-
Notifications
You must be signed in to change notification settings - Fork 7
/
id_loss.py
39 lines (33 loc) · 1.25 KB
/
id_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import torch
from torch import nn
from model_irse import Backbone
class IDLoss(nn.Module):
def __init__(self, opts):
super(IDLoss, self).__init__()
print('Loading ResNet ArcFace')
self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se')
self.facenet.load_state_dict(torch.load("model_ir_se50.pth"))
self.pool = torch.nn.AdaptiveAvgPool2d((256, 256))
self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112))
self.facenet.eval()
self.opts = opts
def extract_feats(self, x):
if x.shape[2] != 256:
x = self.pool(x)
x = x[:, :, 35:223, 32:220] # Crop interesting region
x = self.face_pool(x)
x_feats = self.facenet(x)
return x_feats
def forward(self, y_hat, y):
n_samples = y.shape[0]
y_feats = self.extract_feats(y) # Otherwise use the feature from there
y_hat_feats = self.extract_feats(y_hat)
y_feats = y_feats.detach()
loss = 0
sim_improvement = 0
count = 0
for i in range(n_samples):
diff_target = y_hat_feats[i].dot(y_feats[i])
loss += 1 - diff_target
count += 1
return loss / count, sim_improvement / count