forked from wangyida/gm-cml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_shapenet.py
43 lines (37 loc) · 1.34 KB
/
test_shapenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# First check the Python version
# Now get necessary libraries
from libs.train_vae import train_vae
# Import Tensorflow
import tensorflow as tf
# This cell includes the provided libraries from the zip file
# and a library for displaying images from ipython, which
# we will use to display the gif
# Train it! Change these parameters!
# n_code=72, here 72 = 12 * (8-2)
def test_shapenet():
train_vae(files="./list_annotated_shapenet.csv",
input_shape=[116, 116, 3],
output_shape=[116, 116, 3],
learning_rate=0.0001,
batch_size=64,
n_epochs=50,
crop_shape=[112, 112],
crop_factor=1.0,
n_filters=[64, 64, 64, 128, 128],
n_hidden=128,
n_code=32,
denoising=False,
convolutional=True,
variational=True,
softmax=True,
classifier='squeezenet',
filter_sizes=[3, 3, 3, 3, 3],
dropout=True,
keep_prob=0.8,
activation=tf.nn.relu,
img_step=2500,
save_step=500,
ckpt_name="vae.ckpt",
output_path="results_gmcml")
if __name__ == '__main__':
test_shapenet()