-
Notifications
You must be signed in to change notification settings - Fork 11
/
install.Rmd
57 lines (35 loc) · 1.3 KB
/
install.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
---
title: "Install bupaR"
---
```{r echo = F, out.width="25%", fig.align = "right"}
knitr::include_graphics("images/icons/install.PNG")
```
***
# Installing bupaR
The easiest way to install the core **bupaR** packages is by installing the `bupaverse`-package.
```{r eval = F}
install.packages("bupaverse")
```
You can then load the packages using `library()`.
```{r eval = F}
library(bupaverse)
```
This allows you to use `bupaR`, `eventdataR`, `edeaR`, `processcheckR`, and `processmapR`.
The following packages can be installed from [CRAN](https://cran.r-project.org/) individually using `install.packages()`.
* `daqapo`
* `heuristicsmineR`
* `petrinetR`
* `pm4py`
* `processanimateR`
* `processpredictR`
* `psmineR`
* `understandBPMN`
* `xesreadR`
Dev-versions of these packages can be installed from [GitHub](https://github.com/bupaverse) using `remotes::install_github()`.
In the same way, the following experimental packages can be installed.
* `collaborateR`
* `bpmnR`
* `propro`
## Additional requirements
### `processpredictR`
Using the `processpredictR` package requires a Python installation on your machine. Check the [Tensorflow documentation](https://tensorflow.rstudio.com/install/) to get started. Once `tensorflow` and `keras` are installed, `processpredictR` will be ready to be used.