = IMUDataset(data_test, label_test)
data_loader_train = DataLoader(data_set_train, shuffle=True, batch_size=train_cfg.batch_size)
data_loader_vali = DataLoader(data_set_vali, shuffle=False, batch_size=train_cfg.batch_size)
data_loader_test = DataLoader(data_set_test, shuffle=False, batch_size=train_cfg.batch_size)
criterion = nn.CrossEntropyLoss()
model = fetch_classifier(method, model_cfg, input=data_train.shape[-1], output=label_num)
optimizer = torch.optim.Adam(params=model.parameters(), lr=train_cfg.lr) # , weight_decay=0.95
trainer = train.Trainer(train_cfg, model, optimizer, args.save_path, get_device(args.gpu))
def func_loss(model, batch):
inputs, label = batch
logits = model(inputs, True)
loss = criterion(logits, label)
return loss
def func_forward(model, batch):
inputs, label = batch
logits = model(inputs, False)
return logits, label
def func_evaluate(label, predicts):
stat = stat_acc_f1(label.cpu().numpy(), predicts.cpu().numpy())
return stat
trainer.train(func_loss, func_forward, func_evaluate, data_loader_train, data_loader_test, data_loader_vali)
label_estimate_test = trainer.run(func_forward, None, data_loader_test)
return label_test, label_estimate_test
if __name__ == "__main__":
training_rate = 0.8 # unlabeled sample / total sample
label_rate = 0.01 # labeled sample / unlabeled sample
balance = True
mode = "base"
method = "gru"
args = handle_argv('classifier_' + mode + "_" + method, 'train.json', method)
embedding, labels = load_embedding_label(args.model_file, args.dataset, args.dataset_version)
label_test, label_estimate_test = classify_embeddings(args, embedding, labels, args.label_index,
training_rate, label_rate, balance=balance, method=method)
label_names, label_num = load_dataset_label_names(args.dataset_cfg, args.label_index)
acc, matrix, f1 = stat_results(label_test, label_estimate_test)
matrix_norm = plot_matrix(matrix, label_names)