-
Notifications
You must be signed in to change notification settings - Fork 24
/
test_erfnet_multi_scale.py
242 lines (199 loc) · 11 KB
/
test_erfnet_multi_scale.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import os
import time
import shutil
import torch
import torchvision
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import cv2
import utils.transforms as tf
import numpy as np
import models
from models import sync_bn
import dataset as ds
from options.options import parser
import numpy as np
best_mIoU = 0
def main():
global args, best_mIoU
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(str(gpu) for gpu in args.gpus)
args.gpus = len(args.gpus)
if args.no_partialbn:
sync_bn.Synchronize.init(args.gpus)
if args.dataset == 'VOCAug' or args.dataset == 'VOC2012' or args.dataset == 'COCO':
num_class = 21
ignore_label = 255
scale_series = [10, 20, 30, 60]
elif args.dataset == 'Cityscapes':
num_class = 19
ignore_label = 255 # 0
scale_series = [15, 30, 45, 90]
elif args.dataset == 'ApolloScape':
num_class = 37 # merge the noise and ignore labels
ignore_label = 255 # 0
else:
raise ValueError('Unknown dataset ' + args.dataset)
model = models.ERFNet(num_class, partial_bn=not args.no_partialbn) # models.PSPNet(num_class, base_model=args.arch, dropout=args.dropout, partial_bn=not args.no_partialbn)
input_mean = model.input_mean
input_std = model.input_std
policies = model.get_optim_policies()
model = torch.nn.DataParallel(model, device_ids=range(args.gpus)).cuda()
if args.resume:
if os.path.isfile(args.resume):
print(("=> loading checkpoint '{}'".format(args.resume)))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_mIoU = checkpoint['best_mIoU']
torch.nn.Module.load_state_dict(model, checkpoint['state_dict'])
print(("=> loaded checkpoint '{}' (epoch {})".format(args.evaluate, checkpoint['epoch'])))
else:
print(("=> no checkpoint found at '{}'".format(args.resume)))
cudnn.benchmark = True
cudnn.fastest = True
# Data loading code
test_loader = torch.utils.data.DataLoader(
getattr(ds, args.dataset.replace("ApolloScape", "VOCAug") + 'DataSet')(data_list=args.val_list, transform=[
torchvision.transforms.Compose([
tf.GroupRandomScaleRatio(size=(1692, 1692, 505, 505), interpolation=(cv2.INTER_LINEAR, cv2.INTER_NEAREST)),
tf.GroupNormalize(mean=(input_mean, (0, )), std=(input_std, (1, ))),]),
torchvision.transforms.Compose([
tf.GroupRandomScaleRatio(size=(1861, 1861, 556, 556), interpolation=(cv2.INTER_LINEAR, cv2.INTER_NEAREST)),
tf.GroupNormalize(mean=(input_mean, (0, )), std=(input_std, (1, ))),]),
torchvision.transforms.Compose([
tf.GroupRandomScaleRatio(size=(1624, 1624, 485, 485), interpolation=(cv2.INTER_LINEAR, cv2.INTER_NEAREST)),
tf.GroupNormalize(mean=(input_mean, (0, )), std=(input_std, (1, ))),]),
torchvision.transforms.Compose([
tf.GroupRandomScaleRatio(size=(2030, 2030, 606, 606), interpolation=(cv2.INTER_LINEAR, cv2.INTER_NEAREST)),
tf.GroupNormalize(mean=(input_mean, (0, )), std=(input_std, (1, ))),])
]), batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=False)
# define loss function (criterion) optimizer and evaluator
weights = [1.0 for _ in range(37)]
weights[0] = 0.05
weights[36] = 0.05
class_weights = torch.FloatTensor(weights).cuda()
criterion = torch.nn.NLLLoss(ignore_index=ignore_label, weight=class_weights).cuda()
for group in policies:
print(('group: {} has {} params, lr_mult: {}, decay_mult: {}'.format(group['name'], len(group['params']), group['lr_mult'], group['decay_mult'])))
optimizer = torch.optim.SGD(policies, args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
evaluator = EvalSegmentation(num_class, ignore_label)
### evaluate ###
validate(test_loader, model, criterion, 0, evaluator)
return
def cal_model_output(model, img_scale_dict, cnt, img_h_list, img_w_list):
input_img = img_scale_dict[str(cnt)]
input_var = torch.autograd.Variable(input_img, volatile=True)
input_var_1 = input_var[:, :, :int(args.test_size / 3), :args.test_size]
input_var_2 = input_var[:, :, :int(args.test_size / 3), (img_w_list[cnt] - args.test_size):]
input_var_3 = input_var[:, :, (img_h_list[cnt] - int(args.test_size / 3)):, :args.test_size]
input_var_4 = input_var[:, :, (img_h_list[cnt] - int(args.test_size / 3)):, (img_w_list[cnt] - args.test_size):]
# compute output
output_1 = model(input_var_1)
output_2 = model(input_var_2)
output_3 = model(input_var_3)
output_4 = model(input_var_4)
# measure accuracy and record loss
pred_1 = output_1.data.cpu().numpy()#.transpose(0, 2, 3, 1)
pred_2 = output_2.data.cpu().numpy()#.transpose(0, 2, 3, 1)
pred_3 = output_3.data.cpu().numpy()#.transpose(0, 2, 3, 1)
pred_4 = output_4.data.cpu().numpy()#.transpose(0, 2, 3, 1)
pred = np.zeros((args.batch_size, 37, img_h_list[cnt], img_w_list[cnt]))
pred[:, :, :int(args.test_size / 3), :args.test_size] += pred_1
pred[:, :, :int(args.test_size / 3), (img_w_list[cnt] - args.test_size):] += pred_2
pred[:, :, (img_h_list[cnt] - int(args.test_size / 3)):, :args.test_size] += pred_3
pred[:, :, (img_h_list[cnt] - int(args.test_size / 3)):, (img_w_list[cnt] - args.test_size):] += pred_4
return pred
def validate(val_loader, model, criterion, iter, evaluator, logger=None):
batch_time = AverageMeter()
losses = AverageMeter()
IoU = AverageMeter()
mIoU = 0
val_img_list = []
img_w_list = [1692, 1861, 1624, 2030] #[1692, 1861, 1624, 1590, 2030]
img_h_list = [505, 556, 485, 606] #[505, 556, 485, 475, 606]
model.eval()
end = time.time()
for i, (input, input_2, input_3, input_4, img_name) in enumerate(val_loader): #, input_5
# target = target.cuda(async=True)
img_scale_dict = {'0':input, '1':input_2, '2':input_3, '3':input_4} #, '4':input_5}
if i == 0:
freq_mat = np.zeros((img_h_list[0], img_w_list[0]))
freq_mat[:int(args.test_size / 3), :args.test_size] += np.ones((int(args.test_size / 3), args.test_size))
freq_mat[:int(args.test_size / 3), (img_w_list[0] - args.test_size):] += np.ones((int(args.test_size / 3), args.test_size))
freq_mat[(img_h_list[0] - int(args.test_size / 3)):, :args.test_size] += np.ones((int(args.test_size / 3), args.test_size))
freq_mat[(img_h_list[0] - int(args.test_size / 3)):, (img_w_list[0] - args.test_size):] += np.ones((int(args.test_size / 3), args.test_size))
freq_mat_1 = np.zeros((img_h_list[1], img_w_list[1]))
freq_mat_1[:int(args.test_size / 3), :args.test_size] += np.ones((int(args.test_size / 3), args.test_size))
freq_mat_1[:int(args.test_size / 3), (img_w_list[1] - args.test_size):] += np.ones((int(args.test_size / 3), args.test_size))
freq_mat_1[(img_h_list[1] - int(args.test_size / 3)):, :args.test_size] += np.ones((int(args.test_size / 3), args.test_size))
freq_mat_1[(img_h_list[1] - int(args.test_size / 3)):, (img_w_list[1] - args.test_size):] += np.ones((int(args.test_size / 3), args.test_size))
freq_mat_2 = np.zeros((img_h_list[2], img_w_list[2]))
freq_mat_2[:int(args.test_size / 3), :args.test_size] += np.ones((int(args.test_size / 3), args.test_size))
freq_mat_2[:int(args.test_size / 3), (img_w_list[2] - args.test_size):] += np.ones((int(args.test_size / 3), args.test_size))
freq_mat_2[(img_h_list[2] - int(args.test_size / 3)):, :args.test_size] += np.ones((int(args.test_size / 3), args.test_size))
freq_mat_2[(img_h_list[2] - int(args.test_size / 3)):, (img_w_list[2] - args.test_size):] += np.ones((int(args.test_size / 3), args.test_size))
freq_mat_3 = np.zeros((img_h_list[3], img_w_list[3]))
freq_mat_3[:int(args.test_size / 3), :args.test_size] += np.ones((int(args.test_size / 3), args.test_size))
freq_mat_3[:int(args.test_size / 3), (img_w_list[3] - args.test_size):] += np.ones((int(args.test_size / 3), args.test_size))
freq_mat_3[(img_h_list[3] - int(args.test_size / 3)):, :args.test_size] += np.ones((int(args.test_size / 3), args.test_size))
freq_mat_3[(img_h_list[3] - int(args.test_size / 3)):, (img_w_list[3] - args.test_size):] += np.ones((int(args.test_size / 3), args.test_size))
freq_scale_dict = {'0':freq_mat, '1':freq_mat_1, '2':freq_mat_2, '3':freq_mat_3} #, '4':freq_mat_4}
pred_final = np.zeros((args.batch_size, 37, img_h_list[0], img_w_list[0]))
for cnt in range(4):#5
pred = cal_model_output(model, img_scale_dict, cnt, img_h_list, img_w_list)
pred = pred / freq_scale_dict[str(cnt)]
# print(pred.shape)
if cnt > 0:
for num in range(args.batch_size):
pred_copy = cv2.resize(pred[num].transpose(1, 2, 0), dsize=(img_w_list[0], img_h_list[0]), interpolation=cv2.INTER_LINEAR)
# pred_copy = np.expand_dims(pred_copy, axis=0)
pred_copy = pred_copy.transpose(2, 0, 1)
pred_final[num] += pred_copy
pred = pred_final / 4.0 #5.0
pred = pred.transpose(0, 2, 3, 1)
pred = np.argmax(pred, axis=3).astype(np.uint8)
pred = pred + 1
for cnt in range(len(img_name)):
np.save('road05_tmp/' + img_name[cnt].split('/')[5].replace('jpg', 'npy'), pred[cnt]) #split('/')[5]
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if (i + 1) % args.print_freq == 0:
print(('Test: [{0}/{1}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'.format(i, len(val_loader), batch_time=batch_time)))
print('finished, #test:{}'.format(i))
return mIoU
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = None
self.avg = None
self.sum = None
self.count = None
def update(self, val, n=1):
if self.val is None:
self.val = val
self.sum = val * n
self.count = n
self.avg = self.sum / self.count
else:
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class EvalSegmentation(object):
def __init__(self, num_class, ignore_label=None):
self.num_class = num_class
self.ignore_label = ignore_label
def __call__(self, pred, gt):
assert (pred.shape == gt.shape)
gt = gt.flatten().astype(int)
pred = pred.flatten().astype(int)
locs = (gt != self.ignore_label)
sumim = gt + pred * self.num_class
hs = np.bincount(sumim[locs], minlength=self.num_class**2).reshape(self.num_class, self.num_class)
return hs
if __name__ == '__main__':
main()