Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

需支持更多的组件 #24

Open
cmdares opened this issue Jun 20, 2020 · 1 comment
Open

需支持更多的组件 #24

cmdares opened this issue Jun 20, 2020 · 1 comment

Comments

@cmdares
Copy link

cmdares commented Jun 20, 2020

1、支撑Kafka读取和写入
2、支持主流数据库的Upsert操作,如:Mysql、Postgresql、Oracle
参考:
mysql https://blog.csdn.net/a544258023/article/details/94029334
postgresql https://stackoverflow.com/questions/34643200/spark-dataframes-upsert-to-postgres-table
oracle merge into语法(暂时没有找到相应实现,应该与mysql的实现方式类似)
希望团队可以扩展spark的这块逻辑,支持带有主键的Upsert的应用场景,目前这个需求在实践过程中还是较为常见的。
3、图库(janusgraph 、Neo4j)数据的写入和读取(Gremlin、Cepher)

@cmdares cmdares changed the title 需支持丰富更多的组件 需支持更多的组件 Jun 20, 2020
@judy0131
Copy link
Collaborator

您好,感谢关注~
1.PiFlow已经支持Kafka读写
2.“Upsert操作”团队会考虑该需求。同时欢迎您加入,贡献代码~
3.目前支持Cepher读取和写入Neo4j

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants