Skip to content

Latest commit

 

History

History
executable file
·
200 lines (141 loc) · 6.59 KB

README.md

File metadata and controls

executable file
·
200 lines (141 loc) · 6.59 KB

Control-Units-in-StyleGAN2

Project | Paper

The official PyTorch implementation for MM'21 paper 'Attribute-specific Control Units in StyleGAN for Fine-grained Image Manipulation'

Pretrained Models

We provide the pretrained StyleGAN2 generator, face parser, attribute classifier and e4e encoder in the following link.

Google Drive

Please download the pre-trained StyleGAN2 generator at least. Put the models in ./pretrained.

Now, the structure folder pretrained maybe looks like:

$ tree ./pretrained
./pretrained/
|-- Attribute_CelebAMask-HQ_40_classifier.pth
|-- BiSetNet.pth
|-- correction.pt
|-- e4e_ffhq_encode.pt
|-- modifications
|   |-- before_Bushy_Eyebrows_s_123,315,325.mdfc
|   |-- before_alter_Black_Hair_12.mdfc
|   |-- before_alter_Blond_Hair_12.mdfc
|   `-- before_single_channel_11_286.mdfc
`-- stylegan2-ffhq-config-f.pt

Set up the environment

Detailed setup information can be found in environment.

We also provide the environment.yml as a reference. In general, make sure the gcc version is new enough, and all other packages can be installed via conda or pip.

Test

Let's get started quickly:

python3 manipulation.py test ./pretrained/modifications/before_alter_Black_Hair_12.mdfc --max_factor 20

This command will save the editing results in ./tmp:

$ tree ./tmp
tmp
|-- before_alter_Black_Hair_12_mdfc0_batch0.jpg
`-- before_alter_Black_Hair_12_mdfc0_batch0_diff.jpg

The image named as {mdfc_file_name}_{mdfc_id}_{batch_id}.jpg is the generated manipulated grid image, and the {mdfc_file_name}_{mdfc_id}_{batch_id}_diff.jpg is the manipulated error image.

{mdfc_file_name}_{mdfc_id}_{batch_id}.jpg:

before_alter_Black_Hair_12_mdfc0_batch0.jpg

{mdfc_file_name}_{mdfc_id}_{batch_id}_diff.jpg:

before_alter_Black_Hair_12_mdfc0_batch0_diff.jpg

Then, you can test other *.mdfc in ./pretrained/modifications.

Create the modification for attributes

For simplicity, let us create a new modification using a small number of positive and negative samples.

Take the attribute Blond_Hair as an example. We will try to find the control units for this attribute, and the modification that can change the hair color.

open a python shell, run the following command to create a latent bank.

import torch
torch.manual_seed(0)
torch.save(torch.randn(8, 512), "seed.z")

generate the images corresponding to the latent.

python3 manipulation.py generate --num_samples 8 --batch_size 8 --separately 0 --latent_path ./seed.z --captions

This command will save the image b0.jpg in the ./tmp.

determine which ones to use as positive or negative samples.

The generated images are saved as ./tmp/b0.jpg, check it and determine which image can be used as positive sample.

b0.jpg

we select 0,1,3 as the positive samples, and 4,2,6,7 for the negative.

generate the manipulated result only with the style vector movement.

we now calculate the mean of the positive latents and negative latents (in the S space). Then move the modulation style along the direction:

python3 manipulation.py test --batch_size 8 --seed 1 --num_samples 16  --resize 256 --save_type grid \
--start_factor -3 --max_factor 6 --num_factors 5 \
--build_mdfc_way paired_delta \
--latent1 ./seed.z --ids1   0,1,3  \
--latent2 ./seed.z  --ids2 4,2,6,7  \
--layers 12 --rules "(ric[10]>0.2)"

latent1 & ids1 specify the positive latent, and latent2 & ids2 for negative latent.

layers means the layer index, and --rules "(ric[10]>0.2)" means we select the channels that the correction to the region hair is greater than 0.2 .

# region id mapping
# ("<region_name>", <list_of_segmentation_label_id>) # region_id
SEMANTIC_REGION = dict(
    [
        ("background", (0,)),  # 0
        ("brow", (1, 2)),  # 1
        ("eye", (3, 4)),  # 2
        ("glass", (5,)),  # 3
        ("ear", (6, 7, 8)),  # 4
        ("nose", (9,)),  # 5
        ("mouth", (10,)),  # 6
        ("lips", (11, 12)),  # 7
        ("neck", (13, 14)),  # 8
        ("cloth", (15,)),  # 9
        ("hair", (16,)),  # 10
        ("hat", (17,)),  # 11
        ("face_up", (18,)),  # 12
        ("face_middle", (19,)),  # 13
        ("face_down", (20,)),  # 14
    ]
)

Here is the result:

save the modificaton as the mdfc file

# just copy the cli arguments for the about command
PYTHONPATH=. python3 editing/modification.py paired_delta \
--latent1 ./seed.z --ids1   0,1,3  \
--latent2 ./seed.z  --ids2 4,2,6,7  \
--layers 12 --rules "(ric[10]>0.2)"

Then change the ugly default name:

mv "tmp/alter_paired_delta_seed_(0, 1, 3)_seed_(4, 2, 6, 7).mdfc" tmp/Blond_Hair.mdfc

Optimizate to find the style vector for manipulating feature maps

PYTHONPATH=. python3 ./tools/manipulation/enhance.py prev tmp/Blond_Hair.mdfc 10 \
 --checkpoint pretrained/stylegan2-ffhq-config-f.pt \
 --batch_size 4 --num_batch 1000

# test new mdfc
python3 manipulation.py test ./tmp/before_Blond_Hair.mdfc --batch_size 8 --seed 1 --num_samples 16  --resize 256 --save_type grid --start_factor -3 --max_factor 3 --num_factors 5 --another_factor 0.8

The result of full modification to control units:

Citation

If you use this code for your research, please cite our paper Attribute-specific Control Units in StyleGAN for Fine-grained Image Manipulation

@inproceedings{10.1145/3474085.3475274,
author = {Wang, Rui and Chen, Jian and Yu, Gang and Sun, Li and Yu, Changqian and Gao, Changxin and Sang, Nong},
title = {Attribute-Specific Control Units in StyleGAN for Fine-Grained Image Manipulation},
year = {2021},
isbn = {9781450386517},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3474085.3475274},
doi = {10.1145/3474085.3475274},
booktitle = {Proceedings of the 29th ACM International Conference on Multimedia},
pages = {926–934},
numpages = {9},
keywords = {generative adversarial networks(GANs), control unit, image manipulation},
location = {Virtual Event, China},
series = {MM '21}
}