-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlat_lon_full_data_concavity_map.py
62 lines (44 loc) · 2.59 KB
/
lat_lon_full_data_concavity_map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import matplotlib
matplotlib.use("Agg")
from matplotlib import pyplot as plt
import pandas as pd
import matplotlib.patches as mpatches
import sys
import matplotlib.cm as cm
import numpy as np
target = '/exports/csce/datastore/geos/users/s1134744/LSDTopoTools/Topographic_projects/'
#source_list = ['full_himalaya/raw/full_data.csv','full_himalaya/full_data.csv','full_himalaya_5000/raw/full_data.csv','full_himalaya_5000/full_data.csv']
source_list = ['0_1_ex_MChiSegmented_burned.csv','0_15_ex_MChiSegmented_burned.csv','0_2_ex_MChiSegmented_burned.csv',
'0_25_ex_MChiSegmented_burned.csv','0_3_ex_MChiSegmented_burned.csv','0_35_ex_MChiSegmented_burned.csv',
'0_4_ex_MChiSegmented_burned.csv','0_45_ex_MChiSegmented_burned.csv','0_5_ex_MChiSegmented_burned.csv',
'0_55_ex_MChiSegmented_burned.csv','0_6_ex_MChiSegmented_burned.csv','0_65_ex_MChiSegmented_burned.csv',
'0_7_ex_MChiSegmented_burned.csv','0_75_ex_MChiSegmented_burned.csv','0_8_ex_MChiSegmented_burned.csv',
'0_85_ex_MChiSegmented_burned.csv','0_9_ex_MChiSegmented_burned.csv','0_95_ex_MChiSegmented_burned.csv']
z = np.arange(18)
ys = [i+z+(i*z)**2 for i in range(18)]
colors = cm.Reds(np.linspace(0, 1, len(ys)))
legends = []
for x,y in zip(source_list,colors):
with open(target+'full_himalaya/raw/'+x,'r') as csvfile:
pandasDF = pd.read_csv(csvfile,delimiter=',')
#pandasDF = pandasDF[pandasDF['m_chi'] > 0]
#pandasDF = pandasDF[pandasDF['longitude'] > 85]
#pandasDF = pandasDF[pandasDF['longitude'] < 90]
#pandasDF = pandasDF[pandasDF['distance_along'] < 1000]
#pandasDF = pandasDF[pandasDF['distance_along'] > 150]
x_Series = pandasDF['longitude']
y_Series = pandasDF['latitude']
fig = plt.figure(1, figsize=(36,12))
ax = fig.add_subplot(111)
plt.scatter(x_Series,y_Series,marker='.', c=y, cmap = cm.Reds)
name = x.replace('_ex_MChiSegmented_burned.csv','')
legend = mpatches.Patch(color=y, label=name)
legends.append(legend)
#plt.legend(handles=[red_patch])
#plt.gca().invert_xaxis()
#matplotlib.axes.Axes.invert_xaxis
#ax.hist2d(x_Series,y_Series,bins=(40,40),range=((150,1000),(0,3000)))
#plt.ylim(0,200)
#cb = plt.colorbar()
plt.legend(handles=legends)
fig.savefig(target+'figures_to_keep/lat_lon_full_data_concavity_map.png', bbox_inches='tight')