forked from geohot/twitchslam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimize_g2o.py
88 lines (72 loc) · 2.32 KB
/
optimize_g2o.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import g2o
import numpy as np
from helpers import poseRt
def optimize(frames, points, local_window, fix_points, verbose=False, rounds=50):
if local_window is None:
local_frames = frames
else:
local_frames = frames[-local_window:]
# create g2o optimizer
opt = g2o.SparseOptimizer()
solver = g2o.BlockSolverSE3(g2o.LinearSolverCSparseSE3())
solver = g2o.OptimizationAlgorithmLevenberg(solver)
opt.set_algorithm(solver)
# add normalized camera
cam = g2o.CameraParameters(1.0, (0.0, 0.0), 0)
cam.set_id(0)
opt.add_parameter(cam)
robust_kernel = g2o.RobustKernelHuber(np.sqrt(5.991))
graph_frames, graph_points = {}, {}
# add frames to graph
for f in (local_frames if fix_points else frames):
pose = f.pose
se3 = g2o.SE3Quat(pose[0:3, 0:3], pose[0:3, 3])
v_se3 = g2o.VertexSE3Expmap()
v_se3.set_estimate(se3)
v_se3.set_id(f.id * 2)
v_se3.set_fixed(f.id <= 1 or f not in local_frames)
#v_se3.set_fixed(f.id != 0)
opt.add_vertex(v_se3)
# confirm pose correctness
est = v_se3.estimate()
assert np.allclose(pose[0:3, 0:3], est.rotation().matrix())
assert np.allclose(pose[0:3, 3], est.translation())
graph_frames[f] = v_se3
# add points to frames
for p in points:
if not any([f in local_frames for f in p.frames]):
continue
pt = g2o.VertexSBAPointXYZ()
pt.set_id(p.id * 2 + 1)
pt.set_estimate(p.pt[0:3])
pt.set_marginalized(True)
pt.set_fixed(fix_points)
opt.add_vertex(pt)
graph_points[p] = pt
# add edges
for f, idx in zip(p.frames, p.idxs):
if f not in graph_frames:
continue
edge = g2o.EdgeProjectXYZ2UV()
edge.set_parameter_id(0, 0)
edge.set_vertex(0, pt)
edge.set_vertex(1, graph_frames[f])
edge.set_measurement(f.kps[idx])
edge.set_information(np.eye(2))
edge.set_robust_kernel(robust_kernel)
opt.add_edge(edge)
if verbose:
opt.set_verbose(True)
opt.initialize_optimization()
opt.optimize(rounds)
# put frames back
for f in graph_frames:
est = graph_frames[f].estimate()
R = est.rotation().matrix()
t = est.translation()
f.pose = poseRt(R, t)
# put points back
if not fix_points:
for p in graph_points:
p.pt = np.array(graph_points[p].estimate())
return opt.active_chi2()