-
Notifications
You must be signed in to change notification settings - Fork 0
/
read_sudoku.py
366 lines (293 loc) · 12.2 KB
/
read_sudoku.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import cv2
import numpy as np
import operator
import keras
import solve_sudoku
import pytesseract
def preprocess_img(image, dilate_single_digit):
# convert to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Blur
blur_image = cv2.GaussianBlur(gray, (3, 3), 0)
show_image(blur_image, "blur")
# Threshold, adaptive to be light independant
thresh = cv2.adaptiveThreshold(
blur_image, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 2)
show_image(thresh, "thresh")
# Bitwise_not
thresh_inv = cv2.bitwise_not(thresh)
show_image(thresh_inv, "bitwise_not")
if dilate_single_digit:
kernel = np.ones((1, 1))
dilated = cv2.dilate(thresh_inv, kernel)
show_image(dilated, "dilate")
return thresh_inv
# Dilate to fill in "holes"
kernel = np.ones((2, 2))
dilated = cv2.dilate(thresh_inv, kernel)
show_image(dilated, "dilate")
return dilated
def find_corners(image):
"""
Find the corners of the sudoko but finding the largest contour
"""
contours, h = cv2.findContours(
image.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Find contours
contours = sorted(contours, key=cv2.contourArea,
reverse=True) # Sort by area, descending
polygon = contours[0] # Largest polygon
bottom_right, _ = max(
enumerate([pt[0][0] + pt[0][1] for pt in polygon]), key=operator.itemgetter(1))
top_left, _ = min(enumerate([pt[0][0] + pt[0][1]
for pt in polygon]), key=operator.itemgetter(1))
bottom_left, _ = min(
enumerate([pt[0][0] - pt[0][1] for pt in polygon]), key=operator.itemgetter(1))
top_right, _ = max(enumerate([pt[0][0] - pt[0][1]
for pt in polygon]), key=operator.itemgetter(1))
# Return an array of all 4 points using the indices
# Each point is in its own array of one coordinate
return [polygon[top_left][0], polygon[top_right][0], polygon[bottom_right][0], polygon[bottom_left][0]]
def display_points(in_img, points, radius=5, colour=(0, 0, 255)):
"""Draws circular points on an image."""
img = in_img.copy()
# Dynamically change to a colour image if necessary
if len(colour) == 3:
if len(img.shape) == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
elif img.shape[2] == 1:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
for point in points:
img = cv2.circle(img, tuple(int(x) for x in point), radius, colour, -1)
# show_image(img, "corners")
return img
def show_image(img, title):
"""Shows an image until any key is pressed"""
cv2.imshow(title, img) # Display the image
# Wait for any key to be pressed (with the image window active)
def distance_between(p1, p2):
"""Returns the scalar distance between two points"""
a = p2[0] - p1[0]
b = p2[1] - p1[1]
return np.sqrt((a ** 2) + (b ** 2))
def crop_and_warp(img, crop_rect):
"""Crops and warps a rectangular section from an image into a square of similar size."""
# A rectangle described by top left, top right, bottom right and bottom left points
top_left, top_right, bottom_right, bottom_left = crop_rect[
0], crop_rect[1], crop_rect[2], crop_rect[3]
rect = np.array([top_left, top_right, bottom_right,
bottom_left], dtype='float32')
# Find the longest side in the rectangle
side = max([
distance_between(bottom_right, top_right),
distance_between(top_left, bottom_left),
distance_between(bottom_right, bottom_left),
distance_between(top_left, top_right)
])
# Create a square with side of the calculated length, this is the new perspective we want to warp to
square = np.array([[0, 0], [side - 1, 0], [side - 1, side - 1],
[0, side - 1]], dtype='float32')
# Gets the transformation matrix for skewing the image to fit a square by comparing the 4 before and after points
m = cv2.getPerspectiveTransform(rect, square)
# Performs the transformation on the original image and returns
return cv2.warpPerspective(img, m, (int(side), int(side)))
def image_size(img):
"""
Gets the size of an image eg. 350x350
"""
return tuple(img.shape[1:: -1])
def infer_grid(img):
"""Infers 81 cell grid from a square image."""
squares = []
side = img.shape[: 1]
side = side[0] / 9
for i in range(9):
for j in range(9):
p1 = (i * side, j * side) # Top left corner of a bounding box
# Bottom right corner of bounding box
p2 = ((i + 1) * side, (j + 1) * side)
squares.append((p1, p2))
for square in squares:
img = cv2.rectangle(img, tuple(int(x) for x in square[0]), tuple(
int(x) for x in square[1]), (0, 255, 0))
show_image(img, "grid")
return squares
def cut_from_rect(img, rect):
"""Cuts a rectangle from an image using the top left and bottom right points."""
return img[int(rect[0][1]): int(rect[1][1]), int(rect[0][0]): int(rect[1][0])]
def scale_and_centre(img, size, margin=0, background=0):
"""Rescales and centre an image onto a new background square."""
h, w = img.shape[: 2]
def centre_pad(length):
"""Handles centering for a given length that may be odd or even."""
if length % 2 == 0:
side1 = int((size - length) / 2)
side2 = side1
else:
side1 = int((size - length) / 2)
side2 = side1 + 1
return side1, side2
def scale(r, x):
return int(r * x)
if h > w:
t_pad = int(margin / 2)
b_pad = t_pad
ratio = (size - margin) / h
w, h = scale(ratio, w), scale(ratio, h)
l_pad, r_pad = centre_pad(w)
else:
l_pad = int(margin / 2)
r_pad = l_pad
ratio = (size - margin) / w
w, h = scale(ratio, w), scale(ratio, h)
t_pad, b_pad = centre_pad(h)
img = cv2.resize(img, (w, h))
img = cv2.copyMakeBorder(img, t_pad, b_pad, l_pad,
r_pad, cv2.BORDER_CONSTANT, None, background)
return cv2.resize(img, (size, size))
def find_largest_feature(img, scan_tl=None, scan_br=None):
"""
Uses `floodFill` function to find a bounding box of the area it filled to find the biggest
connected pixel structure in the image.
"""
img = img.copy()
height, width = img.shape[:2]
max_area = 0
seed_point = (None, None)
if scan_tl is None:
scan_tl = [0, 0]
if scan_br is None:
scan_br = [width, height]
# Loop through the image
for x in range(scan_tl[0], scan_br[0]):
for y in range(scan_tl[1], scan_br[1]):
# Only fill light or white squares
if img.item(y, x) == 255 and x < width and y < height:
area = cv2.floodFill(img, None, (x, y), 64)
if area[0] > max_area: # Gets the maximum bound area which should be the grid
max_area = area[0]
seed_point = (x, y)
# Colour everything grey (compensates for features outside of our middle scanning range
for x in range(width):
for y in range(height):
if img.item(y, x) == 255 and x < width and y < height:
cv2.floodFill(img, None, (x, y), 64)
# A Mask that is 2 pixels bigger than the image for padding
mask = np.zeros((height + 2, width + 2), np.uint8)
# fill the main feature
if all([p is not None for p in seed_point]):
cv2.floodFill(img, mask, seed_point, 255)
top, bottom, left, right = height, 0, width, 0
for x in range(width):
for y in range(height):
if img.item(y, x) == 64: # Fill with black anything that isn't the main feature
cv2.floodFill(img, mask, (x, y), 0)
# Find the bounding parameters
if img.item(y, x) == 255:
top = y if y < top else top
bottom = y if y > bottom else bottom
left = x if x < left else left
right = x if x > right else right
bbox = [[left, top], [right, bottom]]
return img, np.array(bbox, dtype='float32'), seed_point
def extract_digit(img, rect, size):
"""Extracts a digit (if one exists) from a Sudoku square."""
digit = cut_from_rect(img, rect) # Get the digit box from the whole square
height, width = digit.shape[:2]
margin = int(np.mean([height, width]) / 2.5)
_, bbox, seed = find_largest_feature(
digit, [margin, margin], [width - margin, height - margin])
digit = cut_from_rect(digit, bbox)
# Scale and pad the digit so that it fits a square of the digit size we're using for machine learning
width = bbox[1][0] - bbox[0][0]
height = bbox[1][1] - bbox[0][1]
# Ignore any small bounding boxes
if width > 0 and height > 0 and (width * height) > 100 and len(digit) > 0:
return scale_and_centre(digit, size, 4)
else:
return np.zeros((size, size), np.uint8)
def get_digits(img, squares, size):
"""Extracts digits from their cells and builds an array"""
digits = []
img = preprocess_img(img.copy(), dilate_single_digit=True)
show_image(img, "test")
for square in squares:
digits.append(extract_digit(img, square, size))
return digits
def find_sudoku(img):
"""
Entrypoint to find the digits of sudoku for the model to interpret
"""
process_img = preprocess_img(img, dilate_single_digit=False)
corners = find_corners(process_img)
display_points(sudoku, corners)
cropped_warped = crop_and_warp(sudoku, corners)
# show_image(cropped_warped, "warp")
digit_squares = infer_grid(cropped_warped)
t_digits = get_digits(cropped_warped, digit_squares, 28)
return t_digits, cropped_warped, digit_squares
def modify_input_for_model(images):
"""
Modifies the images to the input shaped used by model
"""
images = np.asarray(images, dtype=np.float32)
images = images.reshape(images.shape[0], 28, 28, 1)
images = images.astype('float32')
images /= 255
return images
def find_digits_from_images(images):
"""
Uses the CNN model to predict images
"""
t_digits = predict_with_model(images)
t_digits = correct_for_empty(images, t_digits)
return t_digits
def predict_with_model(images):
modified_images = modify_input_for_model(images)
model = keras.models.load_model("models/mnist_model")
preds = model.predict_classes(modified_images)
# Its bad with 1s and 7s, use OCR instead
custom_config = r'--oem 1 --psm 10 outputbase digits'
for i in range(len(preds)):
if preds[i] == 7:
try:
d = pytesseract.image_to_string(
images[i], config=custom_config)
if d.isdigit():
preds[i] = d
except Exception:
print("OCR fail")
return preds
def correct_for_empty(images, t_digits):
"""
If a slot contains white pixles above a certain threshold, mark it as 0 (no number contained)
"""
for i in range(len(images)):
num_white_px = np.sum(images[i] == 255)
if num_white_px / (28*28) < 0.1:
t_digits[i] = 0
return t_digits
def write_solution(t_image, t_grid, t_solved_grid, boxes):
print(solved_grid)
print(boxes[0])
boxes = np.reshape(boxes, (9, 9, 4), "F")
print(boxes[0][0][0])
for i in range(9):
for j in range(9):
if not t_grid[i][j]:
org = (int(boxes[i][j][0])+13, int(boxes[i][j][3])-13)
cv2.putText(
t_image, str(t_solved_grid[i][j]), org, cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA)
show_image(t_image, "solve")
if __name__ == "__main__":
IMG_PATH = "imgs/sudoku7.jpg" # Image to use - .jpg or .png
sudoku = cv2.imread(IMG_PATH, 1)
digits_images, cropped_warped, squares = find_sudoku(sudoku)
digits = find_digits_from_images(digits_images)
grid = np.reshape(digits, (9, 9), "F")
solved_grid, found = solve_sudoku.solve(grid.copy())
if found:
write_solution(cropped_warped, grid, solved_grid, squares)
else:
print("Failed to find solution")
cv2.waitKey(0)
cv2.destroyAllWindows() # Close all windows